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A B S T R A C T

Objective: Voice problems that arise during everyday vocal use can hardly be captured by standard outpatient
voice assessments. In preparation for a digital health application to automatically assess longitudinal voice data
‘in the wild’ – the VocDoc, the aim of this paper was to study vocal fatigue from the speaker’s perspective, the
healthcare professional’s perspective, and the ‘machine’s’ perspective.
Methods: We collected data of four voice healthy speakers completing a 90-min reading task. Every 10 min
the speakers were asked about subjective voice characteristics. Then, we elaborated on the task of elapsed
speaking time recognition: We carried out listening experiments with speech and language therapists and
employed random forests on the basis of extracted acoustic features. We validated our models speaker-
dependently and speaker-independently and analysed underlying feature importances. For an additional,
clinical application-oriented scenario, we extended our dataset for lecture recordings of another two speakers.
Results: Self- and expert-assessments were not consistent. With mean F1 scores up to 0.78, automatic elapsed
speaking time recognition worked reliably in the speaker-dependent scenario only. A small set of acoustic
features – other than features previously reported to reflect vocal fatigue – was found to universally describe
long-term variations of the voice.
Conclusion: Vocal fatigue seems to have individual effects across different speakers. Machine learning has the
potential to automatically detect and characterise vocal changes over time.
Significance: Our study provides technical underpinnings for a future mobile solution to objectively capture
pathological long-term voice variations in everyday life settings and make them clinically accessible.
1. Introduction

Speech is one of the most important means of human communica-
tion. A healthy voice as the underlying ‘tool’ for speech production,
therefore, represents a fundamental requirement for social life as well
as for a wide range of professions including, among others, teacher,
lecturer, actor, singer, politician, reporter, call centre agent, guide, and
priest. Voice problems, such as chronic hoarseness, may result from
excessive voice use. They can strongly influence quality of life and
job function [1], and even lead to social isolation and occupational
disability [2,3]. An early detection of voice-related symptoms and a
targeted therapy are thus essential.

∗ Corresponding author at: Division of Phoniatrics, Medical University of Graz, Austria.
E-mail address: florian.pokorny@medunigraz.at (F.B. Pokorny).

1 Contributed equally.

1.1. State of the art

A commonly used voice evaluation protocol was released by the
European Laryngological Society (ELS). It defines the minimum require-
ments for an objective functional voice assessment needed to diagnose
common voice disorders and to follow up related therapy outcomes in
an outpatient setting [4–6]. To this end, the protocol specifies norm
categories and norm values for five non-redundant dimensions of as-
sessment [4,5]: perception, video stroboscopy, aerodynamics, acoustics,
and self-evaluation. Obviously, the protocol is very elaborate and can
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be performed in a clinical setting only, e. g., by a speech and language
therapist (SLT). Another inherent limitation of an outpatient voice
assessment is that it only provides a snapshot of the patient’s voice,
which is usually in a relaxed state. Therefore, a vocal stress test was
established by Schneider-Stickler and Bigenzahn [7], but it is rarely
used. The test is computer-aided and evaluates vocal endurance and
resilience. The patient is asked to phonate over a period of appro-
ximately 20 min at a certain minimum sound level. A microphone is
used to record the phonation sequence for the analysis of acoustic basic
features, such as the fundamental frequency (f o), jitter, and shimmer.
An optimal vocal endurance is given if the patient completes the test
without audible changes in voice quality, without changes in acoustic
periodicity features including sound level-related f o dynamics, and
without laryngeal morphological changes as compared to the beginning
of the test. An initial increase of the f o until the patient reaches the
required minimum sound level is regarded as physiological. However,
a further increase of the f o throughout the test while phonating at a
onstant sound level is an indicator of vocal compensation efforts due
o vocal fatigue [7].

Even tough a vocal stress test simulates to some extent the long-
erm use of the voice and, thus, represents a useful ‘add-on tool’ to the
LS basic voice evaluation protocol, it does not necessarily reflect the
atural use of the voice in everyday life settings. Therefore, subjective
ocal discomfort and perceived effects on voice function that emerge
fter a certain longer period of voice use – reported by patients, who
eed to talk for many hours a day for occupational reasons – can usually
ot be clinically captured. This hampers optimal treatment.

Catalysed by recent technological advancements – especially in
ensor and communication technology, as well as in machine learning
a paradigm shift towards personalised and connected medicine is cur-

ently taking place [8]. Vital parameters, as well as behaviour-related
ata, such as heart rate, respiration rate, blood pressure, blood oxygen
aturation, body temperature, sleep phases, activity pattern, walked
teps, and GPS information, captured over the day (and night) by
eans of wearable devices are playing an increasingly important role in
edical research in context of both physical and mental health [9–11].
onsequently, high expectations are currently associated with remote
ssessment approaches in addition to clinical on-site assessments to
mprove future diagnostic procedures, intervention paradigms, as well
s disease prevention strategies.

In line with this trend, we suggest a smartphone-based solution to
bjectively capture long-term variations of the voice in everyday life.
revious studies mainly reported changes in a few single voice features
nly, such as a rise in f o, sound pressure level, shimmer, or noise-
o-harmonics ratio, coming along with prolonged vocal loading [12–
8].

