Matemática
 Contemporânea

SBM
Vol. 49, 251-262
(C)2022

Equivariant embeddings of symmetric spaces

J.-H. Eschenburg (iD

Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany

Dedicated to Professor Renato Tribuzy on the occasion of his 75th birthday

Abstract

For an equivariant embedding of a compact symmetric space $X=G / K$ into a Euclidean G-space the following statements are equivalent:

(a) The embedding is extrinsic symmetric.
(b) The maximal torus T_{X} of X is rectangular and the representation of G has lowest possible highest weight.
(c) The maximal torus T_{X} is embedded as a Clifford torus (an extrinsic product of planar circles).

Keywords: Equivariant embedding, Clifford torus, symmetric spaces.

2020 Mathematics Subject Classification: 53C35.

1 Introduction

In 1854, Bernhard Riemann coined the notions of an abstract manifold of arbitrary dimension and of a Riemannian metric. As Riemann

Email: eschenburg@math.uni-augsburg.de
indicates, examples are algebraic submanifolds in higher dimensional Euclidean space. Since that time, the two theories - abstract Riemannian manifolds and submanifolds of Euclidean space - coexist, and traditionally, the Brazilian differential geometry group was particularly well known for their contributions to the second area. When I met Renato Tribuzy in Berkeley 40 years ago, I started studying submanifolds for the first time, and since then we wrote many joined papers. One of our common projects was trying to generalize the notion of constant mean curvature surfaces to higher dimensions [1] by what was called parallel pluri-mean curvature (ppmc) submanifolds. However, we were somewhat unhappy since we knew only few examples.

In February 2014 we were visiting our co-author Maria Joao Ferreira at Lisbon. One of the subjects we discussed was a Ph.D. project at the Federal University of Amazonas: the quest for new ppmc submanifolds. The known ones were the extrinsic symmetric embeddings of compact Kähler symmetric spaces. But every compact symmetric space has infinitely many other embeddings respecting its symmetry, so called equivariant embeddings. Are some of them ppmc? This became the theme of Kelly Karina Santos' PhD thesis [14]. Sadly for us, she disproved the ppmc property in the most promissing cases, e.g. for all equivariant embeddings of $\mathbb{C P}^{n}$ which are not extrinsic symmetric. But her investigations opened us the door to new research on this interesting class of symmetric submanifolds, minimally embedded in the sphere. (Joined work with E. Heintze, P. Quast [7], M.S. Tanaka [8].)

2 Equivariant and extrinsic symmetric embeddings

John Nash has shown that every closed Riemannian manifold X is isometric to a submanifold of Euclidean space V. But when X is acted on by a compact group G of isometries, we want more: We look for embeddings such that G is carried over into a group \hat{G} of motions of V preserving the submanifold $X \subset V$. Since \hat{G} is compact, it fixes a point 0 , hence
\hat{G} acts linearly on V, that is $\hat{G} \subset G L(V)$. Further, an inner product on V is preserved by \hat{G}, thus $\hat{G} \subset O(V)$ (the orthogonal group on V). This is equivariance: there is a Lie group homomorphism $\rho: G \rightarrow O(V)$ (a representation) with

$$
\phi(g x)=\rho(g) \phi(x) \text { for all } g \in G \text { and } x \in X,
$$

where $\phi: X \rightarrow V$ denotes the embedding.
We are interested in the case of symmetic spaces X, that is, for any $p \in X$ there is an isometry s_{p} called symmetry at p with order $2\left(s_{p} s_{p}=\mathrm{id}\right)$ and with p being an isolated fixed point of s_{p}. Symmetric spaces are particularly important in Riemannian geometry since their curvature tensor R (the quantity which distinguishes between Riemannian and Euclidean geometry) is "constant", $\nabla R=0$. We consider embeddings $\phi: X \rightarrow V$ which are equivariant for the group G generated by all symmetries of X, the symmetry group. Then $\hat{s}_{p} \in O(V)$ is an order- 2 element with $\hat{s}_{p}=-\mathrm{id}$ on the tangent space T_{p}, thus it is a reflection along a subspace N_{p}^{+}of the normal space N_{p}. The embedding is called extrinsic symmetric if \hat{s}_{p} is the reflection along the full normal space, that is $N_{p}^{+}=N_{p}$, as in the case of the round sphere $X=\mathbb{S}^{n} \subset V=\mathbb{R}^{n+1}$.

