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A B S T R A C T

We present an efficient solver for the simulation of many-particle solid-state-sintering processes. The mi-
crostructure evolution is described by a system of equations consisting of one Cahn–Hilliard equation and a set
of Allen-Cahn equations to distinguish neighboring particles. The particle packing is discretized in space via
multicomponent linear adaptive finite elements and implicitly in time with variable time-step sizes, resulting
in a large nonlinear system of equations with strong coupling between all components to be solved. Since on
average 10k degrees of freedom per particle are necessary to accurately capture the interface dynamics in 3D,
we propose strategies to solve the resulting large and challenging systems. This includes the efficient evaluation
of the Jacobian matrix as well as the implementation of Jacobian-free methods by applying state-of-the-art
matrix-free algorithms for high and dynamic numbers of components, advances regarding preconditioning, and
a fully distributed grain-tracking algorithm. We validate the obtained results, examine in detail the node-level
performance and demonstrate the scalability up to 10k particles on modern supercomputers. Such numbers
of particles are sufficient to simulate the sintering process in (statistically meaningful) representative volume
elements. Our framework thus forms a valuable tool for the virtual design of solid-state-sintering processes for
pure metals and their alloys.
1. Introduction

Sintering is a physically complex process that includes various
mechanisms interacting and competing with each other. The obtained
densification and microstructure of the sintered packing are of key
interest. The accurate prediction of the powder coalescence for a given
material and heating profile is a challenging multiphysics problem,
which couples mass transport and mechanics. It is convenient to
split the entire sintering process into two stages, as visualized in
Fig. 1: the early stage and the later stage. Initially, the microstructure
mainly evolves due to intensive neck-growth and shrinkage, while the
particles1 become strongly non-spherical and grain growth starts to
play an important role in the later stage. These rheological differences
justify the application of specialized numerical models and methods
with different computational costs for each of the stages. For instance,
molecular dynamics [1,2] provides the most detailed insights into pro-
cesses taking place during solid-state sintering, but can only be applied

∗ Corresponding author.
E-mail addresses: peter.muench@uni-a.de (P. Munch), vladimir.ivannikov@hereon.de (V. Ivannikov), christian.cyron@hereon.de (C. Cyron),

martin.kronbichler@uni-a.de (M. Kronbichler).
1 In practice, a powder particle may contain multiple grains. For reasons of simplicity, we use the terms particle and grain interchangeably. Such a simplification

is admissible for the present work, since, in our studies, each particle always consists of a single grain.

to domains spanning a few particles (or even less). Thus, it is typically
not appropriate to predict the densification, which is a hallmark of sin-
tering on the meso- and macroscale. On the contrary, approaches based
on continuum mechanics [3] can operate on the macroscale but remain
phenomenological, since they can predict changes of the geometry of
a whole workpiece only with additional assumptions on local material
densification and cannot resolve microscopic phenomena, such as grain
growth. Discrete element methods (DEM) and phase-field methods are po-
sitioned between the two aforementioned approaches in terms of scale:
they can handle packings of hundreds or thousands of particles. While
both can capture shrinkage during analysis (provided the corresponding
mechanisms are properly included in the model), DEM simulations typ-
ically rely on the assumption of nearly spherical particles and remain
thus largely limited to early-stage sintering [4]. Capturing both densifi-
cation and grain growth properly can be crucial for many applications,
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Fig. 1. Visualization of different phases of sintering for a 5-particle packing in 2D. The colors indicate the different grains. Up to 𝑡 = 90 (early stage), a clear neck growth is
isible and the shape of the particles remains, at least to some extent, spherical; after that (later stage), the grain-growth phenomenon plays an important role, with smaller grains
isappearing.
b
c
N
t
p
f
a
p
e
t
a
a
w
t
A
c
s

t
d
e
a
t
b

w
d
t
a
t
o
f
o
a
d

2

2

p
2

or instance, the manufacturing of patient-specific biodegradable mag-
esium implants [5], where the mechanical properties as well as the
iodegradation process may crucially depend on both the geometry and
icrostructure of an implant [6].

Recently, a number of large-scale simulations of sintering using
hase-field methods has been reported. For example, [7] simulated
arly-stage sintering for packings containing 332, 333, 1172 and 2968
articles. The authors of [8] applied the phase-field framework
ace3D [9] to simulate sintering of 1.2 million particles, using dis-
retization of 24003 grid cells. An even larger packing of 3.1 million
articles on 25603 cells was analyzed in [10], however, for a simpler,
deal grain-growth problem. All these publications have in common
hat they use finite difference methods (FDM) on uniform meshes mostly
ith explicit time stepping. The finite element method (FEM) is success-

ully used, for instance, in the framework MOOSE [11] to demonstrate
he sintering simulation of several hundreds of particles [12] and in
he package Tusas [13] to perform various large-scale solidification
imulations with up to 270 million unknowns; both using implicit time
tepping and Jacobian-free Newton–Krylov (JFNK) methods. The pack-
ge PRISM-PF [14], in contrast, applies the fast evaluation routines of
eal.II to accelerate explicit time stepping in the context of a large
et of phase-field simulation cases.

In our previous works, we have tackled modeling of solid-state
intering by multiple numerical methods in close interaction with
xperimental validation. In [15], we used a FEM-based phase-field
pproach to simulate shrinkage and neck growth between two particles.
o simulate the early-stage sintering process for larger packings of par-
icles, we applied DEM and proposed a novel approach [4] that couples
he diffusive mass-transport processes described by an elementary 7-
quation model [16] with mechanical interactions of particles arising
ecause of changes of their geometry. Due to the low computational
osts of the DEM approach, the developed code is able to simulate the
intering of relatively large packings consisting of 3000–5000 particles
n a regular laptop within a few hours. However, this approach is
imited to the early stage of sintering and cannot capture non-spherical
rains and grain-growth phenomena. In the current work, we extend
ur phase-field-based code [15] to simulate packing sizes similar to
hose we considered in the case of DEM, without the limitation to the
arly sintering stages.

The development of a FEM-based code with implicit time stepping
or such scales is a challenging task, since it involves algorithmic
evelopments on many levels. In particular, the number of degrees
f freedom (DoFs) 𝑁 increases linearly with the number of particles
𝑁𝑃 ): 𝑁 ∼ (𝑁𝑐𝑁𝑃 ), with 𝑁𝑐 being the number of order parameters,
hich are sets of non-neighboring particles. This number is, in practice,

ather high (10–20) but independent of the number of particles. Never-
heless, the computational complexity is quadratic (𝑁2

𝑐𝑁𝑃 ), since the
urface-coupling terms between particles need to be evaluated.
2

In this work, we develop efficient evaluation strategies of the Jaco-
ian that fully exploit modern hardware features, reducing the effective
omplexity to (𝑁𝑃 )–(𝑁𝑐𝑁𝑃 ). To this end, we adopt Jacobian-free
ewton–Krylov approaches and fast matrix-free operator evaluation

o solve systems of linear equations arising from implicit time step-
ing. We, furthermore, discuss efficient preconditioning and propose a
ully distributed and improved version of the grain-tracking/remapping
lgorithm [17]. The latter is crucial to keep the number of order
arameters low and, as a result, to make the operator evaluation more
fficient. During the whole simulation, we maintain two representa-
ions of the particles: a 0D representation for postprocessing purposes
nd a phase field for each order parameter for computation purposes,
s shown in Fig. 2. The 0D representation is used to detect situations
hen particles belonging to the same order parameter get too close and

o resolve them such that the number of order parameters is minimized.
s a consequence, the fast synchronization of both representations is
rucial to reduce the computational time and enables then large-scale
imulations.

Though the number of order parameters is minimized via grain
racking, it still remains significant. In the context of FEM, each or-
er parameter would correspond, e.g., to a component of a vectorial
lement. Such a high number of components is not common for FEM
pplications in other areas, with density functional theory as an excep-
ion [18,19]. In our case, the number of components may also change
etween time steps, which poses an additional software challenge.

The remainder of this article is organized as follows. In Section 2,
e provide an overview of the governing equations and their FEM
iscretization. Section 3 outlines the aims of our optimizations, and Sec-
ion 4 proposes the performance-relevant solver components. Sections 5
nd 6 present numerical results and discuss the overall performance of
he solver in detail, respectively. Section 7 demonstrates the application
f the proposed algorithms in alternative, more advanced, sintering
ormulations. Finally, Section 8 summarizes our conclusions and points
ut future research directions. Our novel simulation framework is freely
vailable, as hpsint, on GitHub2 and uses the open-source library
eal.II as FEM backend [20,21].

. Sintering model and its numerical solution

.1. Governing equations

The classical formulation for modeling solid-state sintering of 𝑁𝑃
articles proposed by Wang [22] and adopted in numerous works [23–
6] is based on a system of Cahn–Hilliard and Allen–Cahn equations:

𝜕𝑐
𝜕𝑡

(𝐱, 𝑡) = ∇ ⋅
[

𝑀∇ 𝛿𝐹
𝛿𝑐

]

, (1a)

2 https://github.com/hpsint/hpsint.

https://github.com/hpsint/hpsint
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Fig. 2. Overview of types of particle representation considered in this publication and their interaction for a 5-particle packing in 2D. Phase-field simulations are run for order
parameters, i.e., sets of particles that do not neighbor. For postprocessing purposes, we maintain a 0D representation with particles described by position, radius, and additional
statistical quantities. This reduced model is also used to determine potential contacts of grains and to maintain the invariant that order parameters can only contain non-neighboring
particles, which might involve the remapping of solution vectors.
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𝜕𝜂𝑖
𝜕𝑡

(𝐱, 𝑡) = −𝐿𝛿𝐹
𝛿𝜂𝑖

for 1 ≤ 𝑖 ≤ 𝑁𝑃 , (1b)

here 𝐱 is the position vector in space. The microstructure evolution
s described by a conserved variable 𝑐 and a set of non-conserved
nknowns 𝜂𝑖. Variable 𝑐 can be interpreted as the molar fraction of
he overall material and has a magnitude of 1 inside particles and 0
n voids. The unknown 𝜂𝑖 describes the position of particle 𝑖 within the
omain such that 𝜂𝑖 = 1 inside the 𝑖th particle and 𝜂𝑖 = 0 elsewhere. Due
o the local support of 𝜂𝑖, it is common in the literature [17,27,28] to
ollect non-neighboring particles in groups called order parameters and
escribe all particles in such a group by a single 𝜂𝑖. We have adopted
his strategy in this publication. In the following, we implicitly assume
hat particles are treated in groups unless it is explicitly pointed out
hat particles are treated individually.

The free energy of system (1) is given by the integral

= ∫𝛺

[

𝑓
(

𝑐, 𝜂𝑖
)

+ 1
2
𝜅𝑐 |∇𝑐|

2 +
𝑁𝑃
∑

𝑖

1
2
𝜅𝜂|∇𝜂𝑖|

2

]

d𝛺 (2)

ased on the following Landau-type polynomial:

= 𝐴𝑐2 (1 − 𝑐)2 + 𝐵
⎡

⎢

⎢

⎣

𝑐2 + 6 (1 − 𝑐)
𝑁𝑃
∑

𝑖
𝜂2𝑖 − 4 (2 − 𝑐)

𝑁𝑃
∑

𝑖
𝜂3𝑖 + 3

(𝑁𝑃
∑

𝑖
𝜂2𝑖

)2
⎤

⎥

⎥

⎦

,

(3)

where 𝐴 and 𝐵 are energy coefficients and 𝜅𝑐 and 𝜅𝜂 are gradient
prefactors. These parameters can be extracted from the surface and
grain-boundary energy properties of the material by using the relations
obtained from the analysis of the behavior of the phase-field variables
across the flat surface [24].

