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Abstract—Physiological studies have identified that facial dynamics can be considered as biomarkers to analyze depression severity.

This paper accordingly develops a Dual Attention and Element Recalibration (DAER) network to extract facial changes to predict the

depression level. In this model, we propose two blocks: a Dual Attention (DA) block and Element Recalibration (ER) block. The DA

block uses the self-attention to investigate the dynamic changes in the representation sequence of a facial video segment. It further

examines the influence of feature components of the representation sequence on depression level prediction through bilinear-attention.

Moreover, to improve the representation ability of network, the ER block is used to obtain the global information to recalibrate each

element of the tensor. Adopting this approach, for the depression level prediction task, we first divide the long-term video into fixed-

length segments and use the trained ResNet50 to encode each frame to generate the representation sequences of video segments.

Second, the representation sequences are input into DAER network to obtain the depression level scores. Finally, the average of these

scores yields the prediction result corresponding to the long-term video. Experiments on publicly available AVEC 2013 and AVEC 2014

depression databases illustrate the effectiveness of our method.

Index Terms—DAER network, depression level prediction, dual attention block, element recalibration block, facial differences

 

1 INTRODUCTION

AS a psychological disease, major depressive disorder
causes people to fall into a state of low mood for a long

period, resulting in their the inability to participate normally
in social life. In addition, depression can reduce self-aware-
ness and even lead to self mutilation or suicide [1]. Data

released by the World Health Organization in 2017 shows
that around 350 million people globally suffer from depres-
sion, with depression predicted to become the second lead-
ing cause of death in 2030 [2]. Unfortunately, the process of
diagnosing depression is often both laborious and primarily
dependent on doctors’ clinical experience, which results in
many patients being unable to recognize their physiological
changes and access timely treatment. It is therefore impera-
tive to develop an automatic depression diagnosis system to
assist doctors in improving the current medical conditions.

Related physiological studies [3], [4] reveal differences in
facial activities between depressed and healthy individuals.
In other words, the pattern of facial activities can be consid-
ered as a biomarker for use in analyzing an individual’s level
of depression, which can bemeasured using the BeckDepres-
sion Inventory-II (BDI-II) score [5] as shown in Table 1. Based
on this information, many researchers [6], [7], [8], [9], [10],
[11], [12] have proposed different methods for extracting the
representations of depression cues in order to predict the
BDI-II score. However, in the works of [6], [7], the authors
only examine the spatial structure of the facial image while
ignoring the facial changes in the video. Moreover, the meth-
ods in [8], [9] use the Three Orthogonal Plane (TOP) frame-
work proposed in [13] to calculate the feature histogram of
the facial video clip, which is used to obtain the correspond-
ing spatiotemporal representation. Notably, however, the fea-
ture histogram is not sensitive to the salient features [14].
Furthermore, hand-crafted features rely heavily on the expe-
rience of designers, which can lead to the loss of some useful
information. To this end, Shang [15] employ the Convolution
Neural Network (CNN) to process the facial images, which is
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not enough for examining facial dynamics. Zhu et al. [10]
input facial images and optimal flows into a deep Convolu-
tion Neural Network (CNN) to investigate the influence of
facial appearance and dynamics on depression level analysis.
Similarly, the 3D CNN and attention mechanism are adopted
in [16] and [17] to extract spatiotemporal features for predict-
ing the BDI-II score. However, these spatiotemporal feature
extractionmethods rarely consider the impact of feature com-
ponents on depression level prediction. In addition, they fail
to highlight the effective elements in the tensor, resulting in
the annihilation of subtle information related to depression.

In recent years, numerous reports in the fields of speech
recognition [18], [19] and video processing [20], [21] have
shown that the self-attention mechanism is both feasible
and advantageous for modeling the temporal sequence.
Moreover, the experimental results presented in [22], [23],
[24] confirm the fact that bilinear-attention is able to capture
discriminative fine-grained features due to the extraction of
second-order statistics. Meanwhile, the popular Squeeze-
Excitation (SE) block [25] and its variants [26], [27] illustrate
that networks’ representation ability can be strengthened by
embedding the global information into the feature channels.
Inspired by these research achievements, and to alleviate
the above issues in the field of automatic depression level
prediction, we propose a Dual Attention and Element Recal-
ibration (DAER) network to predict the BDI-II scores of
individuals. In our approach, there are two main blocks: the
Dual Attention (DA) block and the Elements Recalibration
(ER) block. The DA block uses the self-attention and bilin-
ear-attention, from the perspective of temporal changes and
feature components, to investigate the facial dynamics of
individuals with different depression levels and highlight
the effective parts in the feature components. Furthermore,
unlike recalibration feature channels in the SE block, the ER
block is able to recalibrate each element of the tensor for
capturing subtle depression cues. In more detail, our
method comprises three steps:

First, we divide a long-term video into fixed-length seg-
ments and each frame in the video segment is encoded into a
representation vector using the trained ResNet50with Euclid-
ean loss and “ReLU” rather than “Softmax”. In this way, a
video segment is encoded into a representation sequence and
a long-term video corresponds to multiple representation
sequences. Second, these representation sequences are input
into the proposed DAER network for BDI-II score prediction.
Third, we take the average of BDI-II scores obtained from
those representation sequences as the prediction result corre-
sponding to the long-term video. Experimental results on two
publicly available Audio/Visual Emotion Challenge (AVEC)
2013 [28] and AVEC2014 [29] depression databases demon-
strate the effectiveness of ourmethod.