.2. Contribution

In this work, we aimed to study vocal fatigue in voice healthy
ndividuals from different, mutually related perspectives, namely

(i) the speaker’s perspective (self-assessment),
(ii) the perspective of healthcare professionals (expert assessment),

and
(iii) the audio signal processing and machine learning perspective

(machine assessment).

or (ii) and (iii), we elaborated on the task of elapsed speaking time
ecognition, similarly as done by Bayerl et al. [19]. On the basis of
n extended set of acoustic voice features, we further aimed to find
ut whether there is a subset of features well suited for capturing
ocal fatigue across different speakers and, thus, for a population-based
ocal fatigue classification approach. Thereby, this study shall provide
n empirical foundation for the realisation of a mobile application
o capture clinically relevant long-term voice variations ‘in the wild’.
2

prototype of a long-term voice recording and feature extraction
Table 1
Dataset overview in terms of gender (f = female; m = male), age, number of (#)
recordings, and recording duration per speaker. (1)/(2) = with regard to first/second
lecture recording.

Subset Speaker ID Gender Age [years] # Recordings Duration [min]

pilotSet 101M m 30 1 90
pilotSet 102M m 31 1 90
pilotSet 103M m 30 1 90
pilotSet 104M m 50 1 90

extension 111M m 49 2 (1) 91; (2) 95
extension 114F f (1) 28; (2) 29 2 (1) 99; (2) 91

app – the VocDoc – has already been developed in collaboration with
audEERING GmbH, Germany. In a next step, methods implemented in
the prototype shall be optimised on the basis of knowledge gained in
this study and tested in a clinical real-world scenario.

2. Materials and methods

Data collection and experimentation were carried out at the Graz
University of Technology and the Medical University of Graz, Austria.

2.1. Data collection

Experiments in this study were based on the VocDoc-pilotSet, which
onsists of speech data from a simulated lecture setting. Later on, we
ombined the VocDoc-pilotSet with a set of real-world lecture record-
ngs, referred to as VocDoc-pilotSet extension.

.1.1. VocDoc-pilotSet
The VocDoc-pilotSet comprises recordings from four male speakers

authors JL, NS, SL, and CG) staged in a lecture hall at the Graz
niversity of Technology, to simulate presentation talks (see Table 1).
he speakers’ first language was German. None of them was a trained

ecturer. Voice health of the speakers was verified in advance by means
f endoscopy at the Division of Phoniatrics, Medical University of Graz.
he speech material was recorded with a Tascam DRX-05 stereo field
ecorder, where each speaker was standing in front of the microphone
t a distance of approximately 1 m. All speakers read out loud the same
ext from the German scientific book ‘‘Sprachverarbeitung – Grundla-
en und Methoden der Sprachsynthese und Spracherkennung’’ (Engl.:
‘Speech processing – Fundamentals and methods of speech synthesis
nd speech recognition’’) by Pfister and Kaufmann [20]. Speakers were
nding their readings at different stages of the book, since we restricted
ach talk to exactly 90 min. This led to 6 h of speech data in total.

.1.2. VocDoc-pilotSet extension
The VocDoc-pilotSet extension consists of 4 recordings of real lectures

f approximately 90 min provided by the internal video portal of Graz
niversity of Technology.2 Two of the lectures were held by the same
ale lecturer, the other two by the same female lecturer (see Table 1).
oth lecturers were native German speakers and the lectures were also
eld in German. Informed consent was obtained from the lecturers for
he analysis of their voices in the framework of this study.

.2. Self-assessment

Immediately before we started to record each session of the VocDoc-
ilotSet, we asked the speakers, if they had already stressed their voice
t that day (Q1). In order to find out if, how, and at which point
n time the subjective perception of speaking had changed, we then
nterrupted the reading every 10 min and performed a question &
nswer session of approximately 2 min. The questionnaire involved the
ollowing questions/tasks:

2 https://tube.tugraz.at/.

https://tube.tugraz.at/
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Q2: How did the voice feel in the last 10 min?
Q3: How does your voice feel right now?
Q4: How are you feeling right now in general?
Q5: Do you feel you have spoken fast in the last 10 min?
Q6: Mark the location(s) where you feel vocal strain. (Given an illustra-

tion of a cut of the vocal tract.)

Q2, Q3, and Q4 included 3 answer options, respectively; Q5 included
ne answer option relating to the speech rate. In case of Q2 and
3, the 3 answer options referred to stress, fatigue and roughness. In
ase of Q4, the 3 answer options referred to excitement, alertness and
oncentration. For each category, the speakers could (verbally) choose
n integer value from 0 to 10, with 0 standing for ‘‘not applicable at
ll’’ and 10 standing for ‘‘entirely applicable’’. Finally, for the task Q6,
articipants could (verbally) mark potentially stressed regions based on
presented illustration of a midsagittal cut of the vocal tract, such as

asal cavity, alveolar ridge, tongue, palate, velum, pharynx, or larynx.
For the present study, we focused on the answers to Q3 and Q4

nly, since – in our preliminary approach – we preferred an exact time
esolution (answers referring to the current status and not to a certain,
ot specified point in time or period within a 10-min block). Moreover,
he answers to Q6 were saved for specific future work on vocal fatigue
n relation to voice anatomy/physiology.

