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Abstract
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1 Introduction

We study controllability properties for periodic linear control systems and give an
application to quasi-affine control systems. Periodic linear control systems have the
form

ẋ(t) = A(t)x(t) + B(t)u(t), u(t) ∈ U , (1)

where A ∈ L∞(R, R
d×d) and B ∈ L∞(R, R

d×m) are T -periodic for some T > 0.
We suppose that the controls u = (u1, . . . , um) have values in a bounded convex
neighborhood U of the origin in R

m . The set of admissible controls is

U = {u ∈ L∞(R, R
m) |u(t) ∈ U for almost all t }.

We denote the solutions (in the Carathéodory sense) of (1) with initial condition
x(t0) = x0 byϕ(t; t0, x0, u), t ∈ R. The homogeneous part of (1) is the (uncontrolled)
homogeneous periodic differential equation

ẋ(t) = A(t)x(t). (2)

Nonautonomous control systems can be autonomized by including time in the state of
the system. This is useful, if recurrence properties can be exploited; cf. Johnson and
Nerurkar [16]. In the T -periodic case, it suffices to add the phases τ ∈ [0, T ) to the
states in R

d (cf. Gayer [15] for general periodic nonlinear systems) and we follow this
approach.We give a spectral characterization of the reachable sets generalizing Sontag
[24, Corollary 3.6.7] for autonomous linear control systems; cf. also [24, p. 139] for
some historical remarks. The proof also uses arguments from Colonius, Cossich, and
Santana [9, Theorem 15] for autonomous discrete-time systems. This yields a charac-
terization of the unique control set (i.e., a maximal set of approximate controllability)
with nonvoid interior. The Poincaré sphere from the global theory of nonlinear differ-
ential equations (introduced by Poincaré [23] for polynomial differential equations)
provides a compactification of the state space; cf. the monograph Perko [22, Section
3.10] and, e.g., Valls [26] for a recent contribution. This leads us to a description of
the behavior “near infinity” of the original control system. Since the induced system
on the Poincaré sphere is obtained by projection of a homogeneous system it suffices
to consider its restriction to the upper hemisphere. Alternatively one might consider
the induced system on projective space. In [11], we have used the latter approach for
autonomous affine control systems. We remark that Da Silva [12] has generalized [24,
Corollary 3.6.7] in another direction, for linear control systems on solvable Lie groups.
General background on control of periodic linear systems is contained in Bittanti and
Colaneri [2].

The present paper may also be considered as a contribution to a Floquet theory of
periodic control systems. They involve two T -periodic matrix functions A(·) and B(·)
and a periodic coordinate change can transform only one of them to a constant matrix,
hence periodic linear systems cannot be conjugated to autonomous linear systems.
But the formulation of Floquet theory in the framework of linear skew product flows
can be generalized (cf., e.g., Colonius and Kliemann [8, Chapter 7], and Kloeden and
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Rasmussen [19] for the general theory of skew product flows). The spectral subspaces
(the stable, center, and unstable subspaces) of (2) depending on the phase τ ∈ [0, T )

characterize controllability properties.
In the last part of this paper, we introduce quasi-affine control systems which have

the form
ẋ(t) = A(v(t))x(t) + B(v(t))u(t), (3)

with A(v) := A0 +∑p
i=1 vi Ai for v ∈ V ⊂ R

p, where A0, A1, . . . , Ap ∈ R
d×d , and

B : V → R
d×m is continuous. The controls (u, v) have values in a compact convex

neighborhood U × V ⊂ R
m × R

p of (0, 0), and the set of admissible controls is

U × V = {(u, v) ∈ L∞(R, R
m) × L∞(R, R

p) |u(t) ∈ U and v(t) ∈ V for a.a. t }.

Quasi-affine systems look similar to linear control systems, but the coefficientmatrices
in front of x and u may depend on the additional controls v. If a periodic v ∈ V is
fixed, one obtains a periodic linear control systemwith controls u. We use this relation
to prove results for control sets of quasi-affine systems. A special case is affine control
systems with separated additive and multiplicative control terms,

ẋ(t) = A0x(t) +
p∑

i=1

vi (t)Ai x(t) + Bu(t). (4)

Controllability properties of affine systems are a classical topic in control theory. We
only refer to the monographs Mohler [21], Elliott [14], and Jurdjevic [17]. Our recent
paper [11] proves results on control sets of general affine systems; cf. also [10] for
control sets about equilibria.

The contents of this paper are the following. After preliminaries in Sect. 2 on T -
periodic linear control systems, Sect. 3 introduces the autonomized control system
with state space S

1 × R
d , where the unit circle S

1 is parametrized by τ ∈ [0, T ).
In Sect. 4, Theorem 11 characterizes the reachable and controllable subsets using the
spectral subbundles of the periodic differential equation (2). Theorem 13 shows that a
unique control set Da ⊂ S

1 × R
d with nonvoid interior exists. It is unbounded if the

center subbundle is nontrivial. Section5 projects the control system to the open upper
hemisphereS

d,+ of thePoincaré sphere. Togetherwith the equatorSd,0, this constitutes
a compactification where the behavior “near infinity” is mapped onto the behavior near
the equator. The control set Da onS

1×R
d projects onto the control set Da

P onS
1×S

d,+
and the intersection of intDa

P with S
1 × S

d,0 is determined by the image of the center
subbundle of (2). These results are also new for autonomous linear control systems.
Section6 presents some low-dimensional examples, and, finally, Sect. 7 introduces
quasi-affine systems. Theorem 17 characterizes their unique control set with nonvoid
interior using the control sets of the periodic linear control systems for fixed periodic
v ∈ V .

Notation: For a matrix A ∈ R
d×d , the set of eigenvalues is denoted by spec(A) and

for μ ∈ spec(A) the generalized eigenspace is ker(μI − A)k , where k is the dimen-
sion of the largest Jordan block for μ. By GE(A, μ), we denote the real generalized
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eigenspace of μ, which is the real part of the generalized eigenspace. The interior of
a set M in a metric space is intM and N = {0, 1, 2, . . .}.

2 Preliminaries

In this section, we introduce some notation and discuss consequences of the T -
periodicity property. In particular, we recall a result on controllability for periodic
systems without control restrictions.

The principal fundamental solution X(t, s) ∈ R
d×d , s, t ∈ R, of the homogeneous

equation (2) is the matrix solution of

d

dt
X(t, s) = A(t)X(t, s) with X(s, s) = Id .

Here, X(t, r)X(r , s) = X(t, s), t, r , s ∈ R, and by T -periodicity X(t+kT , s+kT ) =
X(t, s) for all k ∈ Z. Thevariation-of-parameters formula for the solutions of (1) yields

ϕ(t; t0, x, u) = X(t, t0)x +
∫ t

t0
X(t, s)B(s)u(s)ds. (5)

Denote for x ∈ R
d the reachable set for t ≥ t0 and the controllable set for t ≤ t0 of

(1) by
Rt (t0, x) = {ϕ(t; t0, x, u) |u ∈ U },
Ct (t0, x) = {y ∈ R

d |∃u ∈ U : ϕ(t0; t, y, u) = x }, (6)

resp., and let the reachable set and the controllable set be

R(t0, x) :=
⋃

t≥t0
Rt (t0, x) and C(t0, x) :=

⋃

t≤t0
Ct (t0, x).

Lemma 1 Let x ∈ R
d , t ≥ t0, and k ∈ N.

(i) The reachable sets are convex and satisfy Rt (t0, x) = Rt+kT (t0 + kT , x).
(ii) The reachable sets RkT+t0(t0, 0) are increasing with k ∈ N.

Proof Convexity of Rt (t0, x) holds since the control range U is convex. The equality
in (i) follows from

ϕ(t + kT ; t0 + kT , x, u) = X(t + kT , t0 + kT )x +
∫ t+kT

t0+kT
X(t + kT , s)B(s)u(s)ds

= X(t, t0)x +
∫ t

t0
X(t + kT , s + kT )B(s + kT )u(s + kT )ds

= X(t, t0)x +
∫ t

t0
X(t, s)B(s)u(s + kT )ds

= ϕ(t; t0, x, u(· + kT )),
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where u(· + kT )(s) := u(s + kT ), s ∈ R.
For assertion (ii), let k ≥ � and consider x ∈ R�T+t0(t0, 0) with

x = ϕ(�T + t0; t0, 0, u) =
∫ �T+t0

t0
X(�T + t0, s)B(s)u(s)ds.

Define

v(t) =
{
0 for t ∈ [t0, (k − �)T + t0)
u(t − (k − �)T ) for t ∈ [(k − �)T + t0, kT + t0] .

Then, one obtains

ϕ(kT + t0; t0, 0, v) =
∫ kT+t0

t0
X(kT + t0, s)B(s)v(s)ds

=
∫ (k−�)T+t0

t0
X(kT + t0, s)B(s)v(s)ds +

∫ kT+t0

(k−�)T+t0
X(kT + t0, s)B(s)v(s)ds

= 0 +
∫ �T+t0

t0
X(kT + t0, s + (k − �)T )B(s + (k − �)T )v(s + (k − �)T )ds

=
∫ �T+t0

t0
X(�T + t0, s)B(s)u(s)ds = x,

hence R�T+t0(t0, 0) ⊂ RkT+t0(t0, 0). 	

In order to clarify the relationship between the reachable and the controllable sets

of the considered nonautonomous control systems, it is convenient to introduce the
following time-reversed systems (cf. Sontag [24, Definition 2.6.7 and Lemma 2.6.8]).
The reversal of (1) at μ ∈ R is

ẏ(t) = −A(μ − t)y(t) − B(μ − t)u(t), u ∈ U , (7)

with trajectories denoted by ϕ−
μ (t; t0, x0, u), t ∈ R.

Lemma 2 For t1 < t0, the controllable setCt1(t0, x)of (1) coincideswith the reachable
set R−

t0 (t1, x) of the time-reversed system (7) at μ = t0 + t1.

Proof Let y ∈ Ct1(t0, x) with ϕ(t0; t1, y, u) = x . Define the control u−(t) := u(t0 +
t1 − t), t ∈ R. The function y(t) := ϕ(t0 + t1 − t; t1, y, u), t ∈ [t1, t0], satisfies the
differential equation

ẏ(t) = −A(t0 + t1 − t)y(t) − B(t0 + t1 − t)u(t0 + t1 − t),

and y(t0) = y and y(t1) = x . Thus, y(t) = ϕ−
t0+t1(t; t1, x, u−), t ∈ [t1, t0], and the

assertion follows. 	
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Since C−kT+t0(t0, x) = R−
t0 (−kT + t0, x) = R−

kT+t0
(t0, x) Lemma 1 implies that

also the controllable sets are convex and for k ≥ � inN the inclusionC−�T+t0(t0, 0) ⊂
C−kT+t0(t0, 0) holds.