The main contributions of this paper can be summarized
as follows:

1) In this paper, we propose a Dual Attention (DA)
block. This block adopts self-attention to investigate
the temporal differences in facial activities among
individuals with different depression levels. More-
over, our proposed bilinear-attention treats each fea-
ture component in the representation sequence as a
time series and calculates its second-order statistics
to highlight depression-related parts.

2) To capture subtle depression cues, we additionally
develop an Element Recalibration (ER) block. This
block embeds the global information into the tensor
to emphasize the elements that contribute to predict-
ing depression levels.

3) We use the proposed DA and ER blocks to construct
a novel deep architecture-i.e., the Dual Attention
and Element Recalibration (DAER) network–in order
to predict individual depression levels. Experiments
are performed on two publicly available databases
(i.e., AVEC 2013 and AVEC 2014 depression data-
bases) to verify the contribution of each block and
demonstrate the effectiveness of our method.

The remainder of this paper is organized as follows. In
section 2, we review the works related to automatic video-
based depression level analysis methods. In section 3, we
provide a detailed description of the method proposed in
this paper. Our experimental results and discussion are pre-
sented in section 4. Finally, section 5 concludes the paper.

2 RELATED WORKS

Physiological research has shown that facial changes can be
used as a biomarker to predict individual depression sever-
ity. Many researchers have accordingly attempts to employ
machine learning technologies to find the mapping relation-
ship between the facial feature and depression score. There-
fore, in this section, we briefly review prior works on this
subject.

2.1 Automatic Depression Level Prediction With
Hand-Crafted Features

As part of the AVEC challenges held in 2013 and 2014, Valstar
et al. [28], [29] released two databases for depression level pre-
diction and provided the baseline features. For AVEC2013,
these authors used the Local Phase Quantization (LPQ) pat-
tern to extract the feature of each frame, then calculated the
mean of these features to yield the representation correspond-
ing to the video in question. For AVEC2014, the baseline fea-
ture was the Local Gabor Binary Pattern (LGBP) feature from
the XY-T image plane, which was used to characterize the
facial changes. In [30], Dhall et al. extracted the Local Binary
Patterns from Three Orthogonal Planes (LBP-TOP) feature
from the non-overlapping blocks obtained from the video,
then used Fisher Vector (FV) encoding to aggregate these
LPB-TOP features to the spatiotemporal representation of the
video.Wen et al. [31] adopted LPQ-TOP to represent temporal
changes in facial region sub-volumes, after which the sparse
coding method and discriminative mapping were used to
obtain the visual-based nonverbal behavior descriptor used

TABLE 1
BDI-II Scores and Corresponding Depression Severity

BDI-II Score Depression Degree

0-13 None
14-19 Mild
20-28 Moderate
29-63 Severe
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to predict the individual depression level. In [9], He et al. com-
bined the Median Robust Local Binary Pattern with the TOP
framework to obtain the MRLBP-TOP, which was used cap-
ture the spatiotemporal information of facial microstructure
and macrostructure in the video segment. Furthermore, to
automatically learn the number of mixtures in the Gaussian
Mixture Model, these authors proposed a Dirichlet Process
Fisher Vector encoding scheme to aggregate the features
extracted from the video segments in order to obtain the
video representation. Niu et al. [8] developed a novel local
pattern named Local Second-Order Gradient Cross Pattern
(LSOGCP) to extract the facial detailed texture and generated
the LSOGCP-TOP to capture the subtle facial dynamics.
Moreover, they adopted a hierarchical method of between-
group classification and within-group regression to predict
the BDI-II score.

Notably, the hand-crafted features used in above works
rely heavily on the experience of the designers, meaning
that some effective information related to depression is lost
under these approaches. In addition, the TOP framework is
essentially a histogram feature generation method and
ignores the fact that the salient features are distributed
unevenly in the temporal space [14].

2.2 Automatic Depression Level Prediction With
Deep Neural Networks

In recent years, deep neural network-based methods have
achieved good performance in the fields of image [32], [33]
and video [34], [35] processing. Some researchers have
accordingly constructed various models to extract the repre-
sentations of depression cues for estimating depression
severity from facial activities. Zhou et al. [7] presented a
deep CNN equipped with a Global Average Pooling (GAP)
layer, termed DepressNet, to process video frames. More
specifically, the full face and three overlapping facial
regions (top, central, and bottom) were input into Depress-
Net to yield the complementary information used to predict
the depression score of each frame. The average of the
scores corresponding to video frames was taken as the pre-
diction result of the video. Similarly, the works of [15], [46]
also predicted the individual BDI-II score through examin-
ing the different facial regions. Jan et al. [36] extracted the
deep features from AlexNet and VGG-Face. Then, the Fea-
ture Dynamic History Histogram was constructed to char-
acterize facial dynamics to predict BDI-II score.

Zhu et al. [10] designed a two-stream framework to cap-
ture both facial appearance and dynamics. In this frame-
work, the face frames and facial optical flow images were
input into two deep CNNs to extract the appearance repre-
sentation and dynamic features. Moreover, the two deep
CNNs were integrated by joint-tuning layers to predict indi-
viduals’ BDI-II scores. Uddin et al. [37] also proposed a two-
stream method for depression level estimation. These
authors used the Inception-ResNet-v2 network [38] to
extract facial spatial features, after which a combination of
Temporal Median Pooling and Bidirectional Long Short-
Term Memory was adopted to capture the spatiotemporal
information. Moreover, the dynamic feature map generated
by the Volume Local Directional Number pattern was proc-
essed by the CNN, TMP layer and Bi-LSTM in turn, yielding

the high-level spatiotemporal feature and accordingly the
prediction result. Furthermore, to directly generate the spa-
tiotemporal feature, Jazaery [12] et al. used 3D CNN to pro-
cess tightly aligned and loosely non-aligned face clips to
estimate the BDI-II score. In [11], the authors considered
that the full-face and eye regions were helpful in improving
the prediction accuracy. They accordingly integrated the
3D-GAP layer into the 3D CNN to capture the depression
cues from global and local facial regions. Similarly, He et al.
[47] proposed a 3D NN equipped with a spatiotemporal fea-
ture aggregation module to characterize the depression cues
in the video segment.

