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Abstract. For an equivariant embedding of a compact symmetric
space X = G/K into a Euclidean G-space the following statements
are equivalent:

(a) The embedding is extrinsic symmetric.

(b) The maximal torus TX of X is rectangular and the represen-
tation of G has lowest possible highest weight.

(c) The maximal torus TX is embedded as a Clifford torus (an
extrinsic product of planar circles).
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1 Introduction

In 1854, Bernhard Riemann coined the notions of an abstract man-
ifold of arbitrary dimension and of a Riemannian metric. As Riemann
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indicates, examples are algebraic submanifolds in higher dimensional Eu-
clidean space. Since that time, the two theories – abstract Riemannian
manifolds and submanifolds of Euclidean space – coexist, and tradition-
ally, the Brazilian differential geometry group was particularly well known
for their contributions to the second area. When I met Renato Tribuzy in
Berkeley 40 years ago, I started studying submanifolds for the first time,
and since then we wrote many joined papers. One of our common projects
was trying to generalize the notion of constant mean curvature surfaces
to higher dimensions [1] by what was called parallel pluri-mean curvature
(ppmc) submanifolds. However, we were somewhat unhappy since we knew
only few examples.

In February 2014 we were visiting our co-author Maria Joao Ferreira at
Lisbon. One of the subjects we discussed was a Ph.D. project at the Fed-
eral University of Amazonas: the quest for new ppmc submanifolds. The
known ones were the extrinsic symmetric embeddings of compact Käh-
ler symmetric spaces. But every compact symmetric space has infinitely
many other embeddings respecting its symmetry, so called equivariant em-
beddings. Are some of them ppmc? This became the theme of Kelly Karina
Santos’ PhD thesis [14]. Sadly for us, she disproved the ppmc property
in the most promissing cases, e.g. for all equivariant embeddings of CPn

which are not extrinsic symmetric. But her investigations opened us the
door to new research on this interesting class of symmetric submanifolds,
minimally embedded in the sphere. (Joined work with E. Heintze, P. Quast
[7], M.S. Tanaka [8].)

2 Equivariant and extrinsic symmetric embeddings

John Nash has shown that every closed Riemannian manifold X is iso-
metric to a submanifold of Euclidean space V . But when X is acted on by
a compact group G of isometries, we want more: We look for embeddings
such that G is carried over into a group Ĝ of motions of V preserving
the submanifold X ⊂ V . Since Ĝ is compact, it fixes a point 0, hence
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Ĝ acts linearly on V , that is Ĝ ⊂ GL(V ). Further, an inner product on
V is preserved by Ĝ, thus Ĝ ⊂ O(V ) (the orthogonal group on V ). This
is equivariance: there is a Lie group homomorphism ρ : G → O(V ) (a
representation) with

ϕ(gx) = ρ(g)ϕ(x) for all g ∈ G and x ∈ X,

where ϕ : X → V denotes the embedding.

We are interested in the case of symmetic spaces X, that is, for any
p ∈ X there is an isometry sp called symmetry at p with order 2 (spsp = id)
and with p being an isolated fixed point of sp. Symmetric spaces are par-
ticularly important in Riemannian geometry since their curvature tensor
R (the quantity which distinguishes between Riemannian and Euclidean
geometry) is “constant”, ∇R = 0. We consider embeddings ϕ : X → V

which are equivariant for the group G generated by all symmetries of X,
the symmetry group. Then ŝp ∈ O(V ) is an order-2 element with ŝp = −id

on the tangent space Tp, thus it is a reflection along a subspace N+
p of the

normal space Np. The embedding is called extrinsic symmetric if ŝp is the
reflection along the full normal space, that is N+

p = Np, as in the case of
the round sphere X = Sn ⊂ V = Rn+1.

p
T
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p

N
p

X

Essentially, an equivariant map ϕ : X = G/K → V is given by the
representation ρ = ρϕ : G→ O(V ), sp 7→ ŝp, at least when ρ is irreducible
(that is: it does not allow nontrivial invariant subspaces). In fact, after
picking a base point o = eK we put vo = ϕ(o), then ϕ(go) = ρ(g)vo, and
in particular, ρ(K) fixes vo. Thus the fixed space V K of ρ(K) in nonzero,
containing vo. Such representation ρ with V K ̸= 0 is called spherical.
Thus an equivariant embedding is given by a spherical representation ρ

of G on V and some vo ∈ V K . Élie Cartan [3] has shown that V K is
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one-dimensional when ρ is irreducible.1 Thus vo is unique up to scalar
multiples, and so is the equivariant map ϕ = ϕρ with ϕ(gK) = ρ(g)vo.

