
Highly Resolved Spectral Functions of Two-Dimensional Systems with
Neural Quantum States

Tiago Mendes-Santos ,1 Markus Schmitt,2 and Markus Heyl1
1Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg,

86135 Augsburg, Germany
2Forschungszentrum Jülich GmbH, Peter Grünberg Institute, Quantum Control (PGI-8), 52425 Jülich, Germany

(Received 28 March 2023; accepted 30 June 2023; published 27 July 2023)

Spectral functions are central to link experimental probes to theoretical models in condensed matter
physics. However, performing exact numerical calculations for interacting quantum matter has remained a
key challenge especially beyond one spatial dimension. In this work, we develop a versatile approach using
neural quantum states to obtain spectral properties based on simulations of the dynamics of excitations
initially localized in real or momentum space. We apply this approach to compute the dynamical structure
factor in the vicinity of quantum critical points (QCPs) of different two-dimensional quantum Ising models,
including one that describes the complex density wave orders of Rydberg atom arrays. When combined
with deep network architectures we find that our method reliably describes dynamical structure factors of
arrays with up to 24 × 24 spins, including the diverging timescales at critical points. Our approach is
broadly applicable to interacting quantum lattice models in two dimensions and consequently opens up a
route to compute spectral properties of correlated quantum matter in yet inaccessible regimes.
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Introduction.—Spectral functions are key tools to char-
acterize and probe quantum many-body phases and their
transitions. In addition, they serve as a common framework
to connect theoretical descriptionswith experimental probes
such as photoemission or inelastic neutron scattering. In this
context, a regime of particular interest is two-dimensional
(2D) interacting quantum matter, where experimental
probes can indicate the occurrence of prominent properties,
such as exotic fractionalized quasiparticles in candidate
materials realizing 2D spin-liquid phases [1] or universal
features associated with quantum critical points [2].
At the theoretical level, accessing and describing

spectral functions is, thus, of great interest in strongly inter-
acting solid-state materials. But addressing dynamical
properties of correlated matter in a controlled manner
poses, at the same time, substantial challenges. Quantum
Monte Carlo simulations are poisoned by a sign problem
[3], and the applicability of dynamical mean field theory [4]
is limited in low dimensions. Tensor network approaches,
which render the treatment of weakly entangled states
feasible, can be used to obtain numerically exact results for
one-dimensional systems [5–10]. While extensions to
higher dimensions exist [11–15], the growth of entangle-
ment in time together with the two-dimensional lattice
structure that increases the complexity of tensor contrac-
tions remains as a challenge for tensor network methods.
In addition, variational methods for capturing excita-
tions based on Gutzwiller-projected mean-field states are
restricted to specific cases due to their built-in bias [16,17].
Finally, programmable quantum simulation could emerge

as a new route [18–20], but it is still in its infancy at
this point.
Recently, the idea to combine the variationalMonte Carlo

(VMC) framework with neural quantum states (NQSs) [21]
has been shown to be very fruitful for investigations of
correlated matter, including the simulation of ground states
of frustratedHamiltonians [22–27] and the dynamics of two-
dimensional systems [28–33]. For spectral functions, first
attempts proposed NQS-based algorithms built directly in
the frequency domain [34–36] or a method simulating the
response to an initial time-dependent perturbation of the
system [37]. However, it remains desirable to enhance the
resolution and reachable system sizes over what has been
achieved so far in order to address open physical questions.
In this Letter, we introduce an alternativeversatile scheme

for the simulation of spectral functions based on the direct
encoding of local excitations in the neural network archi-
tecture—the specNQS, see Fig. 1(a). The spectral informa-
tion is then extracted from dynamical correlation functions
that are obtained by real-time evolution. When combined
with convolutional neural networks,we demonstrate that our
scheme allows us to access dynamical properties beyond
what has been feasible with other state-of-the-art appro-
aches. As a benchmark, we simulate the dynamical structure
factor (DSF) of the 2D quantum Ising model (QIM), and we
showcase that the specNQS reliably describes spectral
features associated with a diverging correlation length for
system sizes up to 24 × 24 sites. Furthermore, we contribute
to the characterization of quantum phase transitions in
experimentally realized long-range interacting Rydberg
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atom arrays [38,39] by revealing spectral properties close to
phase boundaries, the nature of which is under ongoing
debate [40,41].
Method.—In the following, we will be interested in

computing the DSF

Szzðq;ωÞ ¼ 1

Ns

Z
∞

−∞
dteiωthσ̂z−qðtÞσ̂zqi: ð1Þ

Here, hÂðtÞB̂i ¼ hψ0jeiĤtÂe−iĤtB̂jψ0i denotes the dynami-
cal correlation function in the ground state jψ0i of a given
Hamiltonian Ĥ, Ĥjψ0i ¼ E0jψ0i with E0 being the
ground-state energy. σ̂zq ¼

