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Abstract—Despite the recent advancement in speech emotion recognition (SER) within a single corpus setting, the performance of
these SER systems degrades significantly for cross-corpus and cross-language scenarios. The key reason is the lack of generalisation
in SER systems towards unseen conditions, which causes them to perform poorly in cross-corpus and cross-language settings. Recent
studies focus on utilising adversarial methods to learn domain generalised representation for improving cross-corpus and cross-
language SER to address this issue. However, many of these methods only focus on cross-corpus SER without addressing the cross-
language SER performance degradation due to a larger domain gap between source and target language data. This contribution
proposes an adversarial dual discriminator (ADDi) network that uses the three-players adversarial game to learn generalised
representations without requiring any target data labels. We also introduce a self-supervised ADDi (sADDi) network that utilises self-
supervised pre-training with unlabelled data. We propose synthetic data generation as a pretext task in sADDi, enabling the network to
produce emotionally discriminative and domain invariant representations and providing complementary synthetic data to augment the
system. The proposed model is rigorously evaluated using five publicly available datasets in three languages and compared with
multiple studies on cross-corpus and cross-language SER. Experimental results demonstrate that the proposed model achieves

improved performance compared to the state-of-the-art methods.

Index Terms—Speech emotion recognition, self-supervised learning, domain adaptation, adversarial learning

1 INTRODUCTION

SPEECH Emotion Recognition (SER) is widely explored by
researchers to enable effective human-computer interaction.
Speech is a major affect display, and it contains information
about emotional expressions that can be automatically identi-
fied using machine learning (ML) models. SER systems can
help businesses by improving their service delivery. Speech
emotion identification can be used in call centres to track cus-
tomer and agent reactions. Speech-based affect recognition can
be effectively utilised in healthcare for diagnosis and monitor-
ing of depression, distress, and bipolar disorder in patients [1],
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[2]. Many other sectors including smart cars [3], forensic
sciences [4], education [5], to name a few, are also aiming to uti-
lise SER techniques to improve their performances.

Over the past few years, deep learning (DL) based archi-
tectures including deep belief networks (DBN) [6], convolu-
tional neural networks (CNN) [7], and long short term
memory (LSTM) networks [8] have significantly improved
SER performance compared to the classical machine learn-
ing (ML) approaches [9], [10], [11]. SER systems based on
deep neural networks (DNNSs) perform satisfactorily when
training and test data belong to the same corpus. The perfor-
mance of these systems plummets significantly when the
training speech corpus is very different from the testing cor-
pus — known as cross-corpus SER.

One of the key reasons for poor performance in cross-cor-
pus SER is the difference between training and testing
speech data distributions. These differences become more
prevalent when training and testing data belong to different
languages (cross-language SER). As a solution to the prob-
lem, researchers use diverse corpora (including multilin-
gual data) for training to create more generalised and
robust SER systems [12]. Studies show that an SER model
trained on multiple corpora can achieve improved results
[9]. However, acoustic training using multiple labelled
data is not feasible for all languages, as we have speech
corpora in very few languages compared to the number of
languages spoken around the world [13], [14] and getting
samples for adaptation in rarely spoken languages is
challenging.
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An alternative and more practical approach to address the
above challenge is domain adaptation, which generalises
SER systems to unseen conditions by minimising domain
shift—the gap between source and target data distributions.
Domain adaptation approaches maximise the domain confu-
sion to learn a common feature space by minimising some
measures of domain shift such as (a) maximum mean dis-
crepancy [15], [16] or (b) correlation distances [17], [18].
Reconstruction of the target domain using source representa-
tion is another way to create a shared representation [19],
[20]. These approaches are effectively used in the computer
vision domain. However, achieving domain adaptation in
speech emotion is more complex, as it requires keeping the
emotional information while reducing domain shift in
source and target data.

Adversarial domain adaptation methods have become a
popular manifestation in SER research to minimise an
approximate domain discrepancy distance through an
adversarial loss. These methods are closely related to the
generative adversarial network (GAN) [21] training, which
pits a generator and a discriminator against each other. The
generator is trained to generate fake data in a way that con-
fuses the discriminator. In adversarial domain adaptation,
this principle is used among the feature encoder, and domain
discriminator [22]. In SER, different studies (e.g., [23], [24])
use domain discriminator-based adaptation approaches.
However, it is difficult to capture all the useful information
and complex structures (such as the emotions) in the feature
and label spaces using a single domain discriminator [25].

This paper proposes an Adversarial Dual Discriminator
(ADDi) network to learn a domain generalised emotional
representation that improves cross-corpus and cross-lan-
guage SER. Our proposed model is equipped with a dual
discriminator, which is not explored in SER. This enables
the proposed model to generate the domain invariant repre-
sentations with a three-players adversarial game among
generator and dual discriminator.

To address the challenge of limited labelled data, we fur-
ther propose self-supervised learning for ADDi — we call it
sADDi. We propose synthetic data generation as our pretext
task — we utilise the unlabelled data to pre-train the encoder
component to learn to produce features for emotional syn-
thetic data generation, which can be used to augment the sys-
tem and help minimise the required labelled training data.

Most of the existing SER studies (e.g., [23], [24], [26]) on
adversarial domain adaptation do not consider cross-lan-
guage, creating a research gap. This is likely due to the
complexity of learning a generalised representation for
cross-language SER. In this paper, we consider improving
cross-language SER.

We summarise the contributions of this paper below. We,

1) propose a novel adversarial domain adaptation tech-
nique: ADDi for cross-corpus and cross-language
SER. ADD;j, for the first time, introduces a dual dis-
criminator for SER, enabling the generation of
domain invariant representations with a three-play-
ers adversarial game among generator and dual
discriminator.

2) enable self-supervised learning with ADDi (we call it
sADDi) by generating synthetic data as a pretext task
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that effectively utilises unlabelled data to improve
the performance and produce synthetic data to aug-
ment the SER system.

3) use five widely applied publicly available datasets to
comprehensively evaluate the performance of ADDi
and sADDi for cross-corpus and cross-language SER
performance. Results show that ADDi outperforms
the state-of-the-art methods and when including
self-supervised learning in ADDi, sADDi offers even
higher performance improvement than the state-of-
the-art methods. Besides improving the perfor-
mance, sADDi reduces the required amount of
source labelled data by 15-20 % compared to the cur-
rent and most relevant study (ADDoG) [26] while
achieving comparable classification accuracy.

