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THE BIGGER PICTURE Depression, as one of the most prevalent mental health diseases, negatively im-
pacts millions of lives. Diagnoses are achieved by the assessment of symptoms with standardized tests.
However, recent studies indicate that continuously monitoring symptoms (e.g., with ecological momentary
assessments [EMAs]) may provide relevant additional information for both diagnosis and treatment deci-
sions. More recently, these manual methods have been complemented by passive sensing methods.
Here, speech can serve as a valuable objective marker because it has been shown to be impacted by
various pathologies, such as anxiety andmood disorders, and can be collected non-invasively and cheaply.
Existingmachine learningmethods that aim tomeasuremood, however, often fail to accuratelymodel intra-
individual variations, assuming that data are sourced from homogeneous populations. We introduce and
evaluate an effective zero-shot personalization of speech foundation models that utilizes diagnostic infor-
mation about each patient to improve per-speaker depressivemood recognition over a 2-week EMAperiod.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The monitoring of depressed mood plays an important role as a diagnostic tool in psychotherapy. An auto-
mated analysis of speech can provide a non-invasive measurement of a patient’s affective state. While
speech has been shown to be a useful biomarker for depression, existing approaches mostly build popula-
tion-level models that aim to predict each individual’s diagnosis as a (mostly) static property. Because of in-
ter-individual differences in symptomatology andmood regulation behaviors, these approaches are ill-suited
to detect smaller temporal variations in depressed mood. We address this issue by introducing a zero-shot
personalization of large speech foundation models. Compared with other personalization strategies, our
work does not require labeled speech samples for enrollment. Instead, the approach makes use of adapters
conditioned on subject-specificmetadata. On a longitudinal dataset, we show that themethod improves per-
formance compared with a set of suitable baselines. Finally, applying our personalization strategy improves
individual-level fairness.
INTRODUCTION

Major depressive disorder is one of the most prevalent mental

health diseases, afflicting millions around the world and having

severe repercussions for the quality of life on an individual and

a societal level.1,2 Its manifestation covers a wide gamut of

symptoms,3 with depressive mood being a core one.4 This
This is an open access article und
emerges as a by-product of emotion dysregulation caused by

depression-induced cognitive biases, which are involved in the

development and persistence of depression.5 Symptom moni-

toring allows the timely characterization of disease status or

detection of relapse and plays a key role in facilitating individual-

ized treatment plans.6 In particular, depressed mood has been

found to be a good indicator of treatment response, being one
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of the first symptoms to improve.7 In addition, psychotherapy

patients are often required to monitor their mood over the course

of treatment,8 making it one of the most widely used diagnostic

means. This is typically done in the form of ecological momen-

tary assessments (EMAs), where patients are required to fill in

standardized questionnaires at regular intervals.

In recent years, these manual EMAs are often complemented

by non-invasive, passive sensing methods.9,10 Typically, these

take the form of mobile monitoring applications that utilize

various sensors embedded in modern smartphones or wear-

ables and have been shown to correlate with mental states.10–12

Speech, as one of the biomarkers affected by different pathol-

ogies,13–15 such as mood disorders16 and depression,17–19 can

be used as a means to passively monitor patients. This can be

done through the pervasive recording of daily life,20 using mini-

malistic models deployed in edge devices,21 monitoring tele-

phone conversations,22 or eliciting responses through human-

computer interaction interfaces (e.g., computer games23) in a

naturalistic setting. In this way, high-dimensional speech pat-

terns can be obtained and their changes analyzed in real time, al-

lowing clinicians to tailor interventions to an individual’s specific

needs, optimizing the effectiveness of therapy and medication

management.24

Recent works also pursue a confluence between manual

EMAs and automated analysis methods. Notably, voice-based

interfaces present a natural way to elicit information about a pa-

tient’s mood. This can form a complementary source of informa-

tion alongside traditional EMAs and provide a deeper under-

standing of the patients’ mood and emotions.25 Here, speech

has been shown to not only capture affective26 but a wider range

of speaker states, such as intoxication,27 which could have dis-

torting effects on the expression and experience of mood.28

Furthermore, while anxiety and depression negatively impact

mood, how exactly they are reflected in a single self-rated

mood item can differ between individuals based on arousal

and valence focus.29,30 Because a variety of its characteristics

are associated with anxiety levels,31 speech can help to untangle

and explain these influencing factors.

Speech can thus form a complementary lens through which to

analyze patient responses to EMAs, with the potential to uncover

more insights and provide a more holistic understanding of how

depressive mood changes over time; e.g., through a post hoc

interpretation of the features most associated with mood

prediction.32

Passive monitoring and a more holistic characterization of

depression therefore form the key promises of speech-based

analysis. Both begin from a well-performing predictive model

for depressivemood, which can either be used in a passive setup

or interpreted to provide the required insights. However, existing

modeling approaches operate under the assumption that the

data are sourced from a homogeneous population, thus failing

to capitalize on individual differences across patients. This is

often crucial in depression monitoring, where population-level

models may not generalize adequately to individual depression

scores.33 Prior works have already exploited personalized

models to predict daily depression mood using speech

data.25,34 These works rely on patient-specific subnetworks,

with individual-level output heads trained on top of a popula-

tion-level core.35 Crucially, these works rely on an enrollment
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phase, where patients are required to provide a series of labeled

speech data for training the system. Furthermore, these data

need to be provided already at the training phase and do not

allow post hoc adaptation to new patients.

An alternative approach to personalization can be achieved

through the use of patient-specific metadata. These metadata

can be in the form of demographic information (such as gender

or age), previous history (e.g., diagnostic tests or medication),

or depressionmonitoring scales that are collected as part of their

routinemonitoring. These richmetadata form an additional, often

underutilized, source of information that can condition a predic-

tive model.

