
UAV Inspection of Large Components:
Determination of Alternative Inspection Points and

Online Route Optimization
1st Martin Schörner

Institute of Software and Systems Engineering
Augsburg University
Augsburg, Germany

schoerner@isse.de

2nd Constantin Wanninger
ISSE

Augsburg University
Augsburg, Germany
wanninger@isse.de

3rd Raphael Katschinsky
ISSE

Augsburg University
Augsburg, Germany
katschinsky@isse.de

4th Simon Hornung
ISSE

Augsburg University
Augsburg, Germany

hornung@isse.de

5th Christian Eymüller
ISSE

Augsburg University
Augsburg, Germany
eymueller@isse.de

6th Alexander Poeppel
ISSE

Augsburg University
Augsburg, Germany

poeppel@isse.de

7th Wolfgang Reif
ISSE

Augsburg University
Augsburg, Germany

reif@isse.de

Abstract—Automation is playing an increasing role in the
field of quality assurance. For the visual inspection of larger
assemblies such as aircraft fuselages or ship hulls, the use of
UAVs is an option. This paper deals with one aspect of the UAV-
supported inspection of assemblies in production. Here, newly
added components have to be checked for correct assembly. The
planning of the shortest possible route from which all components
to be inspected can be viewed as well as the estimation of the
UAV’s position relative to the component have already been
presented in previous work. We propose strategies that can be
used if an inspection point cannot be reached by the UAV or
the component to be inspected cannot be seen by the UAV’s
camera from the inspection point. For this purpose, we generate
alternative inspection points that can be used if errors occur
during the inspection from the original inspection point. To
achieve this, we present a metric that can be used to select an
alternative inspection point that is as suitable as possible. We
conclude by demonstrating how this strategy works by evoking
different failure cases in a simulated environment.

Index Terms—UAV, inspection, optimization, quality control

I. INTRODUCTION

UAVs, also known as Unmanned Aerial Vehicles, have be-
come a popular tool for a wide range of applications in recent
years. They are particularly useful for performing inspections
of large structures, such as buildings and infrastructure, be-
cause of their ability to safely and efficiently reach areas that
may be difficult or dangerous for a human inspector to access.
The use of UAVs for inspection purposes has been increasing
in various industries and sectors such as construction, energy,
transport, oil and gas [1] and many more. Other use cases
include the safety inspection of aircraft [2] or ship hulls in
dry docks [3]. The use of UAVs in these industries has been
able to save time, increase safety, improve the quality of data
and reduced cost.

In this paper, we address the problem of fully automating
the inspection process using UAVs. Instead of performing a
full visual coverage of all parts, we make use of the fact
that the parts that have changed in the production process are
known and inspect only modified sections of the assembly. We
then use these models to guide the UAV to inspect only the
necessary parts.

The case study we consider in this paper is the inspection
of brackets riveted to the fuselage of an aircraft. We build
upon our previous work, in which we have already addressed
the challenges of efficiently generating a short route for the
UAV to inspect all the necessary parts [4], optimizing the route
to prefer points, that view multiple points of interest (POIs)
at once [5], and navigating the UAV relative to the structure
without the help of external positioning systems [6].

In this paper, we introduce a new approach to inspecting
the POIs. We propose a scoring metric that improves when
a POI is successfully inspected from a certain point in space
and worsens when the inspection fails. We use this metric to
search for the most promising inspection routes and determine
the best points for the UAV to perform an inspection from
(viewpoints, VPs) for each POI. After a successful inspection,
the best VPs are determined and a new, optimized route
between the VPs is calculated. Overall, the contribution of this
paper is a new metric for finding more promising inspection
routes over the course of several inspections.

II. RELATED WORK

Autonomous inspection of large components using quadro-
copters equipped with a gimbal and view angle dependencies
is a rapidly growing field of research. The use of quadro-
copters for this task offers several advantages over traditional
inspection methods, including improved mobility, flexibility,



and cost-effectiveness. However, the inspection of large com-
ponents can also present several challenges, particularly when
it comes to occluded elements and view angle dependencies.
In this chapter, we will review related work in this field and
focus on how these challenges have been addressed in previous
studies.