The methods discussed above extract the high-level rep-
resentations of depression cues through the use of CNN-
based network models. However, these methods rarely con-
sider the influence of feature components on depression
level prediction. In addition, failure to investigate elements
of the tensor will also lead to the annihilation of subtle
depression-related information.

In a departure from the above-mentioned works, we
examine the facial changes and highlight the depression-
related feature components in the representation sequence
using the DA block. In addition, the ER block expands the
concept of SE block and improves the network representa-
tion ability by recalibrating each element of the tensor. The
experiments are conducted on AVEC 2013 and AVEC 2014
depression databases. The results demonstrate the effective-
ness of our proposed method.

3 DAER NETWORK FRAMEWORK FOR AUTOMATIC

DEPRESSION LEVEL PREDICTION

Physiological studies [3], [4] have shown that facial activi-
ties can be reviewed and used as a biomarker to analyze
individual depression levels. Accordingly, in this paper, we
use the proposed DAER network to capture differences in
facial dynamics among individuals with different depres-
sion levels. In our model, we first divide the long-term
video into fixed-length segments and obtain the representa-
tion sequences of these segments via the trained ResNet50.
Second, the prediction scores corresponding to these repre-
sentation sequences are obtained via the proposed DAER
network. Third, the average of these prediction scores is
taken as the depression severity estimate corresponding to
the long-term video. Fig. 1 illustrates the whole flow of our
proposed framework.

3.1 Representation Sequence Generation of Video
Segments Using the Trained ResNet50

Recently, CNN-based models have demonstrated strong
representation ability and achieved good performance in a
large number of computer vision tasks [32], [33], [34], [35].
Therefore, in order to represent the facial information, we
use ResNet50 trained with the ImageNet dataset to extract
the facial encoding vector. In addition, it is important to
note that depression level prediction is essentially a regres-
sion problem; thus, we employ the Euclidean loss as the
objective function and replace “Softmax” with “ReLU” in
the process of training the ResNet50, as in [10], [12], [37].

In this paper, for the trained ResNet50, we input the face
video frame and take the output of the “avg_pool” layer as
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the frame encoding vector. Through this operation, a video
segment containing T frames can be encoded into a repre-
sentation sequence denoted as S0 2 RT�D0

, where D0 is the
dimension of the encoding vector. Furthermore, we adopt
the progressive Conv1D layers to reduce the dimension of
S0 2 RT�D0

to S 2 RT�D, whereD < D0.

3.2 Dual Attention Block for Facial Dynamic
Extraction

As Fig. 1 shown, the facial representation sequence S is
input into the “Conv2D_1” layer. We denote the output
result as X 2 RT�D�C , where C is the number of channels. It
can be readily observed that each channel Xi 2 RT�D ði ¼
1; 2; . . . ; CÞ of X remains temporal. In view of this character-
istic of Xi, we propose a DA block to capture the differences
of facial activities among individuals with different depres-
sion levels. More concretely, the DA block uses self-atten-
tion to investigate the temporal changes of the facial
representation sequence. Moreover, a novel bilinear-atten-
tion is constructed to examine the influence of each feature
component of the representation sequence on the depres-
sion level prediction.

3.2.1 Self-Attention for Facial Temporal Changes

Self-attention has certain advantages when it comes to pro-
cess the sequence data in the fields of speech recogni-
tion [18], [19] and video processing [20], [21]. Inspired by
these promising performance, we use the self-attention to
capture the contextual temporal relations for depression
level prediction. In this way, for a given sequence Xi 2

RT�D ði ¼ 1; 2; . . . ; CÞ, the self-attention can be expressed
using Eq. (1). Note that, the Softmaxð�Þ is applied along each
row of the matrix

YSA
i ¼ Softmax

KiQ
T
iffiffiffiffi

D
p

� �
Vi 2 RT�D; i ¼ 1; 2; . . . ; C; (1)

where “T” refers to matrix transposition. Ki;Qi;Vi can be
obtained through Eq. (2)

Ki ¼ FK Xið Þ 2 RT�D

Qi ¼ FQ Xið Þ 2 RT�D

Vi ¼ F V Xið Þ 2 RT�D

:

8><
>: (2)

In this paper, for each feature channel Xi 2 RT�D ði ¼
1; 2; . . . ; CÞ, we adopt Conv2D layers to produce the Ki;Qi,
andVi in Eq. (2). The temporal information is then extracted
via Eq. (1); the result is denoted as YSA

i . Fig. 2 presents the
process of capturing facial temporal changes through self-
attention.

As described above, the self-attention takes each frame as
a token and processes the representation sequence of the
facial video segment from the perspective of temporal
changes. Therefore, the self-attention is conductive to cap-
ture the facial dynamic patterns of individuals with differ-
ent depression levels.