The grandmother of all spherical representations is C∞(X)c, the space
of complex valued smooth functions on X with the G-action by precom-
position: g.f := f ◦ g−1. It is the direct sum of all irreducible spherical
representations, and each equivalence class occurs precisely once [3, 15].
In particular, there are infinitely many equivalence classes.

For arbitrary compact symmetric spaces, our principal aim was to dis-
tinguish the extrinsic symmetric embeddings among the equivariant ones.
There are compact symmetric spaces without any extrinsic symmetric em-
bedding, e.g. SUn (although the natural inclusion Un ⊂ Cn×n is extrinsic
symmetric). So two natural questions arise:

(1) Which X allow an extrinsic symmetric embedding?

(2) Which spherical representations ρ are extrinsic symmetric?

Question (1) was answered by Ottmar Loos [12, 13]: It depends on the
maximal torus TX ofX. A maximal torus is a maximal flat totally geodesic
submanifold ofX; every geodesic inX is contained in a maximal torus, and
any two of them are congruent, therefore we can talk about the maximal
torus of X. Now Loos’ theorem says: A compact symmetric space X has
an extrinsic symmetric embedding if and only if TX is rectangular, that is
a Riemannian product of circles. Shortly:

Theorem 2.1. ∃ extr. symm. embedding X ↪→ V ⇐⇒ TX rectangular.

Loos’ proof [13] used an algebraic structure called Jordan triple sys-
tems, and extended computations were needed to verify the defining iden-
tities. In [8, 7] we obtained a new proof which is less computational and
includes an anwer to Question (2). We will give a sketch in the following
two sections.

1Actually, Cartan considered complex representations. But when G is the full sym-
metry group, his proof can be easily extended to real representations.
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3 Dimension reduction using meridians

“⇒” [8]
LetX ⊂ V be extrinsic symmetric. The main idea is to reduce dimX while
keeping a maximal torus TX . More precisely, we replace X by a proper
totally geodesic submanifold M ⊂ X, a so called meridian, which is still
extrinsic symmetric and contains TX as its maximal torus. To explain this
notion we have to consider the fixed set of the symmetry so at the base
point o ∈ X. Certainly o is a fixed point (an isolated one), but there might
be others. E.g. the “farthest point” on any closed geodesic γ through o,
the point opposite to o, is fixed by so since so preserves o and γ (cf. right
figure). A positive dimensional connected component of Fix(so) is called a
polar P . Every polar P ⊂ X has a sort of orthogonal complement through
any point p ∈ P , which is the connected component of Fix(spso). This
is called a meridian M (left figure). It is extrinsic symmetric in the fixed
space of ŝpŝo.

M

X

p

o

p

o

farthest point

e.g.:

P

γ

Now let TX be a maximal torus of X containing both o and p. Then
p ∈ Fix(so) ∩ TX . But any fixed point of a symmetry on a torus TX is
isolated (locally it looks like −id). Thus sp = so on TX , that is spso = id

on TX , which means TX ⊂M .
Now we repeat this argument with X replaced by X1 := M , that is,

we pass to a meridian X2 of X1 containing TX . The process stops when
we arrive at some Xk without polars. But this happens only when Xk is a
Riemannian product of spheres (see Theorem below) whose maximal torus
is clearly a Riemannian product of great circles, hence it is rectangular.

Theorem. Only products of spheres are without polars (and therefore
without meridians).
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Sketch of proof. We show first that a compact symmetric space X without
polars is a Riemannian product of a simply connected symmetric space
and possibly a torus [8, Lemma 8]. Then by [8, Thm. 3] the torus part
of X is rectangular (a Riemannian product of circles) once X is extrinsic
symmetric. It remains to consider simply connected and indecomposable
compact symmetric spaces. The DNA of such a space X is its root system
[10], [4, Sect. 10], a certain finite set of tangent vectors spanning the tan-
gent space a of its maximal torus TX . The root system of the sphere Sn

is A1 = {±e1}. We are going to construct a polar for all other indecom-
posable root systems. Since every such root system contains a sub-root
system of dimension one or two which is different from A1, we can restrict
our attention to those, which are BC1, A2, B2, BC2, G2. They are de-
picted in the following figures (the middle figure of BC2 contains also BC1

and B2).

α

o op

v= β

E.g. let us consider the case A2 (left figure). Recall that TX = Rk/Γ

for some lattice Γ ⊂ Rk. In our case the lattice is hexagonal, its points
are marked black. The lattice points closest to 0 are the roots α, β, . . . .
(marked by an arrow).2 The inner product between v and α determines
the sectional curvature of the plane spanned by v and any nonzero vector
vα in the corresponding root space pα.3 More precisely, ⟨α, v⟩ = 1

2⟨β, v⟩
implies sec(v, vα) = 1

4sec(v, vβ) for vα ∈ pα, vβ ∈ pβ . The geodesic exp(tv)

for 0 ≤ t ≤ 1 is simply closed since there are no lattice points between

2Roots are 1-forms on a which are viewed as vectors in a. By scaling the metric we
can arrange that roots and lattice points behave as in the figures. This can be easily
seen by looking at the rank-one subspaces determined by each root [10, p.407].