2 RELATED WORK

2.1 Cross-Corpus and Cross-Language SER
Cross-corpus speech emotion recognition is an important
task to enable real-life SER applications. It aims to build sys-
tems with improved generalisation to perform SER not only
in variations in speaker and languages but also in unknown
target conditions, including changes in recording environ-
ments, noise levels, and elicitation strategy. State-of-the-art
SER systems trained on a single corpus fail to perform well
in cross-corpus settings. Previous studies explore various
techniques to achieve better performance in cross-corpus
SER. Schuller et al. [12] find that the SER performance
degrades due to the acoustic and annotation differences.
They perform experiments using six corpora to gain gener-
alisation. They also evaluate multiple normalisation techni-
ques and z-normalisation to achieve the best results. Eyben
et al. [35] perform cross-corpus SER evaluations using
speech databases with realistic and non-prompted emo-
tions. They use a uni-variate ranking of the low-level
descriptors (LLDs) to find the most important features and
achieve improvement in some settings. They highlight that
future efforts are required to address the inconsistencies
among multiple corpora by carefully selecting annotations.
Zhang et al. [27] evaluate unsupervised learning and feature
normalisation for cross-corpus SER. They show that adding
unlabelled data to agglomerate multi-corpus training sets
and utterance level feature normalisation can improve per-
formance. In [36], the authors show the effect of data
agglomeration and decision-level fusion for cross-corpus
SER. They use six datasets and demonstrate that joint train-
ing with multiple corpora and late fusion could help
improve performance. These studies show the preliminary
feasibility of cross-corpus learning and motivate further in-
depth research.

Researchers also explore different techniques to perform
emotion identification in cross-language settings. Albornoz
et al. [37] consider emotion profile-based ensemble support
vector machines (SVM) for emotion classification in multiple
languages. They model each language independently to pre-
serve the cultural properties and apply the universality of
emotions to map and predict emotions in different lan-
guages. They use the RML corpus [38] and achieve improved
results using their model in a language-independent SER. Li
et al. [39] develop a three-layered model of acoustic features,
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semantic primitives, and emotion dimensions to perform
cross-language emotion classification. They apply feature
selection and speaker normalisation and evaluate the pro-
posed framework on Japanese, German, Chinese, and
English emotional speech corpora. They achieve multilingual
recognition performance comparable with a monolingual
emotion recogniser. In [14], the authors evaluate cross-lin-
gual SER and highlight the ways of designing an adaptive
emotion recognition system for languages with a small
available dataset. They show that training the model with
multiple languages data can deliver comparable results with
a model trained with monolingual data and that augmenta-
tion of the training set with a fraction of target language
labelled data can help improve the performance. Various
other studies (e.g., [35], [36], [40]) explore cross-lingual SER,
however, these studies evaluate classical ML models on rela-
tively smaller datasets.

Most recent studies on SER utilise deep representation
learning techniques over low-level features. Particularly,
studies use deep networks to learn generalised representa-
tions to improve performance. For instance, the authors in
[9] use DBNs for learning generalised features across mul-
tiple datasets. They evaluate the proposed model using six
emotional corpora and showed that DBN can provide bet-
ter performance in cross-corpus SER. They also observe
that a DBN can learn a robust representation from many
language datasets that helps improve SER performance. In
[29], the authors train an attentive convolutional neural
network (ACNN) for binary classification of arousal and
valence in cross-language and multi-language training set-
tings using French and English language datasets. They
show that multilingual training can enhance the perfor-
mance of the system. Also, they find that the ACNN can
be fine-tuned using a fraction of target language data to
produce sound results for cross-language SER. Ning et al.
[41] employ multilingual Bidirectional Long Short-Term
Memory (BLSTM) with the shared hidden layers across
different languages for universal feature representation
learning. They evaluate the proposed model for English
and Mandarin corpora and found that cross-lingual
knowledge learning using shared hidden layers helps
improve SER performance compared to BLSTM variants
without shared hidden layers. Some other studies (e.g.,
[42], [43], [44]) also exploit deep networks to improve
cross-corpus and cross-language emotion detection. In
general, the methods proposed in these studies require
large aggregated speech labelled corpora to achieve gener-
alisation for improved cross-corpus performance. Models
training using aggregated corpora is not feasible in real
life, as it requires multiple labelled datasets. In contrast,
domain adaptation is a more practical approach that
improves the system’s generalisation without the need for
multiple labelled corpora. We review the studies on
domain adaptation in the next subsection.

2.2 Adversarial Domain Adaptation

Deep domain adaptation aims to improve the generalisa-
tion of SER systems by addressing the problem of
domain shift among source and target datasets.
Researchers explore different domain adaptation models

(e.g., [45], [46], [47], [48]) to improve cross-corpus and
cross-lingual SER. To this end, adversarial domain adap-
tation techniques are becoming very popular in SER. For
instance, the authors in [30] use domain adversarial neu-
ral networks (DANN) [22] for cross-corpus emotional
attributes” prediction. They learn generalised representa-
tions between the source and target data by using a gra-
dient reversal layer (GRL) which propagates back the
negative of the gradient produced by the domain classi-
fier to the shared network. They find that the DANN can
learn domain invariant representations to cross-corpus
SER. Xiao et al. [23] propose an adversarial network for
class-aligned and generalised domain adaptation. They
also exploit GRL to generalise representations among
source and target data. They evaluate the proposed
model against cross-corpus settings using IEMOCAP and
MSP-IMPROV corpora and achieved improved results
compared to DANN and AE-based deep architectures.
Zhou et al. [49] present a class-wise domain adversarial
adaptation method to learn common representation to
address cross-corpus mismatch issues. They evaluated
the proposed model on two datasets including AIBO
and EMO-DB for the French language and show that the
proposed model achieves better results when training is
performed on target data with minimal labels for posi-
tive and negative emotion classes recognition. Gideon
et al.[26] introduce an adversarial discriminative domain
generalisation model that follows a “meet in the middle”
approach for cross-corpus emotion recognition. The pro-
posed approach utilises the critic network that enables
the model to improve the cross-corpus generalisation by
iteratively moving representations closer to source and
target data. They perform evaluations using English
datasets including IEMOCAP, MSP-IMPROV, and PRI-
ORI emotion datasets [26] and show that the proposed
framework generates generalised representations for
improved cross-corpus SER.