In the present work, we propose a method for speech-based,

personalized depressed mood prediction. Our method achieves

amultistage fusion of personal metadata with elicited speech re-

sponses by co-opting hyperformer adapters, a recently intro-

duced approach for facilitating more rapid adaptation to new

tasks for transformer-based models.36,37 These adapters are

trainable modules that are appended to the output of each inter-

mediate layer, forming ameans with which to inject new informa-

tion. This information primarily denotes the downstream task on

which the model is expected to generalize. To the best of our

knowledge, this mechanism has not been previously used for

personalization.

Besides our method, we place additional emphasis on evalu-

ating our results. Importantly, we go beyond standardized, pop-

ulation-level evaluations and include comprehensive, individual-

level metrics. These provide us with a more granular view of

model performance and behavior, which enables us to gauge

the positive impact of personalization and further promotes

recent attempts to measure individual-level performance.12

RESULTS

Wefirst present the dataset utilized in our study, including a short

exploratory data analysis, giving some insights into the relation-

ship between acoustic features and depressed mood. Because

our personalization approach for mood monitoring relies on the

injection of diagnostic meta-information, such as scores from

depression questionnaires, we refrain from performing a

speech-based analysis of these factors. Instead, we refer the

interested reader to Cummins et al.18 for the influence of a range

of acoustic features on patient health questionnaires (PHQs) and

to He et al.38 for an overview of deep learning approaches for

depression recognition. Moreover, we briefly look at the relation-

ship between diagnostic scores and self-assessed depressed

mood. Afterward, a structured analysis of experimental results

follows. Apart from comparing our proposed zero-shot personal-

ization with the implemented baselines, we further highlight the

influence of recorded speech content as well as ablating the

model performance with regard to the choice of embedded

meta-information. For these results, we focus on analyzing

per-individual performance measured in the mean of per-

speaker Spearman’s r, calculated for each of the five folds in a

speaker-independent cross-validation and then averaged. We

briefly discuss global performance and why it is ill-suited to

gauge the efficacy of personalization in the chosen methodol-

ogy. We report metrics for all subjects (all) and for each of the

three subject groups (control, subclinical, and patients)



Figure 1. Distribution of depressed mood

Distribution of self-assessed depressed mood in the study groups.
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separately. Finally, we analyze the fairness of the personalized

models compared with our baseline.

Dataset
We utilize a longitudinal dataset of speech recordings collected

as part of the multistage study in the DFG (German Research

Fund) project ParaSpeChaD. The project was approved by the

ethics committee of the Friedrich-Alexander-Universit€at, Erlan-

gen-N€urnberg, Germany.Written informed consent for the scien-

tific processing of recorded data and publishing of experimental

results was obtained from all participants. It includes data from a

total of 143 subjects (48 male [m], 95 female [f], and one with

diverse gender) aged between 18 and 63 years (mean 32.7 and

standard deviation 11.0 years). All subjects were native German

speakers. To ensure variability in the severity of depressive

symptoms and to prevent systematic distortions because of

gender and age, participants were distributed into three experi-

mental groups based on their PHQ-9 and current diagnosis of

major depressive disorder (MDD) during pre-screening. This re-

sulted in the inclusion of 47 healthy controls (control, PHQ-9 %

4), 48 subclinical individuals (subclinical, PHQ-9 > 4), and 48

subjects afflicted with MDD measured by the Structured Clinical

Interview for DSM-5 (SCID-5) (patients). A chi-square test

showed no statistical dependence between experimental group

and gender: c2ð2;N = 143Þ = 0:21, p = 0:99. Furthermore, a

one-way ANOVA was used to confirm that there was no signifi-

cant difference in mean age between the experimental groups

ðp = 0:97Þ.
For the purposes of the evaluated machine learning experi-

ments, we created a speaker-independent 5-fold cross-valida-

tion. Inside each of these folds, we further split a fifth of speakers

from the training set into a validation partition utilized for early

stopping and choosing final model checkpoints.

Speech recordings and mood ratings

After screening and baseline assessments, participants under-

went a 2-week EMA via a smartphone application. Three times

a day (morning, noon, and evening), the application notified

them to perform a short recording session and self-assess their
current depressed mood. The recordings consisted of reading

out loud and answering three mood-related questions: ‘‘How

are you feeling right now?’’, ‘‘How are you coping with this

feeling?’’, and ‘‘How do you plan to deal with this feeling?’’. Af-

terward, a spontaneous positive thought should be formulated

and recorded three times in a row. At the end of the session,

participants rated their current depressed mood on the

discrete visual analog mood scale (VAMS)39 from 0 (not

depressed) to 10 (severely depressed). In total, each partici-

pant, therefore, recorded longitudinal data with a maximum of

ð3 + 3 + 3Þ3ð3Þ3ð14Þ = 378 speech samples and 42 associ-

ated mood ratings. As expected for the EMA applied in our

study, however, some recording sessions were missed or skip-

ped by participants, reducing the maximum of 54;054 audio

samples recorded in 6;006 sessions to 50;779 speech record-

ings obtained in 5;660 sessions. The number of missed ses-

sions differs between the three groups of participants, roughly

increasing with the diagnosis of depressive symptoms. In the

healthy control group, 169 sessions are missing, while in the

subclinical and patient groups, 200 and 233 recording sessions

were skipped, respectively. On the other hand, some partici-

pants recorded more sessions than asked for. Finally, mood

ratings are distributed differently across the participant groups,

as seen in Figure 1. Healthy controls exhibit the most minor

variation, mostly assessing their depressed mood as minimal

(0). The ratings in the subclinical group are similarly skewed to-

ward the minimum of the scale but extend farther toward higher

depressed mood. For subjects in the patient group, mood is

more uniformly distributed around the center of the scale but

with a heavier tail at the lower end.