Proposition 3 For τ ∈ [0, T ] consider x ∈ RkT+τ (τ, 0) and y ∈ R�T+τ (τ, 0) where
k, � ∈ N. Then, it follows that

x + X(kT + τ, τ )y = x + X(T + τ, τ )k y ∈ R(k+�)T+τ (τ, 0). (8)

Proof There are u, v ∈ U with

x = ϕ(kT + τ ; τ, 0, u) =
∫ kT+τ

τ

X(kT + τ, s)B(s)u(s)ds,

y = ϕ(�T + τ ; τ, 0, v) =
∫ �T+τ

τ

X(�T + τ, s)B(s)v(s)ds.

Define

w(t) =
{

v(t) for t ∈ [τ, �T + τ ]
u(t − �T ) for t ∈ (�T + τ, (k + �)T + τ ] .

Then, one computes

ϕ((k + �)T + τ ; τ, 0, w) =
∫ (k+�)T+τ

τ

X((k + �)T + τ, s)B(s)w(s)ds

=
∫ �T+τ

τ

X((k + �)T + τ, s)B(s)v(s)ds

+
∫ (k+�)T+τ

�T+τ

X((k + �)T + τ, s)B(s)u(s − �T )ds

=
∫ �T+τ

τ

X((k + �)T + τ, �T + τ)X(�T + τ, s)B(s)v(s)ds

+
∫ kT+τ

τ

X((k + �)T + τ, �T + s)B(�T + s)u(s)ds

= X(kT + τ, τ )

∫ �T+τ

τ

X(�T + τ, s)B(s)v(s)ds

+
∫ kT+τ

τ

X(kT + τ, s)B(s)u(s)ds

= X(kT + τ, τ )y + x .

Thus, (8) holds. 	

Controllability criteria for periodic linear systems without control constraints are

well known. The following theorem is due to Brunovsky [5], slightly reformulated.
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Theorem 4 For the periodic linear system in (1) without control restrictions, the fol-
lowing properties are equivalent:

(i) For any two points x1, x2 ∈ R
d and any t0 ∈ R, there are t1 > t0 and u ∈

L∞([t0, t1], R
m) such that ϕ(t1; t0, x1, u) = x2.

(ii) For any two points x1, x2 ∈ R
d and τ ∈ [0, T ], there is u ∈ L∞([τ, dT +

τ ], R
m) such that ϕ(dT + τ ; τ, x1, u) = x2.

(iii) The rows of the matrix function X(t, 0)−1B(t), t ∈ [0, dT ], are linearly inde-
pendent.

If any of the equivalent conditions above is satisfied, the system in (1) without
control restrictions is called controllable.

Proof Brunovsky [5, Proposition 3] shows that conditions (i) and (iii) are equivalent.
By T -periodicity, condition (ii) implies (i). Conversely, cf. the proof of [5, Proposition
3], condition (i) implies (ii) for τ = 0. If (i) holds for the system with matrix functions
A(t) and B(t), t ∈ R, it also holds for the system with A(τ + t) and B(τ + t), t ∈ R,
with τ ∈ [0, T ]. Hence, condition (ii) follows for all τ ∈ [0, T ]. 	

Remark 1 Condition (iii) above generalizes the Kalman criterion for controllability of
autonomous systems. It is equivalent to assignability of the spectrum by T -periodic
state feedbacks, [5, Theoremonp. 302].As shown inBittanti, Guarbadassi,Mafezzoni,
and Silverman [3] and Bittanti, Colaneri, and Guarbadassi [4], a criterion generalizing
the Hautus–Popov spectral characterization for controllability is only equivalent to
null-controllability.

Theorem 4 implies the following first result on controllability properties of the
system with control restrictions.

Proposition 5 Assume that the periodic linear system in (1)without control restrictions
is controllable, and let τ ∈ [0, T ]. Then for system (1) with controls u ∈ U , the
reachable set RdT+τ (τ, 0) and the controllable set C−dT+τ (τ, 0) of (1) are convex
and contain an ε-ball B(0; ε) with ε > 0 around 0 ∈ R

d . The sets

RNT+τ (τ, 0) :=
⋃

k∈N
RkT+τ (τ, 0) and C−NT+τ (τ, 0)

:=
⋃

k∈N
C−kT+τ (τ, 0), τ ∈ [0, T ],

are convex and open. Furthermore also the sets

RNT+τ (0, 0), intRNT+τ (0, 0),C−NT+τ (0, 0), and intC−NT+τ (0, 0)

are convex, and

RNT+τ (τ, 0) ⊂ intRNT+τ (0, 0) and C−NT+τ (τ, 0) ⊂ intC−NT+τ (0, 0).
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Proof Convexity of RNT+τ (τ, 0) follows from Lemma 1. Fix a basis y1, . . . , yd of
R
d . By Theorem 4 for every τ ∈ [0, T ], there are uτ

i ∈ L∞([0, (d + 1)T ], R
m) with

yi = ϕ(dT + τ ; τ, 0, uτ
i ) =

∫ dT+τ

τ

X(dT + τ, s)B(s)uτ
i (s)ds for i = 1, . . . , d,

and ϕ(dT + τ ; τ, 0, u) depends continuously on (τ, u) ∈ [0, T ] × L∞([0, (d +
1)T ], R

m). Let ε0 > 0 be small enough such that z1, . . . , zd form a basis of R
d

for any zi ∈ B(yi ; ε0). By continuity, there is for every τ0 ∈ [0, T ] a δ0 > 0 such that
ϕ(dT +τ ; τ, 0, uτ0

i ) ∈ B(yi ; ε0) for |τ − τ0| < δ0. Now compactness of [0, T ] shows
that there are finitely many τ j ∈ [0, T ] such that ϕ(dT + τ ; τ, 0, u

τ j
i ), i = 1, . . . , d,

form a basis of R
d . By linearity, there is α > 0 such that also ϕ(dT + τ ; τ, 0, αu

τ j
i )

form a basis of R
d and αu

τ j
i ∈ U for all i, j . This shows that there is a ball B(0; ε)

contained in RdT+τ (τ, 0) ⊂ RNT+τ (τ, 0) for all τ ∈ [0, T ].
Let x = ϕ(kT + τ ; τ, 0, u) ∈ RNT+τ (τ, 0) for some k ∈ N and u ∈ U . The set

X(kT + τ, τ )B(0; ε) is open and Proposition 3 implies that for each y ∈ B(0; ε)

x + X(kT + τ, τ )y ∈ R(k+d)T+τ (τ, 0) ⊂ RNT+τ (τ, 0).

This shows that RNT+τ (τ, 0) is open. The control

v(t) :=
{
0 for t ∈ [0, τ )

u(t) for t ∈ [τ, kT + τ ]

yields x = ϕ(kT + τ ; τ, 0, u) = ϕ(kT + τ ; 0, 0, v) ∈ RNT+τ (0, 0), hence the
inclusionRNT+τ (τ, 0) ⊂ intRNT+τ (0, 0) holds. For convexity ofRNT+τ (0, 0) let for
i = 1, 2

yi = ϕ(τ ; 0, xi , ui ) ∈ RNT+τ (0, 0) with xi ∈ RNT (0, 0), ui ∈ U .

Then, linearity implies for α ∈ [0, 1] that

αy1 + (1 − α)y2 = αϕ(τ ; 0, x1, u1) + (1 − α)ϕ(τ ; 0, x2, u2)
= ϕ(τ ; 0, αx1 + (1 − α)x2, αu1 + (1 − α)u2) ∈ RNT+τ (0, 0).

SinceRNT+τ (0, 0) is convex also intRNT+τ (0, 0) is convex; cf. Dunford and Schwartz
[13, Theorem V.2.1].

The assertions for the controllable sets follow by time reversal from Lemma 2 and
Lemma 1(i). 	


3 The autonomized system

First some results from Floquet theory are recalled (cf. Chicone [6], Teschl [25], and
Colonius andKliemann [8, Section 7.2]). Then, we introduce the autonomized system.
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Consider the unit circle S
1 parametrized by τ ∈ [0, T ) and define the shift

θ : R × S
1 → S

1, θ(t; τ) = t + τ mod T for t ∈ R, τ∈ S
1.

Here, τ + t mod T denotes the unique element τ + t − kT ∈ [0, T ) for some k ∈ Z.
Let ψ(t; τ0, x0) be the solution of (2) with initial condition x(τ0) = x0 and define


 = (θ, ψ) : R×S
1 ×R

d → S
1 ×R

d , 
(t; τ0, x0) = (θ(t; τ0), ψ(t; τ0, x0)). (9)

Then, 
 is a continuous dynamical system. The first component does not depend on
the second component and
(t; τ0, x0) is linear in the argument x0, hence
 is a linear
skew product flow; cf. Kloeden and Rasmussen [19, Section 2.2].

The Floquet multipliers of equation (2) are the eigenvalues μ of

X(T + τ, τ ) = X(T + τ, T )X(T , 0)X(0, τ ) = X(τ, 0)X(T , 0)X(τ, 0)−1, τ ∈ [0, T ).

The Floquet exponents are λ j := 1
T log |μ| (the Floquet exponents as defined here are

the real parts of the Floquet exponents defined in [6] and [25]). Note that λ j < 0 if
and only if |μ| < 1. The following result is [8, Theorem 7.2.9].

Theorem 6 Let 
 = (θ, ψ) : R × S
1 × R

d −→ S
1 × R

d be the linear skew product
flow associated with the T -periodic linear differential equation (2). For each τ ∈ S

1,
there exists a decomposition

R
d = L(λ1, τ ) ⊕ · · · ⊕ L(λ�, τ )

into linear subspaces L(λ j , τ ), called the Floquet (or Lyapunov) spaces, with the
following properties:

(i) The Floquet spaces have dimension d j := dim L(λ j , τ ) independent of τ ∈ S
1.

(ii) They are invariant under multiplication by the principal fundamental matrix in
the following sense:

X(t + τ, τ )L(λ j , τ ) = L(λ j , θ(t; τ)) for all t ∈ R and τ ∈ S
1.

(iii) For every τ ∈ S
1, the Floquet (or Lyapunov) exponents satisfy

λ(x, τ ) := lim
t→±∞

1

t
log ‖ψ(t; τ, x)‖ = λ j if and only if 0 = x ∈ L(λ j , τ ).

The Floquet space L(λ j , τ ) is the direct sum of the real generalized eigenspaces
for all Floquet multipliers μ with 1

T log |μ| = λ j ,

L(λ j , τ ) =
⊕

μ
GE(X(T + τ, τ ), μ).