Most of the studies above evaluate adversarial domain
adaptation methods for cross-corpus SER using similar lan-
guage corpora. However, few studies show the effectiveness
of their methods for different languages in cross-corpus SER.
Ahn et al. [34] propose a few shots learning-based unsuper-
vised domain adaptation techniques to learn emotional simi-
larity among source and target domains. They evaluate the
proposed model in three different languages and achieve
improved results. However, their proposed method requires
additional labelled training data to improve the generalisa-
tion. Latif et al. [31] present a GAN-based adversarial method
to learn language invariant representations and evaluate the
model for different language datasets. They train support
vector machines (SVM) on language invariant representa-
tions to improve the performance of cross-language SER. In
contrast to these studies, we propose an Adversarial Dual
Discriminator (ADDi) network that utilises a dual discrimi-
nator to learn generalised representations to improve cross-
corpus SER. One of the novel features of our model is the uti-
lisation of self-supervised learning (SSL) for domain adapta-
tion, which has not been explored for SER domain
adaptation. Few studies exploited SSL for improving SER
performance within-corpus settings. We discuss these stud-
ies in the following subsection.



1915

TABLE 1
Summary of a Comparative Analysis of Our Paper With That of the Existing Literature
Author (Year) Technique Evaluations Adversarial ~ Self-Supervised
Cross- Cross- Learning Learning
Corpus Language
Schuller et al. (2010) [12] Feature normalisation v 4 X X
Zhang et al. (2011) [27] Feature normalisation 4 v X X
Kim et al. (2017) [28] Aggregated corpora training 4 v X X
Latif et al. (2018) [9] Transfer learning v v X X
Neumann et al. (2018) [29] Aggregated corpora training v v X X
Abdelwahab et al. (2018) [30] Domain adaptation v X 4 X
Latif et al. [31] (2019) Domain adaptation X 4 v X
Song et al. [32] (2019) Feature subspace learning v v X X
Gideon et al. (2019) [26] Domain adaptation 4 X 4 X
Xiao et al. (2020) [23] Domain adaptation v X v X
Luo et al. [33] (2019) Feature subspace learning 4 v X X
Ahn et al. (2021) [34] Domain adaptation & aggregated v v 4 X
corpora training
Ours (2022) Domain adaptation 4 4 v v/

Very few studies have used Adversarial Learning for cross-language SER. (checked green).

2.3 Self-Supervised SER

Self-supervised learning (SSL) [50] is a new paradigm in
ML, which uses data for supervision. The self-supervised
task, also known as the pretext task, uses the unlabelled
data to guide downstream tasks. SSL-based models are get-
ting tremendous interest in computer vision [51], natural
language processing (NLP) [52], and automatic speech rec-
ognition (SER) [53]; however, few studies utilise SSL in SER.
In [54], the authors propose a multitask SSL technique to
learn a shared speech representation, where a single
encoder network is followed by multiple workers that
jointly solve different self-supervised tasks. They perform
evaluations on speaker, phoneme, and emotional cue recog-
nition, and achieve improved results. Self-supervised multi-
modal representation learning though transformers [55] is
increasingly gaining momentum to improve SER [56].
Khare et al. [57] use transformer-based SSL to improve the
performance of multimodal emotion recognition. They fine-
tune a transformer trained on a masked language modelling
task and can improve emotion recognition performance by
3 % on the CMU-MOSE dataset [58]. A recent study [59]
presents a visually-guided SSL framework for improving
the SER performance. The authors generate video frames
using still images by conditioning the network on corre-
sponding audio. In this way, the pre-trained encoder part of
their network learns important features to generate realistic
facial and lip movements. They hypothesise that the fea-
tures learnt by the encoder are highly correlated with the
presence of emotion and particular phonemes. They utilise
these representations for ASR and SER to achieve state-of-
the-art results. In contrast, we propose to generate synthetic
emotional data as a pretext task, which adversarially ena-
bles the encoder to encode discriminative features for emo-
tional data generations. We use this encoder for our
downstream domain adaptation task, which helps produce
emotionally discriminative features while minimising the
gap between source and target domains. In addition, the
synthetic emotional data generated in our downstream task
acts as a by-product that can be utilised to augment the
system.

2.4 The Research Gap (Summary)
The related work can be summarised as follows.

e Several studies show that DL models trained using
multiple sources corpora can improve cross-corpus
SER performance; however, acoustic training from
multiple language data in real-life is not a feasible
approach due to the unavailability of sufficient
labelled data for multiple languages. Therefore, there
is a need for new methods to overcome this limitation.

e Adversarial neural networks based domain adapta-
tion approaches are widely used for cross-corpus
SER; however, there is still room for performance
improvement, particularly for cross-language SER.

e Self-supervised learning can be used as an effective
tool to address the limited label issue but has not
been fully explored and used for cross-corpus SER.

In Table 1, we contrast our work with the literature,

briefly showcasing how we aim to address the research

gaps.

3 PROPOSED MODEL

The core of the proposed model is the Adversarial Dual Dis-
criminator (ADDi) network and the module for the pretext
task enabling self-supervision. We propose the generation
of synthetic data as a pretext task, wherein we essentially
pre-train an encoder that we later use to realise the pro-
posed Self-supervised Adversarial Dual Discriminator
(sADDi) network.

3.1 Adversarial Dual Discriminator (ADDi) Network

Our proposed Adversarial Dual Discriminator (ADDi) net-
work is equipped with an encoder (£), a generator (G,), and
dual discriminators: (D?) and (D'). An overview of the pro-
posed framework is shown in Fig. 1, where subfigure with label
2 shows ADDi network. It performs adversarial domain adap-
tation by learning domain invariant features. We represent the
source domain data and target domain data as X° =
{27, y;}io, and X' = {a%}7",, respectively. The encoder (F)
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Fig. 1. Overall structure of the proposed framework. We use numbers for different components, where (1) shows the pretext task that is trained on
synthetic data generation; (2) represents the Adversarial Dual Discriminator (ADDi) for domain adaptation; and (3) shows the self-supervised Adver-
sarial Dual Discriminator (SADD:i), where we use pre-trained encoder from the pretext task as highlighted with a dashed line.

attempts to map the input data either from source or target to a
domain invariant latent representation (z4 = E(X), X € X*
UX"). The generator (G4) conditioned on domain code d uses
this domain invariant latent representation (z;) to generate
source X* or target X' domain samples. The generator G, is
adversarially connected with two discriminators. The objective
function of the generator is as follows:

Lg=Lan+ALEY, M
LE" = Ellog (1 — Dy(Ga(E(X),d)))]

+ Ellog (1 — Dy(Ga(E(X),d)))], )

Lag(X,Ga(E(X))) = || X = X]I3, ®)

where ) is a balancing parameter. The generator is connected
to the dual discriminators D, and D;, which play the three-
players minimax adversarial game to produce z; to be
domain invariant. The generator also acts as the decoder and
it reconstructs back the input samples X with the latent repre-
sentation z, using the reconstruction loss in Equation (3).