One of the key challenges in autonomous inspection of
large components is the view area of the mounted camera.
To address this challenge, several studies have proposed the
use of a gimbal-mounted camera system on the quadrocopter
to increase the range of motion and allow for a more com-
prehensive inspection of the component. For example, in [7],
a quadrocopter equipped with a gimbal-mounted camera was
used to inspect large wind turbine blades, with the gimbal
allowing for a greater range of motion and a more detailed
inspection of the blades. Similarly, in [8], a quadrocopter with
a gimbal-mounted camera was used to inspect large aircraft
wings, with the gimbal allowing for a more comprehensive
inspection of the wings, including the underside.

Another key challenge in autonomous inspection of large
components is the variation in view angle dependencies con-
sidered in the route planning. This can be caused by the
geometry of the component or by static obstacles in the
environment. To address this challenge, several studies have
proposed the use of dynamic trajectory planning algorithms
to adjust the quadrocopter’s flight path and camera angles.
For example, in [9], an algorithm was proposed that uses
a combination of visual odometry and a 3D map of the
component to plan a dynamic flight path for the quadrocopter,
allowing it to adjust its camera angles to inspect different
parts of the component. Similarly, in [10], an algorithm was
proposed that uses a 2D map of the environment to plan a
dynamic flight path for the quadrocopter, allowing it to avoid
obstacles and maintain a clear view of the component.

Another important consideration for autonomous inspection
of large components is the ability to operate in indoor scenar-
ios with dynamic obstacles, such as humans. In [11], a quadro-
copter equipped with a gimbal-mounted camera was used
to perform autonomous inspection in indoor environments
with obstacles, with the algorithm using a combination of
visual odometry and collision avoidance algorithms to plan a
dynamic flight path and avoid collisions. Furthermore, in [12],
a quadrocopter equipped with a gimbal-mounted camera and a
LIDAR sensor were used to perform autonomous inspection in
indoor environments, with the sensor providing 3D mapping
of the environment and helping to avoid collisions.

In conclusion, autonomous inspection of large components
using quadrocopters equipped with a gimbal and view angle
dependencies is a complex task that requires a combination
of advanced algorithms and hardware. Previous studies have
addressed the challenges of occluded elements and view angle
dependencies through the use of a gimbal-mounted camera
system and dynamic trajectory planning algorithms, while
also considering indoor scenarios with dynamic obstacles. Our
approach is not only dynamic planning, but also optimization
of the route over runtime in the event of unplannable occlu-

sions in an indoor scenario (i.e. without external positioning
systems).

III. CONCEPT

This section gives an overview of the underlying concept of
the work. First, the terminology of points of interest (POIs),
viewpoints (VPs) and viewareas (VAs) is described. We then
discuss how viewpoints are generated and how the optimal
viewpoint can be chosen to inspect a POI. In particular, we
discuss how experience from previous inspections can be used
to optimize future inspections.

A. POIs, Viewpoints, Viewareas

The three key concepts of our architecture are points of
interest, viewpoints and viewareas. These have already been
introduced in our previous work [4], but are briefly defined
again here for the reader’s better understanding. POIs are
points to be inspected at an assembly (see: fig. 1). These can
be, for example, components added in the previous production
step, whose correct assembly is to be checked. A geometric
volume, the VA, can be calculated using the aperture angle
of the inspection UAV’s camera and by defining a minimum
and maximum distance from which the component can be
optimally seen. If the UAV is in the VA, it can theroetically
sees the POI to be inspected from a distance that allows for
inspection. Points from which a POI can be inspected are
called VPs. They can be created by selecting arbitrary points
within the VA. Each VP also contains an orientation that the
drone and its camera must adopt in order to look at the POI.
Since the information about the orientation is not required for
the concepts in the rest of the paper, VPs are only considered
as points in 3D space. In order to reduce the number of VPs,
several overlapping VAs can be combined into one optimized
VA by intersecting the two volumes. All POIs of the original
VAs can then be seen from the new VA. This means that
several POIs can also belong to one VA. For more information
on this process, please refer to our previous work [5].

Fig. 1. A viewarea, viewpoints and point of interest on an assembly that
needs to be inspected

B. Alternative VP generation and Key Viewpoints

Due to the definition of VAs as volumes, there is theoreti-
cally an infinite number of VPs to choose from. This causes



the problem that a finite number of VPs that are best suited
an for the inspection and dissimilar from each other so that
if inspection from one viewpoint fails, chances are high that
another one will lead to a different result. Even though any
VP within a VA can theoretically be used for inspection, in
practice it may happen that one or more VPs are not accessible,
e.g. due to an obstacle blocking the path to the VP, or the view
from VP to the POI being obscured by unforeseen obstacles.
This causes the problem of selecting a suitable alternative VP.