Even though it has been recently revealed [29] that the bulk free
energy (3) may spontaneously generate the void phase on triple and
higher-order junctions, we have still decided to use the original for-
mulation from [22] due to its widespread use and for the sake of
simpler validation and comparison with the existing literature. The
implementation aspects discussed in the next sections are applicable
to similar models based on other free-energy expressions, provided
𝐹
(

𝑐, 𝜂𝑖
)

is a continuous differentiable function.
Parameter 𝐿 defines the mobility of the grain boundary and is

typically set as a constant. The diffusion along different pathways is
introduced by the scalar mobility [22]

𝑀 =𝑀vo𝜙 +𝑀va (1 − 𝜙) + 4𝑀s𝑐
2 (1 − 𝑐)2 + 𝑀gb

𝑁𝑃
∑

𝑁𝑃
∑

𝜂𝑖𝜂𝑗 , (4)
3

𝑖=1 𝑗≠𝑖
where 𝜙 = 𝑐3
(

10 − 15𝑐 + 6𝑐2
)

. Here, the subscripts vo, va, s and gb
enote the mobility coefficients for the volumetric, vapor, surface,
nd grain-boundary paths, respectively. For the sake of simplicity, the
calar form of the mobility is chosen in the following, whereas a more
omplex tensorial form [23] is discussed as an extension separately in
ection 7. The mobility coefficients can be introduced via the Arrhenius
elationship by defining the corresponding prefactors and activation
nergies [30]. This allows the model to be calibrated with the available
xperimental data [15].

We note that the surface-mobility term in Eq. (4) (underlined)
lightly differs from that used in [7,22,30,31] to enhance the conver-
ence rate of the Newton solver. A more detailed discussion of this
lteration can be found in Supplementary Material S1.

.2. Discretization

We discretize Eq. (1) by means of multicomponent linear Lagrange
0 finite elements. For this purpose, we reformulate the original system

o:
𝜕𝑐
𝜕𝑡

= ∇ ⋅ [𝑀∇𝜇] ,

𝜇 =
𝜕𝑓
𝜕𝑐

− 𝜅𝑐∇2𝑐,

𝜕𝜂𝑖
𝜕𝑡

= −𝐿
[

𝜕𝑓
𝜕𝜂𝑖

− 𝜅𝑝∇2𝜂𝑖

]

,

y introducing the chemical potential 𝜇 = 𝛿𝐹∕𝛿𝑐 as auxiliary variable,
expanding explicitly the variational derivatives 𝛿𝐹∕𝛿𝑐 and 𝛿𝐹∕𝛿𝜂𝑖, and
exploiting the definition (2). This leads to the following weak form:
(

𝑣𝑐 ,
𝜕𝑐
𝜕𝑡

)

= −
(

∇𝑣𝑐 , 𝑀∇𝜇
)

, (5a)

(

𝑣𝜇 , 𝜇
)

=
(

𝑣𝜇 ,
𝜕𝑓
𝜕𝑐

)

+
(

∇𝑣𝜇 , 𝜅𝑐∇𝑐
)

, (5b)
(

𝑣𝜂𝑖 ,
𝜕𝜂𝑖
𝜕𝑡

)

= −
(

𝑣𝜂𝑖 , 𝐿
𝜕𝑓
𝜕𝜂𝑖

)

−
(

∇𝑣𝜂𝑖 , 𝐿𝜅𝑝∇𝜂𝑖
)

, (5c)

where the usual boundary integrals arising after applying integration
by parts vanish due to imposition of the no-flux boundary conditions.

We use BDF2 with adaptive time steps for time discretization. The
resulting nonlinear system  (𝒖) = 0, with the vector of unknowns
𝐮 =

[

𝑐 𝜇 𝜂𝑖
]𝑇 , is solved by means of a Newton solver. The action
of the Jacobian on a factor is either evaluated exactly or approximated
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Fig. 3. Visualization of the block sparsity pattern of (1) the system matrix and (2) the considered preconditioners for four order parameters.
by finite differences around the linearization point 𝐮lin (Jacobian-free
approach):

𝐽 (𝐮lin)𝐩 ≈ 𝐽 ′(𝐮lin)𝐩 =
 (𝐮lin + 𝛽𝐩) −  (𝐮lin)

𝛽
, (6)

here the parameter 𝛽 is chosen as described in [32–34]. The lineariza-
ion of the weak form (5) is derived with respect to variations of the
tate vector 𝛿𝐮 as
(

𝑣𝑐 ,
𝜕𝑐̇
𝜕𝑐
𝛿𝑐
)

= −
(

∇𝑣𝑐 ,
[ 𝜕𝑀
𝜕𝑐

𝛿𝑐 + 𝜕𝑀
𝜕∇𝑐

∇𝛿𝑐

+ 𝜕𝑀
𝜕𝜂𝑗

𝛿𝜂𝑗 +
𝜕𝑀
𝜕∇𝜂𝑗

∇𝛿𝜂𝑗

]

∇𝜇
)

, (7a)

(

𝑣𝜇 , 𝛿𝜇
)

=
(

𝑣𝜇 ,
𝜕2𝑓
𝜕𝑐2

𝛿𝑐 +
𝜕2𝑓
𝜕𝑐𝜕𝜂𝑗

𝛿𝜂𝑗

)

+
(

∇𝑣𝜇 , 𝜅𝑐∇𝛿𝑐
)

, (7b)
(

𝑣𝜂𝑖 ,
𝜕𝜂̇𝑖
𝜕𝜂𝑖

𝛿𝜂𝑖

)

= −
(

𝑣𝜂𝑖 , 𝐿
𝜕2𝑓
𝜕𝜂𝑖𝜕𝜂𝑗

𝛿𝜂𝑗

)

−
(

∇𝑣𝜂𝑖 , 𝐿𝜅𝑝∇𝛿𝜂𝑖
)

. (7c)

The notation 𝜓̇ = 𝜕𝜓∕𝜕𝑡 is used here to denote the first time derivative
of an arbitrary variable 𝜓 for convenience. Note that (7a) contains
erivatives of 𝑀 with respect to gradients of concentration 𝑐 and
rder parameters 𝜂𝑗 in order to account for tensorial mobility described
n Section 7. The linearized forms of the free-energy function and
he mobility are listed in Supplementary Material S2. Fig. 3 shows
he sparsity pattern of the resulting Jacobian matrix. The coupling
erms introduce a quadratic complexity (𝑁2

𝑐𝑁𝑃 ) in both storage and
computational effort, making the assembly of the Jacobian unfeasible.

2.3. Algorithmic overview

Fig. 4 shows an overview of the algorithm used to solve the solid-
state-sintering problem. Before solving the nonlinear system with a
Newton solver, we optionally run adaptive mesh refinement (AMR)
and the grain tracker to detect potential new contacts and to mini-
mize the number of order parameters. After the solution or when the
linear/nonlinear solver fails to converge in the prescribed number of
iterations, we optionally increase or decrease the time-step size 𝜏. In
he following, we investigate this algorithm regarding performance.

. Performance metric

Our aim is to minimize the computational time for running a
olid-state-sintering simulation up to the required physical end time,
llowing the simulation of larger problem sizes. For the described
olution approach, the runtime can be estimated by the sum of the
osts of the nonlinear solution process and other costs, like AMR, grain
racking, and postprocessing:

= 𝑇sol + 𝑇AMR + 𝑇grain tracking + 𝑇post +⋯

The cost of the nonlinear solution process [35] is the sum of the costs
of each time step:

𝑇sol =
∑

𝑇sol,𝑖 = 𝑁𝑇 𝑇 sol.

n the following, we consider averaged times, which are indicated by
verbars. Under the assumption that we use a Newton solver and solve
4

Fig. 4. Simplified flow chart of the solution procedure of the sintering problem with
adaptive time stepping and adaptive meshing.

the Jacobian by means of iterations of the preconditioned generalized
minimal residual method (GMRES), we can refine the estimates of the
costs 𝑇 sol = 𝑇sol∕𝑁𝑇 :

𝑇 sol = 𝑇 𝑃 , setup ⊳ setup preconditioner

+ 𝑁𝑁𝑇 𝐽 ,setup ⊳ setup Jacobian

+ 𝑁𝑁𝑁𝑅𝑇 residual ⊳ residual evaluation

+ 𝑁𝑁𝑁𝐿(𝑇 𝐽 , apply + 𝑇 𝑃 , apply + 𝑇 updates
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⊳single linear iteration

),

with the preconditioner only updated once per nonlinear solve. Here,
𝑁𝑁 is the number of nonlinear iterations, each of which requires 𝑁𝑅
residual evaluations and 𝑁𝐿 iterations of the linear solver. To acceler-
ate the solution process, one needs, on the one hand, to minimize the
accumulated number of Jacobian and preconditioner evaluations (each
𝑁𝑇𝑁𝑁𝑁𝐿) and of their setup (𝑁𝑇 and 𝑁𝑇𝑁𝑁 times, respectively)
and, on the other hand, to minimize the cost of their application and
construction (𝑇 𝐽 , apply, 𝑇 𝑃 , apply, 𝑇 𝐽 , setup, 𝑇 𝑃 , setup). The costs 𝑇 updates
related to the updates of the solution vector are fixed and can hardly
be optimized.

We note that these different costs need to be balanced against each
other. For example, minimizing only 𝑁𝑇 by increasing the time-step
sizes can lead to increased 𝑁 and 𝑁 due to increased nonlinearity
𝑁 𝐿
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and nonsymmetry of the system of linear equations to be solved. In
the present work, we increase the size of the time steps as long as a
user-provided threshold regarding the numbers of linear and nonlinear
iterations is not violated (see Section 4.5.2). This implies that the main
factors we can tune are the costs of the evaluation of the Jacobian
(𝑇 𝐽 , apply) and the setup and application costs of the preconditioner
(𝑇 𝑃 , setup, 𝑇 𝑃 , apply). The choice of the preconditioner has an effect not
nly on 𝑇 𝑃 , setup, 𝑇 𝑃 , apply but also on 𝑁𝑃 , 𝑁𝑁 , and 𝑁𝐿. Hence, an

effective preconditioner is characterized by a tradeoff between the
setup and application times as well as the resulting iteration counts.
Generally 𝑁𝐿 ≫ 𝑁𝑅, which implies that the costs of the residual eval-
ation are not crucial. At the same time, this function constitutes the
ore algorithm of the Jacobian-free implementation. For computational
fficiency, this work uses a matrix-free evaluation of the Jacobian,
hich is conceptually similar to the residual evaluation. Here, the cost
f setting up the factors of the Jacobian matrix is small and only
nvolves storing the linearization point and, potentially, precomputing
ts values at the quadrature points.

Minimizing the solution time by splitting the spatial computation
omain into partitions for parallel computation – so that each process
nly works on a part of the mesh cells, called locally owned cells – is

a key aspect to enable large systems, since most of the computational
time is spent here. However, extensive memory usage and poor parallel
scalability of other parts of the code might become a bottleneck as
well. For instance, gathering data from all processes to be able to
run the grain-tracking algorithm, as done in [17,36], is only feasible
for small number of processes but is not an option at a larger scale,
limiting the maximum problem sizes per process that can be solved.
This implies that we need a grain-tracking algorithm that returns the
minimal number of order parameters but is also computationally and
memory-wise cheap to apply even if it is not executed at each time step.

Hardware

All experiments are performed, unless stated otherwise, on a dual-
socket 20-core Intel Cascade Lake Xeon Gold 6230 system (2.6 TFLOP/s,
180 GB/s, AVX-512) with up to 8 compute nodes. To give a broader
performance perspective, we also report experiments from a dual-
socket AMD EPYC 7713 processor with 64 cores per socket. It has
n aggregated bandwidth of 320–340 GB/s and only supports AVX2,
ut the clock frequency and core count are higher (4.6 TFLOP/s). The
arallel-scaling experiments are executed on a dual-socket 24-core Intel

Xeon Platinum 8174 (Skylake) system of the supercomputer SuperMUC-
NG,3 (achieved STREAM triad memory throughput of 205 GB/s) with
up to 1024 compute nodes (49k processes).

4. Solver components

Section 3 identifies the solver components needed for scalable large-
scale simulations of solid-state-sintering processes: fast operator evalu-
ation of the Jacobian and the residual as well as a balance between the
costs and effectiveness of the preconditioner. Both ingredients need to
able to deal with a large and dynamic number of order parameters,
i.e., components. A fully parallel implementation of the grain-tracking
algorithm enables a low number of order parameters also for large sim-
ulations, where replicating information is unfeasible. In the following,
we present the algorithmic realization of these steps.