The dual discriminators are tasked to distinguish the real
data from the fake data. Particularly, for domain code d = 0,
the discriminator D* differentiates between X* = G,,(E (X),d)
(fake) and source data X* (real), whereas the discriminator D?
discriminates between X* = G,(E(X),d) (fake) and source
data X* (real), for domain code d = 1. The adversarial process
of the generator G, and two discriminators minimises the
divergence between the source and target data distributions
and forces the encoder E to generate a generalised latent repre-
sentation z,; across the source and target domains. The objective
function for the dual discriminators can be given as follows:

Lp, = E[-logD:(X*)]|+E[-log(1 — Ds(Ga(X, d)))hd:o}’ 4)
L0, =B [logD, (XY)] + B-log(1- Dy(Ga(X,d) sy 5

The classifier Cy is connected with the latent representation
z¢ and minimises the cross entropy loss for emotion

classification during training using only the source data labels
and the error is back-propagated through the network to
update E. In this way, the encoder E gets influenced by the
classifier and enforces z; to be emotionally discriminating as
representation. This helps produce emotionally discriminative
and domain invariant representations to perform cross-corpus
and cross-language robust SER. When the pre-trained encoder
E is fine-tuned in the domain adaptation task, it promotes the
discriminative power of a domain invariant representation and
further boosts the performance of the system. We discuses the
encoder pre-training in the next section.

During training, first, the autoencoder is updated using
the Equation (3). Afterwards, G, is updated to generate the
fake samples using z; and the domain code d. We concate-
nate the one-hot domain code with the encoded representa-
tion z; and feed to G ;. We further update the discriminators
based on the domain codes. For the samples with d = 0, D*
is updated, whereas D' is updated for the samples with d =
1. Finally, we update the Cj for the source data samples.

3.2 Pretext: Synthetic Emotional Data Generation
and Self Supervised Adversarial Dual
Discriminator (sADDi)

A pretext task is used in self-supervised learning (SSL) to

generate useful representations that can provide a supervi-

sory signal to the down stream task. It is a predefined task

for the network to solve learning the objective function [51].

Most of the SSL pretext tasks are designed based on intuition

or heuristics [60]. There is no guarantee on the compatibility

between the pretext task and the down stream task [61]. For

SER, solving multiple audio based self-supervised tasks can

offer improvements [54]. However, these tasks have been

evaluated for within corpus SER settings. The design of an

SSL pretext task for domain adaption is challenging, as emo-

tionally discriminative generalised representations are

required to effectively perform cross-corpus SER.



We use synthetic emotional data generation as pretext
task for cross-corpus domain adaptation. The intuition here
is that the encoder network pre-trained to encode discrimi-
native features for emotional synthetic data generation
when utilised in domain adaptation should help produce
an emotionally discriminative generalised representation.

The architecture for our pretext task is shown in Fig. 1 as
a subfigure with label 1. It follows the GAN architecture
consisting of a generator and a discriminator. Both these
networks play an adversarial game defined by the following
optimisation program in Equation (6).

mGin max Eovpy,., l0gD(2)] + Epnp [log(l — D(G(2)))].  (6)

The generator network captures the data distribution and gen-
erates new samples by incorporating feedback from the dis-
criminator network. The discriminator network in a GAN is
simply a classifier. It tries to classify the real and fake data, gen-
erated by the generator network. While there are many variants
of GAN architectures (e.g., [62], [63], [64]), we use the balancing
GAN [65] like architecture due to its effectiveness in SER [66]. It
consists of an encoder (E), generator/decoder (G,), and dis-
criminator (D,). The encoder network (F) takes the non-emo-
tional speech data (XY) and generates latent code z,. We
concatenate the z, with the pseudo labels (y,) and feed to the
generator (G)) to generate the synthetic data. Since the unla-
belled samples do not belong to any emotional class, the
pseudo labels in four classes are randomly generated and uni-
formly distributed to the unlabelled non-emotional speech. In
this way, the G, network conditioned on the (y,) has explicit
emotion class label information during generation like the con-
ditional GAN [67]. During the adversarial training, G, is tasked
to generate samples in different classes based on y,; and D, is
trained to differentiate the generated samples (by generator
(G))) as fake and real samples to their class labels. The genera-
tor tries to avoid the fake label and matches the desired emo-
tional class labels. The discriminator is optimised to output
Nc+ 1 neurons, where N, represents the emotional classes
(happy, sad, neutral, or angry) and the last neuron represents
the fake class as used in [65], [68]. Since the encoder (E) is cou-
pled with the GAN, it learns to encode features for different
emotional classes in the latent space of the generator G,. After
pre-training, we fine-tune the encoder network in our ADDi
network which we name self-supervised Adversarial Adver-
sarial Dual Discriminator (sADDi). It is highlighted in the Fig. 1
with blue dashed line.

4 EXPERIMENTAL SETUP

4.1 Datasets

To evaluate the performance of our proposed model, we use
five different emotional datasets, including IEMOCAP, MSP-
IMPROV, RECOLA, EMODB, and FAU-AIBO, which are com-
monly used for cross-corpus and cross-language emotion clas-
sification research [13]. In order to use additional unlabelled
data for self-supervised learning (S5L), we use a subset of Libri-
speech [69], which is a corpus of read English speech, suitable
for training and evaluating models on automatic speech and
speaker recognition systems. Below, we briefly describe these
datasets.
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TABLE 2
Mapping Rules for IEMOCAP and RECOLA
Corpus Low/Negative High/Positive
IEMOCAP [1,2.5] (2.5,5]
RECOLA [-1,0] 0,11

Here bracket includes the elements listed and the parenthesis does not contain
the listed elements.