P
r e

−iq·rσ̂zr is the spin operator
in momentum space, where σ̂zr denotes the Pauli-z operator
at lattice site r and Ns is the number of lattice sites.
The central idea of our approach is to obtain the DSF

from a variational representation of suitably time-evolved
wave functions. NQSs constitute a versatile family of
variational wave functions relying on the proven represen-
tational power of artificial neural networks (ANNs). In
particular, any function can be accurately approximated by

an ANN in the limit of large network sizes [42–45]. This
means that the accuracy of the proposed approach can be
asserted self-consistently by checking the convergence with
increasing network size.
As a first step to access the DSF, we compute the NQS

representation of the ground state

jψ0i ¼
X
s

ψ ð0Þ
θ ðsÞjsi; ð2Þ

where s ¼ ðs1; s2;…; sNs
Þ labels the Pauli-Z basis of spin

configurations. The variational ansatz ψ ð0Þ
θ ðsÞ is parameter-

ized by θ ¼ ðθ1; θ2;…; θMÞ and it takes the form of anANN.
Theground state is then obtained by optimizing θ tominimize
the energy expectation value EðθÞ ¼ hψðθÞjĤjψðθÞi=
hψðθÞjψðθÞi. For the results presented throughout this manu-
script, we employed the Stochastic Reconfiguration algo-
rithm to find the ground states [46,47].
Our approach to access the dynamics relies on

computing the time-evolved wave functions following
an excitation,

jϕα
r=qðtÞi ¼ e−iĤtσ̂αr=qjψ0i≡ e−iĤtjϕα

r=qð0Þi: ð3Þ

Here, σ̂αr=q is an operator in either position (r) or momentum
space (q). In our numerical approach we rely in either case
on an exact representation of jϕα

r=qð0Þi, which will be
discussed in the following paragraphs. Let us first discuss
the time-evolution algorithm, assuming that the represen-
tation of the initial state is given. We employ a time-
dependent variational principle (TDVP) that is based on the
minimization of the Fubini-Study distance between the
variational time-evolved state jψθðtþδtÞi and the exact one

e−iĤδtjψðtÞi, where δt is an infinitesimal time interval. It
yields an ordinary nonlinear differential equation prescrib-
ing the optimal evolution of the variational parameters
[21,28],

Sk;k0 _θk0 ¼ −iFk; ð4Þ

where _θk0 is the time derivative, Sk;k0 ¼ h∂θkψθj∂θk0ψθi −
h∂θkψθjψθihψθj∂θk0ψθi is the quantum metric tensor and

Fk ¼ h∂θkψθjĤjψθi − h∂θkψθjψθihψθjĤjψθi. Both Sk;k0
and Fk can be estimated efficiently via Monte Carlo
sampling of the Born distribution jψθðsÞj2.
Upon integration, the TDVP in Eq. (4) in general yields

the time-evolved state up to a global phase and normali-
zation [48]. The phase is irrelevant for equal-time corre-
lation functions. For computing the dynamical correlation
functions, however, it becomes important, because we are
interested in evaluating the overlap of two time-evolved
states. To keep track of relative changes in phase between
such time-evolved states we consider the (logarithmic)

FIG. 1. Panel (a) shows a schematic picture of the NQS
architecture used in this work. Besides the convolutional neu-
ral network ψθðsÞ that forms the variational part, the initial
excitations in real or momentum space (r or q) are captured by
directly incorporating the corresponding operator matrix ele-
ments fr=qðsÞ ¼ hsjσ̂zr=qjsi in the ansatz. The logarithmic wave
function coefficients of the state jϕz

r=qi then take the form
loghsjϕz

r=qi¼ logψθðsÞþ logfr=qðsÞ as indicated by the computa-
tional graph. Panels (b1),(c1) show some exemplary results of real-
space dynamical correlators and the corresponding DSF close to the
quantum critical point of the two-dimensional quantum Isingmodel.
Analogously, panels (b2),(c2) show results obtained directly in
momentum space for larger system sizes. We consider the path
X ¼ ðπ; 0Þ → M ¼ ðπ; πÞ → Γ ¼ ð0; 0Þ → X → S ¼ ðπ=2; π=2Þ
of the Brillouin zone.
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prefactor θ0 as an additional variational parameter:
jψθ0;θi ¼ eθ0 jψθi. By using the TDVP, one can establish
the following equation of motion for θ0 [49]