3 https://top500.org/system/179566/ received on December 11, 2022.
5

Algorithm 1: Cell loop considering all vector blocks. The con-
version of the number of components into a constant expression
is done at a central place before looping over all cells.
1 if 𝑛blocks = 𝑛static

blocks then
2 for cell ∈ cells do
3 for 𝑏 = 1 to 𝑛blocks do
4 read from block 𝑏 of source vector
5 perform cell integral → action of 𝑒 in (8)
6 for 𝑏 = 1 to 𝑛blocks do
7 write to block 𝑏 of destination vector

8 else
9 not shown

4.1. Dealing with large and dynamic number of components

During sintering, grains build necks with neighboring particles,
increase and/or decrease in size, and might disappear. The grain-
tracking algorithm assigns and reassigns the grains to order parameters.
Typical values of the number of order parameters are between 8 and 14.
Depending on the topology of grains, the number of order parameters
can be dynamically reduced or has to be increased. A natural choice
is to assign each order parameter to a component of a vectorial finite
element. For solid-state sintering, this implies vectorial elements with
two components for the Cahn–Hilliard system and one component for
each order parameter. Such a dynamic behavior is in contrast to the
fixed number of components in most vectorial problems solved with
finite-element models.

In order to simplify the workflow in the context of a general-
purpose FEM library, we do not actually work with vectorial elements
but with multivectors defined upon scalar finite elements, which we
manually combine on the cell4/quadrature-point level. Each component
corresponds to a vector in the multivector, which simplifies adding
or removing blocks during remapping. In the following, we use the
term block to denote an individual vector related to a scalar function
space within the multivector and denote the vector of all unknowns
as block vector. To accelerate computations of integrals on the mesh
cells, we use the C++ template mechanism for generating separate
code for different numbers of components to provide the compiler
with optimization opportunities via known loop bounds and data-
structure sizes. From compute kernels precompiled up to a known
maximal possible number of components, the right kernel is chosen at
runtime. The resulting procedure is summarized in Algorithm 1. The
memory consumption is (𝑁𝑐𝑁𝑃 ) and the computational complexity is
(𝑁2

𝑐𝑁𝑃 ), since coupling between order parameters is considered on
the cell level also when a cell is not cut by the boundary of a grain.

In the context of large-scale finite-difference implementations [8,
10], it is common to exploit the local support of grains [37], i.e., 𝜂𝑖(𝐱) >
0 only for limited 𝐱. For this purpose, the indices of relevant grains
are stored for each cell. In practice, the number of possible relevant
grains is fixed and limited, e.g., to 𝑐max = 6. Since 𝑐max ≪ 𝑐 is generally
much lower than the number of order parameters and – per definition
– constant, the memory consumption is (𝑁𝑃 ) and the computational
omplexity is (𝑁𝑃 ) with a larger constant of proportionality.

It is also possible to adopt this approach in the context of FEM if
ne realizes that the data structure used for existing finite-difference
odes is – in a nutshell – a compressed-row-storage-format object with
ows being the cell/vertex/DoF indices, storing a fixed number of the
elevant column indices (grain indices) and associated values (𝜂𝑖). In
he context of computational solution of the density functional theory
ased on FEM [38,39], such a data structure was successfully used in
he form of sparse block vectors.

4 We use the terms cell and element interchangeably.

https://top500.org/system/179566/
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Algorithm 2: Cell loop considering only vector blocks relevant
for the current cell. The conversion of the number of components
into a constant expression has to be performed for each cell.
1 for cell ∈ cells do
2 𝑏𝑙𝑜𝑐𝑘𝑠 ← relevant blocks of cell
3 for 𝑏 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠 do
4 read from block 𝑏 of source vector
5 if |𝑏𝑙𝑜𝑐𝑘𝑠| = 𝑛static

blocks then
6 perform cell integral → action of 𝑒 in (8)
7 else
8 not shown
9 for 𝑏 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠 do
10 write to block 𝑏 of destination vector

Fig. 5. 51 particles: distribution [%] of cells and cell batches with 𝑛 relevant grains
at 𝑇 = 500 (see Section 6).

Despite of the appeal of sparse block vectors with 𝑁𝑃 blocks regard-
ng memory consumption, their usage within an implicit (non)linear
olver is challenging. For instance, sparse block vectors imply different
nd frequently changing sparsity patterns of the matrix of each block,
hich makes the setup of preconditioners more expensive and paral-

elization more challenging if established linear-algebra libraries should
e used. However, processing all particles of one order parameter
mplies a natural parallelization across particles under the assumption
hat the grain-tracking algorithm is able to reduce the number of order
arameters to a reasonable value. Therefore, we defer the investigation
f such data structures to future work and, instead, focus on a novel
implified approach: we allocate (dense) block vectors in memory but
imit the arithmetic work on cells to the relevant blocks in the block
ector, including the coupling in cell integrals. This is achieved by
toring the relevant order parameters for each cell. Obviously, this
pproach still implies a memory consumption of (𝑁𝑐𝑁𝑃 ) and an
ssociated overhead throughout the remainder of the solver (e.g., non-
elevant entries of the vectors have to be zeroed and communicated),
ut the computational effort can be significantly lowered. In the current
ork, we use the—heuristic—criterion 𝜂𝑖 > 10−5 to determine whether
grain is relevant within a cell. Fig. 5 shows the distribution of the

esulting number of components on cells. The value ranges from 0 to
with 81% of the cells only containing 1 or 2 grains, which indicates
significant increase of efficacy. We present the corresponding per-

ormance comparison in Section 6. The resulting algorithm is shown
n Algorithm 2 indicating that the number of components needs to be
ranslated into a constant expression for each cell.

.2. Fast Jacobian and residual evaluation

A widespread optimization of iterative linear solvers for modern
ardware is to not assemble the final global matrix but implement the
ction of the linear(ized) operator through a loop over cells and com-
ute the FEM integrals on the fly in a matrix-free way. This approach
6

as been established in the high-order spectral-element community.
y now, it is commonly used in the computational fluid dynamics
ormulations [40–42] and has been also applied, e.g., in the context
f solid mechanics [43,44], material science [14] and computational
lasma physics [45]. Depending on the polynomial degree and the
nderlying quadrature formula, the matrix-free operator evaluation is
eneficial for accelerating the actual matrix–vector product or only for
educing the setup costs of the Jacobian. The latter might provide,
epending on iteration counts, a better overall runtime also when the
ctual evaluation is more expensive.

Due to the implementation similarity between the matrix-free eval-
ation of the Jacobian and the evaluation of the residual, we introduce
he concepts of high-performance evaluation of an arbitrary operator
(𝑥). The overall structure is [46–48]:

= (𝒙) =
∑

𝑒
𝑇𝑒 ◦ ̃

𝑇
𝑒 ◦𝑒◦𝑒
⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝒗𝑒=𝑒(𝒙𝑒)

◦𝑒𝒙. (8)

or each cell 𝑒, the operator 𝑒 gathers the values pertaining to the
ocal FEM solution expansion from the source vector 𝒙 and applies
onstraints (like hanging-node constraints [49] related to AMR). The
perator 𝑒 computes values or gradients associated to the vector 𝒙 at
he quadrature points. These quantities are processed by a quadrature-
oint operation 𝑒; the result is integrated and summed into the vector
by applying ̃𝑇𝑒 and 𝑇𝑒 . In the literature, specialized implementa-

ions for GPUs [48,50–52] and CPUs [45–47,50,53] for operations as
xpressed in (8) have been presented, including the use of the structure
n interpolation matrices. For CPUs, it is an option to vectorize across
lements [46,47], i.e., evaluate 𝑒 for multiple cells in different lanes
f vector execution units by the same instructions. This necessitates
he data to be laid out in a struct-of-arrays fashion. The necessary
ermutations to support unstructured meshes can be done, e.g., by 𝑒,
hile looping through all elements [46]. On modern CPUs, the most

ommon number of lanes 𝑁SIMD is either 4 (AVX) or 8 (AVX512) for
ouble-precision floating-point numbers, implying that batches of 4 or
cells are processed at once.

For multicomponent FEM, the indices within 𝑒 are the same for
ach block, allowing to process blocks one by one with the same index
ata. Furthermore, 𝑒 and ̃𝑇𝑒 can be executed for each component in-
ividually. The operator 𝑒 determines the quantities to be provided at
uadrature points, encoding the actual physics via the weak forms (5)
nd (7). In the case of the residual (5) and the Jacobian (7), we need
he values and the gradients of 𝑐, 𝜇, 𝜂𝑖 and have to multiply the results
y both the value and the gradient of the respective test function. When
valuating the operators in (8) sequentially, the amount of temporary
ata is 𝑁SIMD(𝑁𝑐 + 2)(𝑑 + 1)(𝑝 + 1)𝑑 data fields, with 𝑝 the polynomial
egree and 𝑑 the spatial dimension. The performance crucially depends
n the ability to keep the temporary results between the steps of Eq. (8)
n a cell accessible quickly. Hence, the higher numbers of components
equire larger cache capacities to remain fast.

At each quadrature point, the values and gradients of 𝑐, 𝜇, 𝜂𝑖 are
oupled via 𝑒. From a performance point of view, the two limiting
actors are possible register spills for high number of components
nd (𝑁2

𝑐 ) arithmetic operations. Apart from constants, this is the
ame complexity as for a matrix-based implementation, since coupling
etween all components arises in both cases. The crucial difference is
hat a matrix-based code involves the coupling over the whole stencil
f a point. Furthermore, matrices are large objects in memory with
ow data reuse, implying that data needs to be loaded via the slow
ain memory, whereas the matrix-free evaluation only experiences the

omplexity on a single point and on cached data. In the ideal case,
he time complexity is thus (𝑁𝑃𝑁𝑐 ) if the computation can be hidden
ehind the global memory access. In the following, we concentrate on
inear elements (𝑝 = 1) in 3D, as common in the literature [12,26,30]
or simulating sintering problems.

Fig. 6 shows the time and throughput of the computation of the
esidual and the application of the Jacobian. Here, the throughput is
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Fig. 6. Comparison of the time and throughput (given in GDoF/s=109DoF/s) of the application of sparse matrix (SpMV), of the vector Helmholtz operator, and of the generic
sintering operator. 4.3 million DoFs per vector component for different number of components. Run on 1 compute node with Intel Xeon 6230 (40 cores).
computed as the ratio between the number of degrees of freedom for
all vector components and the runtime/wall time of the experiment in
seconds, in short, the number of DoFs processed per second. We use
Algorithm 1 on a uniformly refined Cartesian mesh with 4.3 million
DoFs per vector component. As a reference, we also list the timings for
the evaluation of the vector Helmholtz operator (𝑣𝑖, 𝑢𝑖)+(∇𝑣𝑖,∇𝑢𝑖). Since
his operator involves the same operations 𝑒 and ̃𝑇𝑒 , the difference
llustrates the cost of the physics-based 𝑒. The residual evaluation
f the sintering operator involves around 50% more floating-point
perations on average, with the execution being 30% slower than
he one of the vector Helmholtz operator. Evaluating the Jacobian
ives a 19% lower throughput than the residual because of additional
loating-point operations from linearization and additional data access
or loading a given linearization point, as we precompute the values
f 𝑐, 𝜇, 𝜂𝑖 and the gradients of 𝑐, 𝜇 at the quadrature points. We
lso show the times of the multiplication with a sparse matrix in
hich all components are coupled. It is clear that the time of the

parse matrix–vector multiplication increases quadratically with the
umber of components, as does the memory consumption, making this
pproach unfeasible for large number of components. Note that sparse
atrices involve additional costs for the assembly and the creation of

he pattern of non-zero entries.
The experiments also show a decrease in throughput with increasing

he number of components for the matrix-free case, which indicates
quadratic complexity with low constant of proportionality. These

esults motivate the development of algorithmic variants that reduce
he number of components a particular cell needs to work on, e.g., by
sing Algorithm 2. The central ingredient for this algorithm is to track
he relevant grains per cell batch. Since the batching of cells is done a
riori, changes in the simulation lead to a slight increase in the number
f relevant grains per cell batch, compared to the one of the relevant
rains per cell, as illustrated in Fig. 5.