3.2.2 Bilinear-Attention for Examining the Importance of

Feature Components

As noted in [22], [23], [24], the second-order statistics are
helpful in boosting the model’s representation ability. To

Fig. 1. The proposed Dual Attention and Element Recalibration (DAER) (as shown in the brown part) network is used for automatic depression level
prediction. The “ResNet50” refers to a model that has been trained using the ImageNet dataset and is used to encode a video frame into a represen-
tation vector. Thus, a video segment can be encoded into a representation sequence, which is input into the DAER network to predict the BDI-II score.
T;D and C denote the rows, columns and the number of channels of the input tensor, respectively. “�” and “�” refer to matrix addition and element-
wise multiplication. “�N” means that the enclosed part is performed N times. The “PCL” refers to Progressive Conv1D Layers, used to reduce the
dimension of representation sequence. “DA” and “ER” are the abbreviations for the Dual Attention block and Element Recalibration block, respec-
tively. “GIE” refers to Global Information Extraction. “GAP” and “FC” refer to the Global Average Pooling and Full Connection. The loss function for
the DAER network is Root Mean Square Error (RMSE), as shown in Eq. (12).
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this end, in this paper, we propose a novel bilinear-attention
method to examine the influence of each feature component
on depression level prediction.

In more detail, for the ith channel Xi 2 RT�D ði ¼
1; 2; . . . ; CÞ, we take each feature component as a time series
and denote as xdi 2 RT�1 ðd ¼ 1; 2; . . . ; DÞ. The second-order
statistics are then extracted via Eq. (3). Furthermore, the
embedding edi 2 RT�1 is generated using Eq. (4). The result
of bilinear-attention can therefore be obtained through
Eq. (5). The corresponding process is presented in Fig. 3

rdi ¼ C1
�
xdi
�� �C1ðxdi ��T 2 RT�T ; (3)

where xdi 2 RT�1 ðd ¼ 1; 2; . . . ; DÞ is the dth column of Xi,
while “�” denotes the matrix multiplication. C1ð�Þ is a one-
dimensional convolution (i.e., a Covn1D layer)

edi ¼ Softmax
�C1�rdi �� 2 RT�1: (4)

YBA
i ¼ Ei � Xi 2 RT�D; (5)

where Ei is constructed as shown in Eq. (6), while “�”
denote element-wise multiplication

Ei ¼ e1i ; e
2
i ; . . . ; e

D
i

� � 2 RT�D: (6)

From the above process, it can be readily observed that
the second-order statistics are obtained through quadratic
linear transformation on each feature component of the
representation sequence in this paper. Moreover, we use the
attention mechanism to embed these second-order statistics
into the representation sequences in order to highlight those
feature components related to depression in the representa-
tion sequence of a video segment.

In this way, on the one hand, we use the self-attention to
extract the facial activities of individuals with different
depression levels from the perspective of temporal changes.

On the other hand, our proposed bilinear-attention is able
to highlight the useful parts associated to depression from
the perspective of feature components. To ensure that we
make full use conferred by the advantages of these two
attention mechanisms, we fuse their results with Eq. (7) to
form the DA block for realizing the joint extraction of
depression cues contained in the representation sequence

YDA
i ¼ ðC2ðYSA

i Þ � YSA
i Þ � ðC2ðYBA

i Þ � YBA
i Þ 2 RT�D; (7)

where C2ð�Þ is a two-dimensional convolution (i.e., a
Covn2D layer). “�” and “�” denote element-wise multipli-
cation and element-wise addition, respectively.

3.3 Element Recalibration Block for Boosting
Network Representation Ability

Recently, the successful application of SE block in [39], [40],
[41] has shown that global information embedding can
effectively improve networks’ representation ability. Gener-
ally speaking, the SE block comprises two parts: global
information extraction and adaptive recalibration. Mathe-
matically, these two parts can be expressed as Eqs. (8) and
(9), respectively

wSE ¼ sðWSE
2 ðdðWSE

1 ðGSEðXÞÞÞÞÞ 2 R1�C ; (8)

where X 2 RT�D�C is the input tensor and GSEð�Þ is the GAP
layer. WSE

1 2 R
C�C

rC and WSE
2 2 R

C
rC

�C
are two linear trans-

formations. Here, rC is the reduction rate, while dð�Þ and sð�Þ
refer to the “ReLU” and “Sigmoid” functions

RSE
i ¼ wSE

i � Xi 2 RT�D ; i ¼ 1; 2; . . . ; C; (9)

where wSE
i is the ith element ofwSE and Xi is the ith channel

of X.
From the above process, it can be clearly seen that the SE

block is insufficient to recalibrate the elements of input ten-
sor X, because it treats all elements in one channel equally.
To this end, we propose a novel block (i.e., ER block) to alle-
viate this limitation for further improving the representa-
tion ability of network.

In the proposed ER block, we reshape each feature chan-
nel into a column vector and calculate the autocorrelation
matrix along the channel axis through Eq. (10). The corre-
sponding result is considered as the global information of
input tensor X and denoted as IG. The elements in feature
channels are then recalibrated using Eq. (11). Fig. 4 illus-
trates the complete process

Fig. 2. The temporal information is extracted from each channel of tensor
using the self-attention. Xi 2 RT�D ði ¼ 1; 2; . . . ; CÞ is the i-the channel
and YSA

i is the corresponding result. “�” denotes the matrix
multiplication.