Available demographic and diagnostic information

In addition to the recordings and mood ratings collected in the

EMA, which form the target data for our machine learning anal-

ysis, an assortment of metadata about each study participant

is available, ranging from demographic information to depres-

sion interviews and questionnaires. These data were recorded

either during pre-screening (mainly demographics) or later in a

baseline assessment directly before the EMA period. We chose

a subset of this information to incorporate into our zero-shot

personalization strategy, consisting of some demographic infor-

mation, an assortment of self- and therapist-rated depression

questionnaires, a questionnaire concerned with emotional

competence, and a dimensional personality trait measurement.

Table 1 contains a complete account of utilized patient-spe-

cific meta-information. For demographics, we chose to include

age, gender, school and professional degrees, and employment

status. We code these attributes either as continuous (age),

ordinal (level of degrees), or categorical (gender, employment

status) values. Furthermore, we include whether participants

are currently taking any medication that could affect either their

mood or their voice.

The Hamilton Rating Scale for Depression (HRSD),40 the

PHQ-9,41 and the Beck’s Depression Inventory (BDI)42 form

our set of depression tests, providing information about a partic-

ipant’s symptomatology, measured just before the EMA phase.

The 24-item version of the HRSD was obtained through a clinical

interview, conducted in the baseline assessment, and is the only

of the three depression tests that is not self-rated through a

questionnaire. We encode the scores of each item as continuous
Patterns 4, 100873, November 10, 2023 3



Table 1. Description of subject-specific metadata available in our dataset

Metadata Description Values

Demographic information

Age age at start of study ½18;63�
Gender categorical male/female/diverse f0; 1;2g
School degree increasing levels of the German tripartite school system (none, ‘‘Mittelschule’’

(general), ‘‘Realschule’’ (more practical), ‘‘Abitur’’ (more academic)

f0; ::;3g

Professional degree increasing (none, studying, vocational degree, university degree) f0; ::;3g
Full-time job Binary f0; 1g
Medication

Medication affecting voice binary: whether the subject is currently

taking medication that could affect voice quality

f0; 1g

Medication affecting mood binary: whether the subject is currently

taking medication that could affect mood

f0; 1g

Depression tests

HRSD-24 clinician-rated depression interview with items rated on 3- to 5-point scales f0; ::; 4g24
PHQ-9 self-assessed depression questionnaire with items rated on 4-point scales f0; ::; 3g9
BDI self-assessed depression questionnaire with items rated on 4-point scales f0; ::; 3g21

Other tests

SEK-27 self-assessed questionnaire measuring

emotional competence via 27 items

f0; ::; 4g27

TIPI self-assessed questionnaire measuring

Big Five personality dimensions via 10 items

f0; ::; 6g10

We utilize vector representations of different subsets for personalization.
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variables (ranging from 0–5). For the PHQ, we choose the 9-item

questionnaire, with each item rated on a 4-point scale. While the

BDI, which aims to measure the severity of depressive symp-

toms, is only validated for depressed individuals, we still include

it for personalization in all participant groups, with non-patients

rating most items at 0.

Additionally, we include the Self-Report Measure for the

Assessment of Emotion Regulation Skills (SEK),43 a 27-item

questionnaire that, compared with depression assessment

scales, focuses entirely on emotion regulation capabilities. It

measures 9 dimensions relevant to the constructive handling

of negative emotions as a trait as well as a prolonged state.

Higher scores in these items represent more effective regulation

skills. Finally, the Ten-item Personality Inventory (TIPI)44 serves

as a short measurement of the different dimensions in the Big-

Five framework of personality traits. Its 10 Likert items are self-

rated by subjects on 7-point scales.

For thepurposeof evaluating the results of our proposedmeta-

data-based personalization strategy, it is important to note that

the diagnostic metadata are highly informative of inter-subject

differences in depressed mood; e.g., a high PHQ-9 score will,

on average, be reflected in a higher depressed mood. The first

row of Table 3 shows the Spearman’s rank correlations of

depressed mood ratings and total scores of PHQ-9, HRSD, and

SEK. Our evaluation therefore focuses on how models are able

to recognize mood changesmeasured in mean per-speaker cor-

relations between model predictions and ground truth ratings.

Exploratory data analysis
We present an exploratory data analysis of the impact of

depressed mood on the acoustic features fundamental fre-
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quency (F0), harmonic-to-noise ratio (HNR), local jitter and

shimmer, number of syllables (nsyll) and pauses (npause), and

duration, as well as speech rate (extracted with Praat45 using

its Python wrapper Parselmouth46), which are known from the

literature to correlate with depression.47,48 Rather than an

exhaustive study, this helps to understand our dataset and

serves as a motivating primer for the influence of personalized

metadata on the features of different patients. For a comprehen-

sive overview of the impact of depression on features, see Cum-

mins et al.19

Figure 2 depicts the linear mixed-effect model (LMM) coeffi-

cients of acoustic features for depressed mood rated by self-

assessment, grouped by subject. Acoustic features are normal-

ized to zero mean and unit variance, and we include a random

intercept to account for inter-subject differences. The y axis

represents the change in self-perceived depressed mood

(scale 0 � 10) associated with an increase of one standard de-

viation in the respective acoustic feature. In our analysis, we

distinguish between three speech contents: question, answer,

and positive thought.

In our dataset, it can be observed that F0, nsyll, and npause in

an utterance and the overall duration have an impact on

depressed mood. Previous research showed that increasing

symptom severity goes along with a reduced F0,48,49 typically

observed in people suffering from depression. Moreover,

Wang et al.49 analyzed the effect of a clinical intervention on

the acoustic characteristics of study participants. In doing so,

they concluded that there is a correlation between F0 and

depression and that F0 increases after successful treatment.

Figure 2 confirms that there is a negative correlation between

the depressed mood and F0, which means that people with a
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very depressed mood exhibit a lower F0 compared with people

with a less depressed mood.