Define for τ ∈ [0, T ) the stable, the center, and the unstable subspaces, resp., by

E−
τ =

⊕

λ j<0
L(λ j , τ ), E0

τ := L(0, τ ), and E+
τ :=

⊕

λ j>0
L(λ j , τ ).
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Then, E±
τ = X(τ, 0)E±

0 and E0
τ = X(τ, 0)E0

0 , and S
1 × R

d splits into the Whitney
sum E− ⊕ E0 ⊕ E+ of the stable, the center, and the unstable subbundles

E± =
{
(τ, x) ∈ S

1 × R
d
∣
∣ x ∈ E±

τ

}
, E0 =

{
(τ, x) ∈ S

1 × R
d
∣
∣
∣ x ∈ E0

τ

}
, (10)

resp. We also introduce analogous subbundles for the center-stable subspaces and the
center-unstable subspaces given by

E−,0
τ :=

⊕

λ j≤0
L(λ j , τ ) and E+,0

τ =
⊕

λ j≥0
L(λ j , τ ), τ ∈ [0, T ), resp.

Similarly as for periodic differential equations, it is convenient for linear periodic
control systems of the form (1) to extend the state space by adding the phase τ ∈ [0, T )

to the state in order to get an autonomous system.Weobtain the following autonomized
control system on S

1 × R
d ,

τ̇ (t) = 1mod T , ẋ(t) = A(τ (t))x(t) + B(τ (t))u(t), u ∈ U , (11)

with solutions

ϕa(t; (τ0, x0), u) = (τ0 + t mod T , ϕ(τ0 + t; τ0, x0, u)) , t ∈ R.

Observe that (11) is not a linear control system.

Remark 2 If the matrix functions A(·) and B(·) are merely measurable, the general
existence theory of ordinary differential equations does not apply to equation (11).
Nevertheless, the solutions are well defined.

Denote the reachable and controllable sets for t ≥ 0 of (11) by

Ra
t (τ, x) = {ϕa(t; (τ, x), u) |u ∈ U } ,

Ca
t (τ, x) = {(σ, y) ∈ S

1 × R
d
∣
∣∃u ∈ U : ϕa(t; (σ, y), u) = (τ, x) },

Ra(τ, x) =
⋃

t≥0
Ra
t (τ, x) and Ca(τ, x) =

⋃

t≥0
Ca
t (τ, x),

resp. The time-reversed autonomous system is

τ̇ (t) = −1mod T , ẏ(t) = −A(τ (t))y(t) − B(τ (t))u(t), u ∈ U . (12)

The reachable setsRa,−
t (τ, x) of the time-reversed autonomized system (12) coincide

with the controllable sets Ca
t (τ, x) of system (11). Note the following relation to the

reachable and controllable sets defined in (6) for the periodic system (1).

Lemma 7 For (τ, x) ∈ S
1 × R

d and t ≥ 0 the following assertions hold:

Ra
t (τ, x) = {(τ + t mod T , y) |y ∈ Rτ+t (τ, x) } ,

Ca
t (τ, x) = {(σ, y) ∈ S

1 × R
d |σ + t = τ mod T and y ∈ Cσ (σ + t, x) },
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Ra(0, 0) = {(τ, x) ∈ S
1 × R

d |x ∈ RNT+τ (0, 0) },
Ca(0, 0) = {(τ, x) ∈ S

1 × R
d |x ∈ Cτ (kT , 0), k ≥ 1 }.

Proof By definition one has (σ, y) = ϕa(t; (τ, x), u) ∈ Ra
t (τ, x) if and only if σ =

τ + t mod T and ϕ(τ + t; τ, x, u) = y. This shows that y ∈ Rτ+t (τ, x) and the first
assertion follows. By definition (σ, y) ∈ Ca

t (τ, x) means that σ + t = τ mod T and
ϕ(σ + t; σ, y, u) = x for some u ∈ U , hence y ∈ Cσ (σ + t, x). Furthermore, one
finds

Ra(0, 0) =
⋃

t≥0
{(t mod T , x) |x ∈ Rt (0, 0) }

= {(τ, x) ∈ S
1 × R

d |x ∈ RNT+τ (0, 0) },
Ca(0, 0) =

⋃

t≥0
{(τ, x) ∈ S

1 × R
d |τ + t = 0mod T and x ∈ Cτ (τ + t, 0) }.

	

In particular, Lemma 7 shows that Ra(0, 0) = S

1 × X for a subset X ⊂ R
d if

and only if X = RNT+τ (0, 0) for all τ ∈ S
1. The next lemma provides additional

information about the reachable and controllable sets for x = 0 of the autonomized
system.

Lemma 8 If the periodic linear system in (1) without control restrictions is control-
lable, then

S
1 × {0} ⊂ intRa(τ, 0) ∩ intCa(τ, 0), τ ∈ [0, T ).

Proof For τ ∈ S
1, Lemma 7 implies

Ra(τ, 0) =
⋃

t≥0

Ra
t (τ, 0) =

⋃

t≥0

{(τ + t mod T , x) |x ∈ Rτ+t (τ, 0) }

= {(σ, x) ∈ S
1 × R

d |σ ∈ [τ, T ), x ∈ RNT+σ (τ, 0) }
∪ {(σ, x) ∈ S

1 × R
d |σ ∈ [0, τ ), x ∈ RkT+σ (τ, 0), k ≥ 1 }.

By Proposition 5, the set RdT+τ (τ, 0) contains an ε-ball B(0; ε) around 0 for some
ε > 0. For y ∈ B(0; ε), there is some u ∈ U with y = ϕ(dT + τ ; τ, 0, u). Define for
σ ∈ [0, T ]

v(t) :=
{
u(t) for t ∈ [τ, dT + τ)

0 for t ∈ [dT + τ, (d + 1)T + σ ] .

With the invertible matrices Y (σ ) := X((d + 1)T + σ, dT + τ), it follows that

ϕ((d + 1)T + σ ; τ, 0, v) = X((d + 1)T + σ, dT + τ)y = Y (σ )y,

showing that Y (σ )B(0; ε) ⊂ R(d+1)T+σ (τ, 0). The matrices Y (σ ) and hence also
their singular values 0 < δ1(σ ) ≤ · · · ≤ δd(σ ) depend continuously on σ ∈ [0, T ]
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(cf. Sontag [24, Corollary A.4.4]). In particular, the minimal singular values δ1(σ ) are
bounded away from 0, since [0, T ] is compact. Now recall the geometric interpretation
of the singular values of a matrix A (cf., e.g., Arnold [1, p. 118]): δi is the length of
the i th principal axis of the ellipsoid A(Sd−1) obtained as the image of the unit sphere
S
d−1 under the linear mapping A. It follows that there is a ball B(0; ε0) with ε0 > 0

contained in every set Y (σ )B(0; ε), σ ∈ [0, T ]. This proves that B(0; ε0) is contained
in every set

⋃
k≥1 RkT+σ (τ, 0) and it follows that S

1 × {0} ⊂ intRa(τ, 0).
The assertion for Ca(τ, 0) follows by time reversal. 	


4 Spectral characterization of reachable and controllable sets

In this section, we characterize the reachable and the controllable sets of the autono-
mized system (11) by the spectral bundles of the homogeneous part (2) introduced in
Theorem 6.

We start with the following technical lemma.

Lemma 9 Let δ > 0 and μ ∈ C with |μ| ≥ 1. Then, there are nk → ∞ and ank ∈ C

with
∣
∣ank

∣
∣ < δ such that μnk ank ∈ R and

∣
∣μnk ank

∣
∣ ≥ δ

2 for all k.

Proof With μn = xn + ı yn and a = α + ıβ, we have

μna = (xn + ı yn)(α + ıβ) = xnα − ynβ + ı(xnβ + ynα).

If xn = 0 choose αn := 0, βn := δ
2 to obtain μnan = −ynβn ∈ R and

∣
∣μnan

∣
∣ = |μ|n |an| ≥ |an| = δ

2
.

If xn = 0 the product μna is real if and only if β = −α
yn
xn
. According to Colonius,

Cossich, and Santana [9, Lemma 13], there are nk → ∞ such that
∣
∣
∣
Im(μnk )
Re(μnk )

∣
∣
∣→ 0 and

hence, with αnk := δ
2 , βnk := −αnk

ynk
xnk

, and k large enough,

∣
∣βnk

∣
∣ = αnk

∣
∣
∣
∣
ynk
xnk

∣
∣
∣
∣ =

δ

2

∣
∣
∣
∣
Im(μnk )

Re(μnk )

∣
∣
∣
∣ <

δ

2
.

It follows for ank := αnk + ıβnk that

∣
∣ank

∣
∣2 = α2

nk + β2
nk <

1

4
δ2 + 1

4
δ2, and hence

∣
∣ank

∣
∣ < δ.

This choice of ank guarantees μnk ank ∈ R and using |μ| ≥ 1

∣
∣μnk ank

∣
∣ = |μ|nk ∣∣ank

∣
∣ ≥ ∣∣ank

∣
∣ ≥ ∣∣αnk

∣
∣ = δ

2
.
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The next lemma relates the reachable sets and the center-unstable subspaces of the
homogeneous part.

Lemma 10 Assume that the periodic linear system in (1) without control restrictions
is controllable. Then for every τ ∈ [0, T ), the center-unstable subspace E+,0

τ of the
homogeneous part (2) and the reachable sets of system (1)with controls u ∈ U satisfy

E+,0
τ ⊂ RNT+τ (τ, 0) ⊂ intRNT+τ (0, 0).

Proof The second inclusion follows from Proposition 5. It remains to prove the first
inclusion. Since by Proposition 5 RNT+τ (τ, 0) is convex, it suffices to prove that the
real generalized eigenspaces for the eigenvalues (the Floquetmultipliers)with absolute
value greater than or equal to 1 are contained in RNT+τ (τ, 0). For each eigenvalue μ

of X(T + τ, τ ) and q ∈ N, let Jq(μ) := ker(μI − X(T + τ, τ )q) and denote the set
of real parts by

JRq (μ) := Re(Jq(μ)) = {Re v
∣
∣v ∈ Jq(μ) }.

Note that JRq (μ) ⊂ JRq+1(μ). Since C
d splits into the direct sum of the generalized

eigenspaces
⋃

q∈{0,1,...,d} ker(μI − X(T + τ, τ )q) and X(T + τ, τ ) is real it follows

that R
d splits into the direct sum of the subspaces

⋃

q∈{0,1,...,d} J
R

q (μ) for μ ∈ spec(X(T + τ, τ )).

Fix an eigenvalue μ = x + ı y of X(T + τ, τ ) with |μ| ≥ 1. It suffices to show that
JRq (μ) ⊂ RNT+τ (τ, 0) for all q.