.3. Expert assessment

To consider the perspective of clinicians, who work with patients
ith voice problems on a daily basis, we asked two SLTs (authors
H and MF) from the Department of Otorhinolaryngology, University
ospital Graz, Austria, to perceptually evaluate the recordings of the

our speakers from the VocDoc-pilotSet. Specifically, we wanted to find
ut, if these experts are able to recognise elapsed speaking time when
uantised into three periods. For this purpose, we extracted exactly one
onsecutive minute of speech from (i — start) the first 10 min, (ii —
id) the interval from 40 to 50 min, and (iii — end) the last 10 min

i. e., the interval from 80 to 90 min) of each speaker’s recording. As all
peakers read aloud the same book starting at chapter 1 and stopping at
ifferent places due to individual reading rates over 90 min, we decided
o select continuous one-minute start, mid, and end segments for the
xpert assessment, that do not overlap in terms of content. Moreover,
e only selected segments, which do not contain any read out chapter,

igure, or table numbers, as they would have been cues for reading
rogress. The SLTs were asked to independently listen to the three one-
inute audio segments of each speaker in a quiet room using studio
eadphones. They were allowed to listen to each speaker’s clips as often
s desired and they could jump between clips of the same speaker as
ell as jump forth and back within a single clip. In doing so, the experts
ad the task to put the clips of each speaker in correct order, i. e., start
mid – end. In addition, they were asked to note down which speech

r voice attributes led them to their decisions.

.4. Machine assessment

Alongside the human rater-based methods, i. e., the self-assessment
nd the expert assessment, we carried out machine learning experi-
ents. In doing so, we extracted acoustic features from the recordings

see Section 2.4.1), investigated tasks of elapsed speaking time classifi-
ation on a block-wise basis (see Section 2.4.2), and, thereby, derived
coustic features that best characterise potential effects of vocal fatigue
cross different speakers (see Section 2.4.3).
3

.4.1. Acoustic feature extraction
Given the self-assessment design of interrupting the speakers of

he VocDoc-pilotSet on a 10-min basis for a short questioning, we cut
ach recording into 9 10-min blocks that exclusively contain read-
ng (and not the questioning). Equally, we also split each recording
f the VocDoc-pilotSet extension into 9 10-min blocks and discarded
udio exceeding the 90 min mark (see Table 1). Subsequently, we ap-
lied the widely-used open-source toolkit openSMILE [21,22] (version
.0.1) to all 10-min blocks to (i) automatically segment the material
nto utterances by means of the included pre-trained long short-term
emory recurrent neural network (LSTM-RNN) based voice activity
etector [23], and to (ii) subsequently extract acoustic features from
ach utterance. openSMILE is implemented in C++ and uses a ring-
uffer memory and a modular architecture, which allows for arbitrary
ombinations of audio signal processing and calculation steps set in
single configuration file. Automatic segmentation led to 100–170

tterances of 1–7 s per 10-min block. For the feature extraction step,
e used the most current standardised openSMILE feature set, i. e., the
xtended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [24].
he eGeMAPS represents the openSMILE set of choice for baseline
valuations in computational voice/speech analysis tasks – including
linically-related tasks – when aiming for compactness and feature
nterpretability at reasonable machine performance. The set comprises
8 acoustic features, most of which are statistical functionals (such as
rithmetic mean or coefficient of variation) applied to smoothed trajec-
ories of frequency-, energy/amplitude-, and spectrum-related low-level
escriptors (such as f o, loudness, or the Hammarberg index).

For subsequent classification experiments, the original continuous
udio recordings were, thus, transferred into 88-dimensional numeric
eature vectors acoustically representing single utterances assigned to
pecific 10-min blocks. For non-commercial research purposes, all fea-
ure files are available upon request from the corresponding author.

.4.2. Classification
In order to investigate if and after which period of vocal strain

he voice changes on the basis of 10-min time blocks, we examined
he problem of automatic elapsed speaking time recognition translated
nto a series of 8 binary classification tasks, where each model was
rained to differentiate between utterances from the first 10-min block
class Ref) and utterances from 1 of the 8 successively adjacent 10-min
locks (set of classes {𝐒1,… ,𝐒8}), respectively (see Fig. 1). For reasons
f better explainability in terms of relevance of underlying features
see Section 2.4.3) as compared to deep neural networks, we trained
ach classification model with a random forest (RF) by utilising the
cikit learn toolkit (version 1.0.1) [25] developed for Python (3.9.7).
he number of decision trees per RF model was set to 100 and the
uality of a split was measured with the Gini criterion. Further, we
hose a maximum depth of 20 nodes and a minimum split of 10 samples.

Experiments were carried out on a Windows 10 Pro PC with an Intel
Core i7-7600 2.80 GHz (2 Cores) CPU.

We conditioned our experiments on three training and validation
scenarios (see also Table 2):

• Speaker-dependent (SD) classification: eight RF models utilising
the VocDoc-pilotSet ; training and validation in separate for all four
speakers.

• Speaker-independent (SI) classification: eight RF models again
utilising the VocDoc-pilotSet, but now with leave-one-speaker-out
cross-validation; training on three speakers and testing on the left-
out speaker per validation run with each of the four speakers used
for testing exactly one time.

• Speaker-independent personalised (SIP) classification: eight RF
models utilising the VocDoc-pilotSet plus the VocDoc-pilotSet ex-
tension; training and validation in separate for the two speakers
(one female and one male) from the VocDoc-pilotSet extension with
training on all four speakers from the VocDoc-pilotSet plus the first
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Fig. 1. Classification scheme based on 10-min blocks. A series of binary classification
models were trained to distinguish between the reference block, i. e., the first 10-min
block (class Ref), and successively adjacent 10-min blocks (set of classes {𝐒1 ,𝐒2 ,…}).