Fig. 3. Bilinear-attention for examining the influence of each feature component on depression level prediction. Xi ði ¼ 1; 2; . . . ; CÞ 2 RT�D is the ith
channel. xdi 2 RT�1ðd ¼ 1; 2; . . . ; DÞ is the time series composed of the dth feature component of Xi. “�” and “�” denote the matrix product and ele-
ment-wise multiplication, respectively. YBA

i ði ¼ 1; 2; . . . ; CÞ 2 RT�D is the corresponding result.
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IG ¼ Softmax
�
�XWER�XT

�� �X 2 RðT�DÞ�C ; (10)

where �X 2 RðT�DÞ�C is the matrix, each column of which is
constructed by reshaping the channel Xiði ¼ 1; 2; . . . ; CÞ,
while WER 2 RC�C is the transformation matrix. “�” repre-
sents matrix multiplication

RER ¼ Reshape
�
�X� IG

� 2 RT�D�C ; (11)

where “�” denotes element-wise multiplication operation.
According to the principle of convolution layer, each con-

volution kernel corresponds to a filtering result. From the
workflow of our proposed ER block (as shown in Fig. 4), we
can see that this block is able to comprehensively examine
all the filtering results and select the elements that are help-
ful to the task of depression level prediction. Thus, the ER
block has advantages in obtaining a more discriminative
representation of depression cues.

The Relationship of ER Block and SE Block. From a macro
perspective, our proposed ER block and SE block both
mainly include the global information extraction and recali-
bration processes. From a micro perspective, the global
information and recalibration targets of these two blocks are
different. The SE block generates the global information
through GAP a layer and fully connected layers, as shown
in Eq. (8), and takes the channels as the recalibration target.
For our proposed ER block, we calculate the autocorrelation
matrix among channels using Eq. (10) and take the result as
the global information. In other words, the global informa-
tion we extract captures the high-order statistics among
channels. In addition, the ER block is designed to recalibrate
each element of the tensor rather than the entire channels;
that is to say, the ER block highlights the elements of the
tensor that are related to depression level prediction task
and suppresses the less useful ones. Thus, our proposed
recalibration strategy is advantageous in capturing subtle
information related to depression.

4 EXPERIMENTS

In order to demonstrate the effectiveness of our proposed
method, we construct experiments on two publicly available
databases namely AVEC 2013 and AVEC 2014 depression
databases. In this section, these two benchmark databases
are described, after which the implementation details of our
DAER network are presented. Ablation studies are then

performed to verify the role of each block. Finally, we com-
pare our method with some state-of-the-art works and ana-
lyze the reasons.

4.1 Databases and Evaluation Metrics

In the AVEC competitions held in 2013 and 2014, two data-
bases (i.e., AVEC 2013 and AVEC 2014) for depression level
prediction are published and provide the raw videos. Thus,
in this paper, all experiments are conducted on these two
databases to verify the effectiveness of our proposedmethod.

The AVEC 2013 depression database is derived from the
Audio-Visual Depression Language Corpus (AViD-Cor-
pus), which is recorded using a webcam and microphone.
In concrete terms, each subject is asked to perform 14 differ-
ent tasks according to the instructions displayed on the
computer screen. Those 14 tasks include sustained vowel
phonation, sustained loud vowel phonation, sustained smil-
ing vowel phonation, speaking out loud while solving a
task, counting from 1 to 10, etc. The age distribution of the
subjects ranges from 18 to 63 years old and the average age
is 31.5 years old with a standard deviation of 12.3 years. All
subjects are German speakers. In this database, a total of 150
video clips from 82 subjects are included. And these record-
ings are divided into three parts by the publishers: training,
development and test set. Each part contains 50 video clips.
These video clips are set to 30 frames per second with the
resolution of 640� 480 pixels. Each subject is asked to fill in
a BDI-II scale, and the corresponding score is the label.

The AVEC 2014 depression database is a subset of AVEC
2013 depression database. So their collection settings and
age distribution are similar. Rather than the 14 tasks
involved in AVEC 2013 database, there are only two tasks
in AVEC 2014: namely, “Northwind” and “FreeForm”. For
the “Northwind” task, the subjects are asked to read an
excerpt from the fable “Die Sonne underWind” (The North-
wind and the Sun) in German. For the “FreeForm” task, the
subjects need to respond to one of a number of questions
(for example, “What is your favorite dish?”) or describe a
sad childhood memory in German. For these two tasks, 150
video clips from 82 subjects were recorded; the duration of
these video clips ranges from 6 seconds to 4 minutes. In the
same way, the publishers divide equally these recordings
into training, development and test set. In our experiments,
we combine the training, development and test sets of these
two tasks to form a new database, which we still refer to as

Fig. 4. The proposed ER block is used to improve the representation ability of network by recalibrating elements of input tensor. “�” and “�” denote
matrix and element-wise multiplication, respectively. �X 2 RðT�DÞ�C is the matrix, each column of which is constructed by reshaping the feature chan-
nel Xi 2 RT�D; ði ¼ 1; 2; . . . ; CÞ. IG 2 RðT�DÞ�C and RER 2 RT�D�C are calculated by means of Eq. (10) and Eq. (11), respectively.

1959



the AVEC 2014 depression database. That is to say, there are
100 video clips in the training, development and test sets,
respectively.

At present, Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) are two widely used indicators for
evaluating the prediction accuracy. Eqs. (12) and (13) pres-
ent the calculation formulas for RMSE and MAE, where N
is the number of subjects. yi and ŷi are the ground truth and
predicted BDI-II score of the ith subject, respectively. The
smaller value of these two metrics, the better experimental
performance is obtained

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � ŷiÞ2
vuut : (12)

MAE ¼ 1

N

XN
i¼1

jyi � ŷij: (13)

4.2 Experimental Setup

From the description in Section 3, it is evident that the
parameters in the experiment are mainly included in the
process of generating the video segment representation
sequence and the construction of DAER network. Thus, in
the below, we will dpresent a detailed description of the
parameter settings in these two processes.