Furthermore, it can be observed that patients with increasing

depressed mood speak longer on average. The greater duration

is due to a longer response (positive coefficient for nsyll) as well

as an increased number of pauses during speaking (positive co-

efficient for npause) compared with less depressed people. The

negative association of mood with speech rate strengthens the

observation that depressed people speak longer but slower, a

typical feature of depression explored in previous work. For

example, Cannizzaro et al.47 and Cummins et al.48 showed that

increased speech pause time (i.e., slower speech rate) and total

speech time are associated with higher scores on the HRSD and

other scales of psychomotor speed and subject self-rating

of mood.

Another insight is gained by comparing the coefficients broken

down by speech content. The effect sizes are highest when using

the speech content ‘‘answer,’’ whereas ‘‘question’’ and ‘‘positive

thought’’ usually show lower associations with depressed mood

(cf. Figure 2). The only exception is F0. However, considering

that the question is a predefined text, it seems reasonable that

it correlates with F0 but less strongly with other features, such

as duration. In contrast, patients can answer freely, which is

why a higher impact of speech duration is to be expected. ‘‘Pos-

itive thought,’’ on the other hand, were also freely formulated and

show lower coefficients as well. One hypothesis to explain this

would be that the intervention (‘‘formulate a positive thought’’)

might, on average, push people away from their current (bad)

mood, which, in turn, makes it harder for the model to detect

depression.

Overall, we can conclude in our EDA that depressed people

speak slower (and therefore with a longer duration), make

more pauses, and exhibit a lower F0 compared with less

depressed people, which is also confirmed in previous research.

In addition, the type of speech content has a great influence on

the correlation with depression. To this end, speech content in

which people speak freely, such as the answers, works best.

Previous studies have shown that different groups of partici-

pants can have different feature characteristics.50 To further

analyze the influence of acoustic features on different groups
of people and their self-rated depressed mood, we divide them

into participants with a PHQ-9 above and below the median

value (13.5), respectively, providing insights into the potential

of personalized approaches. We further normalize the

depressed mood ratings as well as the acoustic features for

each speaker separately. Figure 3 shows that participants with

a lower PHQ-9 score (below median PHQ-9) have a higher cor-

relation for three exemplary speech features with self-rated

depressed mood compared with participants with a higher

PHQ-9 score (above median PHQ-9). One hypothesis to explain

this observation would be that less depressed people exhibit a

greater variation in their speech characteristics. In contrast, par-

ticipants with a higher PHQ-9 value seem to be more consistent

and show less speech variation with changing depressed mood.

An alternative hypothesis would be that high-PHQ-9 people

show less variation in their mood rather than their characteristics;

i.e., they aremost often in a depressedmood irrespective of their

tone of voice.

The greatest differences among the two groups (above and

below median) can be found for mean F0, one of the features

with the highest correlation in Figure 2. If the influence of the

acoustic features on self-rated depressedmood is further subdi-

vided for the two groups according to speech content (‘‘answer’’

and ‘‘positive thought’’), it appears that both speech contents

show a similar trend. For the sake of completeness, it should

be mentioned that there are hardly any differences between

the two groups below and above median PHQ-9 using ‘‘ques-

tion’’ as speech content (not depicted in Figure 3). However,

this might be explained due to ‘‘question’’ being one of the

groups with the lowest correlations (cf. Figure 2) and questions

being pre-defined, resulting in less speech variation between

individuals.

In summary, our analyses show that, while there are acoustic

markers for depressed mood, there can be considerable differ-

ences in the feature expression between different groups of peo-

ple, which poses a challenge for machine learning algorithms

trained on an overall population. In the case of our data, diag-

nostic meta-information, such as the severity of depression,

seem to interact with the relationship between the acoustics of

a person’s speech and their self-assessed depressed mood.
Patterns 4, 100873, November 10, 2023 5
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These findings form themotivation for our proposed personaliza-

tion strategy, which conditions speech foundation models on

learned embeddings of a subject’s metadata.

Performance of the proposed approach
Table 2 shows the results achieved with the proposed zero-shot

personalization strategy based on hyperformers (details can be

found under Zero-shot personalization throughmetadata-condi-

tioned hyperformers) evaluated against a set of baselines,

described under Baselines. We report the mean absolute error

(MAE) between model predictions and ground truth—showing

how closely model predictions align with the subjective mood

ratings—as well as the mean of per-speaker correlations (Spear-

man’s r), which indicate how accurate the models are in predict-

ing changes in depressed mood. Before delving into the results,

we should again stress that global correlations computed over

predictions across different speakers do not provide any insights

about performance because of the nature of the dataset and

personalization strategy. Table 3 shows correlations of the

model outputs with ground truth mood ratings and the scores

of PHQ, HRSD, and SEK. Furthermore, we provide correlations

of the ground truth and these scores. It is apparent that, globally,

the mood ratings are moderately to strongly correlated with the

scores. Because the subject embeddings used for personaliza-

tion are formed from these scores, inter-individual differences

in depressed mood can be inferred quite reliably. This is further

supported by the fact that the output of all personalized models

correlates more strongly with the scores from the questionnaires

than the target ground truth mood ratings.

Looking at Table 2, it is immediately evident that our approach

improves performance compared with the non-personalized
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baseline models. From the baselines, the feedforward neural

networks (FFNNs) perform worst, only reaching a low 0.175

mean per-speaker Spearman correlation, while fine-tuning the

transformer encoder of a pre-trained wav2vec model lands at

0.299. For the proposed personalization strategy, on the other

hand, conditioning the hypernetworks on a subject embedding

generated from all demographic and diagnostic metadata (Hy-

performer All in the table) described under Available demo-

graphic and diagnostic information lowers the globally

computed MAE from 1.757 to 1.186 and increases the mean of

per-speaker correlations from 0.299 to 0.373 when compared

against the fine-tuned wav2vec baseline.