_θ0 ¼ −ihĤi − _θkhψθj∂θkψθi: ð5Þ
Equation (4) for the other parameters θ remains unchanged.
Thus, for each time step, we first obtain _θk and then use the
result to solve Eq. (5) for the evolution of θ0.
Momentum-space scheme.—First, we discuss how to

access the dynamical spin structure factor directly in
momentum space,

Szzðq; tÞ ¼ eiE0thψ0jσ̂zqe−iĤt=2e−iĤt=2σ̂zqjψ0i: ð6Þ
To simplify the discussion we focus on the z component, but
our approach can be straightforwardly generalized for
α ¼ x, y by choosing the computational basis accordingly.
The central idea is that the action of the operator σ̂zq on the
initial state jψ0i can be captured explicitly and efficiently by
modifying the individual wave function coefficients with
corresponding prefactors. Concretely, the excitation σzqjψ0i
is encoded on the NQS ansatz by adding a configuration-
dependent factorfðq; sÞ ¼ P

j e
−irjqeiπ=2ðsj−1Þ on the initial-

time quantum state

jϕz
qð0Þi ¼ σ̂zqjψ0i ¼

X
s

fðq; sÞψθðsÞjsi: ð7Þ

We then obtain Szzðq; tÞ by performing a two-sided time
evolution with the TDVP approach, followed by evaluating
the overlap of the two time evolved states,

Szzðq; tÞ ¼ eiE0thϕz
qð−t=2Þjϕz

qðt=2Þi: ð8Þ
This is a the central object to calculate the dynamical
structure factor by means of our NQS approach. Notice
that this implies that for the dynamical correlation function
up to time t numerical integration is only required up to time
t=2. Here, it is important to account for the global factor
associated to each state of the overlap as discussed above,
see Eq. (5). References [50,51] presents further details about
the calculation of the overlap.
Real-space scheme.—Second, we discuss a strategy to

obtain dynamical correlations in real space. Our scheme is
based on a many-body Ramsey protocol [18], that is used to
simulate the retarded Green’s function (GF)

Gαα
r;r0ðtÞ ¼ −

i
2
hψ0j½σ̂αr ðtÞ; σ̂αr0ð0Þ�jψ0i; ð9Þ

where r, r0 are the sites of a lattice, and ½Â; B̂� denotes the
commutator. In particular, to access the longitudinalGzz

r;r0ðtÞ
component, we start the protocol with the following
quantum state jϕz

rð0Þi ¼ eiðπ=4Þσ̂
z
r jψ0i, where the local

pertubation is represented by the ðπ=4Þ rotation of a
spin at site r. Further, we obtain the time-evolved state
jϕz

rðtÞi ¼ e−iĤtjϕz
rð0Þi. Following Ref. [18], the result of a

local measurement of σ̂zr at a time t depends on the GF, i.e.,

hϕz
r0ðtÞjσ̂zr jϕz

r0ðtÞi ¼ hψ0jσ̂zrðtÞjψ0i þ Gzz
r;r0ðtÞ

þ hψ0jσ̂zr σ̂zr0ðtÞσ̂zr jψ0i: ð10Þ

The Gzz
r;r0ðtÞ is obtained by reconstructing the terms of the

Eq. (10). The first term on the right hand side is accessed
from the ground state. For the remaining contributions we
time evolve the initial states eiðπ=4Þσ̂

z
r jψ0i and σ̂zr jψ0i after

incorporating the operator action into the variational ansatz
in analogy to Eq. (7).
One central difference between the momentum- and

the real-space approach is that the latter does not require
the calculation of state overlaps. Moreover, they differ in
the way translational symmetry can be exploited for the
efficiency of simulations. In the real space approach all
correlation functions in Eq. (10) depend only on relative
positions r0 − r, which means that all the momentum points
of Szzðq;ωÞ can be obtained from the two time-evolved
states jϕz