We prove the statement by induction on q, the case q = 0 being trivial. So assume
that JRq−1(μ) ⊂ RNT+τ (τ, 0) and take any w = w1 + ıw2 ∈ Jq(μ). We must show

that w1 ∈ RNT+τ (τ, 0). Note that w1, w2 ∈ JRq (μ) (cf. Sontag [24, p. 119]).
For a ∈ C and n ≥ 1, one computes

X(T + τ, τ )naw = (X(T + τ, τ ) − μI + μI )naw

=
n∑

j=0

(
n

j

)

(X(T + τ, τ ) − μI )n− jμ j aw = μnaw + z(n), (13)

where z(n) :=∑n−1
j=0

(n
j

)
(X(T + τ, τ ) − μI )n− jμ j aw. Since aw ∈ Jq(μ) it follows

that (X(T + τ, τ ) − μI )i aw ∈ Jq−1(μ) for all i ≥ 1, hence z(n) ∈ Jq−1(μ), n ≥ 1.
Equality (13) implies

μnaw = X(T + τ, τ )naw − z(n). (14)

One finds with a = α + ıβ

Re(aw) = Re((α + ıβ)(w1 + ıw2)) = αw1 − βw2,
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hence

‖Re(aw)‖ ≤ 2max(|α| , |β|)max(‖w1‖ , ‖w2‖) ≤ 2 |a|max(‖w1‖ , ‖w2‖).

According to Proposition 5, one has 0 ∈ intRdT+τ (τ, 0). Thus, there is δ > 0 such
that Re(aw) ∈ RdT+τ (τ, 0) for all a ∈ C with |a| < δ.

By Lemma 9, there are a sequence (nk)k∈N with nk → ∞ and ank ∈ C with∣
∣ank

∣
∣ < δ such that μnk ank ∈ R and

∣
∣μnk ank

∣
∣ ≥ δ

2 . Then, it follows that Re(ankw) ∈
RdT+τ (τ, 0) for all k.

Now choose � ∈ N with � ≥ 2/δ. Taking real parts in (14) and choosing a = ank ,
one obtains

μnk ankw1 = X(T + τ, τ )nk Re(ankw) − Re z(nk), (15)

where Re z(nk) ∈ JRq−1(μ) and Re(ankw) ∈ RdT+τ (τ, 0). For k = 1 the variation-of-
parameters formula (5) with u = 0 implies

X(T + τ, τ )n1 Re(an1w) = X(n1T + τ, τ )Re(an1w) ∈ R(n1+d)T+τ (τ, 0).

We may assume that n2 ≥ n1 + d and obtain

X(T + τ, τ )n1 Re(an1w) + X(T + τ, τ )n2 Re(an2w)

= X(T + τ, τ )n1
[
Re(an1w) + X(T + τ, τ )d X(T + τ, τ )n2−n1−d Re(an2w)

]
.

With x = Re(an1w) ∈ RdT+τ (τ, 0) and

y = X(T + τ, τ )n2−n1−d Re(an2w) ∈ R(n2−n1)T+τ (τ, 0),

Proposition 3 yields

x + X(T + τ, τ )d y ∈ R(d+n2−n1)T+τ (τ, 0).

Hence, using again formula (5) with u = 0 and Lemma 1(ii),

X(T + τ, τ )n1 Re(an1w) + X(T + τ, τ )n2 Re(an2w)

∈ X(T + τ, τ )n1R(d+n2−n1)T+τ (τ, 0) ⊂ R(d+n2)T+τ (τ, 0).

In the next step, we obtain for n3 ≥ n2 + d

X(T + τ, τ )n1 Re(an1w) + X(T + τ, τ )n2 Re(an2w) + X(T + τ, τ )n3 Re(an3w)

⊂ R(2d+n3)T+τ (τ, 0).

Proceeding in this way, we arrive at

�∑

k=1

X(T + τ, τ )nk Re(ankw) ∈ R((�−1)d+n�)T+τ (τ, 0).

123



Mathematics of Control, Signals, and Systems

Summing (15) from k = 1 to � this yields

�∑

k=1

μnk ankw1 =
�∑

k=1

[
X(T + τ, τ )nk Re(ankw) − Re z(nk)

]

∈ R((�−1)d+n�)T+τ (τ, 0) + JRq−1(μ) ⊂ RNT+τ (τ, 0) + JRq−1(μ).

By the induction hypothesis, the linear subspace JRq−1(μ) is contained in the convex set
RNT+τ (τ, 0), which is open by Proposition 5. This implies (cf. Sontag [24, Lemma
3.6.4]) that RNT+τ (τ, 0) + JRq−1(μ) = RNT+τ (τ, 0). If μnk ank > 0 for all k ∈
{1, . . . , �}, then the real number ρ := ∑�

k=1 μnk ank > � · δ/2 ≥ 1. For the k with
μnk ank < 0, replace ank by −ank to get the same conclusion. It follows that w1 is a
convex combination of the points 0 and ρw1 in the convex set RNT+τ (τ, 0):

w1 =
(
1 − ρ−1

)
· 0 + ρ−1 · ρw1.

It follows that w1 ∈ RNT+τ (τ, 0) completing the induction step. We have shown that
E+,0

τ ⊂ RNT+τ (τ, 0) proving the lemma. 	

The following result characterizes the reachable and controllable sets of the auton-

omized system (11) by spectral properties of the homogeneous part (2). Recall that
we denote the spectral subbundles of the T -periodic linear differential equation (2) by
E−, E+, E+,0, and E−,0. For subsets Kτ ⊂ R

d and matrices Y (τ ), τ ∈ S
1 = [0, T ),

we use the following notation:

K :=
⋃

τ∈[0,T )

{
(τ, x) ∈ S

1 × R
d |x ∈ Kτ

}
, YK :=

⋃

τ∈[0,T )

{(τ, x) |x ∈ Y (τ )Kτ } .

Theorem 11 Suppose that the periodic system in (1) with unconstrained controls is
controllable and consider the autonomized system (11) with controls u ∈ U .

(i) Then, the reachable set Ra(0, 0) ⊂ S
1 × R

d satisfies S
1 × {0} ⊂ intRa(0, 0)

and

X(dT + ·, ·)K− ⊕ E+,0 ⊂ intRa(0, 0) ⊂ K− ⊕ E+,0,

with uniformly bounded convex sets K−
τ := intRNT+τ (0, 0) ∩ E−

τ , τ ∈ S
1.

(ii) The controllable set Ca(0, 0) satisfies S
1 × {0} ⊂ intCa(0, 0) and

E−,0 ⊕ X(−dT + ·, ·)K+ ⊂ intCa(0, 0) ⊂ E−,0 ⊕ K+

with uniformly bounded convex sets K+
τ := intC−NT+τ (0, 0) ∩ E+

τ , τ ∈ S
1.

Proof (i) Lemma 7 and Lemma 8 imply that S
1 × {0} ⊂ intRa(0, 0) and

Ra(0, 0) =
⋃

τ∈[0,T )

{
(τ, x) ∈ S

1 × R
d |x ∈ RNT+τ (0, 0)

}
. (16)
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We claim that

intRNT+τ (0, 0) = K−
τ + E+,0

τ for every τ ∈ [0, T ). (17)

Recall that by Proposition 5 the set intRNT+τ (0, 0) is convex. Lemma 10 shows that
E+,0

τ ⊂ RNT+τ (τ, 0) ⊂ intRNT+τ (0, 0). By Sontag [24, Lemma 3.6.4], it follows
that

K−
τ + E+,0

τ ⊂ intRNT+τ (0, 0) + E+,0
τ = intRNT+τ (0, 0).

For the converse inclusion, write x ∈ intRNT+τ (0, 0) as x = y ⊕ z with y ∈ E−
τ and

z ∈ E+,0
τ . Again by [24, Lemma 3.6.4] it follows that

y = x − z ∈ intRNT+τ (0, 0) + E+,0
τ = intRNT+τ (0, 0),

which proves that y ∈ K−
τ and therefore x ∈ K−

τ + E+,0
τ . This proves (17).

By (16), it follows that intRa(0, 0) ⊂ K− ⊕ E+,0 proving the second inclusion in
(i).

For the first inclusion in (i) consider x = ϕ(kT + τ ; 0, 0, u) ∈ RNT+τ (0, 0) and
recall that by Proposition 5 there is a ball B(0; ε) ⊂ RdT+τ (τ, 0) for all τ ∈ S

1. For
y = ϕ(dT + τ ; τ, 0, v) ∈ B(0; ε) define

w(t) =
{
u(t) for t ∈ [0, kT + τ)

v(t − kT ) for t ∈ [kT + τ, (d + k)T + τ ] .

This implies

ϕ((k + d)T + τ ; 0, 0, w) = ϕ((k + d)T + τ ; kT + τ, x, w)

= X((k + d)T + τ, kT + τ)x +
∫ (k+d)T+τ

kT+τ

X((k + d)T + τ, s)B(s)w(s)ds

= X(dT + τ, τ )x +
∫ dT+τ

τ

X(dT + τ, s)B(s)v(s)ds = X(dT + τ, τ )x + y,

showing that

X(dT + τ, τ )x + B(0; ε) ⊂ RNT+τ (0, 0), τ ∈ [0, T ).

It follows that
{
(τ, x) ∈ S

1 × R
d |x ∈ X(dT + τ, τ )RNT+τ (0, 0)

}
⊂ intRa(0, 0), τ ∈ S

1.

Since X(dT + τ, τ )E+,0
τ = E+,0

τ equality (17) implies

X(dT + τ, τ )intRNT+τ (0, 0) = X(dT + τ, τ )(K−
τ + E+,0

τ ) = X(dT + τ, τ )K−
τ + E+,0

τ
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and X(dT + τ, τ )K−
τ ⊂ E−

τ . This shows the first inclusion in assertion (i),

X(dT + τ, τ )K− ⊕ E+,0 =
⋃

τ∈[0,T )

{
(τ, x) ∈ S

1 × R
d
∣
∣x ∈ X(dT + τ, τ )K−

τ + E+,0
τ

}

⊂ intRa(0, 0).

In order to prove that K−
τ is bounded, let x = ϕ(kT +τ ; 0, 0, u) ∈ RNT+τ (0, 0)∩E−

τ .
Then using linearity

x = ϕ(kT + τ ; 0, 0, u) = ϕ(kT + τ ; τ, ϕ(τ, 0, 0, u), u)

= X(kT + τ, τ )ϕ(τ ; 0, 0, u) + ϕ(kT + τ ; τ, 0, u). (18)

Define for τ ∈ S
1 a bounded linear map by

Bτ : L∞([0, T ], R
m) → R

d , Bτ (u
′) =

∫ T

0
X(T + τ, τ + s)B(τ + s)u′(s)ds.

Using the variation-of-parameters formula (5) and periodicity, one computes

ϕ(kT + τ ; τ, 0, u) =
∫ kT+τ

τ

X(kT + τ, s)B(s)u(s)ds

=
k−1∑

j=0

∫ ( j+1)T+τ

jT+τ

X(kT + τ, s)B(s)u(s)ds

=
k−1∑

j=0

X(T + τ, τ )k− j
∫ T

0
X(( j + 1)T + τ, jT + τ + s)

B( jT + τ + s)u( jT + τ + s)ds

=
k−1∑

j=0

X(T + τ, τ )k− j
∫ T

0
X(T + τ, τ + s)B(τ + s)u( jT + τ + s)ds

=
k−1∑

j=0

X(T + τ, τ )k− jBτ (u( jT + τ + ·)).