4.1.1 IEMOCAP

This database contains 12 hours of audiovisual data, includ-
ing audio, video, textual transcriptions, and facial motion
information [70]. The recordings are collected from 10 pro-
fessional actors (five males and five females) during dyadic
interactions. In contrast to reading text with prototypical
emotions, dyadic interactions allowed the actors to perform
more spontaneous emotion [71]. For categorical labels, each
sentence is annotated by three annotators and the partici-
pant. Finally, an utterance is assigned a label if at least three
annotators are assigned the same label. Overall, IEMOCAP
contains nine emotions: excited, happy, sad, neutral, angry,
disgust, frustrated, fearful, and surprised. Similarly to pre-
vious studies [72], we only use utterances of four categorical
emotions, including happy, neutral, sad, and angry in this
study by merging “happy” and “excited” as one emotion
class “happy”. The final dataset includes 5531 utterances
(1636 happy, 1708 neutral, 1084 sad, and 1103 angry
instances). For continuous labels, IEMOCAP is also anno-
tated for arousal and valence on a scale of 1 to 5. We map
continuous labels to binary labels as presented in Table 2.

4.1.2 MSP-IMPROV

The MSP-IMPROV dataset is an acted audiovisual emo-
tional database recorded from 12 speakers performing
dyadic interactions [73]. Overall, the recordings are grouped
into six sessions and each session contains the recordings of
one male, and one female actor similar to IEMOCAP [70].
The scenarios were carefully designed to control emotion
and lexical content while maintaining naturalness in the
recordings. The MSP-IMPROV is annotated through per-
ceptual evaluations using crowdsourcing [74]. This corpus
contains utterances in four categorical emotions: angry,
happy, neutral, and sad. To be consistent with previous
studies [10], [75], we use all utterances with four emotions:
anger (792), happy (2 ,644), sad (885), and neutral (3 ,477).

4.1.3 RECOLA

RECOLA [76] is a French multimodal corpus of spontaneous
collaborative and affective interactions. While solving a col-
laborative task, speakers recorded the dyadic conversations
during a video conference. 46 participants (27 females, and
19 males) were recruited to record this corpus. We use the
publicly available portion of RECOLA, which contains 1,308
utterances of 23 speakers. An open-source web-based tool
ANNEMO' was developed for its affective annotation. REC-
OLA is annotated with continuous labels, including arousal
and valence in the range [—1, 1]. We use RECOLA for cross-

1. https:/ /diuf.unifr.ch/main/diva/recola/annemo
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corpus language SER and perform binary classification of
arousal (low/high) and valence (negative/positive) as con-
sidered in [29]. Table 2 shows the mapping of original anno-
tations to a binary scheme for IEMOCAP and RECOLA.

4.1.4 EMODB

EMODB [77] is the most popular and widely used publicly
available emotional dataset in German Language, recorded
by the Institute of Communication Science, Technical Uni-
versity Berlin. It contains audio recordings of seven emo-
tions recorded by ten professional speakers in 10 German
sentences. This study selects four basic emotions: happy,
sad, neutral, and angry to perform categorical cross-lan-
guage emotion recognition.

4.1.5 FAU-AIBO

FAU-AIBO [78] corpus is a spontaneous emotional corpus
in the German language. It contains 9.2 hours of speech
from 51 children from different schools while interacting
with Sony’s pet robot AIBO. In this study, we select FAU-
AIBO to evaluate the proposed framework against
completely naturalist emotional speech. We map this corpus
to binary valence for evaluations.

4.1.6 LibriSpeech

The LibriSpeech dataset [69] contains 1 000 hours of English
read speech from 2484 speakers. This corpus is derived
from audiobooks and is commonly used for automatic
speech and speaker recognition problems [79], [80]. The
training portion of LibriSpeech is divided into three subsets,
with an approximate recording time of 100, 360 and 500
hours. This paper uses the subset that contains 100 hours of
recordings. These recordings span over 251 speakers.

4.2 Speech Features Extraction

We represent the speech sample in Mel Filter Banks (MFBs),
a widely used speech representation in speech research
[26], [81]. We use the Kaldi speech recognition toolkit [82] to
extract 40-dimensional MFBs from each utterance. To
extract MFBs, we use default options, including a Povey
window with a frame length of 25 ms and a frameshift of
10 ms, a preemphasis coefficient of 0.97, and a low cutoff of
20 Hz. These configurations are selected based on [26] to
make a fair comparison. Due to the varying lengths of the
audio samples, we pad the MFBs with zeros to the length of
the longest emotional utterance.

4.3 Model Configuration

This subsection presents the configuration of three models,
including a baseline Convolutional Neural Network (CNN),
the proposed Adversarial Dual Discriminator (ADDi) net-
work, and the pretext task GAN. Each of these models takes
MFBs as the input feature set. Each experiment considers
labelled source data for training, and target data is used for
testing. We train all these models using Adam as the opti-
miser with default parameters and a starting learning rate
of 0.0001. We compute the validation accuracy at the end of
each epoch during training. If the validation accuracy did

not improve after 5 epochs, we restore the model to the best
epoch and halves the learning rate. This process continues
until the learning rate reaches below 0.00001.

The CNN baseline network comprises a feature encoder
and emotion classifier. The feature encoder consists of con-
volutional and max-pooling layers, whereas the classifier
part utilises the fully connected layers for classification. Due
to the unavailability of target data in the experiments, it is
difficult to validate all the hyperparameters of the network
for cross-dataset SER. Therefore, we select the parameters
commonly used in prior studies [26], [83], [84]. The feature
encoder has three convolutional layers, each followed by
the pooling layers. We start with a large filter size of 16 in
the first convolutional layer as suggested by prior work
[84]. The convolutional layers capture the salient regions
within the MFBs and create the feature maps. The pooling
layers reduce the dimension of these feature maps by identi-
fying the most relevant features. We use the max-pooling
layer to give better performance than average pooling dur-
ing experiments. The feature encoder encodes the entire
utterances into the 256 features. The classifier uses these fea-
tures for emotion classification. We have two dense layers
with hidden units of 256 and 128. We employ a dropout
layer between two dense layers with a dropout rate of 0.3 to
avoid overfitting.

The ADDi network also has an encoder component to
encode input MFBs to the domain invariant representation
that is used by the generator. We apply a similar encoder
architecture to the baseline CNN. The decoder/generator
has three transposed convolutional layers to generate sam-
ples using the encoded latent representation. Two discrimi-
nators and the classifier of ADDi have two hidden layers
containing hidden units of 256 and 128 in number. Like the
baseline CNN and ADDJ, our pre-training GAN also has an
encoder network that follows a similar architecture. We
employ the same architecture for the discriminator as for
the ADDi network. We select the Rectified Linear Unit
(ReLU) as a non-linear activation function for all the models
due to its better performance than hyperbolic tangent and
leaky ReLU during validation.