Table 2
Training and test sets per scenario and validation run with respect to speaker IDs.
The VocDoc-pilotSet comprises the speakers 101M–104M; the VocDoc-pilotSet extension
comprises the speakers 111M and 114F. SD = speaker-dependent, SI = speaker-
independent, SIP = speaker-independent personalised; M and F in speaker IDs encode
speaker gender with M = male and F = female.

Scenario Training Test

SD 101M 101M
SD 102M 102M
SD 103M 103M
SD 104M 104M

SI {102M, 103M, 104M} 101M
SI {101M, 103M, 104M} 102M
SI {101M, 102M, 104M} 103M
SI {101M, 102M, 103M} 104M

SIP {101M, 102M, 103M, 104M}+111M 111M
SIP {101M, 102M, 103M, 104M}+114F 114F

recording of the selected speaker from the VocDoc-pilotSet exten-
sion and testing on the second recording of the (same) selected
speaker from the VocDoc-pilotSet extension.
The SIP scenario was chosen to examine the potential future ap-
plication of equipping an individual (patient) with a smartphone
app with a pre-trained population-based vocal fatigue recognition
model that gradually adapts to the user by retraining based on
data collected from the individual over a certain initial period.

Performance evaluation. In order to evaluate the performance of our
classification experiments we introduce a broad comparison of resulting
harmonic means, i. e., F1 scores, which were calculated from both, the
precisions and recalls of a given test result:

F1 score = 2 ⋅
precision ⋅ recall
precision + recall . (1)

Since our experiments were conditioned on three scenarios with test
speakers (i) present in the training data (SD/SIP experiments) or (ii)
not present in the training data (SI experiments), our evaluations of
the SD/SIP experiments were slightly different from the evaluations
of the SI experiments. In case of the SD/SIP experiments, we com-
pared speaker-dependent F1 scores by generating only one random
training/test-split with a ratio of 75%/25% of time for the reference
block and several training/test-splits for each shifted block. This was
4

done by performing a minute-wise 10-fold cross-validation with respect
to the shifted block only. Thus, for each comparison between the
fixed reference block and a shifted block, we tested 10 different 1-
minute-intervals of the shifted block by including remaining data in
the training splits, respectively. In case of the SI experiments we again
calculated F1 scores, but this time without performing within-block-
cross-validation, leading to 20 min of available test data for each binary
classification.

For each scenario, we analysed our initially generated models for
the respective ten most relevant acoustic features (see Section 2.4.3).
As we found that classification performance slightly increased when
retraining the models just based on the identified top ten features, we
present results for those retrained models only.

2.4.3. Acoustic feature analysis
Our choice of RFs for classification allowed us to examine feature

importances for each 10-min block. These importances reveal the worth
of the different features with respect to capturing elapsed speaking time
and, thus, implicitly potential effects of vocal fatigue. We exploited the
RF feature importances resulting from the SD, SI, and SIP experiments
in order to select the respective best global features. Identifying the
best global features was done as follows: First, for each experiment we
extracted the feature importances for every 10-min block. Second, all
features were summed across all time blocks for one speaker (SD/SIP
experiments) and over all speakers (SI experiments).

In general, our method resulted in 𝑁𝐹 × 𝑁𝑇 × 𝑁𝑆 feature impor-
tances, where 𝑁𝐹 is the total number of features, 𝑁𝑇 is the respective
number of RF models, and 𝑁𝑆 is the respective number of speakers.
For each validation scenario, we summarised the features in a feature
importance matrix, in which the number of rows corresponded to the
number of features 𝑁𝐹 and the number of columns corresponded to the
number of 10-min blocks (= number of RF models 𝑁𝑇 ). Thus, the result-
ing matrix for one speaker had a dimension of 𝑁𝐹 ×𝑁𝑇 . We defined the
matrix as 𝐈𝑠 = [𝐢𝑠,1, 𝐢𝑠,2, 𝐢𝑠,3,… , 𝐢𝑠,𝑁𝑇

]𝑇 with 𝐢𝑠,1…𝑁𝑇
∈ R𝑁𝐹 ×1. In order to

summarise feature importances for a specific speaker with respect to all
time blocks, we summed over the columns of 𝐈𝑠 and normalised by the
number of models 𝑁𝑇 . Finally, we calculated normalised global feature
importances by summing over resulting summarised importances of all
speakers and normalised with respect to 𝑁𝑆 . This can be described with
the following formulae:

𝐢 = 1
𝑁𝑠

𝑁𝑠
∑

𝑠=1

1
𝑁𝑇

𝑁𝑇
∑

𝑡=1
𝐢𝑠,𝑡 =

1
𝑁𝑠 ⋅𝑁𝑇

𝑁𝑠
∑

𝑠=1

𝑁𝑇
∑

𝑡=1
𝐢𝑠,𝑡, (2)

where �̂� ∈ R𝑁𝐹 ×1 contains the averaged feature importances for each
validation scenario. Assuming that the vector components are already
sorted in descending order, we defined a set where the elements were
the ordered vector components of

I = {𝑖1,… , 𝑖𝑁𝐹
}. (3)

Defining 𝑀 as the number of highest components and defining

I(−𝑀) = max(𝑚 ∶ #{𝑖 ∈ I ∶ 𝑖 ≥ 𝑚} = 𝑀) (4)

gave us

I(𝑀) = {𝑖 ∈ I ∶ 𝑖 ≤ I(−𝑀)}. (5)

For each validation scenario (SD, SI and SIP), we report the respec-
tive combination of 𝑀 = 10 best features.