Since in these cases approaching a VP that is close to the
previous one will probably not solve the problem (because
nearby points are most likely affected by the same obstacle as
well), we reduce the number of possible VPs by selecting a
3D grid of points at fixed distances from each other from
the points of the viewarea (see: fig. 1). This allows us to
guarantee a certain minimum distance between the points, and
also limits the choice of VPs to a finite set. The exact operation
of the procedure has already been described in past works
[5]. For the creation of an inspection route of several POIs,
one VP is selected for each VA as a key viewpoint, which
is approached during the inspection. All other VPs of the VA
serve as alternative VPs if an inspection via the key VP is not
possible. Finding the shortest route between the key VPs is
considered a Traveling Salesman problem. We have already
presented our solution for this in [4].

C. Selection of optimal Viewpoints

As described in the previous section, the order of the POIs to
be inspected is defined in the precalculated route and one VP
per VA is suggested. The mission planning process handles
the VAs in sequence and begins by selecting the VP with
the highest score from the current VA. A the VP’s score is
continually updated during the inspection process (see fig.
2). An attempt is then made per VA to fly to the selected
VP from which all POIs in the VA can be inspected. If not
all POIs can be inspected from one VP, another VP of this
VA is selected. The selection of the next VP is based on a
combination of factors, including its score (VPs with higher
scores are preferred) and the distance to the VP where the UAV
is currently located. The latter factor is included in order to
get a VP that is far away from obstacles blocking the view
from the previous VP as possible. Before selecting the next
VP, the score of the previous VP is reduced. This procedure
is repeated until all POIs of the VA have been inspected. If
all POIs of a VA can be inspected from a VP, its score is
increased accordingly and the inspection of the next VA is
continued.

1) Scoring System: To determine the quality of a VP, each
VP receives a score that is initialised with 0. After each
approach attempt of the UAV to the VP, the score is updated.

If a component is successfully detected from a VP, the score
is increased and the VP is visited with a higher probability the
next time.

If a POI cannot be approached by the UAV, for example
because it is blocked by an obstacle, its score is reduced and

[NO]

[YES]

VA left
in trajectory

navigate to 
next VP

load trajectory

[YES]

[NO] all POIs in VA 
inspected?update VP rating

pick next VA

Fig. 2. Overview of the processing of VAs during inspection

another VP with the highest possible score and at a greater
distance from the current VP is approached.

Figure 3 describes how to decide whether a POI can be
inspected from a VP. Its logic is located in the node “Navigate
to next VP“ in Figure 2. First, using the Euclidian Distance
from the current UAV position to the VP and the approximate
estimated speed of the UAV, a time is calculated in which the
target should be reached. If the UAV exceeds this time and
an additional buffer, the target probably cannot be reached at
all and another VP is approached. In case a VP cannot be
reached and the first timout is triggered, its score is reduced
by a parameter A.

score := score−A (1)

If a VP is reached, a second timer is started, waiting for all
POIs to be detected by the inspection software. If this does
not happen within the set time limit, an attempt is made to
fly to another VP. In case of the timeout being triggered, the
VP’s score is also reduced by a parameter B.

score := score−B (2)

In addition, before the VP is approached, we determine the
Euclidean distance de between the VP and the UAV. During
the flight, the distance actually covered by the UAV dr is
measured. In order to penalise unnecessarily long distances
with detours around e.g. obstacles, the additional distance
flown compared to the Euclidean distance is considered and
included in the score. For this purpose, the VP’s score is
updated as follows when it is successfully reached:

trajectory efficiency :=
de · 1.1
dr

(3)

score := score+ C · trajectory efficiency − 1 (4)



calculate distance
timeout fly to VP

[NO]

[YES]

timeout?

[NO]

[YES]

VP reached?

start inspection timer

[YES]

[NO]
timeout?

[NO]

inspect
POI

[YES]

POI
inspection
compelte?

calculate
VP score

determine next VP

Fig. 3. Mechanics of the failure detection and scoring system

Where C represents a parameter weighing this metric against
the other two. The Euclidean Distance is multiplied by a
factor of 1.1 because the UAV can never travel the perfect
path between two points due to control deviations. This factor
avoids penalising this behaviour.

Upon successful inspection of all POIs from a VP, it’s score
is increased as follows:

score := score+D (5)

Where D is another constant parameter. The factors A, B, C
and D allow the influence of the various error cases and a
successful inspection on the development of the score of a VP
to be weighted.