4.2.1 Representation Sequence Generation

In [12], [37], the sample rate is reduced from30 frames per sec-
ond (fps) to 6fps, due to the fact that 6fps can be yield a better
video analysis [42]. To this end, we also adopt 6fps to down-
sample the video clips in AVEC 2013 and AVEC 2014 depres-
sion databases. Moreover, we set the duration of the video
segment to 3 seconds (i.e., 18 consecutive video frames). Note
that the label applied to the video segment is the same as that
of the corresponding long-term video. The overlapping of
two adjacent video segments is 50%. For each frame in the
video segments, we adjust the resolution to 480� 480, then
reshape the size of the frame to 224� 224. In addition, we use
the Euclidean loss as the objective function and replace
“Softmax” with “ReLU” to train the ResNet50 using the
ImageNet dataset like in [10], [12], [37]. Subsequently, we
input each frame of the video segment into the trained
ResNet50 and take the output of “avg_pool” layer as the
frame representation. In this way, a video segment with 18
frames can be encoded into a representation sequence of size
18� 2048, where each row is the representation of a frame.

4.2.2 The Network Structure of DAER

The architecture of our proposed DAER network is illus-
trated in Fig. 1. In this network, the “PCL” is used to reduce
the dimension of the representation sequence and includes
three Conv1D layers, which are set as (filters=1204, kernel_-
size=1), (filters=512, kernel_size=1) and (filters=256, ker-
nel_size=1). “Covn2D_1” has 64 kernels with a size of 3� 3,
a stride size of 1 and the “same” for padding. The “FC”
layer has 256 neurons.

The DA block contains two parts: namely, the self-atten-
tion part and the bilinear-attention part. For the self-atten-
tion part, Fig. 2 presents the corresponding structure. The

three Conv2D layers have the same setting, namely 1 kernel
with a size of 3� 3, stride size of 1 and the “same” for pad-
ding. For the bilinear-attention part, Fig. 3 presents the cor-
responding structure, which includes three Conv1D layers
with the “same” for padding. “Conv1D_1” and
“Conv1D_2” have the same settings i.e., filters=16, kernel_-
size=3. The “Conv1D_3” is set to filters=1, kernel_size=3.
The structure of ER block is presented in Fig. 4. As shown,
the “Conv1D” has 64 filters with “kernel_size” of 1 and the
padding is set to “same”.

In all the above layers, “ReLU” is used as the activation
function. The parameter of N in Fig. 1 is set to 2. The loss
function used to train the DAER network is RMSE, as
shown in Eq. (12). In this paper, we implement our DAER
network in the Keras deep learning framework and use the
Adam [43] optimizer with default momentum values (0.9,
0.999) for (b1 and b2). The weight decay is set to 0.0001. The
learning rate is initialized to 0.0002 for AVEC 2013 and
AVEC 2014 depression databases.

4.3 Ablation Analysis

As discussed above,we encode each frame of a video segment
via the trained ResNet50 to obtain the corresponding repre-
sentation and predict the BDI-II score using the DAER net-
work, which mainly includes the DA and ER blocks. Thus, in
this section, we conduct some ablation experiments to verify
the role of the trained ResNet50 and those two blocks on the
AVEC 2013 andAVEC 2014 depression databases.

4.3.1 The Role of the Trained ResNet50 for Encoding

Frames

As described in Section 3.1, we use ImageNet to train
ResNet50 to encode frames in the video segment for gener-
ating the corresponding representation sequence. However,
one might consider whether it is more reasonable to use
VGGFace descriptor for encoding facial images. To this end,
we use these two models to encode video frames and
employ our proposed DAER model to predict the BDI-II
score. The corresponding experimental results are shown in
Table 2.

From these comparison, we observe that “ResNet50”
obtains better prediction accuracy than “VGGFace”. This is
because “VGGFace” model is aimed at the face recognition
task. In other words, the encoding results of different frames
in the same video segment relatively similar due to the
inclusion of more identity information. Thus, the represen-
tation sequence generated by “VGGFace” is insensitive to
facial dynamics and is not conductive to DAER network for
capturing depression cues. However, the trained ResNet50
can characterize more diverse image patterns because
ImagesNet contains images of multiple categories. There-
fore, the representation sequence of video segment obtained
using “ResNet50” has richer dynamic information, which is
beneficial for the DAER network to extract the depression-
related information from it.

4.3.2 The Role of the Dual Attention Block

In order to carefully explore the facial differences among
individuals with different depression levels, we construct a
DA block to extract the information related to depression in
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facial videos from the perspective of temoral changes and
feature components. To illustrate the effectiveness of DA
block, we use the networks presented in Fig. 5a, 5b, and 5d
to conduct experiments. The corresponding results on the
development and test sets of AVEC 2013 and AVEC 2014
are presented in Tables 3 and 4.

From these tables, we can observe that the experimental
performance of “CNN+self-attention” (as shown in Fig. 5b)
is superior to that of “CNN” (as shown in Fig. 5a). This
result reveals that self-attention is effective in capturing
facial dynamic differences among individuals with different
depression levels. From the comparison of bilinear-attention
and self-attention, we can see that it is more helpful to
investigate the role of feature components than temporal
changes for improving the prediction accuracy. “CNN+DA
block” (as shown in Fig. 5d) obtains the best experimental
performance. This is mainly because the DA block can
jointly extract depression-related information from the per-
spective of temporal changes and feature components.