Table 1 illustrates the performance metrics of the underlying exper-
ments. One can see that the write access to main memory, normalized
er unknown, increases only marginally with increasing number of
omponents, indicating that all relevant data needed for 𝑒/𝑒 fit into
ache. The data read per DoF decreases with increasing number of
omponents, reflecting the fact that other data (e.g., indices and metric
erms) can be shared between components and the relative amount
f data related to the linearization point, where the Cahn–Hilliard
art dominates, decreases. The number of floating-point operations
ncreases as 73→78 and 86→99 FLOP per quadrature point as the
umber of components increases in the cases of residual and Jacobian
valuation, respectively. As a summary, the results are inserted into
graphical representation of the roofline performance model [55]

or the residual evaluation in Fig. 7. With increasing the number of
7

omponents, the arithmetic intensity increases (11.5→13.1 FLOP/byte)
Table 1
Comparison of measured throughput, read/write memory access and arithmetic work
for evaluation of the residual and the Jacobian of generic sintering operator for different
number of components (see Fig. 6). As a reference, the vector Helmholtz operator
involves 416 FLOP/DoF. The hardware performance counters were accessed with the
LIKWID tool [54].
𝑁𝑐+2 Sintering (residual) Sintering (Jacobian)

D/s r/D w/D F/D D/s r/D w/D F/D

2 0.83 5.3 1.3 608 0.53 37.7 1.6 690
3 0.71 4.9 1.5 591 0.54 29.4 1.7 688
4 0.96 4.7 1.5 579 0.64 25.1 1.7 704
5 0.76 4.6 1.6 579 0.65 22.6 1.8 711
6 0.72 4.6 1.6 579 0.65 20.9 1.8 717
7 0.70 4.5 1.6 582 0.51 19.7 1.9 723
8 0.68 4.4 1.7 585 0.51 18.7 1.9 730
9 0.57 4.4 1.7 590 0.49 18.1 1.9 756
10 0.54 4.4 1.7 595 0.46 17.5 2.0 763
11 0.51 4.3 1.7 601 0.44 17.0 2.0 771
12 0.48 4.2 1.7 607 0.42 16.5 2.1 779
13 0.45 4.2 1.7 614 0.41 16.2 2.1 786
14 0.45 4.2 1.8 620 0.40 15.9 2.1 794

D/s: throughput in [GDoFs/s]; r/D: read data per DoF in [Double/DoF]; w/D: written
data per DoF in [Double/DoF], F/D: work [FLOP/DoF]. Due to the usage of Gauss–
Legendre quadrature implying approx. 8 quadrature points per vertex, F/D needs to be
divided by 8 to obtain the number of FLOP per quadrature point and component. The
numbers represent the average of 100 repetitions of the experiment.

and the obtained performance decreases (556→277 GFPLOP/s). As a re-
sult, 27%–12% of the obtainable hardware bandwidth limit is reached.
Albeit the gap appears to be significant, the result can be explained by
limits not included in this simplistic roofline model, most prominently
by the relatively high share of non-floating point operations for linear
shape functions, such as unstructured gather/scatter access and related
integer operations. For comparison, a sparse matrix–vector product
(SpMV) would reach a much lower performance of 45 GFLOP/s due
to an arithmetic intensity ≈ 0.25 FLOP/byte.

In order to reduce the impact of a higher number of components,
the following optimization strategies are developed:

• We do not explicitly compute individual terms of the free energy
(3) or mobility (4) but instead apply them directly to vectors. This
allows us to transform equations like
∑

𝑗,𝑖≠𝑗

𝜕2𝑓
𝜕𝜂𝑖𝜕𝜂𝑗

𝑢𝑗 =
∑

𝑗,𝑖≠𝑗
(𝜂𝑖𝜂𝑗 )𝑢𝑗 = 𝜂𝑖

∑

𝑗,𝑖≠𝑗
𝜂𝑗𝑢𝑗 = 𝜂𝑖(𝛼 − 𝜂𝑖𝑢𝑖),

with the precomputed factor 𝛼 =
∑

𝑖 𝜂𝑖𝑢𝑖. Note that some scaling
factors are dropped for the sake of simplicity.

• Other factors, e.g., ∑

𝑖 𝜂
2
𝑖 and ∑

𝑖 𝜂
3
𝑖 , can be precomputed and

reused for each grain.
• Off-diagonal block entries are processed in pairs, and symmetry

∑𝑔 ∑𝑔 ∑𝑔 ∑𝑖−1
is exploited, e.g., 𝑖=1 𝑗=1,𝑖≠𝑗 𝜂𝑖𝜂𝑗 = 2 𝑖=1 𝑗=1 𝜂𝑖𝜂𝑗 .
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Fig. 7. Roofline performance model of the evaluation of the residual of the generic
operator (Table 1) as well as the advection and tensorial operator (Table 8) for
different number of components. On the Intel system, the bandwidth and the number
of floating-point operations are extracted from hardware-performance counters. On the
AMD system, where direct measurements have not been possible, the memory access
of the Intel system is assumed as a model.

Fig. 8. Comparison of the throughput of application of the sparse matrix, of the vector
Helmholtz operator, and of the generic sintering operator on the AMD hardware.

• Those coupling terms that cannot be reformulated and, as a
consequence, introduce a quadratic complexity are explicitly op-
timized.

urther examples are discussed in Section 7 for tensorial mobility,
hich requires more transformations due to a higher arithmetic load.

n particular, that section contains an example for the last bullet point.

Remark. We have experimented with advanced techniques to increase
he throughput of the cell integrals, namely (1) interleaving the evalua-
ion/integration with the loop over the quadrature points by performing
uadrature in two-dimensional layers at a time [47] and (2) implementing
he arithmetic work for 2𝑑 cells at once. These techniques allow, e.g., to

decrease the size of the working set by additional cache blocking and to
reduce the cost of indirect addressing when accessing the DoFs on cells.
The preliminary results are promising with speedups between 50% and
100%, allowing for a reduction of the gap to the hardware bandwidth
limit. Detailed investigations on these options and alternative vectorization
strategies, e.g., vectorization over components [53], are deferred to future
work.
8

Behavior on AMD and GPU hardware
The above-mentioned performance bottlenecks in terms of the num-

ber of components are partly due to the specific microarchitecture of
the chosen Intel hardware. In order to better illustrate the performance
capabilities on the expected trajectory of computer hardware evolution,
we performed a node-level performance experiment on a more recent
AMD Epyc 7713 processor. According to Fig. 8, the throughput is on
average 2.3× higher than the Intel results from Fig. 6, which is related
to the higher bandwidth and compute performance (1.8× each) as well
as to larger-bandwidth caches. Our code utilizes around 50% of the
available memory bandwidth for a low number of components and
around 40% for a higher number of components, as indicated by the
roofline performance model (Fig. 7). This shows that the proposed
algorithms also work, as expected, on alternative CPU-based hard-
ware, however, the dependency on the number of components is less
prominent due to a more balanced cache system of the AMD hardware.

The present work focuses on CPU implementations. However, fast
(matrix-free) operator evaluation is also attractive on GPUs. Refs. [44,
51] discuss optimizations for some standard operators. For the sintering
operator, the need to compute significantly larger amount of data at
the quadrature points limits the applicability of current algorithms,
since many implementations rely on keeping most intermediate data
in registers rather than in caches used for CPUs. However, we believe
that the novel algorithm design to organize work along 2D layers, as
described above, combined with moving the remaining data into shared
memory, as proposed for high orders in [56], could be beneficial.

Application in Jacobian-free methods
We conclude this subsection by discussing an efficient implemen-

tation of a Jacobian-free method (6) in the case of the fast operator
evaluation (8) for the residual. In order to evaluate a Jacobian-free
operator 𝑛 times, we need to evaluate the residual 𝑛 + 1 times. During
the first iteration, the residual at the linearization point 𝐹 (𝐮) has to
be evaluated once, which can be reused in the subsequent operations.
Within the actual Jacobian-free evaluation, the linearization point has
to be perturbed, the residual is evaluated, and the finite difference
needs to be taken. We propose to merge the two vector-update steps
into the loop over cells and perform them on ranges of the vectors
only when the value is needed for the cell integral (pre) and once
contributions from all cells have been added to an index (post), as also
has been done to accelerate conjugate-gradient solvers [57] and addi-
tive Schwarz solvers [58]. In order to minimize the memory footprint,
we perturb the vector containing the linearization point and revert the
modifications afterwards. The resulting pre und post operations are
as follows:

𝐩𝐫𝐞∶ 𝑢lin
𝑖 ← 𝑢lin

𝑖 + 𝛽𝑝𝑖, 𝐩𝐨𝐬𝐭∶
{

𝑣𝑖 ← (𝑣𝑖 + 𝑟lin𝑖 )∕𝛽
𝑢lin
𝑖 ← 𝑢lin

𝑖 − 𝛽𝑝𝑖,

hich are run interleaved with 𝑣 ←  (𝑢lin). This implies 6 additional
floating-point operations and – under the assumption that the vector
entries are still in cache – one extra write operation per DoF besides
those in Table 1. In order to obtain the parameter 𝛽, our current
implementation computes the 𝑙2-norm of the source vector, implying,
in addition, one global vector reduction step with the associated data
access before the cell loop.

4.3. Block preconditioner

In the following, we propose a preconditioner of the Jacobian (7).
The preconditioner is needed when we apply the Jacobian directly
or via a finite-difference approach. In the current work, we consider
incomplete LU factorizations that are of block-Jacobi type across MPI
processes, in short, ILU-based block preconditioners. In order to com-
pute an ILU, we need access to the entries of the underlying sparse
matrix. To avoid the cost for memory access, we propose to set up ILU
for the Cahn–Hilliard block and a single Allen–Cahn block, applying the
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f
b

Fig. 9. Visualization of the fully distributed determination of grains within the same order parameter, starting with a discrete concentration field 𝜂𝑖. The results are (1) the
grain index of each locally owned cell and (2) grain properties, e.g., centroid and bounding radius. In the example, the mesh is partitioned among four processes. For the sake
of simplicity, the mesh is not shown and isocontours in 𝜂𝑖 are perfectly circular. Grain indices are constant within cells. Steps 3⃝ and 4⃝ can be interpreted as a distributed
connected-component algorithm that returns, for each node, a component number.
latter to each block, as indicated in the rightmost panel of Fig. 3. The
setup is of constant complexity (𝑁𝑃 ), and the application naturally
has a linear complexity (𝑁𝑐𝑁𝑃 ). The runtime cost of the precondi-
tioner applications can be reduced if the application is batched in a
matrix-multivector form, thus only loading the entries of the factorized
matrix once. To be able to reuse the ILU instance for each Allen–Cahn
block, we take the maximum of the term

(

𝑣𝑖, 𝐿𝜕2𝑓∕𝜕𝜂2𝑖 𝑢𝑖
)

in (7c) over
all order parameters.

Remark. We use an ILU for the two-by-two Cahn–Hilliard block. For
better performance with larger time steps or higher diffusivity, physics-based
preconditioners, like the one in [59], might reduce the iteration counts.
We defer the investigation of such preconditioners to future work, since the
Cahn–Hilliard block is independent of the number of order parameters and,
in our experiments, is not the bottleneck (2≪ 𝑁𝑐).

4.4. Fully distributed grain tracking and remapping

In the following, we propose a fully distributed version of the
grain-tracking algorithm, which we need to guarantee a non-conflicting
assignment of the order parameters according to the invariant described
in Fig. 2. The algorithm is inspired by reference [17], which presents
the grain-tracking implementation in MOOSE. The procedure (1) detects
grains in each order parameter, based on the discrete values of 𝜂𝑖,
(2) checks for conflicts within each order parameter, and (3) reassigns
the grains with conflicts to existing or new order parameters, which
involves also the copying of data in the solution vectors.

Our implementation is heavily graph-based and works only on
locally owned cells, allowing the algorithm to scale to large problem
sizes.

4.4.1. Grain detection
For each order parameter 𝜂𝑖, each process runs a flooding algo-

rithm [60] on locally owned cells to identify all agglomerations of cells
with 𝜂𝑖 > 𝜂lim (𝜂lim = 0.01 in our simulations). An agglomeration either
orms a whole grain itself or is a part of a grain if it is located at internal
oundaries between the neighboring processes. The challenging task is
9

to match agglomerations related to grains stretched over multiple pro-
cesses. For this purpose, we propose the following algorithm, which is
inspired by the unique enumeration of DoFs in the context of FEM [61]
and is visualized in 5 steps in Fig. 9.