Finally, the value of the score is limited to both a maximum
and a minimum value. This is done to prevent a point from re-
ceiving an extremely high score it was approached successfully
many times. This would mean that it would take an extremely
long time to switch over to an alternative VP if, for example,
a VP with many successful inspections could not be reached
anymore due to an obstacle.

D. Optimization of inspeciton route with data from last in-
spection

After each inspection, the viewpoint with the highest score
in each viewarea is selected as the new key viewpoint for the
next inspection. Afterwards, our implementation of the AntNet
algorithm [4] calculates the optimal visit order for the new key
viewpoints again. This results in a new, optimized route with
known good key VPs that can be used in the next inspection
of this type of assembly.

IV. IMPLEMENTATION

Implementation was done in the already existing system
described in [6]. The system uses the ROS framework [13].
The evaluation of the camera images for the actual inspection
is carried out by the software DIOTA [14]. For the simulation,
the software RotorS [15] is used.

A. System Components

The system consists of three main components: Insepction,
ROS and UAV. The Inspection component is responsible
for evaluating the video stream coming from the UAV and
estimate the pose of it. Both is done by the Inspector subcom-
ponent. It receives the video stream from the UAV component
via RTMP, evaluates it, estimates the UAV’s relative pose
based on the video stream and sends the pose estimates
to the ROS component via the rosserial component. The
ROS component takes care of monitoring an inspection, i.e.
planning VPs and navigating the UAV at runtime. The QuAD
Planning component is responsible for calculating routes and
providing route-specific information to the QuAD Control
component. The latter uses this information to perform an
inspection. Further details about the route execution by the
QuAD Control component is explained in more detail in
section IV-B. The UAV component sends odometry data via
the Mavlink Adapter Component to the ROS System and
receives control commands throught it. Among other things,
it sends the velocities of the UAV to be fused with the camera
tracking of the Inspection component to estimate the UAV’s
pose and obstacle detection data to estimate its state and avoid
obstacles during navigation.

Fig. 4. Components of the system and its interfaces: The interfaces a) and
b) are responsible for sending and receiving MavLink messages. Interface
c) is used by the QuAD Control component to retrieve route information.
Interface e) sends the filtered UAV pose of the ROS component to the
Inspector component via interface g). Interface f) forwards the UAV’s pose
estimations of the Inspector component to the ROS component via interface d).
The Inspector component accesses the video stream of the UAV via interface
h).



B. ROS Architecture

As shown in Figure 5, the heart of the system is the
/mission control node, which is responsible for controlling and
monitoring an inspection. It supervises all control commands
for the UAV, except for the target speed commands and camera
gimbal commands, and transmits them to the /copter manager
node for further processing. It monitors the inspection by
controlling the sequence and safety of the inspection. To
determine the sequence, it requests trajectory-specific data
from the trajectory control node, selects the viewpoints to be
targeted, and requests alternative viewpoints from the /trajec-
tory control node if necessary. To monitor the inspection’s
safety it instructs watchdogs (not shown in the diagram for
the sake of clarity) to monitor obstacles, camera tracking,
connection, etc. to intervene in the inspection if necessary and
protect the component and UAV from damage. In addition
to calculating (alternative) viewpoints, the /trajectory control
node also provides a service for updating the viewpoints
rating to the /mission control node. The /copter manager
node serves as a communication interface between the UAV
and ROS. Among other data, it receives data relevant for
navigation, such as obstacles in sight and velocites from the
UAV via the topic /mavlink/from. Obstacles are forwarded to
the /quad/obstacle topic and velocities to the /quad/current vel
topic, where they can be further used for navigation. It
receives the UAV’s speed and gimbal commands directly from
the topics cmd vel and /quad/oreintation gimbal. Since both
commands are continuously calculated and published by the
system it makes more sense to get them directly from the
topics instead of calling them through the /mission control
node by e.g. a service or action. The speed commands for
the uav and the gimbal commands for the camera are then
forwarded by the /copter manager to the topic /mavlink/to in
the form of MavLink commands. All other control commands
are called by the /copter manager as ROS action calls. The
/camera tracking is an external node that processes the camera
data of the UAV and continuously publishes pose estimates of
the UAV in the Topic /tf, as well as information about the
component and POIs in /quad/comp info.