r¼0ðtÞi and e−iĤtσ̂zr¼0jψ0i. However, with this
approach, translational symmetry cannot be built into the
variational ansatz to enhance efficiency. By contrast, the
time-evolved states in Eq. (8) for the momentum-space
approach preserve translational symmetry, which can be
exploited to introduce beneficial bias through built-in
invariance of the NQS. This comes, however, at the cost
of individual simulations required for each point in
momentum space.
Finally, it is worth mentioning that we compute Szzðq;ωÞ

by performing a Fourier transform with a Gaussian
envelope to avoid the finite-time effects of our simulation
(our simulations are performed up to a time tmax) [50].
Neural quantum states architectures.—In conjunction

with the momentum-space scheme, we employ convolu-
tional neural networks (CNNs) [28,52] as the variational
part of the NQS architecture, which allows us to exploit the
translational symmetry, that is also conserved after apply-
ing the operators in momentum space. The hyperpara-
meters of the CNNs are the total number of layers l, the
number of channels in each layer k, αk, and the linear size
of the square filter, F; in the following, we characterize the
CNN architecture with the tuples α ¼ ðα1;…; αl;FÞ.
Meanwhile, to implement the real-space scheme, we use
Restricted Boltzmann Machines (RBMs) [21] composed of
a single fully connected hidden layer with M nodes, where
M is a hyperparameter; further details about the NQSs are
discussed in the Supplemental Material [50].
Results I: Two-dimensional quantum Ising model.—To

benchmark our approach, we consider the paradigmatic 2D
QIM on a square lattice:

Ĥ ¼ −
X
hi;ji

σ̂zi σ̂
z
j − g

X
i

σ̂xi : ð11Þ
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This model describes a second-order QCP at gc ≈ 3.044,
separating a ferromagnetic from a paramagnetic phase. In
the vicinity of gc, the major contributions to Szzðq;ωÞ come
from low-energy quasiparticle excitations whose frequency
and spectral weight are expected to scale as ω ∼ L−z and
S̃ ∼ Lð1−ηÞ, respectively [2]; here, z ¼ 1 and η ≈ 0.04 are
critical exponents of the 3D-Ising universality class [53].
We start discussing the DSF obtained with the real-space

scheme shown in Fig. 1(c1). The plots show the DSF along
a path through the first Brillouin zone for a lattice of size
Ns ¼ 10 × 10 at transverse field g ¼ 3.1. The main feature
of Szzðq;ωÞ is a minimum at the Γ point, corresponding to
the low-energy gap. We compare our results to series-
expansion results up to fourth order in g−1 [54,55] and find
very good agreement almost everywhere in the Brillouin
zone. The most notable deviation appears at the gap closing
point when approaching the critical value gc, which we will
discuss in more detail below. Figure 1(c2) shows similar
results obtained with the momentum scheme in the vicinity
of the Γ point. The fact that we can in this case use more
efficient NQS architectures with built-in translational
invariance allows us to simulate substantially larger system
sizes up to Ns ¼ 20 × 20 lattice sites and we again find
good agreement with the series expansion.
Let us now focus on the behavior of theDSF in thevicinity

of the QCP. As a demanding benchmark for the accuracy of
the NQS approach, we investigate the finite-size scaling of
the spectral gap extracted from the DSF, Δðq ¼ ΓÞ ¼
argmaxωSzzðq ¼ Γ;ωÞ. The expected universal scaling
behavior Δðq ¼ ΓÞ ∼ L−z, with L the linear system size,
can be compellingly confirmed by our finite-size simula-
tions up to Ns ¼ 24 × 24; we obtain z ¼ 1.00� 0.05 by
fitting such universal scaling, see Supplemental Material
[50]. We emphasize that our results show that with our NQS
approach such large system sizes required to extract this
universal behavior have now become within reach, while
simultaneously also the diverging timescale associated with
the closing of the spectral gap can be captured.
In Fig. 2(c) we moreover show the frequency-resolved