In the case of the simple personalized baseline FFNNs, where

the outputs of the neural network backbones are additively

adjusted by the projected and embedded metadata vectors,

the personalized FFNN trained on the extendedGenevaminimal-

istic acoustic parameter set (eGeMAPS) of audio functionals

achieves the best global performance of 0.981 MAE, while per-

speaker r sees barely any improvement from its non-personal-

ized counterpart (0.143 vs. 0.132). A similar trend can be seen

when choosing wav2vec as input features to the FFNN. We sus-

pect that the personalized model mainly shifts its predictions

based on the severity of each person’s depression but is not

able to improve intra-subject mood recognition. Our suspicion

is confirmed by contrasting the global distribution of model pre-

dictions in the patient group against speaker-level performance,

as visualized in Figure 4. Globally, model predictions of

depressed mood are now correlated more strongly with the

ground truth ratings (Figure 4, top). However, no clear trend of

improvement between the baseline model and the personalized

network can be observed when looking at subjects individually



Table 2. Speech-based results (mean and SD over 5 folds)

All Control Subclinical Patients

MAE Speaker r MAE Speaker r MAE Speaker r MAE Speaker r

Baseline eGeMAPS FFNN 1:873± 0:109 0:132±0:040 1:375±0:131 0:100± 0:031 1:461± 0:192 0:133± 0:092 2:770± 0:411 0:157±0:070

Baseline wav2vec FFNN 1:826± 0:182 0:175±0:091 1:323±0:427 0:143± 0:118 1:578± 0:223 0:186± 0:105 2:525± 0:315 0:181±0:087

Fine-tuned wav2vec 1:757± 0:163 0:299±0:076 1:095±0:189 0:225± 0:089 1:413± 0:244 0:325± 0:116 2:737± 0:457 0:329±0:077

Personalized eGeMAPS FFNN 0:981± 0:097 0:143±0:056 0:298±0:057 0:129± 0:053 0:828± 0:163 0:144± 0:089 1:765± 0:244 0:143±0:073

Personalized wav2vec FFNN 1:038± 0:154 0:138±0:043 0:392±0:048 0:159± 0:043 0:896± 0:244 0:127± 0:070 1:758± 0:213 0:125±0:058

Hyperformer all 1:186± 0:177 0:373� ±0:045 0:396±0:076 0:319± 0:069 0:999± 0:147 0:370� ±0:061 2:096± 0:376 0:422� ±0:069

Hyperformer PHQ-9 1:210± 0:163. 0:358±0:050 0:418±0:077 0:318± 0:077 0:975± 0:119 0:338± 0:083 2:170± 0:349 0:414±0:074

Hyperformer HRSD 1:241± 0:165. 0:343±0:060 0:394±0:091 0:258± 0:093 0:957± 0:145 0:350± 0:074 2:295± 0:389 0:405±0:056

Hyperformer BDI 1:241± 0:176 0:362±0:053 0:376±0:093 0:339± 0:085 1:038± 0:180 0:351± 0:081 2:236± 0:362 0:395±0:062

Hyperformer depression tests 1:190± 0:146 0:371±0:069 0:330±0:088 0:341� ±0:114 0:955± 0:155 0:354± 0:092 2:209± 0:335 0:420±0:082

Hyperformer demographics +

medication

1:393± 0:199 0:325±0:070 0:498±0:145 0:257± 0:082 1:167± 0:193 0:324± 0:108 2:438± 0:516 0:370±0:085

Hyperformer SEK 1:280± 0:205 0:355±0:049 0:489±0:093 0:289± 0:092 1:025± 0:176 0:347± 0:060 2:267± 0:409 0:407±0:066

Hyperformer personality 1:314± 0:202 0:353±0:075 0:420±0:097 0:253± 0:081 1:064± 0:189 0:369± 0:084 2:386± 0:449 0:413± :097

MAE takes all model predictions per fold into account, while Spearman’s r is computed for each speaker independently and then averaged over all speakers. The best results per subject group are

marked by an asterisk (*).
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Table 3. Spearman’s correlations betweenmodel predictions of depressedmood, ground truth self-ratings, and score sums of PHQ-9,

HRSD-24, and SEK

Experiment

Spearman’s correlation ðrÞ
PHQ HRSD SEK Ground truth

Ground truth 0:694± 0:075 0:683± 0:069 0:630±0:045 1:000±0:000

Baseline eGeMAPS FFNN 0:140± 0:130 0:120± 0:148 0:174±0:075 0:161±0:081

Personalized eGeMAPS FFNN 0:878± 0:064 0:839± 0:029 0:836±0:069 0:737±0:051

Baseline wav2vec FFNN 0:287± 0:142 0:272± 0:150 0:325±0:161 0:314±0:118

Personalized wav2vec FFNN 0:873± 0:062 0:841± 0:026 0:788±0:051 0:734±0:054

Fine-tuned wav2vec 0:261± 0:103 0:253± 0:096 0:306±0:108 0:315±0:077

Hyperformer all 0:731± 0:116 0:741± 0:073 0:679±0:076 0:709±0:066

Hyperformer BDI 0:682± 0:114 0:665± 0:063 0:641±0:061 0:668±0:063

Hyperformer demographics + medication 0:529± 0:127 0:584± 0:104 0:498±0:140 0:562±0:041

Hyperformer depression tests 0:739± 0:082 0:750± 0:060 0:678±0:067 0:700±0:075

Hyperformer HRSD 0:656± 0:102 0:708± 0:094 0:623±0:057 0:663±0:059

Hyperformer PHQ-9 0:759± 0:081 0:671± 0:060 0:676±0:051 0:686±0:062

Hyperformer personality 0:689± 0:057 0:613± 0:064 0:588±0:114 0:642±0:043

Hyperformer SEK 0:658± 0:120 0:616± 0:087 0:681±0:103 0:644±0:044

Computed globally for each fold and then averaged.
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(Figure 4, center). In contrast, our proposed Hyperformer

personalization does not suffer from this problem, increasing

or keeping performance for each speaker (Figure 4, bottom)

while still improving the accuracy of predictions globally. Finally,

Table 3 shows that the output of these simpler personalized

models are most strongly correlated with the scores from

PHQ-9, HRSD-24, and SEK compared with the other baselines

and all hyperformer models, hinting at overfitting on the

metadata.