3. Results

3.1. Self-assessment

Speaker self-assessment results for Q3 and Q4 of the questionnaire
(see Section 2.2) are summarised in Figs. 2(a) and 2(b).
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Fig. 2. Speaker-wise (101M–104M) questionnaire ratings (from 0 = not applicable at all, to 10 = entirely applicable) for questions (a) Q3 and (b) Q4. Concentr. = concentration.
h

With regard to Q3, which relates to stress, fatigue and roughness,
e observed generally higher ratings in speakers 101M, 102M and
03M as compared to speaker 104M. Ratings of speakers 101M and
02M showed a similar trajectory with values ranging between 4 and
. Ratings of speaker 103M increased right from the start reaching the
aximum scale value (10) after 40 min for stress and fatigue, and after
0 min for roughness. Those ratings did not change any more till the
nd of the recording.

With regard to Q4, which relates to excitement, alertness and
oncentration, we observed a contrary picture. The excitement ratings
f speaker 101M started at 5, slightly increased to 6 for minutes 20
nd 30, and then decreased continuously over time till a rating of 1 in
inute 90. Speaker 102M had similar excitement ratings starting at 6

ut decreasing to 1 already after 60 min for the rest of the recording. In
peaker 103M, the excitement rating increased a bit over time starting
t 3 and ending at 6 with minor fluctuations in between. There was no
hange in the excitement rating of speaker 104M, who gave a rating
f 0 at each questioning. With respect to the alertness ratings, speakers
01M and 103M were starting at 5 and 4, respectively, and decreasing
o 1 over time with one distinct peak of 7 in speaker 103M at minute
0. In speaker 102M, we observed an opposite behaviour since ratings
tarted at a score of 7, then decreased to 4 at minute 40, increased again
o 7 at minute 60, and finally ended in a score of 6 from minute 70
nward until the end. Speaker 104M again gave almost constant ratings
tarting at a score of 8 and ending at a score of 7. The concentration
atings of speakers 101M (starting at a rating of 5) and 103M (starting
t a rating of 7) decreased over time and ended at a score of 1 in case
f speaker 103M (minutes 60–90) and a score of 0 in case of speaker
01M. Corresponding ratings of speaker 102M started at 7, declined
o 3–5 for minutes 30–70 and, finally, rose again to a score of 6 at
he last two questionings. Speaker 104M rated concentration similar to
lertness, but this time starting at a score of 9 and ending at a score of
.

Globally, there was a tendency of increasing vocal stress, fatigue,
nd roughness and decreasing general excitement, alertness and con-
entration with increasing speaking time.

.2. Expert assessment

Changing over from the speaker’s subjective perspective to the
bjective perspective of healthcare professionals experienced in percep-
ual voice assessment, the performance of the two SLTs in recognising
hether a speaker (i) had just started to speak, (ii) already had spoken

or more than 40 min, or (iii) already had spoken for more than 80 min,
s presented in Table 3. The first expert managed to correctly identify
5

Table 3
Confusion matrix showing the speaker-wise segment order ratings by expert 1 (upper
left) and expert 2 (lower right) in each cell. Green = correct segment order, red =
incorrect segment order.

the order of segments in three of the four speakers (102M–104M)
as well as the end segment of the remaining speaker (101M) with
the start and the mid segment of this speaker having been mixed up
(see upper left halves of cells in Table 3). Reported attributes that
were related to the first expert’s correct decisions were an increase
in the f o (102M), reading rate (102M), occurrence of swallowing and
arrumphing events (102M), and vocal fry (103M), a decrease in the

fraction of chest voice (104M), clarity (102M, 103M), loudness (103M),
and fluency (104M) of speaking, as well as a change in intonation at
the end of sentences from more to less melodic (102M), over time. In
contrast, the second expert correctly identified the order of segments in
one of the four speakers (103M), as well as the respective start segments
of two speakers (101M and 102M) with the mid and the end segments
of these speakers having been mixed up (see lower right halves of cells
in Table 3). For the correctly rated start segments of speakers 101M
and 102M, the second expert reported a slower/more comfortable
reading rate as compared to the other segments. Identified attributes of
increasing speaking time in speaker 103M were an increase in the f o,
reading errors, voice creakiness, mouth dryness, phonation pressure,
and pause duration. Not a single segment of the remaining speaker
(104M) was correctly identified by the second expert, who described
this speaker’s voice and reading performance as rather constant over
time with just minor changes in phonation pressure and reading rate.
When converting the original expert assessment paradigm into a binary
recognition task by discarding the mid segment, results show that it
happened just one time that the order start–end was not correctly
identified, namely by the second expert in speaker 104M.
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Fig. 3. Speaker-wise (101M–104M) distribution of F1 scores for each block derived from the speaker-dependent experiments.
3.3. Machine assessment

Finally, we present our machine assessment results. Fig. 3 sum-
marises F1 score distributions derived from the SD experiments.