Consider the projection πτ : R
d = E−

τ ⊕ E+,0
τ → E−

τ along E+,0
τ . By Theorem

6(ii), the subspaces E−
τ and E+,0

τ are X(T + τ, τ )-invariant, hence πτ commutes with
X(T + τ, τ ). With (18) this yields

x = πτ x = πτ X(kT + τ, τ )ϕ(τ ; 0, 0, u) + πτϕ(kT + τ ; τ, 0, u)

= X(T + τ, τ )kπτϕ(τ ; 0, 0, u) +
k−1∑

j=0

X(T + τ, τ )k− jπτBτ (u( jT + τ + ·)).
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Since X(T + τ, τ )|E−
τ
is a linear contraction there exist constants a ∈ (0, 1) and

c ≥ 1 such that ‖X(T + τ, τ )nx ′‖ ≤ can‖x ′‖ for all n ∈ N and x ′ ∈ E−
τ . Due to the

compactness of S
1 and the continuity of the solutions, these constants may be chosen

independently of τ ∈ S
1. It follows that

∥
∥
∥X(T + τ, τ )kπτϕ(τ ; 0, 0, u)

∥
∥
∥ ≤ cak ‖πτϕ(τ ; 0, 0, u)‖

and

‖
k−1∑

j=0

X(T + τ, τ )k− jπτBτ (u( jT + τ + ·))‖ ≤
k−1∑

j=0

cak− j ‖πτBτ (u( jT + τ + ·))‖ .

Since U is compact, there is M > 0 such that
∥
∥πτϕ(τ, 0, 0, u′)

∥
∥ , ‖πτBτ (u′)‖ ≤ M

for all τ ∈ S
1 and u′ ∈ U . Thus K−

τ is bounded by

‖x‖ = ‖ϕ(kT + τ ; 0, 0, u)‖ ≤ cakM + cM
k−1∑

j=0

ak− j ≤ 2cM

1 − a
.

Assertion (ii) follows by considering the time-reversed systems. 	

Next we define subsets of complete approximate controllability.

Definition 1 A nonvoid set Da ⊂ S
1 × R

d is a control set of the autonomized system
(11) on S

1 × R
d if it has the following properties: (i) for all (τ, x) ∈ Da there is a

control u ∈ U such that ϕa(t, (τ, x), u) ∈ Da for all t ≥ 0, (ii) for all (τ, x) ∈ Da one
has Da ⊂ Ra(τ, x), and (iii) Da is maximal with these properties, that is, if D′ ⊃ Da

satisfies conditions (i) and (ii), then D′ = Da .

The following lemma shows that there is a control set around (0, 0).

Lemma 12 Suppose that the periodic system in (1) with unconstrained controls is
controllable. Then, Da := Ra(0, 0)∩Ca(0, 0) is a control set and S

1 ×{0} ⊂ intDa.

Proof Theorem 11 shows that S
1 × {0} ⊂ intRa(0, 0) ∩ Ca(0, 0). Consider

(τ, x), (σ, y) ∈ Ra(0, 0) ∩ Ca(0, 0) and let ε > 0. Then, there are t1, t2 ≥ 0 and
u1, u2 ∈ U with

ϕa(t1; (σ, y), u1) = (0, 0) and d(ϕa(t2; (0, 0), u2), (τ, x)) < ε.

Define a control v by

v(t) :=
{
u1(t) for t ∈ [0, t1]
u2(t − t1) for t ∈ (t1, t1 + t2] .

Then, it follows that d(ϕa(t1 + t2, (σ, y), v), (τ, x)) < ε. This shows that

Ra(0, 0) ∩ Ca(0, 0) ⊂ Ra(τ, x) for all (τ, x) ∈ Ra(0, 0) ∩ Ca(0, 0). (19)
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Define Da as the union of all sets D′ with D′ ⊂ Ra(τ, x) for all (τ, x) ∈ D′ and
Ra(0, 0) ∩ Ca(0, 0) ⊂ D′. Then, any (τ, x) ∈ Da is in some set D′ and (0, 0) ∈
Ra(0, 0) ∩ intCa(0, 0) implies that there are t > 0 and u ∈ U with ϕa(t; (τ, x), u) ∈
Ca(0, 0) and (τ, x) ∈ Ca(0, 0) follows. This shows that Da ⊂ Ca(0, 0). Since Da ⊂
Ra(0, 0) this also implies Da ⊂ Ra(τ, x) proving Da = Ra(0, 0) ∩ Ca(0, 0). It also
follows that Da is a maximal set with Da ⊂ Ra(τ, x) and intDa = ∅. Hence, Kawan
[18, Proposition 1.20] yields that Da is a control set. 	


The following theorem proves the existence of a unique control set with nonvoid
interior of the autonomized system. Recall that the center subbundle E0 of the periodic
linear differential equation (2) is nontrivial if and only if 0 is a Floquet exponent.
This holds if and only if there is a Floquetmultiplier ofmodulus 1, i.e., spec(X(T , 0))∩
S
1 = ∅.

Theorem 13 Suppose that the periodic system in (1) with unconstrained controls is
controllable. Then, there exists a unique control set Da with nonvoid interior of the
autonomized system (11) with controls u ∈ U .

It is given by Da = Ra(0, 0) ∩ Ca(0, 0) and satisfies S
1 × {0} ⊂ intDa and, with

K− ⊂ E− and K+ ⊂ E+ defined in Theorem 11 and Y (τ ) := X(dT + τ, τ ), τ ∈ S
1,

Y (·)K− ⊕ E0 ⊕ Y (·)−1K+ ⊂ intDa ⊂ Da ⊂ Y (·)−1K− ⊕ E0 ⊕ Y (·)K+. (20)

In particular, intDa is unbounded if and only if the center subbundle E0 is nontrivial.

Proof The inclusionS
1×{0} ⊂ intDa andDa = Ra(0, 0)∩Ca(0, 0) followbyLemma

12. Furthermore, the inclusions (20) imply the last assertion since X(dT + τ, τ ), τ ∈
S
1, as well as K− and K+ are bounded. Theorem 11 implies

X(dT + ·, ·)K− ⊕ E+ ⊕ E0 ⊂ intRa(0, 0),

E− ⊕ E0 ⊕ X(−dT + ·, ·)K+ ⊂ intCa(0, 0).

Since intDa ⊂ intRa(0, 0)∩ intCa(0, 0) and X(−dT + τ, τ ) = X(τ,−dT + τ)−1 =
X(dT + τ, τ )−1 for τ ∈ S

1 the first inclusion in (20) follows. In order to prove the
third inclusion, let (τ, y) ∈ Ra(0, 0) be given by

(τ, y) = ϕa(t; (0, 0), u) = (t mod T , ϕ(t; 0, 0, u) = (τ, ϕ(�T + τ ; 0, u))

with y = ϕ(�T + τ ; 0, u) ∈ RNT+τ (0, 0). By Proposition 5, there is a ball B(0; ε) ⊂
RdT+τ (τ, 0). Hence, Proposition 3 implies

B(0; ε) + X(dT + τ, τ )y ⊂ R(d+�)T+τ (τ, 0) ⊂ RNT+τ (τ, 0).

Since ε > 0 is independent of τ ∈ S
1 it follows that X(dT + ·, ·)Ra(0, 0) ⊂

intRa(0, 0), and hence

X(dT + ·, ·)Ra(0, 0) ⊂ intRa(0, 0).
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Analogously it follows that

X(−dT + ·, ·)Ca(0, 0) ⊂ intCa(0, 0).

By Theorem 11 we obtain for x ∈ Da = Ra(0, 0) ∩ Ca(0, 0),

X(dT + ·, ·)x ∈ intRa(0, 0) ⊂ K− ⊕ E+,0 = K− ⊕ E0 ⊕ E+,

X(dT + ·, ·)−1x = X(−dT + ·, ·)x ∈ intCa(0, 0) ⊂ E− ⊕ E0 ⊕ K+.

This implies

x ∈ X(dT + ·, ·)−1
(
K− ⊕ E0 ⊕ E+) ∩ X(dT + ·, ·)

(
E− ⊕ E0 ⊕ K+) .

By Theorem 6, the subbundles E0 and E± are invariant under X(dT + ·, ·) and hence

Da ⊂ X(dT + ·, ·)−1K− ⊕ E0 ⊕ X(dT + ·, ·)K+ = Y (·)−1K− ⊕ E0 ⊕ Y (·)K+.

This proves the third inclusion in (20).
It remains to show uniqueness. Let E ⊂ S

1 × R
d be an arbitrary control set with

nonvoid interior. Then for every α ∈ (0, 1], the set Eα := {(τ, αx) |(τ, x) ∈ E }
satisfies

intEα = {(τ, αx) |(τ, x) ∈ intE } . (21)

The solutions ϕa(t; (τ0, x0), u) of the autonomized control system (11) are linear in
(x0, u), hence it follows for all α ∈ [0, 1] and t > 0, (τ, x0) ∈ S

1 × R
d , u ∈ U that

ϕa(t; (τ, αx0), αu) = αϕa(t; (τ, αx0), αu).

Here, αu ∈ U since by assumption the control rangeU is convex and 0 ∈ U . It follows
that the set Eα satisfies conditions (i) and (ii) for control sets in Definition 1 since they
hold for E . Thus, Eα is contained in some control set Dα and intEα ⊂ intDα .

It is clear that for α near 1 the control sets Dα and E coincide since their intersection
is nonvoid. Now choose any (τ, x) ∈ intE and suppose, by way of contradiction, that

α0 := inf{α ∈ (0, 1] |∀β ∈ (α, 1] : (τ, βx) ∈ intE } > 0.

Then, (τ, α0x) ∈ ∂E and (τ, α0x) ∈ intEα0 ⊂ intDα0 by (21 ). Therefore, E ∩
intDα0 = ∅, and it follows that E = Dα0 and (τ, α0x) ∈ intDα0 = intE . This is a
contradiction and so α0 = 0. Choosing α > 0 small enough such that (τ, αx) ∈ Da

we obtain (τ, αx) ∈ E ∩ Da and it follows that E = Da . 	

Remark 3 A control system is called locally accessible, if the reachable and control-
lable sets up to time t > 0 have nonvoid interior for every t > 0. If this holds for the
autonomized system (11), then Colonius and Kliemann [7, Lemma 3.2.13(i)] implies
that Da = intDa . Even if the system in (1) without control restrictions is control-
lable, the autonomized system (11) need not satisfy intRa

t (τ, x) = ∅ for small t > 0,
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hence, in general, it is not locally accessible. The example in Bittanti, Guarbadassi,
Mafezzoni, and Silverman [3, p. 38] is a counterexample.

Remark 4 Gayer [15, Theorem 3] relates the control sets of autonomized (general
nonlinear) control systems to control sets of discrete-time systems depending on τ ∈
S
1 defined by Poincaré maps. For system (11), these systems are defined by

�u
τ : R

d → R
d , �u

τ (·) = ϕa(T , (τ, ·), u) = ϕ(T + τ ; τ, ·, u) u ∈ U .