Essentially, an equivariant map $\phi: X=G / K \rightarrow V$ is given by the representation $\rho=\rho_{\phi}: G \rightarrow O(V), s_{p} \mapsto \hat{s}_{p}$, at least when ρ is irreducible (that is: it does not allow nontrivial invariant subspaces). In fact, after picking a base point $o=e K$ we put $v_{o}=\phi(o)$, then $\phi(g o)=\rho(g) v_{o}$, and in particular, $\rho(K)$ fixes v_{o}. Thus the fixed space V^{K} of $\rho(K)$ in nonzero, containing v_{o}. Such representation ρ with $V^{K} \neq 0$ is called spherical. Thus an equivariant embedding is given by a spherical representation ρ of G on V and some $v_{o} \in V^{K}$. Élie Cartan [3] has shown that V^{K} is
one-dimensional when ρ is irreducible. ${ }^{1}$ Thus v_{o} is unique up to scalar multiples, and so is the equivariant map $\phi=\phi_{\rho}$ with $\phi(g K)=\rho(g) v_{o}$.

The grandmother of all spherical representations is $C^{\infty}(X)^{c}$, the space of complex valued smooth functions on X with the G-action by precomposition: $g . f:=f \circ g^{-1}$. It is the direct sum of all irreducible spherical representations, and each equivalence class occurs precisely once [3, 15]. In particular, there are infinitely many equivalence classes.

For arbitrary compact symmetric spaces, our principal aim was to distinguish the extrinsic symmetric embeddings among the equivariant ones. There are compact symmetric spaces without any extrinsic symmetric embedding, e.g. $S U_{n}$ (although the natural inclusion $U_{n} \subset \mathbb{C}^{n \times n}$ is extrinsic symmetric). So two natural questions arise:
(1) Which X allow an extrinsic symmetric embedding?
(2) Which spherical representations ρ are extrinsic symmetric?

Question (1) was answered by Ottmar Loos [12, 13]: It depends on the maximal torus T_{X} of X. A maximal torus is a maximal flat totally geodesic submanifold of X; every geodesic in X is contained in a maximal torus, and any two of them are congruent, therefore we can talk about the maximal torus of X. Now Loos' theorem says: A compact symmetric space X has an extrinsic symmetric embedding if and only if T_{X} is rectangular, that is a Riemannian product of circles. Shortly:

Theorem 2.1. \exists extr. symm. embedding $X \hookrightarrow V \Longleftrightarrow T_{X}$ rectangular.
Loos' proof [13] used an algebraic structure called Jordan triple systems, and extended computations were needed to verify the defining identities. In $[8,7]$ we obtained a new proof which is less computational and includes an anwer to Question (2). We will give a sketch in the following two sections.

[^0]
3 Dimension reduction using meridians

$" \Rightarrow "[8]$
Let $X \subset V$ be extrinsic symmetric. The main idea is to reduce $\operatorname{dim} X$ while keeping a maximal torus T_{X}. More precisely, we replace X by a proper totally geodesic submanifold $M \subset X$, a so called meridian, which is still extrinsic symmetric and contains T_{X} as its maximal torus. To explain this notion we have to consider the fixed set of the symmetry s_{o} at the base point $o \in X$. Certainly o is a fixed point (an isolated one), but there might be others. E.g. the "farthest point" on any closed geodesic γ through o, the point opposite to o, is fixed by s_{o} since s_{o} preserves o and γ (cf. right figure). A positive dimensional connected component of $\operatorname{Fix}\left(s_{o}\right)$ is called a polar P. Every polar $P \subset X$ has a sort of orthogonal complement through any point $p \in P$, which is the connected component of $\operatorname{Fix}\left(s_{p} s_{o}\right)$. This is called a meridian M (left figure). It is extrinsic symmetric in the fixed space of $\hat{s}_{p} \hat{s}_{o}$.

Now let T_{X} be a maximal torus of X containing both o and p. Then $p \in \operatorname{Fix}\left(s_{o}\right) \cap T_{X}$. But any fixed point of a symmetry on a torus T_{X} is isolated (locally it looks like -id). Thus $s_{p}=s_{o}$ on T_{X}, that is $s_{p} s_{o}=\mathrm{id}$ on T_{X}, which means $T_{X} \subset M$.