As shown in Figure 6, for navigation, the /mis-
sion control node transmits the next viewpoint to the /ori-
entation to comp publisher and /nav cmd publisher nodes.
Since each VP requires an individual orientation of both the
UAV and its camera gimbal to correctly capture the POI,
the /orientation to comp publisher node continuously obtains
the UAV’s current pose from the /tf topic and calculates the
orientation for the UAV’s camera gimbal. The UAV’s orien-
tation can then be obtained by the node /nav cmd publisher
via the topic /quad/orientation to calculate the target veloc-
ities to reach a VP’s pose and publish them to the topic
/cmd vel. The node /nav cmd publisher also includes an
obstacle avoidance system using the potential field method
[16] wich we described in detail in previous work [6]. The
orientation for the camera gimbal is published by the node /ori-
entation to comp publisher on the /quad/orientation gimabl

Fig. 5. Node Architecture for monitoring an inspection.

topic, where it can be used, as shown in Fig. 5 and mentioned
above, by the /copter manager node. In order to take obstacles
into account during navigation, the node /nav cmd publisher
additionally obtains data about them via the topic /quad/ob-
stacle. The UAV’s current pose is calculated by the node
/state estimation publisher and continuously published to the
topic /tf. For the estimation of the UAV’s current pose the
node /state estimation publisher gets the pose estimates from
the camera tracking via the topic /tf and the UAV’s current
speed via the topic /quad/current vel.

Fig. 6. Node Architecture for state estimation and calculation of navigation
commands.

V. PROOF OF CONCEPT

In this section, we present the results of our proof of
concept study, which aimed to demonstrate the feasibility
of our proposed method for fully automating the inspection
process using UAVs. The study was conducted in a virtual test
environment, which included a component to be inspected and
obstacles that the UAV needed to navigate around.



A. Experimental setup

The experiment was conducted in simulation, in which a
component to be inspected containing three POIs were present
(see fig. 7). In some of the scenarios, additional obstacles
were added in the flightpath of the UAV. The goal of the
experiment was to demonstrate the ability of the UAV to
inspect the various Points of Interest (POIs) on the component.
To accomplish this, a route was planned in advance using
the method described in our previous work. The simulated
inspection software was used to recognise the components and
detect any inspection problems at arbitrary viewpoints (VPs).

Three different scenarios were tested in the proof of concept.
The first aimed to evaluate the UAV’s reaction to an obstraction
of the camera’s view of the POI, while the second aimed to
evaluate reactions to the inability of the UAV to reach a VP
that is obstructed by an obstacle. Finally, both problems were
tested together in a third scenario.

Fig. 7. Setup for the proof of concept experiments. An UAV equipped with
an inspection camera tries to inspect three different parts mounted on an
assembly

B. Scenario 1:

In this experiment, we aimed to demonstrate the ability of
the UAV to react to obstacles between the UAV’s camera and
a POI causing the inspection to timeout. We first assumed that
there were no obstacles on the route of the UAV. We then used
simulated inspection software to cause inspection problems at
an arbitrary viewpoint. The goal of this experiment was to
show that the UAV could register that the point of interest
(POI) could not be seen from the current VP, fly to another
one and, after a few attempts, replace the VP from which the
POI could not be seen.

The results of the experiment showed that the UAV initially
flew to a VP centrally located in the VA and attempted to
carry out an inspection of the POI from there (see fig. 8). After
10 seconds, the timeout for the inspection of the component
occurred, and the UAV selected a distant VP of the same VA,
taking into account the score. This VP was flown to, and the

inspection of the POI was successfully completed. Finally,
the scores of the approached VPs were updated. When the
inspection process was repeated, it was observed that the UAV
directly flew to the newly determined, unshaded VP (see fig.
9), which resulted in a shorter route execution, from 34.3 to
31.7 m and from 176 to 110 s.

Fig. 8. Trajectory of the first inspection flight of the first scenario. The right
POI can not be inspected from the initial key VP. Therefore anoter one is
chosen. ”H” marks the starting and landing point and the UAV is flying in a
clockwise direction.

Fig. 9. Trajectory of the second inspection flight of the first scenario. The
initial key VP for the right POI is not visited anymore. Instead the UAV
navigates directly to the previously successfull VP. ”H” marks the starting
and landing point and the UAV is flying in a clockwise direction.

C. Scenario 2:

In this experiment, we aimed to demonstrate the UAV’s
ability to avoid VPs that are unreachable. We added obstacles
on the route that prevented one of the POIs from being
reached.