3The root space pα ⊂ p = ToX is the common eigenspace of the Jacobi operator
R(., v)v for the eigenvalue ⟨α, v⟩2, for all v ∈ a.
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0 and v. Its midpoint p = exp(v/2) is the point opposite to o and hence
it is fixed by so. The same holds for all neighboring geodesics from o to
o. However, when the curvature is large, p could be a “node”, passed by
all neighboring geodesics. This may happen in the (v, vβ)-plane, but not
in the (v, vα)-plane, due to smaller curvature. Hence the midpoints of the
neighboring geodesics in the (v, vα)-plane form a nontrivial curve fixed by
so, hence contained in a polar. Similar pictures arise in the other cases,
see figures in the center and right.

4 Smallest highest weights and Clifford tori

“⇐” [7]
Let us assume that X is an indecomposable compact symmetric space with
a rectangular torus TX ∼= S11× . . .×S1k. Changing slightly our notation, we
let G be the transvection group of X, which is the connected component
of both the isometry group and the symmetry group, and K ⊂ G is the
stabilizer of a chosen base point o ∈ X. We have to construct a spherical
representation ρ : G → O(V ) such that ϕρ is an extrinsic symmetric
embedding.

A representation ρ : G → GL(V ) on a complex vector space V can
be restricted to a maximal connected abelian subgroup T ⊂ G (maxi-
mal torus of G). As a T -representation, V decomposes into irreducible
components: V =

∑
µ Vµ, where µ ∈ Hom(T, S1) denote the irreducible

subrepresentations of ρ|T . They are called weights and Vµ weight spaces.
The set of weights is partially ordered (using a “Weyl chamber”). Hermann
Weyl has shown in 1926 that irreducible representations ρ have a highest
weight λ = λρ, and vice versa, any “positive” homomorphism λ : T → S1

determines an irreducible representation ρλ of G which is unique up to
equivalence. Sigurdur Helgason [11, 15] has refined this theory for spher-
ical representations where the maximal torus T of G is chosen such that
T.o ⊂ X is a maximal torus TX of X, in other words, TX = T/(T ∩K):
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Theorem of Helgason. An irreducible representation ρ of G
is spherical if and only if its highest weight λ descends from T

to TX , that is λ(T ∩K) = 1.

Now we can choose our representation. Since TX is rectangular we have
distinguished homomorphisms ϵj : T → TX = S1 × . . .× S1 → S1, namely
the action t 7→ t.o followed by the projection onto the j-th S1-factor. These
are mutually equivalent, and ϵ1 is the largest. Let ρ1 : G→ GL(V1) be the
complex irreducible representation with highest weight λ = ϵ1. Clearly ρ1
is spherical since ϵ1 descends to TX . Moreover ϵ1 is minimal, wrapping the
first factor of TX one-to-one onto S1:

Minimality of ϵ1. All weights µ which descend to TX (that
is µ(T ∩K) = 1) and which are smaller than ϵ1 are equivalent
to ϵ1 (that means µ = ϵj or ϵ̄j) or zero.

Now we put ρ = Re ρ1 on V = Re V1 and ϕ = ϕρ : g.o 7→ ρ(g)wo with
wo = Re vo (this can be chosen nonzero). The concept “Real part” makes
sense since we may assume V1 ⊂ C∞(X)c.

Definition. A Clifford torus in a Euclidean vector space V is the image of
the standard Clifford torus S11×. . .×S1k ⊂ Ck under an affine isometric map
ψ : Ck → V where S1j = {z ∈ C : |z| = rj} for some r1, . . . , rk > 0. The
circles cj = ψ(S1j ) are called generating circles. A submanifold X ⊂ V has
Clifford type if any two points in X lie in a common Clifford torus C ⊂ V

which is totally geodesic in X.

Claim (1) ϕ(TX) is a Clifford torus and ϕ(X) is of Clifford type.

Proof of Claim (1). We decompose vo with respect to the weight spaces:
vo =

∑
µ vµ with 0 ̸= vµ ∈ Vµ. Then ⟨vµ, vo⟩ ̸= 0

!⇒ µ(T ∩K) = 1.
In fact µ(t) = 1 for all t ∈ T ∩K since

µ(t)⟨vµ, vo⟩ = ⟨ρ(t)vµ, vo⟩ = ⟨vµ, ρ(t−1)vo⟩ = ⟨vµ, vo⟩.