TABLE 2
Performance of Depression Prediction on AVEC 2013 (AVEC
2014) Development and Test Sets Using Different Models to

Encode Frames of the Video Segment

Databases Encoding models AVEC 2013 AVEC 2014

RMSE MAE RMSE MAE

Dev VGGFace1 8.18 6.21 8.09 6.17
ResNet50 7.97 5.86 7.79 5.82

Test VGGFace1 8.32 6.49 8.24 6.36
ResNet50 8.13 6.28 8.07 6.14

1https://www.robots.ox.ac.UK/vgg/software/vgg_face/. “VGGFace” refer to the
use of VGGFace descriptor to encode frames of the video segment.

Fig. 5. Different network architectures are used to investigate the role of proposed DA and ER blocks for depression level prediction. In all three kinds
of networks, “�2” indicates that the circled part is carried out twice. Note that the input is the representation sequence of a video segment through
the trained ResNet50. The output is its corresponding BDI-II score. And the loss functions for three networks are all RMSE, as shown in Eq. (12).
The “PCL” refers to Progressive Conv1D Layers to reduce the dimension of representation sequence. “SA,” “BA” and “DA” refer to self-attention,
bilinear-attention and dual-attention, respectively. “SE” and “ER” refer to Squeeze-Excitation block and Element Recalibration block, respectively.
“GAP” and “FC” refer to the Global Average Pooling and Full Connection layer.

TABLE 3
Performance of Depression Prediction on AVEC2013 and
AVEC2014 Development Sets Using Different Networks

Network structures AVEC2013 AVEC2014

RMSE MAE RMSE MAE

CNN 8.97 7.03 8.85 6.61
CNN+self-attention 8.80 6.89 8.52 6.43
CNN+bilinear-attention 8.62 6.76 8.43 6.36
CNN+DA block 8.34 6.33 8.39 6.16
CNN+SE block 8.40 6.36 8.24 6.21
CNN+ER block 8.16 6.29 8.04 6.00
CNN+DA block+SE block 8.27 6.22 8.10 6.03
CNN+DA block+ER block 7.97 5.86 7.79 5.82

The networks of “CNN,” “CNN+DA block” and “CNN+ER block” are shown
in Fig. 5. The network of “CNN+DA block+ER block” is shown in Fig. 1.

TABLE 4
Performance of Depression Prediction on AVEC2013 and

AVEC2014 Test Sets Using Different Networks

Network structures AVEC2013 AVEC2014

RMSE MAE RMSE MAE

CNN 9.35 7.58 8.97 7.11
CNN+self-attention 9.31 7.38 8.73 6.95
CNN+bilinear-attention 9.12 7.26 8.83 6.76
CNN+DA block 9.03 7.21 8.79 6.88
CNN+SE block 8.81 7.02 8.62 6.70
CNN+ER block 8.69 6.54 8.32 6.42
CNN+DA block+SE block 8.36 6.47 8.23 6.28
CNN+DA block+ER block 8.13 6.28 8.07 6.14

The networks of “CNN,” “CNN+DA block” and “CNN+ER block” are shown
in Fig. 5. The network of “CNN+DA block+ER block” is shown in Fig. 1.
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In order to further clarify the effects of self-attention and
bilinear-attention on depression severity analysis, we pres-
ent the corresponding visual results in Fig. 6. From this
figure, we can see that self-attention tends to perceive the
differences in representation sequences of individuals with
different depression levels from the perspective of temporal
changes, as shown in the part surrounded by the red box in
Figs. 6a and 6d. The representation sequences after bilinear-
attention processing are discriminative in terms of feature
components, as shown in the part surrounded by the red
box in Figs. 6b and 6e. Different from them, our proposed
DA block can take into account the advantages of these two
kinds of attention and jointly capture the differences of
facial activities of individuals with different depression lev-
els. Thus, as shown in the part surrounded by the red box in
Figs. 6c and 6f, the processing results of the representation
sequences of healthy and depressed individuals are obvi-
ously discriminative both from the perspective of temporal
changes and feature components.

4.3.3 The Role of the Element Recalibration Block

The purpose of our proposed ER block is to recalibrate
each element in the multichannel tensor. In other words,
we intend to highlight the elements related to depression
cues and suppress the less useful ones. Thus, in order to
illustrate the effectiveness of ER block, we construct some
comparative experiments with the architectures shown in
Figs. 5e, 5f, 5g, and 5h. The results are presented in Tables 3
and 4.

As shown, “CNN+ER” (as shown in Fig. 5f) defeats
“CNN+SE” (as shown in Fig. 5e) on prediction accuracy.
The reason for this result is that the SE block treats all ele-
ments in the same channel as equal. While, our proposed
ER block is able to examine all elements in the tensor one by
one and pick out useful ones, so as to capture subtle depres-
sion cues. The same reason can also explain the results of
the comparison between “CNN+DA+SE” (as shown in
Fig. 5g) and “CNN+DA+ER” (as shown in Fig. 5h). In addi-
tion, we can see that the experimental performance is

further improved when the SE block and DA block are com-
bined. This finding also illustrates that the DA block is effec-
tive in capturing depression cues. It is easy to find that the
network architecture of “CNN+DA block+ER block” (as
shown in Fig. 1) achieves the best prediction accuracy. This
is because the DA block is able to investigate the temporal
changes and highlight the effective feature components.
Meanwhile, the ER block is used to recalibrate each element
of tensor in order to extract the subtle depression-related
information.

Furthermore, we illustrate the advantages of ER block
over SE block through the visual presentation in Fig. 7. As
shown, different channels produce different visualization
patterns (such as Figs. 7a, 7(b), 7c and 7d). These results also
indicate that the impact of each channel on the task of
depression level prediction is indeed not exactly the same.
Moreover, as shown in the part surrounded bu the red box,
the difference between Fig. 7a and 7c (or Figs. 7b and 7d) is
weaker than that between Figs. 7e and 7g (or Figs. 7f and
7h). This is because the SE block assigns the same weight to
all elements in each channel, but the proposed ER block can
give corresponding weight to each element in the tensor to
highlight the discriminative ones.