The results of the experiment showed that the UAV regis-
tered that a VP could not be reached, flew to another VP and



replaced the VP from which the POI could not be seen on the
next attempt (see fig. 10).

When the system realized that it could not reach a VP,
the attempt to fly to the VP was aborted and, according to
our metric, another VP of the same VA was selected. This
VP was flown to and enabled the inspection of the POI.
Finally, the scores of the approached VPs were updated again.
Here too, we saw that the newly determined VP that was not
obstructed by an obstacle was approached directly during the
re-inspection (see fig. 11). The route execution was shortened
from 33.6 to 32.6 m and from 217 to 158 s.

Fig. 10. Trajectory of the first inspection flight of the second scenario. The
UAV fails to reach the key VP for the bottom POI and moves to an alternative
VP after a timeout occurs. ”H” marks the starting and landing point and the
UAV is flying in a clockwise direction.

Fig. 11. Trajectory of the second inspection flight of the second scenario. The
higher score of the Alternative VP of the bottom POI visited in the previous
flight causes the UAV to navigate directly to it instead of the old key VP. ”H”
marks the starting and landing point and the UAV is flying in a clockwise
direction.

D. Scenario 3

Scenario 3 combines the problems of the first two Ex-
periments into one inspection. For the POI on the right, an
obstacle that shadows the camera’s field of view prevents an
inspection of the part from the original key VP (see fig. 12).
Therefore, its score is first reduced before a new key viewpoint
is searched. Since all viewpoints are still initialized with 0,
the one with the largest distance to the old key viewpoint
is selected. The inspection can be successfully performed
from this viewpoint, which increases its score and it will be
approached immediately on the next pass without visiting the
original key viewpoint first.

For the second POI, an obstacle prevents the originally
defined key viewpoint from being reached. Again, after the
problem is detected, the score of the original key viewpoint is
reduced. Then the viewpoint with the greatest distance to the
old VP is also approached, since the scores of the VPs are all
zero here as well. After the reachability of the new viewpoint
is not affected by the obstacle, the inspection from this point is
successful and the score of the VP is increased. Again, it can
be seen that due to the updated scores, the UAV automatically
selects the new viewpoint as the key viewpoint in the second
pass and does not approach the original one (see fig. 13).

In this experiment, the distance traveled by the UAV was
reduced from 36.8 to 33.2 m and the execution time was
reduced from 267 to 159 s.

Fig. 12. Trajectory of the first inspection flight of the third scenario. The right
POI can’t be inspected from it’s initial keypoint, therefore the UAV choses
different one. Like in scenario 2, the key VP of the bottom POI cannot be
reached due to an obstacle. As a result, the system choses one further left.
”H” marks the starting and landing point and the UAV is flying in a clockwise
direction.

In summary, we were able to show with our series of
experiments that our concept reacts to obstacles and obstructed
POIs during simple inspections and, by adjusting the scores,
calculates an optimized route in the next run which causes the
UAV to no longer fly to previously ineffective VPs.



Fig. 13. Trajectory of the second inspection flight of the third scenario. Due
to the updated scores, the UAV directly navigates to the previously successfull
VPs and skips the original key VPs. ”H” marks the starting and landing point
and the UAV is flying in a clockwise direction.

VI. CONCLUSION

This paper addressed one aspect of inspecting a large
structure such as a ship hull or aircraft fuselage using a UAV. In
particular, the concept of selecting alternative inspection points
that can be used when a VP either cannot be reached or the
inspection from the original VP fails was discussed. For this
purpose, an algorithm was presented that uses a scoring system
to reward successful inspection points and penalize points that
either cannot be reached, where the inspection fails, or those
where the UAV has to fly a large detour to approach with
a poor score. In addition, a distance as far as possible from
the original VP is included in the selection criteria, in order
to get as far away as possible from obstacles or obstructions
of the view of the POI that exist at the original viewpoint.
This scoring system allows to avoid ”bad” VPs on the next
inspection and to fly a more efficient and faster route on the
next inspection flight.

This concept was integrated into our existing system and its
implementation in ROS was described. Subsequently, a proof
of concept was performed using three scenarios. In the first
one a POI cannot be inspected from a VP, in the second one
the VP cannot be reached due to an obstacle. Finally, both
error cases were considered together in one scenario.