Now we repeat this argument with X replaced by $X_{1}:=M$, that is, we pass to a meridian X_{2} of X_{1} containing T_{X}. The process stops when we arrive at some X_{k} without polars. But this happens only when X_{k} is a Riemannian product of spheres (see Theorem below) whose maximal torus is clearly a Riemannian product of great circles, hence it is rectangular.

Theorem. Only products of spheres are without polars (and therefore without meridians).

Sketch of proof. We show first that a compact symmetric space X without polars is a Riemannian product of a simply connected symmetric space and possibly a torus [8, Lemma 8]. Then by [8, Thm. 3] the torus part of X is rectangular (a Riemannian product of circles) once X is extrinsic symmetric. It remains to consider simply connected and indecomposable compact symmetric spaces. The DNA of such a space X is its root system [10], [4, Sect. 10], a certain finite set of tangent vectors spanning the tangent space \mathfrak{a} of its maximal torus T_{X}. The root system of the sphere \mathbb{S}^{n} is $A_{1}=\left\{ \pm e_{1}\right\}$. We are going to construct a polar for all other indecomposable root systems. Since every such root system contains a sub-root system of dimension one or two which is different from A_{1}, we can restrict our attention to those, which are $B C_{1}, A_{2}, B_{2}, B C_{2}, G_{2}$. They are depicted in the following figures (the middle figure of $B C_{2}$ contains also $B C_{1}$ and B_{2}).

E.g. let us consider the case A_{2} (left figure). Recall that $T_{X}=\mathbb{R}^{k} / \Gamma$ for some lattice $\Gamma \subset \mathbb{R}^{k}$. In our case the lattice is hexagonal, its points are marked black. The lattice points closest to 0 are the roots α, β, \ldots. (marked by an arrow). ${ }^{2}$ The inner product between v and α determines the sectional curvature of the plane spanned by v and any nonzero vector v_{α} in the corresponding root space $\mathfrak{p}_{\alpha} \cdot{ }^{3}$ More precisely, $\langle\alpha, v\rangle=\frac{1}{2}\langle\beta, v\rangle$ implies $\sec \left(v, v_{\alpha}\right)=\frac{1}{4} \sec \left(v, v_{\beta}\right)$ for $v_{\alpha} \in \mathfrak{p}_{\alpha}, v_{\beta} \in \mathfrak{p}_{\beta}$. The geodesic $\exp (t v)$ for $0 \leq t \leq 1$ is simply closed since there are no lattice points between

[^1]0 and v. Its midpoint $p=\exp (v / 2)$ is the point opposite to o and hence it is fixed by s_{o}. The same holds for all neighboring geodesics from o to o. However, when the curvature is large, p could be a "node", passed by all neighboring geodesics. This may happen in the $\left(v, v_{\beta}\right)$-plane, but not in the $\left(v, v_{\alpha}\right)$-plane, due to smaller curvature. Hence the midpoints of the neighboring geodesics in the $\left(v, v_{\alpha}\right)$-plane form a nontrivial curve fixed by s_{o}, hence contained in a polar. Similar pictures arise in the other cases, see figures in the center and right.

4 Smallest highest weights and Clifford tori

$$
" \Leftarrow "[7]
$$

Let us assume that X is an indecomposable compact symmetric space with a rectangular torus $T_{X} \cong \mathbb{S}_{1}^{1} \times \ldots \times \mathbb{S}_{k}^{1}$. Changing slightly our notation, we let G be the transvection group of X, which is the connected component of both the isometry group and the symmetry group, and $K \subset G$ is the stabilizer of a chosen base point $o \in X$. We have to construct a spherical representation $\rho: G \rightarrow O(V)$ such that ϕ_{ρ} is an extrinsic symmetric embedding.

A representation $\rho: G \rightarrow G L(V)$ on a complex vector space V can be restricted to a maximal connected abelian subgroup $T \subset G$ (maximal torus of G). As a T-representation, V decomposes into irreducible components: $V=\sum_{\mu} V_{\mu}$, where $\mu \in \operatorname{Hom}\left(T, \mathbb{S}^{1}\right)$ denote the irreducible subrepresentations of $\left.\rho\right|_{T}$. They are called weights and V_{μ} weight spaces. The set of weights is partially ordered (using a "Weyl chamber"). Hermann Weyl has shown in 1926 that irreducible representations ρ have a highest weight $\lambda=\lambda_{\rho}$, and vice versa, any "positive" homomorphism $\lambda: T \rightarrow \mathbb{S}^{1}$ determines an irreducible representation ρ_{λ} of G which is unique up to equivalence. Sigurdur Helgason $[11,15]$ has refined this theory for spherical representations where the maximal torus T of G is chosen such that $T . o \subset X$ is a maximal torus T_{X} of X, in other words, $T_{X}=T /(T \cap K)$:

Theorem of Helgason. An irreducible representation ρ of G is spherical if and only if its highest weight λ descends from T to T_{X}, that is $\lambda(T \cap K)=1$.