By minimality of ϵ1 we have either µ = 0 or µ ∈ {ϵj , ϵ̄j} for some j. Let
x = t.o ∈ TX for some t ∈ T . We can explicitly compute ϕ(x):
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ϕ(t.o) = ρ(t)wo = Re
∑

µ ρ(t)vµ = Re
∑

µ µ(t)vµ = Re
∑

j ϵj(t)vϵj + wo
o

where wo
o is the component of w in V0 (= weight space Vµ for µ = 0).

⇒ ϕ(TX) is a Clifford torus (with generating circles t 7→ ϵj(t)vϵj )
⇒ ϕ(X) is of Clifford type by congruence of maximal tori.

Claim (2) X ⊂ V of Clifford type ⇒ X ⊂ V extrinsic symmetric.

Proof of Claim (2). Let p ∈ X and sp the reflection along Np.
Let q ∈ X and C ⊂ X a Clifford torus containing both p and q. Let c be
a generating circle through p.

v p
pT

c N

w

p

Then c(0) = p, c′(0) = v ∈ Tp and c′′(0) = w. Then w ∈ Np since c
is a geodesic in X ⊂ V . Thus sp preserves c and all generating circles
through p, hence it preserves C. In particular, from q ∈ C we obtain
sp(q) ∈ C ⊂ X.

5 Extrinsic symmetric
(1)⇐⇒ Clifford type

(2)⇐⇒
ρ = Re ρϵ1

• ϕ : X ↪→ V of Clifford type
(2)⇐⇒ V = Re Vϵ1 .

“⇐”: Claim (1) above.
“⇒”: Let c1, . . . , ck be the generating circles of TX . Then ϕ◦ cj is a planar
circle in V . On the other hand we compute ϕ(cj(t)) = ρϕ(exp tej)vo using
the weights of ρϕ on V c = V ⊗C. Comparing the two formulas we obtain
a restriction for the weights as claimed.

• X ⊂ V extrinsic symmetric
(1)⇐⇒ X ⊂ V of Clifford type.

“⇐” Claim (2) above.
“⇒” Let X = G/K ⊂ V be a full extrinsic symmetric space and p ∈ X.
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Let α : S(Tp) → Np be the second fundamental form at p where S(Tp)
denotes the space of symmetric 2-tensors on Tp. This map α is linear,
K-equivariant, onto, and it characterizes the extrinsic symmetric space
X ⊂ V [5]. Hence as a K-space Np is equivalent to a sum of irreducible
components of S(Tp).

Example. X = Sn with K = SOn. Then S(Tp) = So(Tp)⊕R ·
id where So(Tp) = S(Tp)∩{trace 0}. The fixed spaceNK

p ⊂ Np

always contains the radial vector p since X lies in a sphere.
Hence eitherNp

∼=K S(Tp) orNp is the fixed space Rp. The first
case gives X = RPn ⊂ So(Rn+1) which is not an embedding of
Sn while the second case is the standard embedding Sn ⊂ Rn+1.

By the argument in [8] (see section 2 above) we may assume that X is
intrinsically a product of round spheres, X = S1 × . . . × Sk. Hence Tp =∑k

j=1 Tj and S(Tp) =
∑

j S(Tj)⊕
∑

i<j Ti⊗Tj . But there is a large number
of possibilities for Np. To reduce it we need two extra ideas.

(1) Ferus [9, 6] has shown: When X ⊂ V is full extrinsic symmetric, there
is no locally diffeomorphic G-orbit near X = Gvo in the unit sphere of V
(since vo is corner of a Weyl chamber in V = p). Hence the only parallel
normal fields along X are radial and NK

p = Rp.

(2) For any extrinsic symmetric space X = G/K ⊂ V , the isotropy group
K acts on Np as the normal holonomy group, so we can use Olmos’ normal
holonomy theorem [2, 4.2.1.]:

Theorem of Olmos. There are decompositions Np = NK
p ⊕

N1 ⊕ · · · ⊕Ns and K = K1 × . . .×Ks such that each Ki acts
irreducibly on Ni and trivially on Nj for j ̸= i.

In our case, the possible irreducible components of Np are equivalent to
So(Ti) or to Ti ⊗ Tj . But both are acted on by the factor SO(Ti) of K,
hence not both of them can occur in Np. We may assume that X ⊂ V is
indecomposable. Then the only possible cases are:
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k = 1 with Np = Rp or Np
∼=K S(Tp),

k = 2 with Np ⊖ R p ∼=K T1 ⊗ T2.

The corresponding extrinsic symmetric spaces are Sn ⊂ Rn+1 or RPn or
S1⊗S2 = (S1×S2)/±, but the latter two cases are not sphere products.
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