Initially, we locally enumerate all identified agglomerations and
give them globally unique indices via a parallel prefix sum (steps 1 and
2 in Fig. 9). Once each agglomeration has a unique index, we commu-
nicate that information by a ghost-value update so that processes know
the agglomeration index of each ghost cell. This information is enough
to build a distributed graph with nodes being agglomerations and edges
being connections determined based on the information from the ghost
cells. By determining all connected components, we get all agglomera-
tions (and cells) that make up a grain (distributed stitching, step 3
in Fig. 9). Finally, we give each grain a unique index and determine
properties, like centroid or bounding radius and—optionally—force or
torque (see Section 7.2), via parallel reduction operations (steps 4 and
5 in Fig. 9).

Note: The described algorithm also works for systems with periodic
boundary conditions if it is possible to access ghost values across periodic
boundaries (see the blue grain in Fig. 9). In addition, special care has to be
taken during determination of properties, e.g., the grain centroids.

4.4.2. Grain tracking
After the grains have been detected for the current configuration,

they need to be matched to those from the previous one. This is
required to ensure no new grains have appeared, which would be an
abnormal, not physically admissible behavior in the case of sintering.
In order to determine, for a grain, the closest grain from the previous
configuration, we build an R-tree, which allows a fast query.

4.4.3. Grain reassignment
Once all the grains have been identified and matched between the

current and previous configurations, they are checked for collisions in
a safety region 𝑟′𝑖 = 𝑟𝑖 + 0.05𝑟𝑖. If the safety regions of any two grains
𝑖 ≠ 𝑗 in the same order parameter overlap, we need to reassign one of
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Fig. 10. Special remapping cases. Grain packings and remapping graphs.

hem, since they might come into conflict in the next time steps. For
eassigning, we use two algorithms.

A greedy algorithm checks, for a conflicting grain pair from order
arameter 𝑖, whether any grain from all other order parameters 𝑖 ≠ 𝑗
ould have a conflict with one of the two grains being currently under

nvestigation. If not, one of the conflicting grains can be moved there,
esolving the conflict. If no such order parameter could be found, the
onflicting grain has to be assigned to a newly created order parameter
r a more involved algorithm has to be used. In order to check whether
grain is in conflict with any grain in an order parameter, we use an
-tree data structure to accelerate the query.

Alternatively to the greedy algorithm, we use an algorithm based on
raph coloring. In this case, grains are the nodes and conflicts are the
dges. The graph coloring gives the minimum number of colors, which
e interpret as the new order parameters. This approach, however,
oes not guarantee that grains keep their current order parameter so
hat remapping might become overly expensive even in the case of
light topological changes.

.4.4. Grain remapping
The previous step has assigned grain 𝐺𝑖 to an order parameter 𝑗:

𝜂𝑗 → 𝜂𝑗′ with possibly 𝑗 ≠ 𝑗′ so that grains in the same order parameter
o not have any conflicts. Now, values corresponding to grain 𝑖 in the

current and previous solution vectors have to be transferred from the
block corresponding to order parameter 𝑗 to the one of 𝑗′, without
overwriting the values in the destination vector that still need to be
moved.

Let us consider the two configurations in Fig. 10, each aiming to
reassign three grains. While the remapping can be done straightfor-
wardly with the sequence (𝐺3: 𝜂2 → 𝜂3), (𝐺2: 𝜂1 → 𝜂2), (𝐺1: 𝜂0 → 𝜂1)
in the first case, this is not possible in the second case due to cyclic
dependencies. Here, we need to introduce a temporary vector and can
run the remapping, e.g., with the following sequence: (𝐺1: 𝜂0 → 𝜂𝑡),
(𝐺3: 𝜂2 → 𝜂0), (𝐺2: 𝜂1 → 𝜂2), (𝐺1: 𝜂𝑡 → 𝜂1), where 𝜂𝑡 corresponds to
the temporary vector.

In order to automatically detect and resolve possible remapping
issues, we construct a directed graph containing all necessary remap-
pings. We run a depth-first search algorithm to determine all connected
nodes, i.e., grain-remapping operations that need to be serialized. If a
cluster of connected nodes does not contain cycles, we can schedule
the reassignment in topological order. However, if a cycle is detected,
a dummy node corresponding to the temporal vector is introduced to
break the cyclic dependency. For performance purposes, the described
remapping procedure is applied within a single cell loop, based on
cached resolved graphs.

Note: In our implementation, we are performing the graph/tree algo-
rithms in the cases of grain stitching, matching, reassignment and remap-
ping redundantly on each process, using either boost.graph/boost.
geometry [62] or Zoltan from the Trilinos library [63]. This
implies that 0D grain information has to be replicated on each process. An
extension to distributed graphs is possible but is deferred to future work to
10

enable packings with more than 10k grains.
4.5. Solver configuration

We conclude this section by summarizing the ingredients of our
solver. We refer to the configuration of the solver as default configuration
if the Jacobian is evaluated in a matrix-free way and all order param-
eters are considered on the cell level (Algorithm 1). When different
variants are investigated, these are labeled accordingly.

4.5.1. Nonlinear and linear solver
In order to solve the nonlinear system (5), we use a Newton solver

with cubic line search from the NOX package from the Trilinos li-
brary [63]. This nonlinear solver is run until the 𝑙2-norm of the residual
has been decreased by 𝜀nonlin = 10−5 and the Jacobian is solved with
GMRES with a rather coarse relative tolerance of 𝜀lin = 10−2, in line

ith Brown [35] (see also Supplementary Material S3.2). The choice
nonlin = 10−5 as default tolerance for our nonlinear solver is the

result of experiments over a wide range of tolerances and benchmark
applications, ensuring sufficient accuracy in the mass conservation and
the free energy of the discretized solution. A more detailed discussion
on this matter with the elementary assessment of the conservation error
in view of [64] can be found in Supplementary Materials S3.1 and S3.3.
The preconditioner for GMRES is set up at the beginning of each time
step once and is reinitialized between Newton iterations only if the
number of linear iterations at a particular single Newton step exceeds
the value of 50. We use the ILU implementation from the Ifpack
package from the Trilinos library [63].

4.5.2. Time stepping
We use BDF2 with adaptive time steps. We increase the time-step

size by 20% if the number of nonlinear iterations is less than 5 and the
accumulated number of linear iterations is less than 100, i.e., less than
20 linear iterations per nonlinear iteration on average. We consider a
time step as failed if the nonlinear solver needs more than 10 iterations
or the linear solver more than 100 iterations in total. If the nonlinear
solver has failed, we decrease the time-step size by 50% and rerun
the time step, based on the old converged solution. The described
time-stepping heuristic is conservative, since time-step sizes are not
increased for challenging configurations, reducing the number of time
steps that need to be repeated. Nonetheless, the obtained time-step sizes
are quite large overall, leading to significant pressure on the linear
solver and its preconditioner.

4.5.3. Initial mesh generation
The initial geometry is defined as a list of spherical particles. The

definition of potentially overlapping particles can be supplied for the
phase-field simulations from the preliminary DEM early-stage-sintering
analysis [4]. The computational domain is then constructed based on a
bounding box over all particles with a boundary padding 0.5𝑟max, where
𝑟max is the radius of the largest particle in the packing.

We choose the diffuse interface thickness a priori as 𝑤 = 0.1𝑟avg …
0.15𝑟avg, where 𝑟avg is the average radius of particles in the packing. The
choice of 𝑤 then defines the free-energy properties 𝐴 = (12𝛾𝑠−7𝛾𝑔𝑏)∕𝑤,
𝐵 = 𝛾𝑔𝑏∕𝑤, 𝜅𝑐 = 3𝑤

(

2𝛾𝑠 − 𝛾𝑔𝑏
)

∕4, 𝜅𝜂 = 3𝑤𝛾𝑔𝑏∕4, based on a limit
case analysis [24,30,31] with the physical surface 𝛾𝑠 and the grain
boundary energies 𝛾𝑔𝑏, both usually given by the physics of the material
of interest. Depending on the problem size and the desirable accuracy in
capturing the interface motion, the thickness of the latter is discretized
by 1–4 cells, giving the finest mesh size ℎ𝑒 desired only at the interface
itself. The mesh is obtained by locally refining a coarse quad-/hex-
only mesh. This mesh is constructed in such a way that cells have a
good aspect ratio and the value ℎ𝑒 is approximately obtained in each
direction by local refinement. For the latter, we use a forest-of-trees
approach where cells are recursively replaced by 2𝑑 child cells and rely
on p4est [61,65]. The proposed strategy generates meshes with on
average less than 10k and 100k scalar DoFs per particle for 2D and 3D
simulations, respectively.
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Fig. 11. 5 particles: microstructures obtained with MOOSE and with our code during simulations of the 5-particle sintering. The plots show ∑

𝑖 𝜂2𝑖 computed with MOOSE, and the
white lines display the isosurfaces constructed for each 𝜂𝑖 = 0.5 with hpsint.
4.5.4. Adaptive mesh refinement
The AMR algorithm is triggered every 10th time step or when the

mesh quality has deteriorated in relation to the values of 𝜂𝑖; we only
allow |max(𝜂𝑖) − min(𝜂𝑖)| < 0.5 for all cells. We coarsen cells if they are
not close to the boundary of a particle, which is identified by 0.05 <
𝜂𝑖 < 0.95. At boundaries themselves, we keep the mesh fine throughout
the simulation. The number of maximum/minimum refinements is a
runtime parameter and is chosen depending on the material properties.

4.5.5. Grain tracking
We run the grain-tracking algorithm every 25 s of the simulated

time or according to the same quality criterion as in the case of
AMR described in Section 4.5.4. The initial distribution of grains over
the order parameters is performed by running the graph-colorization
algorithm that is also used at the reassignment step (see Section 4.4.3).

5. Numerical results

In the following, we present numerical results obtained with the
developed solver, mainly to verify it from the sintering-physics point
of view. We keep the discussion short and regard this section as an
introduction into the setups of the performance analyses in Section 6.

5.1. 5-Particle case

We first analyze the 5-particle geometry depicted in Fig. 1; the
centers and radii of the particles are listed in Table 2. The cubic
computational domain of size 42 × 50 × 27 in 3D is generated as
described in Section 4.5.3. The free energy constants are defined as
𝐴 = 16, 𝐵 = 1 and the energy barriers are set to 𝜅𝑐 = 1.0, 𝜅𝜂 = 0.5. These
values render the diffuse interface thickness 𝑤 ≈ 1.0. The following
diffusion mobilities are chosen: 𝑀vo = 10−2, 𝑀va = 10−10, 𝑀s = 4.0,
𝑀gb = 0.4. The grain-boundary mobility is set to 𝐿 = 1.0. This is
a common set of parameters used in multiple works [22,25,30]. The
packing is analyzed in 2D and 3D for the period up to 𝑡end = 1,000
seconds. For this benchmark, we use a tighter tolerance 𝜀 = 10−5
11

lin
Table 2
5 particles: initial locations and radii of the particles.

ID 𝑥 𝑦 𝑧 𝑟

1 7.5 7.5 0 7.5
2 10 23.81 0 9.0
3 21.464 8.5 0 6.5
4 25.8 21.285 0 7.0
5 21.583 34.109 0 6.5

for the linear solver, matching the default value in MOOSE, in order to
make sure that the coarser value of 10−2, which we normally use as
stated in Section 4.5.1, does not degrade the performance of MOOSE
and, that way, ensures the comparison of the two codes. Note that no
units are given except for time, since the geometry, energy and mobility
properties for the current problem are defined as dimensionless.