Overall, global performance measurements are ill-suited to

further analyze the performance of personalization approaches

for depressed mood monitoring on the data at hand, and we

will restrict our analysis to speaker-level r and put a special focus

on participants withMDD (patients) as the group ofmost interest.

Focusing on speaker-level performance, fine-tuning wav2vec

and our proposed personalization approach leads to substan-

tially higher Spearman’s r than the FFNN baselines. Moreover,

every evaluated hyperformer model configuration outperforms

its respective non-personalized fine-tuned wav2vec baseline

when analyzed over all subjects. When we disaggregate the re-

sults by subject group, these two approaches work better on in-

dividuals showing at least some degree of depressive symptom-

atology (subjects in the patient and subclinical groups),

measured in per-speaker r.

Influence of speech content
Following initial work on the dataset and task conducted in Gerc-

zuk et al.,34 we further analyze the performance of the best

personalized wav2vec model with regard to the content of

speech. As can be seen in Table 4, the monitoring of depressed

mood works best when basing the deep learning analysis on the

answers to mood-related questions. This is in concordance with

the previous finding in Gerczuk et al.34 and further supported by

the acoustic analysis under Exploratory data analysis, where

correlations between self-rated mood and paralinguistic speech

markers were more pronounced than for the other types of sam-
8 Patterns 4, 100873, November 10, 2023
ples. Moreover, because we utilize a wav2vec model pre-trained

on German speech recordings, our approach will capture lin-

guistic information about the answers, a phenomenon that has

been shown to occur in such models.51 Given the nature of the

questions, the content of the answers should strongly correlate

with the corresponding depressed mood ratings.

It has also been shown that the type of utterance (e.g., answer

or question) has an impact on speech emotion recognition per-

formance,52 with the hypothesis being that the underlying dialog

act constrains the space in which acoustic parameters may vary.

In our case, reading out these questions provides no semantic

information relevant to a person’s current depressed mood

and further restricts the variability of certain depression-related

acoustic parameters, such as changes in the rate of speech or

number of pauses, to aminimum. Because analyzing these types

of speech recordings leads to the overall worst performance, this

hypothesis may apply in our case, too.

Most interesting, however, are the spontaneous positive

thoughts that participants should record three times at the end

of each session. Overall, and quite intuitively, performance on

these samples sits between the answers and questions. The

free-text nature of these recordings allows changes in speech

characteristics, such as the number of pauses, speech rate,

and variance of pitch, to manifest more distinctly. Furthermore,

because impairment of positive cognition has been shown to

be associated with depressive symptomatology,53 the ability of

study participants to spontaneously formulate positive thoughts

could likely be impacted by depressed mood. However, the ef-

fects and relationships with self-rated mood differ between

experimental groups. When considering recordings of subjects

afflicted with MDD (Table 4, patients), speaker-level perfor-

mance is improved compared with the reading of the questions,

while for the subclinical group, no such improvement can be

found. Because depression is characterized by negative cogni-

tive biases, rumination, and often a lack of positive biases,54

we suspect the effects of depressed mood on positive cognition



Figure 4. Global vs. speaker-level performance evaluation

Global and speaker-level performance implications (measured in Spearman’s r) of our proposed zero-shot personalization of transformers compared with a

simple metadata personalization. While both personalization strategies improve the predictive performance globally (top plot) compared with their respective

baselines, only the proposed Hyperformer approach (bottom plot) improves per-speaker performance in themajority of cases. The top plot shows the distribution

of model predictions per distinct value on the ground truth rating scale (integers from 0–10). The bottom plots compare speaker-level Spearman’s r of the two

personalization strategies and their respective non-personalized baselines. Speakers are sorted by baseline performance.We additionally report themean of per-

speaker Spearman’s r for each model.
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to be more distinct in the patient group. We plan to perform a

more thorough investigation of this suspicion in future work.

Ablation of chosen metadata
We performed an ablation study on the choice of metadata,

which we utilized to condition the weight generation of adapter

modules in the hyperformer architecture. The best-performing

configuration takes in the complete set of chosen meta-informa-

tion, consisting of demographic and medication information, the

results of the TIPI, the SEK scores for mood regulation, and three

depression questionnaires (PHQ, HRSD, and BDI). We trained

models for each of themembers of this set and additionally com-

bined the scores of the depression questionnaires. We join de-

mographic information and medication together because the

latter only contains two items, and both can be considered gen-

eral information that is available before the first psychological

screening. The results can be found in the lower half of Table 2.

Computed over all speakers, utilizing only depression question-

naires matches performance with the whole set (0.371 vs. 0.373)
Table 4. Speech-based results (mean and SD over 5 folds)

All Control

Question 0:192±0:035 0:146± 0

Answer 0:435±0:039 0:373± 0

Positive thought 0:226±0:028 0:191± 0

Performance computed as Spearman’s r over each speaker independently
but with a slight hit to stability. On the other hand, restricting the

conditioning embeddings to demographic information and de-

tails about current medication leads to the worst performance

overall and for each subject group. Compared with more

comprehensive diagnostic information, such as that found by

the HRSD, the demographic information might be insufficient

to further explain intra-individual mood variations. We observe

differing behavior when looking at the subject groups individu-

ally. While mood recognition sees the largest benefit from

personalization based on the depression tests for the patients,

again matching performance with taking in all meta-information,

individuals in the subclinical group do not benefit as much.