5 The Poincaré sphere

This section describes the global controllability behavior of periodic linear control
systems of the form (1) with homogeneous part (2) by projection to the Poincaré
sphere. This allows us to determine the behavior “near infinity” by the induced system
near the equator.

The system on the Poincaré sphere is obtained by attaching the state space R
d to

the north pole (0, 1) ∈ R
d × R of the unit sphere S

d in R
d+1 and then taking the

stereographic projection to S
d . More formally, the extended system with scalar part

ż = 0 is defined as

(
ẋ(t)
ż(t)

)

=
(
A(t) 0
0 0

)(
x(t)
z(t)

)

+
m∑

i=1

ui (t)

(
0 bi (t)
0 0

)(
x(t)
z(t)

)

, (22)

where bi (t) denote the columns of B(t). For z ≡ 1, we get a copy of the original
system (1). Abbreviate

Â(t) =
(
A(t) 0
0 0

)

, B̂i (t) =
(
0 bi (t)
0 0

)

,

m∑

i=1

ui (t)B̂i (t) =
(
0 B(t)u(t)
0 0

)

.

The projection of the homogeneous control system (22) on S
d ⊂ R

d+1 has the form
(omitting the argument t)

(
ṡ

ṡd+1

)

= [ Â − (s�, sd+1) Â(s�, sd+1)
� · Id+1](s�, sd+1)

�

+
m∑

i=1

ui [B̂i − (s�, sd+1)B̂i (s
�, sd+1)

� · Id+1](s�, sd+1)
�.

This is obtained by subtracting the radial components of the linear vector fields Â(t)
and B̂i (t).

We compute

(
ṡ

ṡd+1

)

=
[(

A 0
0 0

)

− (s�, sd+1)

(
A 0
0 0

)(
s

sd+1

)

· Id+1

](
s

sd+1

)
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+
m∑

i=1

ui

[(
0 bi
0 0

)

− (s�, sd+1)

(
0 bi
0 0

)(
s

sd+1

)

· Id+1

](
s

sd+1

)

=
(
A − s�As · Id 0

0 −s�As

)(
s

sd+1

)

+
m∑

i=1

ui

(−s�bi sd+1 · Id bi
0 −s�bi sd+1

)(
s

sd+1

)

=
([

A − s�As · Id
]
s

−s�As sd+1

)

+
m∑

i=1

ui

(−s�bi sd+1s + bi sd+1

−s�bi s2d+1

)

. (23)

This is the system equation for the induced control system on the Poincaré sphere. By
adding the phase τ ∈ S

1, this induces an autonomous control system on S
1 × S

d .

Remark 5 The homogeneous control system (23) also induces a control system on
projective space P

d and a corresponding autonomized control system on S
1 × P

d .
Parallel to the following developments on the unit sphere S

d , one may also work with
P
d . Here, we prefer to work on the sphere since this allows us to write down everything

explicitly.

On the “equator” of the sphere S
d given by

S
d,0 := {s = (s1, . . . , sd , sd+1) ∈ S

d |sd+1 = 0 },

the first d components of (23) reduce to the (uncontrolled) differential equation

ṡ(t) = (A(t) − s(t)�A(t)s(t) · Id)s(t). (24)

The flow of this differential equation leaves S
d−1 ⊂ R

d invariant. This coincides
with the periodic differential equation obtained by projecting the homogeneous part
(2) to S

d−1. Furthermore, the equator is invariant, hence also the upper hemisphere
S
d,+ := {s = (s1, . . . , sd , sd+1) ∈ S

d |sd+1 > 0 } is invariant. When the phases
τ ∈ [0, T ) are added to the states, the periodic differential equations (2) and (24)
induce autonomous differential equations on S

1 × R
d and S

1 × S
d−1, resp.

A conjugacy of (autonomous) control systems

ẋ(t) = f (x(t), u(t)) on M with u(t) ∈ U ,

ẏ(t) = g(y(t), u(t)) on N with u(t) ∈ U ,

on manifolds M and N can be defined as a map h : M → N which together
with its inverse h−1 is C∞ such that the trajectories ϕ(t; x0, u), t ∈ R, on M and
ψ(t; y0, u), t ∈ R, on N with initial conditions ϕ(0; x0, u) = x0 andψ(0; y0, u) = y0
(assumed to exist) satisfy

h(ϕ(t; x0, u)) = ψ(t; h(x0), u) for all t ∈ R and x ∈ M, u ∈ U .
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Analogously, one can define conjugacies of differential equations. It is clear that
reachable sets, controllable sets, and control sets are preserved under conjugacies.

In the following, we slightly abuse notation by identifying vectors and their trans-
poses when it is clear from the context what is meant.

Proposition 14 (i) The map

eP : S
1 × R

d → S
1 × S

d,+, (τ, x) �→
(

τ,
(x, 1)

‖(x, 1)‖
)

=
(

τ,
(x, 1)

√
1 + ‖x‖2

)

is a conjugacy of the autonomized control system (11) on S
1 × R

d and the restriction
to S

1 × S
d,+ of the autonomized system induced by (23).

(ii) The map eS : S
1 × S

d−1 → S
1 × S

d,0, (τ, s) �→ (τ, s, 0) ∈ S
1 × S

d,0 is a
conjugacy of the autonomized differential equation induced by (24) on S

1 ×S
d−1 and

the restriction to S
1 × S

d,0 of the autonomized control system corresponding to (23).

Proof (i) The map eP is C∞ (even analytic) with C∞ inverse given by

(eP )−1 (τ, s1, . . . , sd , sd+1) =
(

τ,
s1

sd+1
, . . . ,

sd
sd+1

)

for (τ, s1, . . . , sd , sd+1) ∈ S
1 × S

d,+.

In fact, one verifies

eP ((eP )−1 (τ, s)) =

⎛

⎜
⎜
⎝τ,

(
s1

sd+1
, . . . ,

sd
sd+1

, 1
)

√

1 + s21
s2d+1

+ · · · + s2d
s2d+1

⎞

⎟
⎟
⎠ = (τ, s).

The conjugacy property follows from

(τ (t), s(t)) =
(

τ(t),
(x(t), 1)

1 + ‖(x(t), 1)‖
)

= eP (τ (t), x(t)), t ∈ R.

(ii) This trivially holds since the solutions on S
d,0 are obtained by adding the last

component 0 to the solutions on S
d−1. 	


Since the image of the map eP is contained in the (open) upper hemisphere S
d,+,

a converging sequence of points eP (τk, xk) in the image converges to an element of
S
1 × S

d,0 if and only if ‖xk‖ → ∞. Hence, Proposition 14 shows that the behavior
near the equator reflects the behavior near infinity.

Next we discuss the projection of the reachable and controllable sets to the Poincaré
sphere. Note that under the map x �→ (x,1)

‖(x,1)‖ the origin x = 0 ∈ R
d is mapped to

the north pole (0, 1) ∈ S
d,+ ⊂ R

d × R. The following theorem shows that for the
autonomized system the closure of the reachable set from the north pole intersects
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the equator in the image of the center-unstable subbundle, and the closure of the
controllable set to the north pole intersects the equator in the image of the center-
stable subbundle. Furthermore, the closure of the unique control set with nonvoid
interior on S

1 × S
d,+ intersects the equator in the image of the center subbundle.

Theorem 15 Suppose that the periodic system in (1) with unconstrained controls is
controllable.

(i) Then, the projections to S
1 × S

d,+ of the reachable and controllable sets, resp.,
of the autonomized system (11) satisfy

eP (intRa(0, 0)) ∩
(
S
1 × S

d,0
)

= eP (E+,0) ∩
(
S
1 × S

d,0
)

,

eP (intCa(0, 0)) ∩
(
S
1 × S

d,0
)

= eP (E−,0) ∩
(
S
1 × S

d,0
)

.

(ii) The induced system on S
1 ×S

d,+ has a unique control set with nonvoid interior
given by Da

P = eP (Da) satisfying

intDa
P ∩ (S1 × S

d,0) = eP
(E0
) ∩
(
S
1 × S

d,0
)

.

In particular, intDa is bounded if and only if intDa
P ⊂ S

1 × S
d,+.

Proof (i) The conjugacy property from Proposition 14(i) shows that eP (Ra(0, 0)) and
eP (Ca(0, 0)) are the reachable and controllable set, resp., of (0, (0, 1)) = eP (0, 0) in
S
1 ×S

d,+, where (0, 1) is the north pole, and Da
P := eP (Da) is the unique control set

with nonvoid interior satisfying int(eP (Da)) = eP (intDa). The inclusion eP (E+,0) ⊂
intRa(0, 0) follows from Theorem 11 implying the inclusion “⊃”. For the converse,
let (τ, z, 0) ∈ eP (intRa(0, 0)) ∩ (S1 × S

d,0
)
. By Theorem 11, there are bk ∈ K−

τk

and xk ∈ E+,0
τk

with eP (τk, bk + xk) → (τ, z, 0) and ‖xk‖ → ∞. This implies
‖bk + xk‖ → ∞ and

eP (τk, bk + xk) =
(

τk,
bk

‖(bk + xk, 1)‖ + xk
‖(bk + xk, 1)‖ ,

1

‖(bk + xk, 1)‖
)

.

Using that the bk remain bounded, one finds

bk
‖(bk + xk, 1)‖ → 0,

1

‖(bk + xk, 1)‖ → 0, and
xk

‖(bk + xk, 1)‖ − xk
‖(xk, 1)‖ → 0.

Then, it follows that

eP (τk, xk) =
(

τk,
(xk, 1)

‖(xk, 1)‖
)

→ (τ, z, 0).

This shows that (τ, z, 0) ∈ eP (E+,0)∩(S1 × S
d,0
)
. The assertions for the controllable

set follow similarly.
(ii) By Theorem 13, it follows that the unbounded part of intDa is E0. 	
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Remark 6 Theorem 15(i) shows that for the autonomized system on the Poincaré
sphere bundle S

1 × S
d the closure of the reachable set from the north pole eP (0, 0) =

(0, (0, 1)) ∈ S
1 × S

d intersects the “equator” S
1 × S

d,0 in the image under eP of the
center-stable subbundle E+,0. A closer look at the dynamics on the equator reveals
a finer picture: Consider the Floquet bundles {(τ, x) ∈ S

1 × R
d
∣
∣x ∈ L(λ j , τ ) }. The

projected flow on the projective bundle S
1 × P

d−1 goes from the projected Floquet
bundle for λ j to the projected Floquet bundles with λi > λ j . This can be made pre-
cise by some notions from topological dynamics: the projected Floquet bundles form
the finest Morse decomposition, in particular, they coincide with the chain recurrent
components (cf. Colonius and Kliemann [8, Section 7.2 and Theorem 8.3.3]). For the
relation to the flow on S

1 × S
d−1, one can prove that for every chain recurrent com-

ponent on S
1 × P

d−1 there are at most two chain recurrent components on S
1 × S

d−1

projecting to it. By Proposition 14 (ii), this also describes the flow on the “equator”
S
1 × S

d,0. Examples 2 and 3 illustrate some of these claims.