The aim of these simulations is to compare the results with an
alternative, well-established implementation [26,30,66] of the same
phase-field model available in project Crow,5 which is based on the
MOOSE framework [11]. Crow reuses most of the parts of the phase-
field module of MOOSE, including the kernels that provide the mobility
and free-energy terms as materials required by this particular sintering
model. We carefully tuned the AMR settings, absolute and relative
tolerances, iteration thresholds, implicit time-integration properties of
both solvers such that the numbers of DoFs and of linear and nonlinear
iterations are comparable in both codes. Fig. 11 shows meshes at
different times in the 2D case. Other settings were set to be optimal
for the MOOSE solver according to its documentation.6 For instance,
the preconditioned JFNK solution strategy provided by SNES from
PETSc [34] was used and the parallel ILU implementation provided
by the Euclid library from hypre [67] was chosen as preconditioner
for the GMRES linear solver.

5 https://github.com/SudiptaBiswas/Crow.
6 https://mooseframework.inl.gov/source/systems/NonlinearSystem.html,

https://mooseframework.inl.gov/modules/phase_field/Solving.html.

https://github.com/SudiptaBiswas/Crow
https://mooseframework.inl.gov/source/systems/NonlinearSystem.html
https://mooseframework.inl.gov/modules/phase_field/Solving.html
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Fig. 12. 5 particles: comparison of total free energy, time-step size, and number of scalar DoFs over the simulation time.
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Table 3
5 particles: performance metrics of the 2D and 3D simulations in hpsint and MOOSE.
Scalar DoFs are given.

2D 3D

hpsint MOOSE hpsint MOOSE

Wall time [s] 164.8 704.4 1072 69,898
max 𝜏 12.22 18.22 16.74 18.05
# time steps 190 223 303 241
# DoFs initial 3604 3504 128,700 123,209
# DoFs final 2751 2673 80,909 76,697

As can be seen in Fig. 11, the microstructures obtained for both
olvers are identical for the 2D and 3D cases. For this purpose, the quan-
ity ∑

𝑖 𝜂
2
𝑖 obtained in MOOSE is compared with the isolines constructed

or each 𝜂𝑖 = 0.5. For the 3D case, the corresponding plots are shown at
he cross-section plane 𝑧 = 0. As expected and previously demonstrated
n [12], the 3D case exhibits faster microstructure evolution than the
D simulations for the same material parameters. This is due to the
dded driving force from a second curvature term in 3D and also due
o qualitative topological differences: for comparable geometries, those
ores that are closed in 2D are usually open in 3D.

Fig. 12 shows the plots of the total free energy (2). The curves
btained in both codes reveal a gradual reduction of the total free
nergy. The comparison of its components (bulk and interfacial) along
ith some other model metrics is shown in Supplementary Material
3.1. Additionally, Fig. 12 presents the evolution of the total number
f DoFs and the time-step size during the numerical simulations. In
istinct contrast to MOOSE, our code does not always attempt to in-
rease 𝜏, since we target a predefined number of linear and nonlinear
terations; once that limit is exceeded, the time-step size is not enlarged.
onfirming the design of the experiment, the numbers of DoFs in both
12

odes are found to vary similarly. q
The solver-related metrics7 are summarized in Table 3. In particular,
we show timings for the MOOSE-based and our implementation. The
wall times for both codes were obtained in separate runs with output
disabled. A speedup of 4.3/65.3 is visible for 2D and 3D. The num-
bers are primarily intended to show the significance of the proposed
optimizations, as the comparison to the MOOSE code has to remain
qualitative: even though its settings have been tuned to provide the
maximum performance, we believe that better performance might be
possible for developers with deeper insight into MOOSE.8

5.2. 332-Particle case

As a second validation benchmark, we compare the results of our
simulations with those presented in [7]. The authors of that paper
kindly provided us the initial packings used for their numerical anal-
ysis. The original focus of the discussion in [7] was on the influence
of the rigid body motions on the sintered microstructures. Even though
our code also implements the advection terms (see Section 7.2), we
intentionally perform the comparison of results without advection and,
thus, rigid body motions. Due to this reason, we run the sintering
simulation of the packing containing 332 particles, for which a number

7 The simulations were executed on a single node of the cluster at
elmholtz-Zentrum Hereon (dual-socket 24-core 2.1 GHz Intel Xeon Scalable
latinum 8160 processor; Skylake), using 24 processes for 2D and 48 for 3D.

8 A small benchmark code based on deal.II, which evaluates (8) for
he residual without exploiting the structure of the shape functions (tensor-
roduct, same for each component, . . . ) and does not vectorize over cells,
esults in a ≈ 30× lower throughput. The code path is not specialized for
he evaluation of the residual but for easy-to-read and generic assembly of

sparse matrix, which normally has to be computed less frequently so that
erformance optimizations are not as crucial as if it would be done in each
inear iteration. Since libMESH [68], the FEM backend of MOOSE, evaluates
he residual similarly to the implementation of the slow path in deal.II,
e are confident that the presented performance comparison with MOOSE is
ualitatively reasonable.
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Fig. 13. 332 particles: the final configuration after sintering for 3.47 h.

Fig. 14. 332 particles: contour lines on the 𝑧 = 10 μm plane taken at 𝑡 = 0 (green) and
3.47 h (gray).

of metrics is available in [7], referred to as ‘‘Case 3’’ in that publication.
The numerical implementation in [7] is based on finite differences on
a uniform grid and uses explicit time integration.

We use the same material parameters: the free-energy constants are
set to 𝐴 = 32, 𝐵 = 8, 𝜅𝑐 = 0.4, 𝜅𝜂 = 0.2, and the diffusion mobilities are
defined as 𝑀vo = 10−2, 𝑀va = 10−3, 𝑀s = 10.0, 𝑀gb = 1.0. The energy
properties lead to the diffuse interface thickness 𝑤 ≈ 0.18. The same
grain-boundary mobility 𝐿 = 100 as in [7] is used, ensuring that the
grain-growth effects do not dominate in the regime examined. Similarly
to the original publication, we also solve the dimensionless form of the
phase-field equations, using the same scaling parameters: 𝑙 = 5 μm,
𝑀0 = 10−12 cm2/s, and 𝑡ref = 𝑙2∕𝑀0 = 2.5 × 105 s. Given the physical
sintering time 𝑡physical = 3.47 h, the simulation time is 𝑡end = 0.05. The
initial time-step size is chosen as 𝜏initial = 10−3.

The computational domain is defined by the bounding box with
dimensions of −1.5 < 𝑥 < 41.5, −1.5 < 𝑦 < 61.5, −1.5 < 𝑧 < 13 such
that the distance between each particle and the domain boundary is
at least 1. The coarse mesh consists of 86 × 126 × 29 cubic cells, and
we perform two local-refinement steps to obtain the minimal cell size
ℎ𝑒 = 0.125, which is comparable to the grid spacing 𝛥𝑥 = 0.1 from [7].
This results in ≈ 6−7 million scalar DoFs in our case in contrast to the
≈ 34 million points (420 × 620 × 130 cells) of the uniform mesh in [7].
A typical simulation of this test case with our code needs only 14 time
steps when using the time-stepping strategy described in Section 4.5.2
and, on 16 nodes of SuperMUC-NG, runs in about 5 min (not counting
the time required for generating the output).

In this particular simulation, we employ the conventional surface-
mobility term [22] instead of the one from (4) in order to achieve a
better agreement with the original results from [7]. To alleviate the
arising convergence issue due to the non-smooth coefficient, we apply
the Jacobian-free formulation (6).

In order to postprocess and visualize the results, the physical do-
main is used. Fig. 13 presents the final configuration of the packing,
13
Table 4
Numbers of order parameters, cells and scalar DoFs for 51–10,245-particle packings.
𝑁grains 51 102 212 316 603 1370 3760 6140 10,245

𝑁op 9 10 10 11 10 11 11 11 11
𝑁cells [×1e6] 3.0 5.7 10.4 18.8 34.0 53.5 153.2 325.5 589.1
𝑁DoFs [×1e6] 3.4 6.4 11.7 20.9 37.9 59.5 170.2 360.8 651.7

and Fig. 14 shows the microstructure view at the cross-section plane 𝑧 =
10 μm. Visually, both images are in close agreement with the analogous
Figs. 7(a) and (c) presented in [7], without noticable differences.

To perform a quantitative comparison, we also compute the mi-
crostructure metrics

solid-volume fraction ∫𝛺
𝑐 d𝛺, (9a)

surface area
∑

𝑖 ∫𝛤𝑖
1 d𝛤𝑖 w. 𝛤𝑖 = {𝑝 ∈ 𝛺|𝜂𝑖(𝑝) = 0.5}, (9b)

grain-boundary area
∑

𝑖 ∫𝛤𝑖
0.5 d𝛤𝑖 w. 𝛤𝑖 = {𝑝 ∈ 𝛤𝑖|𝜂𝑖𝜂𝑗 > 0.14 ∃𝑗 ≠ 𝑖}

(9c)

in the control volume 5 < 𝑥 < 195 μm, 5 < 𝑦 < 295 μm, 2.5 < 𝑧 < 35 μm
as in [7]; the corresponding graphs are shown in Fig. 15. The curves
do not match perfectly. For the solid-volume fraction, the mismatch
is, in fact, negligible given the scale of the 𝑦-axis. For the remaining
two quantities, the difference is more tangible but still does not exceed
3% for the surface and 10% for the grain-boundary areas, respectively,
and, is most probably related to the details in the implementation
of the postprocessors, which extract the isosurfaces. Despite of the
differences in the values, the slopes of the curves are in a very good
agreement, meaning that the dynamics of the sintering processes in
both simulations are the same.

6. Performance

In the following, we analyze the performance of the implementation
of our solver in detail from a holistic point of view. This is needed
because of the multi-faceted challenges of the solution of sintering
processes, in which it is not enough to optimize and analyze the
(matrix-free) linear operator evaluation, as we did in Section 4.2. For
example, the preconditioner choices implied by the matrix-free solver
design need to be assessed in terms of the total solution time.

This section is divided into two parts. We start by studying the
performance of the solver for a moderate number of grains (51; far left
in Fig. 16), where the focus is on the influence of different variations
of the solver. Next, we analyze the parallel scalability of the code by
increasing the number of particles up to 10k and using up to 50k
processes on a supercomputer.

All packings considered in the current section are cubic and shown
in Fig. 16. Bounding boxes of different sizes are used to extract smaller
packings containing 51…6,140 particles from the largest one having
10,245 grains within a control volume of size 1399 × 1400 × 1318
(μm3). The latter has been obtained by the preliminary DEM simula-
tions performed with the package Yade [69], following the procedure
proposed in [4], which was designed to deliver an isotropic initial
configuration with irregular, realistic distributions of particles having
relatively low porosity. The particle-size distribution of the largest
packing is shown in Fig. 16.

In contrast to Section 5.1, larger powder particles are considered
in this section. For this reason, the energy parameters are defined as
𝐴 = 4.35, 𝐵 = 0.15, 𝜅𝑐 = 9.0, 𝜅𝜂 = 1.79. These values yield a thicker
diffuse interface with 𝑤 = 4 for the surface and grain-boundary free-
energy values 𝛾𝑠 = 1.8 and 𝛾𝑔𝑏 = 0.6. The diffusion mobilities are defined
as 𝑀vo = 10−2, 𝑀va = 10−3, 𝑀s = 4.0, 𝑀gb = 0.4, and the grain-
boundary mobility is set to 𝐿 = 1.0. The initial number of divisions
per interface thickness is chosen as 𝜁 = 3. The initial numbers of scalar
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Fig. 15. 332 particles: comparison of relevant microstructure metrics according to (9).
Fig. 16. Left: Particle packings considered for the performance study in Section 6: 51, 212, 1037, 10,245 particles (not shown: 102, 316, 603, 3076, 6140 particles), with colors
indicating the order parameters. Right: Distribution of particle diameters for the packing containing 10,245 particles.
Table 5
51 particles (up to 𝑡 = 500): Comparison of different solver configurations.