Because these subjects are not diagnosed with MDD but only

show some subset of depressive symptomatology to moderate

degrees, the scores from depression testsmight not provide suf-

ficient information for the analysis of how depressed mood is re-

flected in their speech. Interestingly, personalization based on

the TIPI leads to a substantial speaker-level performance

boost in both groups, more than the inclusion of depression tests
Subclinical Patients

:057 0:190± 0:050 0:231± 0:076

:071 0:455± 0:071 0:467± 0:082

:047 0:199± 0:050 0:283± 0:020

and then averaged over all speakers. Grouped by type of audio recording.
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Table 5. Individual fairness for patients is computed as the Gini index over speaker-level Spearman’s r (mean and SD over 5 folds;

lower / more equal), including the number of winners (patients for whom performance improved) and losers (patients for whom

performance worsened) as a result of personalization

Model Gini index Winners Losers

Finetuned wav2vec 0:421± 0:170 – –

Hyperformer all 0:369± 0:148 32 ð132%Þ 16 ð27%Þ
Hyperformer PHQ-9 0:354± 0:156 32 ð156%Þ 16 ð24%Þ
Hyperformer HRSD 0:348± 0:111 33� ð126%Þ 15� ð35%Þ
Hyperformer BDI 0:362± 0:131 31 ð120%Þ 17 ð34%Þ
Hyperformer depression tests 0:325� ±0:157 31 ð157%Þ 17 ð26%Þ
Hyperformer demographics + medication 0:401± 0:184 31 ð128%Þ 17 ð43%Þ
Hyperformer SEK 0:356± 0:126 31 ð120%Þ 17 ð34%Þ
Hyperformer personality 0:349± 0:156 29 ð180%Þ 19 ð23%Þ
Asterisks (*) denote the best result for each metric.
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in the subclinical group. As a very brief 10-item inventory, its

questions focus on measuring the Big Five personality dimen-

sions: openness, conscientiousness, extraversion, agreeable-

ness, and neuroticism. A considerable amount of research has

been conducted on the relationship between personality traits

and depressed mood or depression,55,56 e.g., linking neuroti-

cism to depression severity and depression proneness57 or

showing that high neuroticism and low extraversion correlate

with more negative mood and higher mood variations.58 Highly

relevant to our study, Duberstein and Heisel59 showed that

high neuroticism leads to overreporting depressed mood, while

more openness increases the tendency toward underreporting.

In this way, the TIPI seems to be informative for modeling in-

ter-individual differences in the relationship between the self-

assessment of depressed mood and its physiological influence

on speech.

Fairness
As a last step, we examine ourmodels in terms of fairness across

different individuals. There are different forms of individual fair-

ness depending on the specific problem: most works require

‘‘similar users to receive similar outcomes,’’60 a formulation

most suited to use cases where the model is evaluated on

each individual once (e.g., in credit score assessment). However,

in our case, we have an artificial intelligence (AI) system that

continually tracks the mood of each individual and is thus evalu-

ated on instances of them several times. We therefore adopt the

requirement that the system ideally achieves an equal speaker-

level performance across individuals.

One principled way of measuring the discrepancy across

different speakers is the Gini index, which has also been used

before for individual fairness in depression monitoring.12 Primar-

ily used in economics, it is a measure of inequality, with higher

values indicating that utility (e.g., income) is largely concentrated

on a few individuals. In our case, this utility is simply speaker-

level performance. Thus, the Gini index measures how that per-

formance is distributed across different patients: low values indi-

cate an ‘‘egalitarian’’ setup, where the system performs equally

well for most or all speakers, whereas higher values show an

imbalance toward a subset of them.

Results are shown in Table 5, where we focused on patients as

the group of highest interest. The baseline system showsmoder-
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ate levels of inequality, with an average Gini index over all 5 folds

of 0.421. All hyperformermodels are able to improve on that, with

personalization relying on depression test scores reaching a best

performance of 0.325. This shows how introducing personal in-

formation, even in limited form, can provide a systemwhose per-

formance is more equally distributed across users.

Furthermore, we are interested in measuring how our pro-

posed personalization impacts speaker-level performance

across individuals. This can be useful in cases where a person-

alized model is proposed as an alternative to a baseline model

already used for monitoring patients; ‘‘upgrading’’ to a better

model must be justified by improved outcomes for all users. By

conceptualizing personalization as an intervention (targeted at

a diagnostic method for depression), wemeasured howmany in-

dividuals benefitted from this intervention (i.e., their performance

improved; ‘‘winners’’) vs. those whose performance worsened

(‘‘losers’’). All personalized models improved the performance

of the majority ð> 60%Þ of users. This showcases how most

users will benefit from personalized monitoring of their mood.

Importantly, ‘‘winners’’ see a much bigger percent improvement

in their performance than ‘‘losers’’ see a drop, meaning that,

even for the cases where personalization fails, the deterioration

is not nearly as great.

DISCUSSION

Previous speech-based research on depression has been

largely geared toward the detection of disease status.19 Typi-

cally, this boils down to either the classification of an individual

into a patient or control group or the prediction (e.g., regression)

of a depression-related scale, such as PHQ-9 score. An alterna-

tive line of work pursues the more granular characterization of

depression tracking mood states or depression scales. For

example, Karam et al.22 monitor telephone conversations of bi-

polar disorder patients over time and classify depression states

derived from the HRSD and Young Mania Rating Scale (YMRS).