DSF at a few momentum points at g ¼ 2.9, i.e., on the
ferromagnetic side of the QCP. These cuts reveal a double
peak structure of Szzðq;ωÞ, in particular an excitation at
very low energy for q ¼ Γ. This feature is a signature of the
Z2 symmetry-broken phase, where the degeneracy of the
ground state is lifted to an exponentially small energy gap
due to the finite system size.
Results II: Rydberg atom arrays.—Now, to take our

approach to a next level, beyond the QIM benchmark,
we consider a long-range interacting model describing
Rydberg atom arrays on a square lattice (RyM). The
RyM is defined as

Ĥ ¼ −
Ω
2

X
i

σ̂xi − δ
X
i

n̂i þ
X
i;j

�
Rb

ri;j

�
6

n̂in̂j; ð12Þ

where n̂i ≡ ðσ̂zi þ 1Þ=2. The parameter Ω represents the
Rabi frequency, while δ denotes the detuning. The term
ðRb=ri;jÞ6 represents the interaction between atoms in
Rydberg states, ri;j being the distance between atoms at
sites i and j, and Rb the so-called Rydberg blockade
radius [56].
Recently, quantum simulation experiments [38,39] have

motivated theoretical efforts to understand ground-state
properties of the square-lattice RyM [40,41,57]. The inter-
play between the parameters δ and Rb leads to density-
wave phases and related QCPs. As an example, we present
a schematic phase diagram for RyM in Fig. 3(a), indicating
the emergence of checkerboard (CbDW) and striated
(StDW) density wave. Ground state searches and the
estimations for the disordered-CbDW and disordered-
StDW transitions are discussed in the Supplemental
Material [50], which is consistent with the literature
[41]. Here, we focus on computing spectral functions in
the vicinity of QCPs.
Near the disordered-CbDW QCP, Szzðq;ωÞ is character-

ized by a dominant low energy mode at q ¼ M, see
Fig. 3(b1). The finite-size scaling of the DSF (we obtain
z ¼ 0.9� 0.2 by fitting the size scaling of the lowest-energy
gap, see Supplemental Material [50]) and the dynamical
correlatorSzzðM; tÞ is consistentwith a second-orderQCP in
the same universality class as the previously discussed 2D
QIM; see Figs. 3(c1.1) and 3(c1.2).
Close to the disordered-StDW QCP, however, Szzðq;ωÞ

exhibits qualitatively different behavior. It is characterized
by two dominant low energy modes, occurring atM and X;
see Fig. 3(b2). In addition, the spectral weight associated
with the lower-energy peak of Szzðq ¼ M;ωÞ decreases
with system size, while we observe a spectral weight

FIG. 2. 2D quantum Isingmodel, vicinity of the quantum critical
point. Panel (a) shows the finite-size scaling of the gap Δðq ¼ ΓÞ;
the star points are series-expansion results up to forth order, while
the triangle points are exact-diagonalization results for L ¼ 4. In
panel (b), we show the correspondingDSF Sðq ¼ Γ;ωÞ at QCP for
different values of L. In panel (c) we present Sðq;ωÞ at the
ferromagnetic side of the quantum phase transition.
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transfer to higher energies for larger values of L; see
Fig. 3(c2.1). These results are consistent with the prediction
of a first-order QCP [41]. We note, however, that for
L ¼ 12 our simulations cannot resolve a lower energy
peak. For first-order phase transitions, the lowest energy
gap is expected to vanish exponentially as L increases [58].
This implies that to resolve the spectral gap accurately, we
have to perform simulations up to an exponentially long
time, tmax, and with a Fourier transform done with a
Gaussian broadening factor scaling as 1=tmax [50]. In this
regime, the phase transition is better evidenced by ground-
state static properties related to the DSF [41].
Discussion and conclusions.—In summary, we have

proposed a cutting-edge method to simulate spectral
properties of 2D quantum many-body systems, which
relies on the representational power of NQSs to access
spectral functions during the real-time dynamics of local
excitations. We demonstrated that this scheme allows us to
reliably perform finite-size scaling of dynamical properties
near 2D quantum critical points for unprecedented system
sizes. A promising future direction is to characterize
spectral features of 2D models stabilizing quantum spin
liquid phases. Of particular current interest are spin liquids
with Ising-like interactions, such as the 2D RyM in a ruby
lattice, which has recently been proposed as a way to
realize Z2 topological order states in programmable quan-
tum simulators [59,60], and also Kitaev-type spin models
[61], where highly accurate simulations of DSF are
essential to characterize exotic fractionalized excitations
[62,63].

The data shown in the figures are available on
Zenodo [64].
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