Configuration 𝜏max 𝑁𝑇 𝑁𝑁 𝑁𝐿 𝑁𝑅 𝑁𝐹
𝑇 𝑁𝐹

𝐿 𝑇 𝑇 𝐽 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦 𝑇 𝑅
Default 19.78 51 4.6 25.3 1.2 0.0% 0.0% 463.2 0.027 1.279 0.013 0.028
JF (Jacobian-free) 19.78 51 4.6 25.7 1.2 0.0% 0.0% 444.7 0.023 1.277 0.013 0.028
cut-off 19.78 51 4.6 25.4 1.2 0.0% 0.0% 353.9 0.009 1.269 0.013 0.009
JF + cut-off 19.78 51 4.6 25.3 1.2 0.0% 0.0% 356.1 0.008 1.272 0.013 0.009

tensorial 16.48 73 4.4 16.4 1.2 4.1% 5.7% 551.4 0.040 1.253 0.014 0.036
tensorial + JF 19.78 59 4.5 19.5 1.2 1.7% 2.2% 450.8 0.028 1.239 0.014 0.032
tensorial + cut-off 16.48 60 4.6 19.8 1.2 0.0% 0.0% 355.3 0.010 1.192 0.013 0.010

advection + JF 19.78 56 4.4 24.4 1.2 1.8% 2.7% 523.0 0.025 1.262 0.014 0.065
advection + JF + cut-off 19.78 56 4.5 24.4 1.2 1.8% 2.6% 434.1 0.010 1.238 0.014 0.025

𝜏max: maximal time-step size, 𝑁𝑇 : number of time steps, 𝑁𝑁 : average number of nonlinear iterations per time step, 𝑁𝐿:
number of linear iterations per nonlinear iteration, 𝑁𝑅: number of residual evaluations per nonlinear iteration, 𝑁𝐹

𝑇 : fraction
of repeated time steps, 𝑁𝐹

𝐿 : fraction of linear iterations of repeated time steps, 𝑇 : total runtime in seconds, 𝑇 𝐽 : average time
for application of Jacobian, 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝: average setup time of the preconditioner, 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦: average time for application of the
preconditioner, 𝑇 𝑅: average time for evaluation of the residual
degrees of freedom generated for each of the packings by using such
settings are shown in Table 4.

For time marching, the BDF2 scheme is used with the initial time-
step size 𝜏 = 0.1 and its growth is limited by the maximum value
𝜏max = 100.

6.1. 51 Particles

We start with the investigation of a 51-particle packing. All exper-
iments are run on 4 Intel Cascade Lake Xeon Gold 6230 nodes with
a total of 160 processes. In this section, each experiment has been
run once and we average the results over at least 50 time steps, 230
nonlinear iterations, and 5200 linear iterations.
14
6.1.1. Default configuration
The line ‘‘default’’ in Table 5 shows the solver statistics obtained

over a complete simulation up to 𝑡 = 500 (𝜏max, 𝑁𝑇 , 𝑁𝑁 , 𝑁𝐿, 𝑁𝑅,
𝑇 , 𝑇 𝐽 , 𝑇 𝑃 ,setup, 𝑇 𝑃 ,apply, 𝑇𝑅; see Section 3). The maximum time-step
size achieved is 19.78. The average numbers of nonlinear and linear
iterations are about 4.6 and 25.3, respectively. These numbers lie in
the expected range, given the control parameters of the adaptive time
stepping according to Section 4.5.2.

Similarly, Table 7 shows the data for 𝑡 = 15,000. One can see that
the nonlinear solver fails to converge for certain time steps, requiring a
second attempt with decreased time-step size. However, their number
and the resulting wasted (non)linear iterations are rather small and do
not exceed 6%.

For the long simulation, Fig. 17 shows the time share of different
parts of the code. 80% of the time are spent on solving the Jaco-
bian. From this linear solver process, 46% are spent on applying the
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Table 6
51 particles (up to 𝑡 = 500): Comparison of different preconditioners. The default configuration uses ILU + sILU (max).

Preconditioner name 𝜏max 𝑁𝑇 𝑁𝑁 𝑁𝐿 𝑁𝑅 𝑁𝐹
𝑇 𝑁𝐹

𝐿 𝑇 𝑇 𝐽 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦 𝑇 𝑅
Default 19.78 51 4.6 25.3 1.2 0.0% 0.0% 449.6 0.024 1.265 0.013 0.026
ILUa 23.74 56 4.4 22.3 1.2 1.8% 6.3% 2495.0 0.022 22.446 0.140 0.024
ILU + ILU 23.74 54 4.5 21.9 1.2 1.9% 6.3% 2141.0 0.026 19.037 0.128 0.028
ILU + bILU 19.78 50 4.4 24.7 1.2 0.0% 0.0% 530.8 0.025 2.890 0.019 0.027
ILU + sILU (none) 5.52 112 4.3 29.9 1.2 0.0% 0.0% 1009.0 0.024 1.047 0.013 0.026
ILU + sILU (avg) 19.78 53 4.5 24.8 1.2 1.9% 2.8% 478.9 0.027 1.315 0.014 0.028

a 5 compute nodes used due to increased memory consumption of the sparse matrix needed to set up the preconditioner.
Table 7
51 particles (up to 𝑡 = 15,000): Comparison of different preconditioners. The default configuration uses ILU + sILU (max).

Preconditioner name 𝜏max 𝑁𝑇 𝑁𝑁 𝑁𝐿 𝑁𝑅 𝑁𝐹
𝑇 𝑁𝐹

𝐿 𝑇 𝑇 𝐽 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦 𝑇 𝑅
Default 25.52 1043 4.8 26.0 1.2 3.5% 4.6% 10240.0 0.027 1.117 0.014 0.027
ILU + bILU 27.43 990 5.3 27.4 1.5 2.5% 5.3% 12 710.0 0.025 2.785 0.019 0.029
ILU + sILU (avg) 24.57 1113 4.7 25.8 1.2 3.7% 4.7% 10 790.0 0.028 1.133 0.014 0.029
Fig. 17. 51 particles (up to 𝑡 = 15,000): time share of different parts of the code.
Fig. 18. 51 particles (up to 𝑡 = 15,000): number of scalar DoFs, number of grains, number of order parameters, time-step size 𝜏, nonlinear iterations 𝑁𝑁 , and linear iterations 𝑁𝐿
over time. The values are averaged over ranges of 30 time steps.
15
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Jacobian, 26% on the application of the preconditioner and the rest
on vector operations within GMRES. About 11% of the time is spent
on setting up the preconditioner, which is dominated by the setup of
the preconditioner for the 2 × 2 Cahn–Hilliard block. Fig. 18 shows
relevant quantities (number of DoFs, number of grains, number of order
parameters, time-step size, number of nonlinear and linear iterations)
over time. The number of DoFs is decreasing during the simulation,
which is correlated with the disappearance of grains. The number
of order parameters does not exceed 10 due to the developed grain-
tracking algorithm. On average, the number of order parameters is 9.5.
The number of nonlinear and linear iterations is kept at a constant value
by our strategy to increase/decrease time-step sizes and resetting the
preconditioner. The time-step size shows a strong variation over time,
primarily driven by the high dynamics when new necks are forming
between particles.

6.1.2. Alternative preconditioners
In the following, we compare the proposed preconditioner (ILU +

ILU (max)) with the following alternatives, motivated by the block
parsity pattern in Fig. 3. (1) ILU: set up ILU for the complete Jacobian;
2) ILU + ILU: set up ILU for the Cahn–Hilliard block and the Allen–
ahn block; (3) ILU + bILU: set up ILU for the Cahn–Hilliard block
nd for each scalar Allen–Cahn block, ignoring the coupling between
he Allen–Cahn blocks. (4) In addition to taking the maximum of
𝑣𝑖, 𝐿𝜕2𝑓∕𝜕𝜂2𝑖 𝑢𝑖

)

in ILU + sILU (max), we also consider ignoring this
roblematic term (none) and taking the average value over all order
arameters (avg).

Table 6 evaluates the solver efficiency – for a simulation up to
ime 𝑡 = 500 – for the different preconditioners. We note that the
hoice of the preconditioner does not influence the accuracy of the
olution, which is primarily controlled by the nonlinear tolerance. It is
lear that ILU and ILU+ILU are inherently expensive due to quadratic
omplexities in both setup costs and memory consumption. Considering
nly the blocks on the diagonal of the Allen–Cahn block (ILU+bILU)
mproves the situation without significantly affecting the convergence
f the overall solver. In order to reduce the setup costs, the reuse of
he preconditioner of one Allen–Cahn block helps. Our observation is
hat ILU+sILU(avg) and ILU+sILU(max) are able to cut down
he setup costs of the preconditioner by a factor of two and the costs of
pplying by 30%, since the ILU instance has to be loaded only once due
o the batched application.9 Overall, the performance can be improved
y 20%. ILU+sILU(none), however, results in a significant drop in
pplicable time-step sizes, leading to an increase in the required overall
olution time. For the best three preconditioners, Table 7 shows the
esults obtained for simulations up to 𝑡 = 15,000, indicating that the
calar preconditioners are also applicable to later stages of sintering
imulations and that the proposed variant ILU + sILU (max) is
ndeed the fastest overall.

.1.3. Matrix-free vs. Jacobian-free evaluation
Table 5 (row ‘‘JF’’) also evaluates the efficiency of the Jacobian-free

pproach. The number of linear iterations is growing moderately. In
otal, a matrix-free approach that evaluates the Jacobian exactly and

Jacobian-free approach result in similar solution times, with slight
dvantages in favor of the Jacobian-free approach due to lower costs
f residual evaluation without loss of accuracy. This observation allows
sers to skip explicit linearization of the weak form as well as to avoid
he implementation and its cumbersome performance optimization.
evertheless, a fast parameter-free approach (we still need to identify 𝛽

or the Jacobian-free case, see Section 4.2) might be crucial and useful
n practice.

9 Please note that the costs of setting up the Cahn–Hilliard 2 × 2 block are
ow dominating.
16
6.1.4. Relevant grains on cells
Table 5 (rows ‘‘cut-off’’ and ‘‘JF + cut-off’’) shows the impact of

considering only relevant grains on a cell level. In the case of matrix-
free and Jacobian-free operator evaluations, the costs can be cut down
by a factor of 3.0 and 2.9, respectively. Considering that the operator
evaluation only takes half of the overall runtime, the solver speedup is
rather modest at 30% or 25%, respectively. These results are a strong
motivation for adopting the cut-off strategy to other parts of the code
in future work. For example, the design of a suitable variation of the
chosen preconditioner is not straightforward without manually rewrit-
ing sparse matrix kernels. We refer interested readers to Supplementary
Material S3.4 for the results of experiments regarding the influence of
the cut-off tolerance on the model accuracy.

6.2. Scaling up to 10k particles

We conclude this section by presenting scaling results. For this
purpose, we run packings with 51, 102, 212, 316, 603, 1037, 3076,
6140, and 10,245 particles on 8, 16, 32, 64, 128, 256, 512, and
1024 compute nodes on SuperMUC-NG. In each case, we perform the
simulation for a fixed number of 10 time steps: the grain tracking is
triggered once, at the first step. We run all experiments three times
and report the best timings. The statistical distribution is close to the
minimal time within a few percent.

Fig. 19 shows the scaling behavior of the most important ingredients
for our solver. Overall, it is clear that the solver (linear solver and
setup of preconditioner) scales well up to 512 compute nodes. The
performance drops significantly when going to 1k nodes, which is
related to an unexpected spike of setup costs of ILU in Trilinos.

Alternative plotting of the data in Fig. 20 indicates excellent parallel
efficiency over large ranges in the case of the linear solver: for suffi-
ciently large problem sizes per process, one can increase the number
of processes by a factor of 16–32 with only a loss of 25% in parallel
efficiency. Furthermore, the lowest times to solutions are reached for
about 10k DoFs per process.

The cost of the grain-tracking algorithm increases linearly with the
number of processes. This is related to the fact that the graphs are
gathered during stitching. Since the costs are rather small compared to
other parts of the code, we defer the investigation of the grain-tracking
algorithm to future work, for which we plan to adopt algorithms based
on distributed graphs.

7. Extensions

So far, we have considered a basic phase-field approach for sim-
ulating solid-state-sintering processes. More involved physical models
involve additional computations (see Section 2.1). Since we do not
assemble matrices, where one would only pay the cost of additional
computations during assembly and the cost of the application of the
matrix is independent of the depth of the physical model as long as
the sparsity pattern is not changing, additional computations could
limit the throughput in a matrix-free implementation. Also the choice
of the physical model might influence the preconditioner selection. In
the following, we investigate these points for two common physical
extensions: (1) tensorial mobility and (2) advection terms (rigid body
motions).