5 [EXPERIMENTS AND EVALUATIONS

We apply a two-tiered evaluation approach: We evaluate
ADDi to understand the significance of the proposed dual-
discriminator based framework. We then evaluate sADDi to
understand the relative significance of self-supervised
learning for ADDi. We evaluate the performance of the pro-
posed ADDi and sADDi networks in cross-corpus and
cross-language settings by comparing them with related
studies that report similar results. To further extend the
extent of our comparison, we implement related models
including a CNN (baseline), a GAN [31], a DANN [30], a
DBN [9], a CNN-LSTM [43], and an autoencoder-based
model as used in [85] and compare our results with these
models. We repeat each experiment ten time and calculated
mean and standard deviation. Results are presented using
the unweighted average recall rate (UAR), a widely
accepted metric in the field.



TABLE 3
Cross-Corpus SER Results in UAR (%) Using IEMOCAP
(English) and MSP-IMPROV (English)

Model IEMOCAP to MSP-IMPROV
MSP-IMPROV to IEMOCAP
CNN (baseline) 42.5+1.6 44.3+1.5
DANN [30] 42.8+1.4 449+1.7
GAN [31] 43.6+£1.3 45.8+1.5
ADDOG [26] 444409 47.4+0.7
ADDi (proposed) 45.1+0.8 48.240.6
CNNgg, (baseline) 43.8+£1.2 453 +1.1
sADDi (proposed) 47.1+0.5 49.8+0.6

5.1 Cross-Corpus Results

We evaluate the proposed ADDi and sADDi networks for
cross-corpus SER using the IEMOCAP and MSP-IMPROV
datasets. Both of these datasets are recorded in similar
laboratory conditions in English. In this experiment, we
consider no labels for the target dataset. We use a random
80:20 (train:test) split of the source data and train the
model as used in [26]. We compare the performance of
the ADDi network with a baseline CNN, ADDOG [26], a
DANN and a GAN [31]. The results are presented in
Table 3.

Compared to these existing methods and baseline,
ADDi achieves better results. ADDi achieves 2.6% and
3.9% relative improvements compared to the baseline
CNN for IEMOCAP to MSP-IMPROV and MSP-IMPROV
to IEMOCAP experiments, respectively. Amongst the pre-
vious studies, ADDOG utilises the critic component simi-
lar to a Wasserstein GAN [63] to learn generalised
representations for cross-corpus SER, while another study
[31] applies a single discriminator based adversarial
method to minimise the domain gap, and whereas in [30],
a gradient reversal layer (GRL) [22] is used to minimise
the gap between the source and target domains. In contrast
to these studies, ADDi utilises a dual discriminator based
network to learn a domain invariant representation by
bringing source and target features closer to each other
with three-players adversarial minimax games hence pro-
ducing better results. Using the ablation study in
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Section 5.8, we further quantify the relative significance of
our dual discriminator based approach.

Table 3 also shows the self-supervised learning (SSL)
for ADDi which we called sADDi above. When we pre-
train the encoder component in the sADDi network
using the proposed synthetic data generation pretext
task, it learns to encode discriminative representation for
synthetic emotional data generation through the process
of accomplishing the proposed pretext task. This helps
to produce emotionally discriminative domain general-
ised features while fine-tuning the encoder in sADDi
and the baseline CNN. Results by the SSL methods are
separated with a bold line in Table 3, which shows that
the pre-training of the encoder considerably improves
the cross-corpus SER. It is worth noting that the perfor-
mance of the baseline CNN is also improved by utilising
the pre-trained encoder by our proposed pretext task,
which attests the effectiveness of the proposed self-
supervised pretext task.

5.2 Cross-Language Results

We evaluate ADDi and sADDi for cross-language SER
using both dimensional and categorical emotions. We use
the IEMOCAP and RECOLA datasets for dimensional emo-
tion and perform binary arousal and valence classification.
All data from one language is used as a training set and all
samples of the respective target language are used as the
test set. This is the same evaluation strategy used in [29].
We also implement domain adaptive models, including the
GAN and DANN for comparison on IEMOCAP and REC-
OLA. Cross-language SER results using IEMOCAP and
RECOLA are presented in Table 4.

Using our proposed ADDi framework, we achieve better
results compared to [29], where the authors use an Attentive
Convolutional Neural Network (ACNN) to achieve promis-
ing results by fine-tuning the model on the target language.
We also compare our results with domain adaptation archi-
tectures, including GAN and DANN in Table 4. Compared to
these models, ADDi is able to capture an emotion discrimina-
tive generalised representation by adversarially minimising
the domain shift among source and target language data to

TABLE 4
Dimensional Cross-Language SER Results by UAR (%) Using the IEMOCAP and RECOLA Datasets

Model IEMOCAP (English) to RECOLA RECOLA (French) to IEMOCAP
(French) (English)

arousal valence arousal valence
CNN (baseline) 59.2+1.8 485+ 1.5 60.7+ 1.6 48.3+2.0
ACNN [29] 59.3 49.1 61.2 47.5
GAN [31] 59.8+1.9 49.8+1.7 60.3+1.3 487+ 1.5
DANN [30] 60.1+2.1 50.2+1.5 61.5+1.5 492+ 14
ADDi (proposed) 61.5+1.2 51.8+1.4 62.2+1.3 50.9+1.2
CNNigr, (baseline) 60.1£1.5 4924+ 13 612+1.6 49.0+ 14
sADDi (proposed) 63.8+1.0 53.81+1.2 64.21+1.4 52.51+1.3

using fraction of target date for fine-tuning.