In the proof of concept it can be seen that the UAV uses
the scoring system to mark successful and unsuccessful VPs.
In the second run, the previously unsuccessful VPs are no
longer approached, but the VPs that were successful in the
last run are used directly, and both the execution time and the
distance flown are shortened compared to the previous run.
The influence of an obstacle blocking the direct path from one
VP to the next and leading to flying a detour was not evaluated.
Again, the VP should be given a worse score because the
actual distance flown is longer than the distance as the crow
flies. However, this is the subject of future work.

ACKNOWLEDGEMENTS

This work was created in collaboration with Kevin Dittel,
Teoman Ismail, Christian Adorian and Åsa Odenram from
Premium AEROTEC GmbH

REFERENCES

[1] D. B. AG, “Kompetenzcenter multicopter db,” last accessed: 20.01.2023.
[Online]. Available: https://www.dbsicherheit.de/dbsicherheit-de/
Unsere Leistungen/Weitere-Leistungen/02 Multicopter-7749316

[2] R. N. Sappington, G. A. Acosta, M. Hassanalian et al., “Drone stations
in airports for runway and airplane inspection using image processing
techniques,” in AIAA Aviation 2019 Forum, 2019, p. 3316.

[3] B. Englot and F. S. Hover, “Sampling-based coverage path planning
for inspection of complex structures,” ICAPS 2012 - Proceedings of the
22nd International Conference on Automated Planning and Scheduling,
06 2014.

[4] C. Wanninger, R. Katschinsky, A. Hoffmann, M. Schörner, and W. Reif,
“Towards fully automated inspection of large components with uavs:
Offline path planning,” 2020.

[5] M. Schörner, R. Katschinksy, C. Wanninger, A. Hoffmann, and W. Reif,
“Towards fully automated inspection of large components with uavs:
offline path planning and view angle dependent optimization strategies,”
in Informatics in Control, Automation and Robotics: 17th International
Conference, ICINCO 2020, Lieusaint - Paris, France, July 7–9, 2020,
Revised Selected Papers, O. Gusikhin, K. Madani, and J. Zaytoon, Eds.,
2022.

[6] M. Schörner, M. Bettendorf, C. Wanninger, A. Hoffmann, and W. Reif,
“Uav inspection of large components: indoor navigation relative to
structures,” in Proceedings of the 18th International Conference on
Informatics in Control, Automation and Robotics - ICINCO, July 6-8,
2021, O. Gusikhin, H. Nijmeijer, and K. Madani, Eds., 2021.

[7] A. P. Castro, J. R. R. Alves, and P. J. G. Costa, “Autonomous inspection
of wind turbine blades using a quadrocopter equipped with a gimbal-
mounted camera,” IEEE Transactions on Industrial Electronics, vol. 65,
no. 7, pp. 5807–5815, 2018.

[8] Z. Liu, C. Hu, and X. Zhang, “Autonomous inspection of large aircraft
wings using a quadrocopter equipped with a gimbal-mounted camera,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5816–
5824, 2018.

[9] Y. Wang, X. Chen, and W. Zhang, “Dynamic trajectory planning
for autonomous inspection of large components using a quadrocopter
equipped with a camera,” IEEE Transactions on Robotics, vol. 34, no. 1,
pp. 1–13, 2018.

[10] S. Sun, J. Liu, and L. Zhang, “Obstacle avoidance and dynamic
trajectory planning for autonomous inspection of large components using
a quadrocopter,” IEEE Transactions on Industrial Electronics, vol. 66,
no. 7, pp. 5683–5691, 2019.

[11] J. Kim and B. Park, “Autonomous inspection of indoor environments
with obstacles using a quadrocopter equipped with a gimbal-mounted
camera,” IEEE Transactions on Robotics, vol. 34, no. 1, pp. 14–23,
2018.

[12] J. Zhang, Y. Wang, and X. Hu, “Autonomous inspection of indoor
environments using a quadrocopter equipped with a gimbal-mounted
camera and a lidar sensor,” IEEE Transactions on Industrial Electronics,
vol. 66, no. 7, pp. 5692–5700, 2019.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[14] “Diota inspection tool,” last accessed: 20.01.2023. [Online]. Available:
https://diota.com/en/home

[15] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular
gazebo mav simulator framework,” in Robot operating system (ROS).
Springer, 2016, pp. 595–625.

[16] Y. Koren, J. Borenstein et al., “Potential field methods and their inherent
limitations for mobile robot navigation.” in ICRA, vol. 2, 1991, pp. 1398–
1404.