7.1. Extension 1: tensorial mobility

In the basic model (1), the mass fluxes are defined by the scalar
mobility term (4). Despite its simplicity, this term is not the best choice
if a rigorous treatment of the surface and the grain-boundary fluxes is
of primary interest, as shown in [23]. In this case, the tensorial form

𝐌 =𝑀vo𝜙𝐈+𝑀va (1 − 𝜙) 𝐈+ 4𝑀s𝑐
2 (1 − 𝑐)2 𝐓𝑠 + 𝑀gb

𝑁
∑

𝑁
∑

𝜂𝑖𝜂𝑗𝐓𝑖𝑗 (10)

𝑖=1 𝑗≠𝑖
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𝐓

Fig. 19. Scaling of different and computationally most expensive parts of the solver for 51–10,245 particles and 10 time steps. Times are accumulated over all time steps and
include both computations and communications. The data for ‘‘grain tracking’’ is only shown for a selected set of particles (51, 212, 603, 3076, 10,245 particles).
Fig. 20. Detailed scalability analysis of linear solver (see Fig. 19). The data is only shown for a selected set of particles (51, 212, 603, 3076, 10,245 particles).
Fig. 21. Comparison of different sintering operator variants for different number of components: generic (Section 2.2), tensorial (Section 7.1), and advection operator (Section 7.2).
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can be considered. This definition restrains the surface and the grain-

boundary atomic fluxes to be strictly tangent to the corresponding

diffusion paths, by introducing the following tensors:

𝐓𝑠 = 𝐈 − 𝐧𝑠 ⊗ 𝐧𝑠,

𝑖𝑗 = 𝐈 − 𝐧𝑖𝑗 ⊗ 𝐧𝑖𝑗 ,

where the unit normal vector to the grain surface is computed as

𝐧𝑠 =
∇𝑐 , (11)
17

|∇𝑐| f
and the unit normal vector between the phases 𝑖 and 𝑗 is computed
from the gradients of the corresponding order parameters as

𝐧𝑖𝑗 =
∇𝜂𝑖 − ∇𝜂𝑗
|

|

|

∇𝜂𝑖 − ∇𝜂𝑗
|

|

|

. (12)

ere, symbol ⊗ denotes a tensor product.
The definition of the Jacobian given by (7) also holds for the present

ase. Of course, the derivatives of the mobility differ, as detailed in
upplementary Material S2. Since the modified mobility only influences
he rows of the Jacobian related to the Cahn–Hilliard block and does
ot influence the Allen–Cahn blocks, we can adopt the preconditioner
rom Section 4.3 also in the current context.
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Table 8
Comparison of different sintering operator variants for different number of components (see Fig. 21). Table 1 contains the data for the generic
implementation.
𝑁𝑐+2 tensorial (residual) tensorial (Jacobian) advection (residual)

D/s r/D w/D F/D D/s r/D w/D F/D D/s r/D w/D F/D

2 0.70 5.3 1.3 706 0.49 14.0 1.5 1055 0.82 5.3 1.3 608
3 0.60 4.9 1.5 656 0.46 13.6 1.6 941 0.67 6.1 1.5 698
4 0.77 4.8 1.5 690 0.52 13.3 1.7 1024 0.74 5.6 1.6 739
5 0.63 4.6 1.6 753 0.40 13.2 1.7 1136 0.62 5.3 1.6 772
6 0.58 4.6 1.6 830 0.38 13.2 1.8 1278 0.59 5.1 1.6 794
7 0.55 4.5 1.6 918 0.37 13.1 1.8 1437 0.57 5.0 1.6 811
8 0.51 4.5 1.7 1012 0.34 13.0 1.8 1607 0.55 4.9 1.7 827
9 0.44 4.4 1.7 1111 0.32 13.0 1.9 1805 0.47 4.8 1.7 840
10 0.41 4.4 1.7 1212 0.29 13.0 1.9 1988 0.45 4.7 1.7 853
11 0.38 4.3 1.7 1316 0.28 13.0 2.0 2175 0.43 4.6 1.7 864
12 0.35 4.3 1.7 1421 0.26 12.9 2.0 2366 0.42 4.5 1.7 875
13 0.34 4.2 1.7 1528 0.25 12.9 2.1 2558 0.39 4.5 1.8 886
14 0.32 4.2 1.8 1636 0.24 12.9 2.1 2752 0.39 4.4 1.8 896
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Additional challenges in comparison to the scalar-mobility case are:
1) in the application of the Jacobian, one needs the gradient of 𝜂𝑖
t the linearization point in addition to those of 𝑐 and 𝜇, as required
n the scalar case, and (2) more complex coupling terms need to be
valuated. We address the first point by precomputing the values of
he linearization point at the quadrature points and by computing the
radients on the fly. In order to reduce the costs of the coupling, we use
imilar strategies as discussed in Section 4.2. In particular, we exploit
he facts (1) that a tensor of the form 𝐧𝑎 ⊗ 𝐧𝑏 applied to a vector
𝐯 can be efficiently replaced by a dot product and a scalar scaling,
(𝐧𝑎 ⊗ 𝐧𝑏)𝐯 = 𝐧𝑎(𝐧𝑏 ⋅ 𝐯), without the need to actually set up the tensor
and (2) that in (11) and (12) no square root has to be computed, since
it cancels out later on during subsequent multiplications.

Fig. 21 and Table 8 present timings, data volume, and work com-
pared to the scalar-mobility case for the evaluation of the residual and
of the Jacobian. One can observe a clear slowdown of up to 29 and
38%, respectively. This is caused by an increase of arithmetic opera-
tions by 7–127 and 35–244 FLOP per quadrature point for different
numbers of components in the two cases, showing more pronouncedly
the quadratic complexity. According to the roofline performance model
of Fig. 7, high FLOP/s can be maintained with increasing number
of components. In the case of the Jacobian, the measured read data
volume decreases, as the gradients are computed on the fly. In total,
the read and write data volumes are similar to the ones in Table 1,
indicating that the compute-intensive operations are performed on
cached data.

Table 5 gives statistics of a complete 51-particle simulation, show-
ing an increase in the simulation time by 19% with an increase in the
number of time steps and a decrease in the number of linear iterations.
We note that the matrix-free and the Jacobian-free evaluation as well
as the cut-off approach are applicable here without the need for any
modifications.

7.2. Extension 2: advection terms

The system (1) is capable to capture the evolution of the mi-
crostructure during sintering, however, completely omits shrinkage
mechanisms. In order to resolve this issue, Wang [22] added advection
terms to system (1):
𝜕𝑐
𝜕𝑡

(𝐱, 𝑡) = ∇ ⋅
[

𝑀∇ 𝛿𝐹
𝛿𝑐

]

− ∇ ⋅ (𝑐𝐯) , (13a)
𝜕𝜂𝑖
𝜕𝑡

(𝐱, 𝑡) = −𝐿𝛿𝐹
𝛿𝜂𝑖

− ∇ ⋅
(

𝜂𝑖𝐯𝑖
)

. (13b)

ere, 𝐯 =
∑

𝑖 𝐯𝑖 and the advection velocity within individual particles
𝑖 consists of translational and rotational components:

𝐯𝑖(𝐱) =
{

𝐯𝑡 𝑖(𝐱) + 𝐯𝑟 𝑖(𝐱), if inside (e.g., 𝜂𝑖 ≥ 0.1)
18

0, otherwise w
𝐯𝑡 𝑖(𝐱) =
𝑚𝑡
𝑉𝑖

𝐅𝑖,

𝐯𝑟 𝑖(𝐱) =
𝑚𝑟
𝑉𝑖

𝐓𝑖 ×
(

𝐱 − 𝐱𝑐 𝑖
)

,

where 𝑚𝑡 and 𝑚𝑟 are constants characterizing the particle translation
and rotation and where

𝑉𝑖 = ∫𝛺
𝜂𝑖 d𝛺

is the particle volume. Vector 𝐱𝑐 𝑖 denotes the mass center of the 𝑖th
particle. The velocity components 𝐯𝑡 𝑖 and 𝐯𝑟 𝑖 are proportional to the
force and torque [22], which are given by

𝐅𝑖 = ∫𝛺
d𝐅𝑖, (14a)

𝐓𝑖 = ∫𝛺

(

𝐱 − 𝐱𝑐 𝑖
)

× d𝐅𝑖. (14b)

he effective local force density d𝐅𝑖 is the key component of the
ntire shrinkage mechanism and is related to the annihilation of the
ver-saturated vacancies at the grain boundaries:

d𝐅𝑖 = 𝑘
∑

𝑖≠𝑗

(

𝑐 − 𝑐0
)

⟨𝜂𝑖𝜂𝑗⟩
[

∇𝜂𝑖 − ∇𝜂𝑗
]

d𝛺.

he quantities 𝑉𝑖, 𝐅𝑖, 𝐓𝑖, 𝐱𝑐 𝑖 can be considered as additional properties
f the 0D representation, as discussed in Section 4.4. These quantities
ave to be gathered for each cell (batch) during the cell loop when
ultiple particles are assigned to the same order parameter.

The definition of advective velocities as proposed in [22] is far
rom optimal and introduces several drawbacks: the lack of rigorous
hysically based foundation, complicated calibration of the advection
odel parameters or severe size effects [70] if only the original Wang’s

orces are employed. In fact, the discussion of the rigid body motions
n the phase-field sintering models [15,25,70] is a big topic by itself.
eeping the above-mentioned limitations in mind, we still implemented

his particular extension due to its wide use and the fact that it can
e applied for other non-local advection mechanisms. For instance, the
taggered coupling of the phase-field and DEM approaches [71] also
equires the reduced 0D modeling for its implementation and, thus,
ould benefit from the techniques described in the present publication.

The velocity terms in (13b) result in different Allen–Cahn blocks,
otentially requiring different (ILU) preconditioners. Our experiments
ndicate that these terms can be dropped during preconditioning, al-
owing to work with a single ILU instance for all Allen–Cahn blocks, as
roposed in Section 4.3.

Due to the non-local terms (14), the evaluation of the exact Jaco-
ian would be both memory-intensive and computationally demanding.
herefore, we only consider the Jacobian-free implementation. Figs. 7,
1, Tables 5, and 8 describe the properties of the residual evaluation as
tand-alone and in the context of the 51-particle sintering benchmark

ith and without cut-off. The increase in the simulation time can be
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mainly contributed to the fact that the grain-tracking algorithm has to
be performed at each time step. Also the number of operations during
the residual evaluation increases by a fixed value of ∼33 FLOP per
quadrature point.

8. Conclusions and outlook

We have presented an efficient, adaptive, implicit finite-element
solver for modeling solid-state-sintering processes by means of a well-
established phase-field approach that is able to capture diffusive mass-
transport, shrinkage, and grain-growth phenomena. Our implementa-
tion, which is freely available as hpsint, has been verified with
reference data from the literature and successfully simulates pack-
ings with ten thousands of particles in high-performance-computing
environments.

To enable such large-scale simulations, we have performed a holistic
optimization of the solver on many levels by an interdisciplinary effort
in order to minimize the time to solution. The proposed optimizations
include a tailored block preconditioner, a distributed graph-based ver-
sion of the grain-tracking algorithm, and the usage of fast matrix-free
evaluation kernels. For the latter, the presented solver relies on the
open-source library deal.II [20,21], particularly, on its state-of-the-
rt matrix-free framework [46,47]. Even though it is most efficient
or higher-degree shape functions, the underlying algorithmic choices
ollowing the current trends of exascale algorithms ensure a high node-
evel performance also for the linear shape functions in the present
ase, with increasing advantage for larger numbers of components. We
ave extended the matrix-free algorithm to deal with varying number
f vector components related to changing number of order parameters
nd to work only with locally-relevant components related to the local
upport of the phase field as well as presented low-level strategies to
educe the computational effort at quadrature points.

In addition to these fundamental advances, we have discussed possi-
le optimizations that build upon the current developments and might
llow an additional speedup of 2× in the near future. This includes

the usage of sparse block vectors [39], interleaving of evaluation and
quadrature-point loops [47], and physics-based preconditioning [59].
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