4.4 Comparisons With the State-of-The-Art Works

In this section, we compare our proposed method with
some state-of-the-art works on the test sets of AVEC 2013
and AVEC 2014 to illustrate the effectiveness of our model.
The corresponding experimental results are presented in
Tables 5 and 6. From these comparisons, we can determine
that our proposed approach achieves better experimental
performance than those methods that use hand-crafted fea-
tures. This fact also shows that deep neural network models
have stronger representation ability in terms of depression
cues extraction.

In addition, our proposed method outperforms those
in [10], [12], [37] on the depression level prediction task.
This is because the optical flow, C3D and VLDN used in the
above three works are only able to extract the short-term
facial changes, while the proposed DA block is able to

Fig. 6. Effects of different attention mechanisms on depression level prediction. “SA,” “BA” and “DA” refer to self-attention, bilinear-attention and dual-
attention, respectively. “214_1_11_SA_8” means that No. 214_1 subject with BDI-II score of 11 in the Northwind dataset of AVEC2014 is processed
through the self-attention module. And the 8th channel of the multi-channel tensor is shown. The same is true for others in (b)-(f).
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capture the long-term facial dynamics in the video segment
and compels the model to pay attention to the depression-
related feature components in the representation sequence.
Furthermore, each element of the tensor is recalibrated with
the ER block to highlight the effective parts and suppress
the less useful ones to boost the representation ability of net-
work. Similarly, the advantages of these two blocks can also
be used to explain why our method achieves better experi-
mental performance than those proposed in [16], [17], [46].
However, on the test sets of AVEC 2013 and AVEC 2014,
the prediction accuracy of [7], [15] and [36] is slightly supe-
rior to our method in terms of MAE and RMSE metrics
respectively, which may be due to facial region division per-
formed in [15] and [7] or the combination of hand-crafted
and deep features in [15] and [36]. Besides, Melo et al. [48]
obtains the best prediction accuracy because they examine
the facial multi-scale temporal changes and encode the sud-
den facial variations. But our method is not enough in this
aspect.

5 CONCLUSION

Physiological studies have revealed that depressed andhealthy
individuals present different types of facial changes. To this
end, in this paper, we develop a DA and ER block to construct
theDAERnetwork,which is used to extract the facial represen-
tations of individuals with different depression levels. The DA
block fuses the self-attention and bilinear-attention to capture
the facial temporal changes and emphasize the effective feature
components in the representation sequence, respectively. For
its part, the ER block recalibrates each element of the tensor
using global information in order to boost the network’s repre-
sentation ability. The experimental results on two publicly
available databases (namely, AVEC 2013 and AVEC 2014
depression databases) demonstrate not only the effectiveness
of each block, but also the superiority of our proposed method
in the field of automatic depression level prediction. In the
future, we will consider developing a depression level predic-
tionmethodbased on facial landmarks tomitigate personal pri-
vacy concerns caused by the use of face images.

Fig. 7. Effects of SE and ER blocks on depression level prediction. “SE” and “ER” refer to Squeeze-Excitation block and Element Recalibration block,
respectively. “214_1_11_DA_SE_8” means that No. 214_1 subject with BDI-II score of 11 in the Northwind dataset of AVEC2014 is processed
through the DA and SE blocks. And the 8th channel of the multi-channel tensor is shown. The same is true for others in (b)-(f).

TABLE 5
Comparison of Depression Severity Analysis Performance With

Some State-of-the-Art Methods on AVEC 2013 Test Sets

Category Methods RMSE MAE

Hand-crafted features Valstar et al. [28] 13.61 10.88
Cummins et al. [44] 10.45 /
Meng et al. [45] 11.19 9.14
Wen et al. [31] 10.27 8.22
He et al. [9] 9.20 7.55
Niu et al. [8] 9.17 6.97

CNN-based methods Zhu et al. [10] 9.82 7.58
Jazaery et al. [12] 9.28 7.37
Zhou et al. [7] 8.28 6.20
Uddin et al. [37] 8.93 7.04
Niu et al. [17] 8.97 7.32
Zhou et al. [16] 8.37 6.63
He et al. [46] 8.39 6.59
He et al. [47] 8.46 6.83
Shang et al. [15] 8.20 6.38
Melo et al. [48] 7.55 6.24
Ours 8.13 6.28

TABLE 6
Comparison of Depression Severity Analysis Performance With

Some State-of-the-Art Methods on AVEC 2014 Test Sets

Category Methods RMSE MAE

Hand-crafted features Valstar et al. [29] 10.86 8.86
Dhall et al. [30] 8.91 7.08
Kaya et al. [49] 10.26 8.20
Espinosa et al. [50] 9.84 8.46
He et al. [9] 9.01 7.21
Niu et al. [8] 9.10 7.19

CNN-based methods Zhu et al. [10] 9.55 7.47
Jazaery et al. [12] 9.20 7.22
Zhou et al. [7] 8.39 6.21
Uddin et al. [37] 8.78 6.86
Niu et al. [17] 8.81 6.72
Zhou et al. [16] 8.30 6.59
He et al. [46] 8.30 6.51
He et al. [47] 8.42 6.78
Shang et al. [15] 7.84 6.08
Melo et al. [48] 7.65 6.06
Ours 8.07 6.14
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