6 Examples

First we note the following consequence of Theorem 13. In the scalar case with d = 1,
one obtains from the inclusions in (20) that one of the following cases holds: The set
intDa is contained either in K− or in K+ (if the Floquet exponent is negative or
positive, resp.) or Da = E0 = S

1 × R (if 0 is the Floquet exponent). In the first two
cases Da is bounded, and in the third case, it is unbounded.

Example 1 Consider the periodic scalar example

ẋ(t) = a(t)x(t) + u(t), u(t) ∈ U = [−1, 1], (25)

with a(t) := −1 for t ∈ [0, 1] and a(t) := −2 for t ∈ (1, 2] extended to a 2-periodic
function on R. Note that for t ≥ s, x0 ∈ R, and u ∈ U the solution is

ϕ(t; s, x0, u) = X(t, s)x0 +
∫ t

s
X(t, σ )u(σ )dσ with X(t, s) = e

∫ t
s a(σ )dσ > 0.

The system with unconstrained controls is controllable, and the stable subspace is
E−

τ = R for all τ ∈ [0, 2]. Lemma 12 implies that S
1 × {0} ⊂ intCa(0, 0) for the

autonomized system, and taking u ≡ 0 one sees that S
1 × R = Ca(0, 0), hence

Ca(0, 0) = S
1 × R. By Theorem 13, there is a unique control set Da with nonvoid

interior and S
1 ×{0} ⊂ intDa . This yields Da = Ra(0, 0). Recall from Lemma 7 that

Ra(0, 0) = {(τ, x) ∈ S
1 × R

d |x ∈ R2N+τ (0, 0) }. (26)

The solutions satisfy, for t ≥ s ≥ 0 and u ∈ U ,

ϕ(t; s, x0,−1) ≤ ϕ(t; s, x0, u) = −ϕ(t; s,−x0,−u) ≤ ϕ(t; s, x0, 1).
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This implies that ϕ(t; 0, 0, u) ≤ ϕ(t; 0, 0, 1) for all t ≥ 0 and u ∈ U . SinceU = −U
the equation above with x0 = 0 implies that the reachable setsRt (0, 0) are symmetric
around 0. Together with (26), this shows that for the computation of Da it suffices to
determine Ra(0, 0) ∩ [0,∞). By Proposition 5 R2N+τ (0, 0) is convex. Using u ≡ 0
and u ≡ 1, one finds that R2k+τ (0, 0)∩ [0,∞) = [0, ϕ(2k + τ ; 0, 0, 1)] for all k ∈ N

and τ ∈ S
1 = [0, 2).

Claim: For fixed k ∈ N, the reachable sets R2k+τ (0, 0) are increasing with τ ∈
[0, 1] and decreasing with τ ∈ [1, 2). For fixed τ ∈ [0, 2), they are increasing with
k ∈ N and they are given by

R2N+τ (0, 0) =
⋃

k∈N
R2k+τ (0, 0) =

(

− r(τ )

1 − e−3 ,
r(τ )

1 − e−3

)

, (27)

where

r(τ ) :=
{

1
2e

−2−τ − e−3 − 1
2e

−τ + 1 for τ ∈ [0, 1]
1
2e

2−2τ
(
1 − e−1 − e2τ−5

)+ 1
2 for τ ∈ [1, 2) .

Since in the proof of this claim we always take control u ≡ 1, we suppress this
argument in ϕ. Let x0 ∈ R and compute for τ ∈ [0, 1] using 2-periodicity

ϕ(2 + τ ; τ, x0) = ϕ(2 + τ ; 2, ϕ(2; τ, x0)) = ϕ(τ ; 0, ϕ(2; τ, x0))

= ϕ(τ ; 0, ϕ(2; 1, ϕ(1; τ, x0))) = e−3x0 + r(τ ). (28)

For τ ∈ [1, 2] compute

ϕ(τ ; 0, 0) = ϕ(τ ; 1, ϕ(1; 0, 0)) = 1

2
e−2τ+2 − e−2τ+1 + 1

2
,

ϕ(2 + τ ; τ, x0) = ϕ(2 + τ ; 3, ϕ(3; τ, x0)) = ϕ(τ ; 1, ϕ(3; τ, x0)) = e−3x0 + r(τ ).

Repeated use of these formulas, periodicity, and induction show for k ∈ N and τ ∈
[0, 2]

ϕ(2(k + 1) + τ ; 0, 0) = ϕ(2 + τ ; τ, ϕ(2k + τ ; 0, 0)) = e−3ϕ(2k + τ ; 0, 0) + r(τ )

= e−3(k+1)ϕ(τ ; 0, 0) +
∑k

j=0
e−3 j r(τ ). (29)

Equation (29) implies limk→∞ ϕ(2k + τ ; 0, 0) = r(τ )

1−e−3 proving (27).
The sets R2k+τ (0, 0) are increasing with k since

ϕ(2(k + 1) + τ ; 0, 0) − ϕ(2k + τ ; 0, 0) = (e−3(k+1) − e−3k)ϕ(τ ; 0, 0) + e−3kr(τ )

=
{
e−3k−3−τ

( 1
2e

3 + 1
2e − 1

)
> 0 for τ ∈ [0, 1]

e−2τ+1
[
e−3

( 1
2e − 1

)+ 1
2

]
> 0 for τ ∈ [1, 2] .
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Fig. 1 Control set Da in
Example 1

Fig. 2 Control set ep(Da) and
phase portraits for
u = 1, u = −1 in Example 2

The sets R2N+τ (0, 0) are increasing with τ ∈ [0, 1] since for 0 ≤ σ ≤ τ ≤ 1

ϕ(2k + τ ; 0, 0) = ϕ(τ ; 0, ϕ(2k; 0, 0)) = e−τ (ϕ(2k; 0, 0) − 1) + 1 ≤ ϕ(2k + σ ; 0, 0).

Here, we use that e−τ ≤ e−σ and that for x ≥ 1 one has a(t)x + u ≤ 0 for all u ∈ U
implying ϕ(2k; 0, 0) − 1 ≤ 0.

The sets R2N+τ (0, 0) are decreasing with τ ∈ [1, 2] since for 1 ≤ σ ≤ τ ≤ 2

ϕ(2k + τ ; 0, 0) = ϕ(τ ; 1, ϕ(2k + 1; 0, 0)) = e2−2τ ϕ(2k + 1; 0, 0) +
∫ τ

1
e−2(τ−s)ds

= e2−2τ (ϕ(2k + 1; 0, 0) − 1

2
) + 1

2
≤ ϕ(2k + σ ; 0, 0).

Here, we use e2−2τ ≤ e2−2σ and ϕ(2k + 1; 0, 0) ≥ ϕ(1; 0, 0) = 1 − e−1 > 1
2 .

Figure 1 presents a sketch of the control set Da in S
1 × R.

The following two examples are autonomous two-dimensional linear control sys-
tems. Hence, it is not necessary to autonomize the system and the results on the
control sets in R

2 follow from Sontag [24, Corollary 3.6.7]. These examples serve as
illustrations for the projection to the Poincaré sphere.

Example 2 Consider

ẋ(t) = x(t) + u(t), ẏ(t) = −y(t) + u(t), (30)
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Fig. 3 Control set ep(Da) and
phase portraits for
u = 1, u = −1 in Example 3

with u(t) ∈ U = [−1, 1]. Here, the origin is a saddle for the uncontrolled system. For
the control system induced on the Poincaré sphere S

2, a computation based on (23)
yields

ṡ1 =
[
1 − s21 + s22 − u(s1s3 + s2s3)

]
s1 + us3

ṡ2 =
[
−1 − s21 + s22 − u(s1s3 + s2s3))

]
s2 + us3

ṡ3 =
[
−s21 + s22 − u(s1s3 + s2s3)

]
s3. (31)

For u = 0 the north pole (0, 0, 1) is the only equilibrium, and for u = 0 the equilibria
move away from the north pole. Theorem 13 implies that there is a unique control
set Da ⊂ S

1 × R
2 with nonvoid interior and that it is bounded. By Theorem 15(ii),

Da
P = eP (Da) is the unique control set with nonvoid interior on the upper hemisphere

S
2,+. On the equator one has s3 = 0 and the equation reduces to

ṡ1 = 2s22s1, ṡ2 = −2s21s2.

This coincides with the projection of the homogeneous part of the original equation in
R
2 onto the unit circle S

1. The equilibria are (±1, 0, 0) and (0,±1, 0). Linearization
on the equator S

2,0 yields in e1 = (1, 0, 0) and e2 = (0, 1, 0)

ẋ2 = −2x2 and ẋ1 = 2x1, resp.

If we linearize on the sphere S
2 we have to linearize (31) in e1 and e2 with respect to

the second and third arguments only. We obtain

(∓2 u
0 −1

)

with eigenvalues ∓2 and

∓1 with eigenvectors given by (x, 0)� and (±u · x, x)� , x = 0, resp.
The orthogonal projection of the system on the upper hemisphere S

2,+ to the unit
disk yields the global phase portraitwith control set eP (Da) sketched in Fig. 2.Observe
that near the equator s3 is close to 0, hence the control vector field in (31) goes to 0
for s3 → 0.

Remark 7 Perko [22] considers the differential equation (30) with u = 0. In this case
the formulas derived above coincide with his results. The global phase portrait in Fig. 2
is similar to [22, Figure 5 on p. 275] with the additional feature that around the north
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pole of S
2 the image of the control set occurs. Perko [22], as well as Lefschetz [20,

pp. 202], actually, does these computations for differential forms, i.e., in the cotangent
bundle of the sphere.

The following example is a slight modification of Example 2. It illustrates Remark 6
since the flow on the intersection of eP (R(0)) with the equator is nontrivial.

Example 3 Consider the autonomous system given by

ẋ(t) = x(t) + u(t), ẏ(t) = 2y(t) + u(t),

with u(t) ∈ U = [−1, 1]. Note that for constant u the equilibrium given by
(−u,−u/2) is an unstable knot. Since the eigenvalues 1 and 2 are positive, the control
set Da with nonvoid interior is bounded. The reachable set from the origin coincides
with the unstable subspace and satisfies R(0) = E+ = R

2. For the projection to the
Poincaré sphere one obtains

eP (R(0)) ∩ S
2,0 = eP (E+) ∩ S

2,0 = S
2,0.

On the other hand, Proposition 14(ii) shows that the flow on the equator S
2,0 is deter-

mined by the flow on the unit circle S
1 induced by the homogeneous part (with u ≡ 0).