Across the first classification models, which distinguish between Ref
and 𝐒1, we achieved the best results for speakers 101M (mean F1 score:
0.71) and 104M (mean F1 score: 0.64). In general, mean F1 scores
of speaker 101M were between 0.66 and 0.76 and did not change
much over time. In contrast, speakers 102M, 103M and 104M had more
varying F1 scores. In case of speaker 102M, mean F1 scores improved
from 0.45 (block 𝐒1) to 0.78 (last block). Mean F1 scores of speaker
103M slightly improved from 0.52 (block 𝐒1) to 0.65 (block 𝐒8). In
speaker 104M, we observed a different behaviour. We found a decrease
of mean F1 scores at the beginning from 0.64 (block 𝐒1) to 0.55 (block
𝐒2). Then, for all subsequent blocks, mean F1 scores did not vary a lot
over time fluctuating between 0.52 and 0.58.

Regarding feature importances, we observed that for each indi-
vidual speaker there were specific features among the global top ten
features which were more relevant than others. Respective distributions
are shown in Fig. 4. In addition, we present correlation plots of each
speaker’s respective most relevant feature across time blocks in Fig. 5
and reveal Spearman’s correlation coefficients (𝜌). In speaker 101M,
the mean energy ratio between the first and the second f o harmonic
was the most important feature with a proportion ≥0.3 in 6 blocks,
and the coefficient of variation (standard deviation normalised by the
arithmetic mean) of the same energy ratio was the second most impor-
tant feature with proportions ≥0.17 again in 6 blocks. Additionally, the
mean spectral flux in voiced regions turned out important in blocks
𝐒5,𝐒6,𝐒7, and 𝐒8. In speaker 102M, the mean second Mel-frequency
cepstral coefficient (𝑀𝐹𝐶𝐶2) in voiced regions and the mean 𝑀𝐹𝐶𝐶2
in the entire segment were most important with respective proportions
≥0.14 and ≥0.11 across all blocks. A weak correlation (𝜌 = 0.35)
between the mean 𝑀𝐹𝐶𝐶2 in voiced regions and the block index
was found. Blocks 𝐒4 and 𝐒5 indicated a higher importance of the
mean Hammarberg index in voiced regions (proportion ≥0.17). For
the same speaker, the mean spectral flux in voiced regions resulted in
the highest proportion of 0.24 in the last block. Feature importances
of speaker 103M gave highest proportions ≥0.16 for the mean first
formant frequency at a weak negative correlation with the block index
of 𝜌 = −0.20. In speaker 104M, proportions of feature importances
indicated that the mean spectral slope from 0–500 Hz in voiced regions,
the mean spectral slope from 0–500 Hz in unvoiced regions, as well
as the mean spectral flux in voiced regions had the highest impact on
classification results. Additionally, the mean third formant bandwidth
was the most important feature for block 𝐒 .
6
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In order to evaluate the generalisation capabilities towards new
speakers, we present SI classification results. Again, we examined
block-wise classification performances – here, for each speaker having
been the test speaker exactly one time – and compared respective
feature importances. For better (visual) comparability with the SD and
SIP models, we split the test data from the respective shifted block again
into ten parts and present F1 score distributions for the SI experiments
in Fig. 6. Over all blocks and speakers, mean F1 scores only ranged
between 0.22 and 0.36.

The importances of the underlying top ten features were more
uniformly distributed than the top ten features of the SD scenario (see
Fig. 7).

Finally, Fig. 8 reveals the classification performance under SIP val-
idation, i. e., the scenario including the two additional speakers (111M
and 114F) from the VocDoc-pilotSet extension for personalised training
and testing.

Mean F1 scores and standard deviations of speakers 111M and
114F were widely homogeneous over time. Mean F1 scores ranged
between 0.37 and 0.51 with standard deviations between 0.09 and
0.15 in the male speaker 111M, and between 0.45 and 0.54 with
standard deviations between 0.06 and 0.13 in the female speaker 114F.
In speaker 111M, mean F1 scores slightly increased subsequent to the
first 4 blocks with a maximum of 0.42 for block 𝐒6. In speaker 114F,
we observed a similar characteristic with the highest mean F1 score of
0.47 for block 𝐒6 as well.

Similar as for the SI scenario, we did not observe a single out of the
scenario-specific top ten features that was clearly more important than
the others (see Fig. 9).

4. Discussion

The development of a mobile solution for the automatic detection
and characterisation of long-term variations of the voice in everyday
life settings requires a profound understanding of the (patho-)physiology
of vocal fatigue. In this study, we thus investigated vocal fatigue in
healthy individuals completing a 90-min reading task. We provided
results from a series of technical feasibility experiments on the auto-
matic recognition of elapsed speaking time, complemented by insights
into the speakers’ subjective perception as well as SLTs’ professional
evaluation of vocal changes over time. In doing so, we tried to find out,
(i) after which time and to which extent vocal fatigue affects speakers
without any (known) a-priori voice problems, and (ii) whether vocal
fatigue manifests itself in the same way with regard to acoustic features
across different speakers.
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Fig. 4. Speaker-wise (101M–104M) random forest feature importances derived from the speaker-dependent experiments. A1|2 = relative amplitude of first|second harmonic, BF3
= bandwidth of third vowel formant, F1 = frequency of first vowel formant, MFCC2 = second Mel-frequency cepstral coefficient, SDnorm = standard deviation normalised by the
arithmetic mean (coefficient of variation), URs = unvoiced regions, VRs = voiced regions.
We did not obtain a homogeneous picture: For speaker 102M,
our SD experiments revealed that the more time elapsed, the better
the automatic recognition of elapsed speaking time was. This might
indicate that this speaker’s voice continuously changed over time from
the beginning onward with increasing extent. A similar tendency was
found for speaker 103M as well. These findings are supported by the re-
spective self-assessments as well as the ratings of the SLTs. Both experts
correctly identified the order of segments in speaker 103M. In speaker
102M, the second expert just mixed up the mid and the end segment.
Interestingly, in speaker 101M the best recognition performances were
already achieved early on, which could mean that subsequent to initial
voice changes compensation mechanisms became active. 101M was
also the speaker, who caused the most incorrect ratings among both
SLTs. However, this could also be an effect of rating chronology —
both experts evaluated the recordings of the four speakers in order
7