Now we can choose our representation. Since T_{X} is rectangular we have distinguished homomorphisms $\epsilon_{j}: T \rightarrow T_{X}=\mathbb{S}^{1} \times \ldots \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, namely the action $t \mapsto t$.o followed by the projection onto the j-th \mathbb{S}^{1}-factor. These are mutually equivalent, and ϵ_{1} is the largest. Let $\rho_{1}: G \rightarrow G L\left(V_{1}\right)$ be the complex irreducible representation with highest weight $\lambda=\epsilon_{1}$. Clearly ρ_{1} is spherical since ϵ_{1} descends to T_{X}. Moreover ϵ_{1} is minimal, wrapping the first factor of T_{X} one-to-one onto \mathbb{S}^{1} :

Minimality of ϵ_{1}. All weights μ which descend to T_{X} (that is $\mu(T \cap K)=1)$ and which are smaller than ϵ_{1} are equivalent to ϵ_{1} (that means $\mu=\epsilon_{j}$ or $\bar{\epsilon}_{j}$) or zero.

Now we put $\rho=\operatorname{Re} \rho_{1}$ on $V=\operatorname{Re} V_{1}$ and $\phi=\phi_{\rho}: g . o \mapsto \rho(g) w_{o}$ with $w_{o}=\operatorname{Re} v_{o}$ (this can be chosen nonzero). The concept "Real part" makes sense since we may assume $V_{1} \subset C^{\infty}(X)^{c}$.

Definition. A Clifford torus in a Euclidean vector space V is the image of the standard Clifford torus $\mathbb{S}_{1}^{1} \times \ldots \times \mathbb{S}_{k}^{1} \subset \mathbb{C}^{k}$ under an affine isometric map $\psi: \mathbb{C}^{k} \rightarrow V$ where $\mathbb{S}_{j}^{1}=\left\{z \in \mathbb{C}:|z|=r_{j}\right\}$ for some $r_{1}, \ldots, r_{k}>0$. The circles $c_{j}=\psi\left(\mathbb{S}_{j}^{1}\right)$ are called generating circles. A submanifold $X \subset V$ has Clifford type if any two points in X lie in a common Clifford torus $C \subset V$ which is totally geodesic in X.

Claim (1) $\phi\left(T_{X}\right)$ is a Clifford torus and $\phi(X)$ is of Clifford type.
Proof of Claim (1). We decompose v_{o} with respect to the weight spaces: $v_{o}=\sum_{\mu} v_{\mu}$ with $0 \neq v_{\mu} \in V_{\mu}$. Then $\left\langle v_{\mu}, v_{o}\right\rangle \neq 0 \stackrel{\prime}{\Rightarrow} \mu(T \cap K)=1$. In fact $\mu(t)=1$ for all $t \in T \cap K$ since

$$
\mu(t)\left\langle v_{\mu}, v_{o}\right\rangle=\left\langle\rho(t) v_{\mu}, v_{o}\right\rangle=\left\langle v_{\mu}, \rho\left(t^{-1}\right) v_{o}\right\rangle=\left\langle v_{\mu}, v_{o}\right\rangle .
$$