The Floquet subspaces L(1) = R × {0} and L(2) = {0} × R are given by the
eigenspaces and intersect S

1 in the equilibria (±1, 0) and (0,±1), resp. All other
points s0 ∈ S

1 satisfy limt→−∞ s(t, s0) = (±1, 0) and limt→∞ s(t, s0) = (0,±1).
The orthogonal projection of the system on the upper hemisphere S

2,+ to the unit disk
yields the global phase portrait with control set eP (Da) sketched in Fig. 3.

7 Controllability properties of quasi-affine systems

In this section, we apply the results above to the study of controllability properties for
quasi-affine control systems of the form (3). Explicitly, system (3) may be written as

ẋ(t) = A0x(t) +
p∑

i=1

vi (t)Ai x(t) + B(v(t))u(t), (u, v) ∈ U × V. (32)

We denote the solutions of (32) with initial condition x(0) = x0 ∈ R
d by

ψ(t; x0, u, v), t ∈ R. The homogeneous part of (32) is the bilinear control system

ẋ(t) = A(v(t))x(t), v ∈ V, (33)

and we denote the solutions of (33) with x(0) = x0 by ψhom(t; x0, v), t ∈ R. Control
systems (32) and (33) come with associated flows given by


 : R × U × V × R
d → U × V × R

d , with


(t; u, v, x) := (u(t + ·), v(t + ·), ψ(t; x, u, v)) and
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hom : R × V × R
d → V × R

d , with


hom(t; v, x) := (v(t + ·), ψhom(t; x, v)),

resp. Here, u(t + ·)(s) := u(t + s) and v(t + ·)(s) := v(t + s), s ∈ R, are the right
shifts and U ⊂ L∞(R, R

m) and V ⊂ L∞(R, R
p) are endowed with a metric for the

weak∗ topology. Then, U and V are compact and the shifts are chain transitive; cf.
Colonius and Kliemann [7, Chapter 4] or Kawan [18, Section 1.4]. The flow 
hom
is a continuous linear skew product flow on the vector bundle V × R

d since (33) is
control-affine. On the other hand, the affine flow
 on the vector bundle (U ×V)×R

d

is not continuous, in general, even if we suppose that B(v) := B0 +∑p
i=1 vi Bi with

B0, B1, . . . , Bp ∈ R
d×m . In fact, if products vi u j occur on the right hand side of (32),

the system is not control-affine, and hence continuity does not hold.
For any periodic v ∈ V , one obtains a periodic linear control system

ẋ(t) = A(v(t))x(t) + B(v(t))u(t), u ∈ U . (34)

Fix a Tv-periodic control v ∈ V and parametrize the unit circle S
1 by τ ∈ [0, Tv). A

corresponding augmented autonomous control system on S
1 × R

d is defined by

ψa
v (t; (τ0, x0), u) = (t + τ0 mod Tv, ψ(t; x0, u, v(τ0 + ·))), u ∈ U . (35)

The reachable set of (τ0, x0) ∈ S
1 × R

d is

Ra
v (τ0, x0) := {ψa

v (t; (τ0, x0), u) |t ≥ 0 and u ∈ U }.

Analogously, the controllable setsCa
v(τ0, x0) are defined. If the system in (34) without

control restriction is controllable, Theorem 13 shows that one finds a unique control
set Da

v = Ra
v (0, 0) ∩ Ca

v(0, 0) with nonvoid interior of the autonomized system (35)
and S

1 × {0} ⊂ intDa
v .

Letπ2 : S
1×R

d → R
d , π2(τ, x) = x for (τ, x) ∈ S

1×R
d . The following theorem

establishes the existence of a control set for quasi-affine systems, defined analogously
as in Definition 1, containing all π2(Da

v ) for the control sets Da
v for periodic v ∈ V .

Theorem 16 Suppose that the following assumptions hold:
(i) for every periodic v ∈ V the periodic linear system in (34) with unconstrained

controls u ∈ L∞(R, R
m) is controllable;

(ii) the quasi-affine system (32) is locally accessible, i.e.,R≤S(x) andC≤S(x) have
nonvoid interiors for all S > 0 and all x ∈ R

d .
Then, the quasi-affine system (32) has a control set D with nonvoid interior such

that for all periodic v ∈ V the control sets Da
v of the autonomized periodic linear

control system (35) satisfy π2(Da
v ) ⊂ D.

Proof Fix a Tv-periodic control v ∈ V . The set π2(Da
v ) is a neighborhood of 0 ∈ R

d

and for all x, y ∈ π2(Da
v ) there are τx , τy ∈ S

1 with (τx , x), (τy, y) ∈ Da
v and

(τy, y) ∈ Rv(τx , x). This means that there are tn ≥ 0 and un ∈ U with

ψa
v (tn; (τx , x), un) = (tn + τx mod Tv, ψ(tn; x, un, v(τx + ·))) → (τy, y) for n → ∞.
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In particular, this shows that y ∈ R(x), where R(x) is the reachable set from x of the
quasi-affine system (32) given by

R≤S(x) := {ψ(t; x, u′, v′)
∣
∣ t ∈ [0, S], (u′, v′) ∈ U × V } and R(x) :=

⋃

S>0
R≤S(x).

Define D as the union of all sets D′ satisfying D′ ⊂ R(x) for all x ′ ∈ D′ and
containing π2(Da

v ). We claim that D ⊂ R(x) for all x ∈ D. For the proof of the
claim, let x, y ∈ D. Then, there are sets D′ and D′′ with π2(Da

v ) ⊂ D′ ∩ D′′ and
x ∈ D′, y ∈ D′′. We know that 0 ∈ intπ2(Da

v ). By local accessibility of the quasi-
affine system there is S > 0 with ∅ = intC≤S(0) ⊂ π2(Da

v ) ⊂ D′. Then, the
inclusion D′ ⊂ R(x) implies 0 ∈ R(x). Since 0, y ∈ D′′ the claim follows from
y ∈ R(0) ⊂ R(x). Thus D is a maximal set with the property that for all x ∈ D one
has D ⊂ R(x). Since intD = ∅ Kawan [18, Proposition 1.20] implies that D is a
control set.

For every periodic control v ∈ V , the projected set π2(Da
v ) contains 0 ∈ R

d . Thus,
the maximality property of control sets implies that the control set D is independent
of v and hence contains π2(Da

v ) for every periodic v ∈ V . 	

Next we show that under some additional assumptions the control set D of the

quasi-affine system coincides (up to closure) with the union of the projected control
sets Da

v . Thus, the control set D can be obtained by fixing periodic controls v and
determining the control sets Dv of the corresponding autonomized systems (11).

Theorem 17 Suppose that the following assumptions hold:
(i) for every periodic v ∈ V the periodic linear system in (34) with unconstrained

controls u ∈ L∞(R, R
m) is controllable;

(ii) the quasi-affine system (32) is locally accessible;
(iii) for all periodic v ∈ V all Floquet exponents of the periodic homogeneous part

(33) of (32) are different from 0;
Then, the quasi-affine system (32) has a unique control set D with nonvoid interior,

and it satisfies

D =
⋃

v∈V periodic
π2(intDa

v ).

Proof The control set D fromTheorem16 contains allπ2(intDa
v ). Let E be an arbitrary

control set with nonvoid interior of (32). By local accessibility, Colonius andKliemann
[7, Lemma 3.2.13(i)] shows that E = intE . Hence, it suffices to prove that intE ⊂⋃

v∈V periodic π2(intDa
v ), which also implies E = D. Fix a point x0 ∈ intE . Denote

by int∞(U) the interior of U with respect to the L∞-norm, and note that int∞(U) is
dense in U in this norm.

Claim. For every ε > 0, there are y ∈ R
d , T > 0, and (u, v) ∈ int∞(U) × V with

‖y − x0‖ < ε and ψ(dT ; y, u, v) = y.
For the proof of the claim note first that by local accessibility [7, Lemma 3.2.13(iii)]

implies intE ⊂ R(x0) and hence there are u0 ∈ U , v ∈ V , and T > 0 with x0 =
ϕ(T ; x0, u0, v).Wemay suppose that u0 and v are T -periodic functions. Thus, T = Tv
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for the T -periodic control v ∈ V and we obtain x0 = ϕ(dTv; x0, u0, v). Since int∞(U)

is dense in U one finds for all ε > 0 a dTv-periodic control u with
∥
∥u − u0

∥
∥
L∞ < ε.

By the hyperbolicity assumption (ii), Colonius, Santana, Setti [11, Proposition 2.9(i)]
implies that the dTv-periodic inhomogeneous differential equation (34) has a unique
dv-periodic solution with initial value y at time 0. With the principal fundamental
solution denoted by Xv(t, s), it is given by

y = [Id − Xv(dTv, 0)]
−1
∫ dTv

0
Xv(dTv, s)B(v(s))u(s)ds.

By [11, Proposition 2.9(iv)], the initial values y of these periodic solutions converge
to x0 for u converging to u0 in L∞([0, dTv], R

m). This proves the claim.
It remains to prove that x0 is inπ2(Da

v ). This follows ifwe can show that y ∈ π2(Da
v )

since y is arbitrarily close to x0. Assumption (i) and Theorem 4(ii) imply that for all
points z ∈ R

d there is u′ ∈ L∞([0, dTv], R
m) such that

z = ψ(dTv; 0, u′, v) =
∫ dTv

0
Xv(dTv, s)B(v(s))u′(s)ds.

Since u ∈ int∞(U) it follows that for all z in a neighborhood N1(y) of y there is
u′ ∈ U with

z − Xv(dTv, 0)y =
∫ dTv

0
Xv(dTv, s)B(v(s))u′(s)ds, hence z = ψ(dTv; y, u′, v).

With dTv = 0mod Tv , this means by Lemma 7 that the points (0, z) ∈ S
1 × N1(y)

are contained in the reachable set

Ra
v,dTv

(0, y) = {(0, y′)
∣
∣y′ ∈ Rv,dTv (0, y) }

of the autonomized system (35) for the Tv-periodic v. Applying the same arguments to
the time-reversed system, one finds that all (0, z) ∈ S

1 ×R
d with z in a neighborhood

N2(y) of y are in the controllable setCa
v,dTv

(0, y). Every point (0, z)with z ∈ N1(y)∩
N2(y) can be steered to (0, y) and then to any other point in this intersection. This
implies that (0, y) is in the interior of a control set of the autonomized system (35).
The only control set with nonvoid interior of this system is Da

v , hence it follows that
(0, y) ∈ intDa

v and y ∈ π2(intDa
v ) and concludes the proof. 	


Similarly as the periodic linear system (4) also the quasi-affine system (32) can
be projected to the upper hemisphere S

d,+ of the Poincaré sphere by a conjugacy
e0P : R

d → S
d,+. We obtain the following corollary.

Corollary 18 Under the assumptions of Theorem 17, the control set D of the quasi-
affine system (32) projects to the unique control set e0P (D) with nonvoid interior for
the system induced on S

d,+.
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