ACNN [29] (500 target samples) 67.03 50.42 63.07 49.81
sADDi (250 target samples) 70.3+1.3 57.1+1.3 68.6+1.0 56.3+1.1
using language information.
sADDi (250 target samples) 72.4+1.6 60.1+1.4 70.2+1.3 59.31+1.2
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TABLE 5
Categorical Cross-Language SER Results by UAR (%) Using
the IEMOCAP and EMODB Datasets

Model IEMOCAP (English) EMODB (German) to
to EMODB (German) IEMOCAP (English)

CNN (baseline) 422+1.9 38.442.2

DBN [9] 42.542.1 39.54+2.4

CNN-LSTM [43] 42.1+1.8 38.9+2.1

AE [85] 432423 40.1+1.8

GAN [31] 44.3+1.7 40.3+1.7

DANN [30] 43.54+1.8 40.542.0

ADDi (proposed) 46.1+1.6 41.2+1.8

CNNyggr, (baseline) 43.5+1.7 40.2+1.9

sADDi (proposed) 48.31+1.5 44.8+1.6

improve SER across different language data. Performance is
further improved when features learnt through SSL are uti-
lised to guide the cross-language domain adaptation using
sADDi. It is important to note that the performance of all the
models is close to the chance level UAR (i.e., 50 %), which
shows the complexity of cross-language SER. However, our
model improves the baseline results compared to the previ-
ous studies. To further improve the baseline performance, we
perform two experiments. In the first experiment, we utilise a
fraction of target data in the training set. Results in Table 4
show that including only 250 target language data yields con-
siderable improvements compared to ACNN [29] with 500
target samples. We incorporate language id with the source
language data and 250 target language samples in the second
experiment. Results are reported in Table 4, which shows that
the performance is improved for both arousal and valance
prediction using the language information in the training
data. However, the language information helps valence pre-
diction more than the arousal prediction, which indicates that
valence is more lexically dependent than arousal.

We also compare our results on categorical cross-language
emotion classification with different studies [9], [30], [31], [43],
[85] and present the results in Table 5. In [9], the authors use
transfer learning to improve cross-language SER using DBNSs.
A CNN-LSTM is suggested in [43] and an autoencoder is tested
in [85] for cross-language SER. We also compare our results
with GAN and DANN-based domain adaptive implementa-
tions for cross-language SER. ADDi achieves better results
compared to all, which attests that ADDi learns greater domain
generalised representation for cross-language scenarios. Com-
pared to baseline, ADDi achieves 3.9 % and 2.8 % relative
improvements for IEMOCAP to EMODB and EMODB to
IEMOCAP experiments, respectively. Similar to the dimen-
sional emotions, performance on categorical cross-language
SER is further boosted by using a self-supervised ADDi
(sADDi) network, which shows that the network is able to pro-
duce better generalised features for cross-language SER guided
by the synthetic emotional data generation pre-training.

5.3 Impact of Pretext Selection: Reconstruction
versus Synthetic Data Generation

We propose synthetic data generation as a pretext task for
self-supervised learning. In this experiment, we evaluate
the effectiveness of this pretext task by comparing it with
reconstruction as a pretext task. We make the comparison
for both, the baseline and the ADDi networks.

Reconstruction is widely used as a pretext task in the
computer vision literature [51], [86], wherein an autoen-
coder network is used to reconstruct the input back from
the compressed representation. To use reconstruction as a
pretext, we use unlabelled data (LibriSpeech) for unsuper-
vised reconstruction and pre-train the encoder component
to be utilised in the downstream task. We use the Libri-
Speech data to generate the synthetic emotional data and
pre-train the encoder component to use synthetic data gen-
eration for pretext.

Results of the comparisons are presented in Fig. 2 for
cross-corpus and cross-language SER. For cross-corpus
SER, we use IEMOCAP and MSO-IMPROV, and IEMOCAP
and RECOLA are used for cross-language SER.

Compared to the reconstruction-based pretext task, we
achieve better results using synthetic emotional data genera-
tion for both the baseline CNN model and ADDi. However,
despite the popularity of autoencoder-based reconstruction
pretext tasks in computer vision, it could not produce strong
representations for transfer tasks in SER. One possible reason
might be that the autoencoder only learns to encode abstract
bottleneck representations from non-emotional speech,
which cannot provide supervisory signals in the down-
stream domain adaptation task.

5.4 Impact of Data Augmentation

We generate the synthetic data during our pre-training step
and use it to augment the source training data. We evaluate
the model in a cross-corpus setting using IEMOCAP as
training and MSP-IMPROV as testing data to compare the
results with [83], [87], [88]. In [87], the authors investigate a
GAN to generate the synthetic feature vectors using low
dimensional features to augment the SER. Bao et al. [88]
apply a CycleGAN based model for synthetic samples by
transferring feature vectors extracted from a large unla-
belled speech data into the target synthetic emotional sam-
ples. They augment the SER system with synthetic features
to improve SER performance. Recently, Latif et al. [83] uti-
lise the combination of a GAN and mixup [89] to generate
synthetic samples for SER augmentation. Similar to these
studies, we also augment the SER system with synthetic
data and perform evaluations using real, synthetic, and real
plus synthetic data. We also use MSP-IMPROV as the target
data, as per these studies. We randomly select 30 % of the
data as a development set for hyper-parameter selection
and the remaining 70 % as testing data as used in these stud-
ies. We keep these splits speaker independent. Results are
compared with these studies in Table 6. As expected, the
synthetic data alone cannot offer better results, but we get
better performance when we augment source data with the
synthetic data to train ADDIi.

5.5 Impact of Incorporation of Source/Target Data

This experiment incorporates the labelled target data into the
training and validation. Here, we present the results using
IEMOCAP and MSP-IMPROV in Fig. 3. Similar results are
achieved for cross-language datasets. We plot the results with
different percentages of target data using the baseline
approach and ADDi. ADDi improves the results considerably
against baseline CNN in all the case, even for a small
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Fig. 2. Impact of self-supervised pre-training on cross-corpus SER (Figs. 2a and 2b) using the IEMOCAP and MSP-IMPRQV datasets and cross-lan-

guage SER (Figs. 2c and 2d) using IEMOCAP and RECOLA.

TABLE 6
UAR Comparison for Cross-Corpus Evaluation Using Synthetic
Data to Augment the Model

Studies Real Syn. Real+Syn
Sahu et al. [87] 45.14 33.96 45.40
Bao et al. [88] 4558 £0.40  41.58 +1.29 46.51+0.43
Latif et al. [83] 46.0+ 0.57 42.15+£1.12  46.60 & 0.45
ADDi 47.83+ 0.45 4225+ 095  48.61 4 0.40

percentage target labelled data. Fig. 3 shows that the margin
of UAR improvement decreases with incorporating larger
percentages of labelled target data. This may indicate that the
generalisation effect diminishes once there is sufficient
amount of labelled target domain data.