By minimality of ϵ_{1} we have either $\mu=0$ or $\mu \in\left\{\epsilon_{j}, \bar{\epsilon}_{j}\right\}$ for some j. Let $x=t . o \in T_{X}$ for some $t \in T$. We can explicitly compute $\phi(x)$:
$\phi(t . o)=\rho(t) w_{o}=\operatorname{Re} \sum_{\mu} \rho(t) v_{\mu}=\operatorname{Re} \sum_{\mu} \mu(t) v_{\mu}=\operatorname{Re} \sum_{j} \epsilon_{j}(t) v_{\epsilon_{j}}+w_{o}^{o}$ where w_{o}^{o} is the component of w in V_{0} ($=$ weight space V_{μ} for $\mu=0$).
$\Rightarrow \phi\left(T_{X}\right)$ is a Clifford torus (with generating circles $\left.t \mapsto \epsilon_{j}(t) v_{\epsilon_{j}}\right)$
$\Rightarrow \phi(X)$ is of Clifford type by congruence of maximal tori.
Claim (2) $X \subset V$ of Clifford type $\Rightarrow X \subset V$ extrinsic symmetric.
Proof of Claim (2). Let $p \in X$ and s_{p} the reflection along N_{p}.
Let $q \in X$ and $C \subset X$ a Clifford torus containing both p and q. Let c be a generating circle through p.

Then $c(0)=p, c^{\prime}(0)=v \in T_{p}$ and $c^{\prime \prime}(0)=w$. Then $w \in N_{p}$ since c is a geodesic in $X \subset V$. Thus s_{p} preserves c and all generating circles through p, hence it preserves C. In particular, from $q \in C$ we obtain $s_{p}(q) \in C \subset X$.

5 Extrinsic symmetric $\stackrel{(1)}{\Longleftrightarrow}$ Clifford type $\stackrel{(2)}{\Longleftrightarrow}$ $\rho=\operatorname{Re} \rho_{\epsilon_{1}}$

- $\phi: X \hookrightarrow V$ of Clifford type $\stackrel{(2)}{\Longleftrightarrow} V=\operatorname{Re} V_{\epsilon_{1}}$.
" \Leftarrow ": Claim (1) above.
" \Rightarrow ": Let c_{1}, \ldots, c_{k} be the generating circles of T_{X}. Then $\phi \circ c_{j}$ is a planar circle in V. On the other hand we compute $\phi\left(c_{j}(t)\right)=\rho_{\phi}\left(\exp t e_{j}\right) v_{o}$ using the weights of ρ_{ϕ} on $V^{c}=V \otimes \mathbb{C}$. Comparing the two formulas we obtain a restriction for the weights as claimed.
- $X \subset V$ extrinsic symmetric $\stackrel{(1)}{\Longleftrightarrow} X \subset V$ of Clifford type.
" \Leftarrow " Claim (2) above.
$" \Rightarrow$ " Let $X=G / K \subset V$ be a full extrinsic symmetric space and $p \in X$.

Let $\alpha: S\left(T_{p}\right) \rightarrow N_{p}$ be the second fundamental form at p where $S\left(T_{p}\right)$ denotes the space of symmetric 2 -tensors on T_{p}. This map α is linear, K-equivariant, onto, and it characterizes the extrinsic symmetric space $X \subset V$ [5]. Hence as a K-space N_{p} is equivalent to a sum of irreducible components of $S\left(T_{p}\right)$.

Example. $X=\mathbb{S}^{n}$ with $K=S O_{n}$. Then $S\left(T_{p}\right)=S_{o}\left(T_{p}\right) \oplus \mathbb{R}$. id where $S_{o}\left(T_{p}\right)=S\left(T_{p}\right) \cap\{$ trace 0$\}$. The fixed space $N_{p}^{K} \subset N_{p}$ always contains the radial vector p since X lies in a sphere. Hence either $N_{p} \cong_{K} S\left(T_{p}\right)$ or N_{p} is the fixed space $\mathbb{R} p$. The first case gives $X=\mathbb{R} \mathbb{P}^{n} \subset S_{o}\left(\mathbb{R}^{n+1}\right)$ which is not an embedding of \mathbb{S}^{n} while the second case is the standard embedding $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$.

By the argument in [8] (see section 2 above) we may assume that X is intrinsically a product of round spheres, $X=S_{1} \times \ldots \times S_{k}$. Hence $T_{p}=$ $\sum_{j=1}^{k} T_{j}$ and $S\left(T_{p}\right)=\sum_{j} S\left(T_{j}\right) \oplus \sum_{i<j} T_{i} \otimes T_{j}$. But there is a large number of possibilities for N_{p}. To reduce it we need two extra ideas.
(1) Ferus $[9,6]$ has shown: When $X \subset V$ is full extrinsic symmetric, there is no locally diffeomorphic G-orbit near $X=G v_{o}$ in the unit sphere of V (since v_{o} is corner of a Weyl chamber in $V=\mathfrak{p}$). Hence the only parallel normal fields along X are radial and $N_{p}^{K}=\mathbb{R} p$.
(2) For any extrinsic symmetric space $X=G / K \subset V$, the isotropy group K acts on N_{p} as the normal holonomy group, so we can use Olmos' normal holonomy theorem [2, 4.2.1.]:

Theorem of Olmos. There are decompositions $N_{p}=N_{p}^{K} \oplus$ $N_{1} \oplus \cdots \oplus N_{s}$ and $K=K_{1} \times \ldots \times K_{s}$ such that each K_{i} acts irreducibly on N_{i} and trivially on N_{j} for $j \neq i$.

In our case, the possible irreducible components of N_{p} are equivalent to $S_{o}\left(T_{i}\right)$ or to $T_{i} \otimes T_{j}$. But both are acted on by the factor $S O\left(T_{i}\right)$ of K, hence not both of them can occur in N_{p}. We may assume that $X \subset V$ is indecomposable. Then the only possible cases are:

$$
\begin{aligned}
& k=1 \text { with } N_{p}=\mathbb{R} p \text { or } N_{p} \cong_{K} S\left(T_{p}\right), \\
& k=2 \text { with } N_{p} \ominus \mathbb{R} p \cong_{K} T_{1} \otimes T_{2} .
\end{aligned}
$$

The corresponding extrinsic symmetric spaces are $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ or \mathbb{R}^{p} or $S_{1} \otimes S_{2}=\left(S_{1} \times S_{2}\right) / \pm$, but the latter two cases are not sphere products.

References

[1] F.E.Burstall, J.-H.Eschenburg, M.J.Ferreira, R.Tribuzy: Kähler submanifolds with parallel pluri-mean curvature. Diff. Geom. Appl. 20 (2004), 47 - 66
[2] J. Berndt, S. Console, C. Olmos: Submanifolds and Holonomy. Chapman \& Hall/CRC, Boca Raton 2003
[3] É. Cartan. Sur la détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend.C.M.Palermo 53 (1929), 217-252
[4] J.-H. Eschenburg. Lecture notes on symmetric spaces. https://myweb.rz.uni-augsburg.de/~eschenbu/symspace.pdf
[5] J.-H. Eschenburg. Extrinsic symmetric spaces. https://myweb.rz.uniaugsburg.de/~eschenbu/extsym.pdf
[6] J.-H. Eschenburg, E. Heintze. Extrinsic symmetric spaces and orbits of s-representations, Manuscr. Math. 88 (1995) 517-524
[7] J.-H. Eschenburg, E. Heintze, P. Quast: Maximal tori of extrinsic symmetric spaces, in preparation (2022)
[8] J.-H. Eschenburg, P. Quast, M.S. Tanaka. Maximal tori of extrinsic symmetric spaces and meridians, Osaka J. Math. 52 (2015), 299-307.
[9] D. Ferus. Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81-93
[10] S. Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic Press 1978
[11] S. Helgason. Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, Academic Press, Orlando 1984
[12] O. Loos. Jordan triple systems, R-spaces and bounded symmetric domains, Bull. A.M.S. 77 (1971), 558-561
[13] O. Loos. Charakterisierung symmetrischer R-Räume durch ihre Einheitsgitter, Math. Z. 189 (1985), 211-226
[14] K.K. Santos. Mergulhos Equivariantes de Variedades Kählerianas Simétricas, Thesis Manaus 2016
[15] M. Takeuchi. Modern spherical functions, Translations of Mathematical Monographs 135. American Mathematical Society, Providence, RI, 1994

[^0]: ${ }^{1}$ Actually, Cartan considered complex representations. But when G is the full symmetry group, his proof can be easily extended to real representations.

[^1]: ${ }^{2}$ Roots are 1-forms on \mathfrak{a} which are viewed as vectors in \mathfrak{a}. By scaling the metric we can arrange that roots and lattice points behave as in the figures. This can be easily seen by looking at the rank-one subspaces determined by each root [10, p.407].
 ${ }^{3}$ The root space $\mathfrak{p}_{\alpha} \subset \mathfrak{p}=T_{o} X$ is the common eigenspace of the Jacobi operator $R(., v) v$ for the eigenvalue $\langle\alpha, v\rangle^{2}$, for all $v \in \mathfrak{a}$.