101M, 102M, 103M, and 104M; thus, the experts might not have been
entirely familiar with the task yet when evaluating the recordings of
speaker 101M. In speaker 104M, the automatic elapsed speaking time
recognition performance was widely constant and low over the entire
90-min period, which suggests that this speaker’s voice did not change
a lot over time. This is also in line with the self-ratings of this speaker,
which mostly differed from the ratings of the other three speakers and
were relatively constant over time. Moreover, speaker 104M was the
only speaker, whose start, mid, and end segments were completely
mixed-up by the second expert. At this point, it should be considered
that speaker 104M has a significantly higher age (50 years) than the
other speakers from the VocDoc-pilotSet (≤ 31 years).

The poor results obtained in the SI experiments show that our mod-
els do not generalise well to other speakers. This might point out that
vocal fatigue has individual effects across different speakers (and ages).
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Fig. 5. Respective most relevant feature for each speaker (101M–104M) across time blocks (S0[(=̂Ref)]–S8) and linear fitting line. Spearman’s correlation coefficient (𝜌) is given
on the bottom left of each subfigure. A = amplitude, A1|2 = relative amplitude of first|second harmonic, F1 = frequency of first vowel formant, MFCC2 = second Mel-frequency
cepstral coefficient, UT = unit of time, VRs = voiced regions.
Fig. 6. Speaker-wise (101M–104M) distribution of F1 scores for each block derived from the speaker-independent experiments.
This finding is also supported by the results of our feature importance
analyses. While the identified global top ten features of the SI scenario
were rather uniformly distributed across all speakers and blocks at low
elapsed speaking time recognition performance, there were speaker-
and block-specific global top ten features of higher importance in com-
bination with higher recognition performances in the SD scenario. In
speaker 101M, the mean energy difference between the first and second
harmonic – a measure reflecting glottal constriction [26] and, thus, as-
sociated with creaky and/or pressed phonation [26,27] – seems to bear
relevant acoustic information related to vocal changes over speaking
time. In speaker 102M, the most important features were the 𝑀𝐹𝐶𝐶𝑠2
in voiced regions and in all regions, which can be regarded as weighted
8

measures of a low to high frequency energy ratio, sensitive for increases
in aspiration noise due to incomplete vocal fold closure [28]. MFCCs
have generally shown great potential in a wide range of acoustic signal
processing applications, such as in automatic speech recognition [29–
32], speaker recognition [33,34], speech emotion recognition [35],
speech synthesis [36], and speech coding [37]. Possible effects of vocal
fatigue in speaker 103M were mainly reflected in the mean first formant
frequency – a measure that is inversely related to vowel height. As the
distribution of vowels is assumed to be constant over the entire read
book (same text type, same language, same author), changes in the
mean first formant frequency could indicate, that one and the same
vowels were increasingly articulated with different qualities, thus, at
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Fig. 7. Speaker-wise (101M–104M) random forest feature importances derived from the speaker-independent experiments. A1|2 = relative amplitude of first|second harmonic, AF3
= amplitude of third vowel formant, BF3 = bandwidth of third vowel formant, f o = fundamental frequency, F2 = frequency of second vowel formant, pctl20 = 20th percentile,
SDnorm = standard deviation normalised by the arithmetic mean (coefficient of variation), URs = unvoiced regions, VRs = voiced regions.
slightly shifted articulation points. In speaker 104M, the most relevant
acoustic features were the mean spectral slopes from 0–500 Hz in
voiced and unvoiced regions — voice quality measures that express the
energy tilt in the audio spectrum towards higher frequencies within the
specified frequency interval. Perceptually, these features are associated
with the warmth of a male voice [27].

Most of the 88 eGeMAPS features turned out not to be that relevant
for the acoustic characterisation of elapsed speaking time and, thereby,
of potential effects of vocal fatigue, as they were not among the global
top ten features of any validation scenario. In contrast, three features
even appeared among the global top ten features across all scenarios.
These were again the mean spectral slopes from 0–500 Hz in voiced and
unvoiced regions, and the mean bandwidth of the third vowel formant,
a measure that was also found to differ between healthy speakers and
speakers with an acute COVID-19 infection when producing sustained
9

back vowels /u:/ and /o:/ [38]. Previous studies reported on a rising
f o, sound pressure level, shimmer, and/or noise-to-harmonics ratio con-
comitant with a prolonged voice use [12–18]. In our experiments, not
a single energy/amplitude-related feature, i. e., shimmer, harmonics-to-
noise ratio, and loudness, made it into the global top ten features of
any validation scenario. However, the mean f o was among the most
important features for the SIP scenario, the 20th percentile of the f o
among the most important features for both the SI and the SIP scenario.