60 T T

We also explore the effect of decreasing the percentage of
source data on the performance of cross-corpus SER using
IEMOCAP and MSP-IMPROV. In both cases, sADDi per-
forms better than the baseline. We also compare the results
with ADDOG [26] in Figs. 3c and 3d. The red dot shows the
performance achieved by ADDOG using 100 per cent of
source data. We achieve these results using 80-86 % of
source data as highlighted by a dotted blue line.

5.6 Evaluations in The Wild

In this section, we evaluate the performance of the proposed
model on the naturalist speech. For this experiment, we use
FAU-AIBO corpus that contains the natural speech of children
in the German language. We perform binary valence
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Fig. 3. Results for cross-corpus SER with increasing amounts of labels from the target and source datasets.



1922

TABLE 7
Results With the Naturalist Speech Using FAU-AIBO Corpus

Model IEMOCAP (English) to FAU-AIBO (German) to
FAU-AIBO (German)  IEMOCAP (English)

CNN 53.7£1.8 52.1£1.5

(baseline)

DBN [9] 54.5+2.0 50.7 £1.7

sADDi 58.3 £ 1.5 56.9 £1.6

classification as used by previous studies [9], [90]. This experi-
ment is more difficult compared to the previous experiments,
due to the difference in language, age, and elicitation strategy.
We train the model on source data and 20% target data is used
as validation and the remaining is used for testing. Results for
both experiments are reported in Table 7, which shows that the
proposed model considerably improved performance com-
pared to the DBNs [9] and baseline CNNs. sADDi is improving
the results by above 4% for both experiments presented in
Table 7. This confirms the effectiveness of our sAADi network
that can produce generalised representations for evaluations
against naturalist speech.

5.7 Size of Pretext Task Training Data

We next examine the effect of the size of training data in
pretext tasks on the performance of sADDi. We plot the
results for [IEMOCAP and MSP-IMPROV in Fig. 4. For both

T
=©— [EMOCAP to MSP-IMPROV
=&~ MSP-IMPROV to IEMOCAP

.
50
training data in hour used for pretext task

Fig. 4. Effect of increasing the training data in hours on the performance
(UAR %).

experiments, we find that the increase of training data in
the pretext task helps improve the performance of the
downstream emotion classification. This shows that increas-
ing the training data in the pretext task enables the model to
produce representations suitable for the downstream task
of speech emotion recognition (SER).

5.8 Ablation Experiments

In this experiment, we validate the necessity and effectiveness
of each module integrated with our proposed model ADDi.
Results are presented in Table 8 for cross-corpus and cross-lan-
guage evaluations using IEMOCAP to MSP-IMPROV and
IEMOCAP to EMODB. These results are computed without
any data augmentation and pre-training. Results for synthetic
data augmentation and pre-training are presented in Sections 5.4

TABLE 8

Results for Cross-Corpus and Cross-Language Using IEMOCA

P to MSP-IMPRQV, and IEMOCAP to EMODB, Respectively

Model Configuration Discriminators | Decoder | Encoder | Classifier Cliojs:i{cc();gus Cro[sjsg}?r(\il)lage
1 2 v’ v’ v’ 45.1+0.8 46.1+1.6
2 1 v’ v’ v’ 432413 440419
3 1 v’ v’ v’ 431414 435+1.8
4 X v’ v’ v’ 427412 433418
5 X X v’ v’ 425416 412419




and 5.3. This experiment starts with the ADDi model (model 1)
that contains all the components, including the encoder, two
discriminators, the generator/decoder, and the classifier. We
remove one discriminator in models 2 and 3. This makes the
model similar to the standard GAN with an additional classifier
and autoencoder. We keep removing different modules until
we obtain the baseline CNN network (model 5), containing
only the encoder and classifier. We also plot the configurations
of these models 1-5 in Table 8. There is a considerable drop in
UAR when one or more components are removed. When a
single discriminator — either D, or D; —is used in model 2 or 3,
we see a performance drop for both cross-corpus and cross-lan-
guage SER. This shows that the single discriminator networks
cannot achieve better generalisation compared to the three-
players adversarial learning performed by the dual discrimina-
tor and generator approach in the ADDi network. Similarly,
ADDi also achieves considerably improved results compared
to models 4 and 5 in cross-corpus and cross-language settings.
In models 4 and 5, there is no component (i. e., discriminator) to
promote generalised representations in the network by mini-
mising the domain gap between source and target data. This
shows that implanting a domain adaptation component in the
pipeline of the deep model is important to learn to improve gen-
eralised features for cross-corpus and cross-language SER.
Opverall, these ablation experiments show that all the compo-
nents in the proposed ADDi models are chosen carefully for
effective domain adaptation for SER.

6 CONCLUSION AND FUTURE WORK

This contribution addressed the open challenge of improving
the speech emotion recognition (SER) performance in cross-cor-
pus and cross-language settings. We proposed the Adversarial
Dual Discriminator (ADDi) network that minimises the domain
shift among emotional corpora adversarially. We focused on
exploiting the unlabelled data with self-supervised pre-training
and proposed self-supervised ADDi (sADDi). For sADDi, we
suggested synthetic data generation as a pretext task, which (1)
helped improve the domain generalisation performance of an
SER system to tackle the larger domain shift between training
and test distributions in cross-corpus and cross-language SER;
and (2) produced byproduct synthetic emotional data to aug-
ment the SER system and minimise the requirement of source
labelled data. The key highlights are as follows:

e The introduced dual discriminator based ADDi net-
work offers improved cross-corpus and cross-lan-
guage SER without using any target data labels
compared to the single discriminator and other
state-of-the-art approaches. This is mainly due to the
dual discriminator using a three-players adversarial
game to learn generalised representations.

e Considerable improvements in results were found
when partial target labels were fed to the network
training. This helped the ADDi to regulate the gener-
alised representations based on the target data by
maximally matching the data distributions.

e Our proposed self-supervised pretext task produces
synthetic data as a byproduct to augment the system
to achieve better performance. We were able to
reduce 15-20% source training data using sADDi
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while achieving similar performance reported by a
recent related study [26].

Future studies will include evaluating the ADDi and
sADDi architectures to model other factors of speech var-
iations, including age, subject, gender, phoneme, noise,
and recording device. Further experiments may include
evaluating the proposed methods in wild conditions like
noisy speech and adversarial noise. We are also interested
in exploring multimodal pretext task techniques in our
future work. Multimodal human interaction in video and
textual form can provide various opportunities for self-
supervised learning to improve cross-corpus and cross-
language SER.
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