The performances of our SIP models were in between the perfor-
mances of the SD and the SI models, which is not surprising as we
here applied a sort of speaker adaptation by combining population-
based/speaker-independent and speaker-dependent training and vali-
dation [39]. Interestingly, there were no clear performance differences
between the models for the male and the female speaker, even though
all speaker-independent training data stemmed from male speakers.
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Fig. 8. Speaker-wise (111M, 114F) distribution of F1 scores for each block derived from the speaker-independent personalised experiments.
Fig. 9. Speaker-wise (111M, 114F) random forest feature importances derived from the speaker-independent personalised experiments. BF3 = bandwidth of third vowel formant,
f o = fundamental frequency, F1|2|3 = frequency of first|second|third vowel formant, pctl20 = 20th percentile, SDnorm = standard deviation normalised by the arithmetic mean
(coefficient of variation), URs = unvoiced regions, VRs = voiced regions.
4.1. Limitations

Even though our study provides novel insights into the acoustic
manifestation of potential vocal fatigue paving the way for an au-
tomatic assessment of long-term variations of the human voice, our
findings have to be interpreted carefully. On the one hand, this is due
to our pilot dataset consisting of just six native German speakers. On
the other hand, we decided to keep the cohort for our basic analyses as
consistent as possible and included male speakers in our VocDoc-pilotSet
only. Moreover, one of the four speakers of the VocDoc-pilotSet as well
as the male speaker of the VocDoc-pilotSet extension had a significantly
higher age than the other speakers. Finally, we want to point out that,
reading out loud a text from a book does not represent an authentic
everyday life setting. A larger as well as gender- and age-balanced
10
dataset recorded ‘in the wild’ is thus warranted for further investiga-
tions, also allowing for the utilisation of more sophisticated machine
learning techniques, such as deep neural networks. The influence of
language on the manifestation of vocal fatigue should be studied as
well.

4.2. VocDoc app: Status quo and future recommendations

Promoting a mobile solution for objectively capturing clinically
relevant long-term variations of the voice in everyday life settings,
we developed a smartphone application prototype – the VocDoc – in
collaboration with the audEERING GmbH (https://audeering.com [as
of 29 March 2023]), which shall be further developed on the basis of
findings of this study. The VocDoc is expected to be utilised together

https://audeering.com
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Fig. 10. Basic concept of robust and privacy-compliant long-term voice recording and vocal feature extraction in the patient’s natural environment by means of the VocDoc
application and subsequent data analysis at the hospital for diagnostic support and intervention planning.
with a clip-on microphone placed at the collar. The current version of
the VocDoc initially asks the user to speak a few sentences in a silent
environment. Thereby, intrinsic voice parameters of the specific user
are retrieved for the optimisation of an intelligent noise-robust pre-
trained voice activity detector. Subsequently, the prototype is ready for
use in real-world settings and manages to reliably capture the voice
of the user within potential environments of more than one speakers
present. For data privacy reasons, the VocDoc immediately extracts a
set of acoustic features from each detected voice segment, which is
stored in the form of a vector together with a time stamp in a local
text file. Raw audio data are not stored. The VocDoc can be used until
the user manually stops recording or until the smartphone runs out
of battery. Finally, the text file with the stored acoustic features can
be exported and analysed. In the future, we envisage patients with
(subjective) voice problems to be equipped with the VocDoc. Over an
initial period of a few days or weeks, voice data shall be collected in
order to identify a speaker-specific set of optimal acoustic features.
Thenceforth, the VocDoc can be used in everyday settings to collect
representative long-term voice data of the patient. Whenever a record-
ing is done, the respective feature text file is transmitted via a secure
channel to the corresponding healthcare facility for data interpretation
by the attending doctor or SLT. The general concept of our VocDoc is
illustrated in Fig. 10. The VocDoc is intended to support and facilitate
both future diagnostic and intervention processes in phoniatric patients.
Moreover, the same framework of automatically capturing acoustic
long-term voice information by means of a smartphone could also be
used for an (earlier) identification of vocal changes that originate from
potential respiratory, neurological, or mental conditions.

In an immediate next step, voice data from an age- and gender-
balanced cohort of patients affected by (subjective) voice problems
shall be collected ‘in the wild’ by means of the VocDoc, and analysed for
pathological changes over time. Thereby, both voice disorder-specific
information that cannot be retrieved at the clinical site in the frame-
work of a standard voice examination shall be gained for the very first
time, and the usability of the VocDoc as well as the patients’ willingness
of its use in everyday settings shall be evaluated.

5. Conclusion

In this study, we explored physiological vocal fatigue from three
different perspectives, namely the speaker’s subjective perspective, the
perspective of SLTs, and the engineering perspective with respect to
an automatic recognition of elapsed speaking time. Even though we
found a small set of acoustic candidate features to universally describe
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vocal change over time, i. e., the mean spectral slopes from 0–500 Hz
in voiced and unvoiced regions and the mean bandwidth of the third
vowel formant, our results reveal that vocal fatigue has individual
effects across different speakers. Nevertheless, we could demonstrate
that vocal changes occur – even in voice healthy speakers – and
that machine learning methodology has the potential to automatically
detect and characterise them when being trained on data from the same
speaker. Knowledge gained in this study shall contribute to the (further)
development of a mobile application to promote a clinical delineation
of pathological long-term voice variations in everyday life settings.
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