Most similar to our work, Song et al.25make personalized predic-

tions of Discrete Analog Mood Scale (DAMS) items from promp-

ted EMAs of Japanese participants. The work presented in this

paper falls into this latter line. From a clinical perspective,

exploring affective dynamics may allow the assessment of sub-

types of depression.61 Further, high mean negative affect is
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associated with depression risk,62 and instability in affective

states may be an indicator of depression and anxiety.63 More-

over, deficits in emotion regulation are a stable predictor of

depressive symptoms.64 In this context, utilizing an automated

recognition of depressed mood could give subjects a nuanced

way of tracking their emotional state and indicating the success

of affective regulatory strategies.

However, approaches that model depressed mood on the

population level lack the capability to adapt to differences in

mood regulation between patients,33 necessitating the develop-

ment of personalization strategies. In this paper, we introduced a

strategy for personalization of large-scale speech foundation

models for the automatic monitoring of depressed mood to ac-

count for this issue. Compared with previous works on the

topic,25,34 our approach does not rely on an enrollment phase

but, rather, works solely based on available metadata. We utilize

hyperformer adapters,37 introduced for multitask language

learning, to efficiently inject subject-specific metadata into large

wav2vec transformer models. Through a structured evaluation,

we showed that the approach improves the recognition of

intra-individual mood variations. Furthermore, our results

indicate the importance of incorporating meta-information

throughout the whole architecture of a neural network instead

of a singular point of multimodal fusion. Finally, the ablation of

included metadata showed that the scores of items from the

PHQ-9 had the largest impact on performance. However, the

TIPI, which, as a personality questionnaire, does not measure

depressive symptom severity, provides a similar boost in

performance.

The work presented here is affected by some limitations. First

of all, the relatively short-term nature of the dataset prevents us

from analyzing the impact of our proposed metadata-based

personalization strategy over larger timespans. While symptom-

atology is relatively stable over a short 2-week period, individuals

afflicted with MDD can experience remission, relapse, or re-

occurring depressive episodes of varying severity during the dis-

ease. By only utilizing diagnostic information obtained in the

baseline assessment, we do not explicitly model this drift in

depression-related speaker state. Future work should investi-

gate the impacts on the performance of our and similar ap-

proaches when faced with this drift. Furthermore, after a post

hoc inspection of our experimental results, we ascertained that

the two subjects with the lowest speaker-level performance

appear to be using the scale in the opposite way as instructed.

Their depressed mood self-ratings were higher when their tone

of voice and sentiment appears (to the authors) positive and

lower when their tone appears more negative/depressed. How-

ever, it was impossible to establish contact with these partici-

pants after the study had ended and thus verify our hypothesis.

Because such glitches are inevitable in real-life studies, we

decided to include these participants in our results with their

original ratings, subject to the caveat that these scales might

be, in truth, inverted and therefore could have had a negative

impact on the model training and performance. Finally, because

our data were collected ‘‘in the wild’’ by participants themselves,

potential biases might be introduced in the data collection pro-

cess, such as some participants recording data in different loca-

tions depending on their mood. Given that speech models,

including w2v2, are affected by background noise,65 this may
inadvertently introduce some bias into our results. However,

we do not expect this bias to be large for most participants, given

the large amount of samples they collected ðm = 355:1Þ.
There exist a couple of possible research directions that

should be explored. While our approach considers conditioning

only based on subject-specific metadata, an extension to voice

characteristics should be investigated in future work. An intuitive

extension of our personalization framework could see the inclu-

sion of speaker embeddings computed over external voice sam-

ples as an additional input. Similarly, our approach could be

transformed into a few-shot personalization strategy by the in-

clusion of baseline speech samples injected through the same

means as the metadata. While the notion of a ‘‘neutral’’ baseline

sample, as used, for example, in Triantafyllopoulos et al.66 for

speech emotion recognition, is not directly transferable to the

monitoring of depressed mood, reappraisal statements com-

bined with diagnostic scores such as the SEK could further

inform how affective states are expressed in the voice of individ-

ual subjects. Finally, the linguistic content of the prompted pos-

itive thoughts should be analyzed and incorporated more

directly; e.g., through different fusion approaches with large,

pre-trained language models.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be considered by the lead contact, Maurice Gerczuk (maurice.gerczuk@uni-

a.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The utilized data are not publicly available because they contain sensitive per-

sonal information. Access for the purposes of review can be requested by con-

tacting the lead author. All original code is available at https://github.com/

mauricege/HyperPersonalisation. A snapshot of the repository at the time of

publication has been uploaded to Zenodo: https://doi.org/10.5281/zenodo.

8328092.67

Zero-shot personalization through metadata-conditioned

hyperformers

In order to achieve a zero-shot personalization of depressedmood recognition

based on diagnostic and demographic meta-information, we adapt the meth-

odologies of Houlsby et al.36 andKarimi Mahabadi et al.37 for multitask learning

of natural language processing (NLP) problems. The former introduced the

notion of adapter modules to the transformer architecture, while the latter ex-

perimented with utilizing hypernetworks to generate the weights of these

adapters based on task embeddings. These adapter modules become the

means through which we inject personalized information into large-scale,

pre-trained speech foundation models. In the following, we first describe

transformer adapter modules and later our proposed personalized weight gen-

eration process based on subject metadata, including demographic and diag-

nostic information.

Adapters are small, additional neural network components that are inserted

within the original structure of the pre-trained neural network, keeping the base

model’s parameters intact.68 During transfer learning, all of the base model’s

parameters are frozen, and only the weights of the added adapter modules

are trained. Compared with traditional transfer learning strategies, adapters

are more parameter efficient than full-fine-tuning and have been shown to

perform competitively.36

We outfit the baseline wav2vec model with adapter modules, as outlined for

the t5 language transformer byHoulsby et al.36 In each encoder layer, adapters

are inserted after the attention and feedforward blocks but before the additive
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Figure 5. Architecture of personalized transformer

Visualization of our proposed zero-shot personalization of transformer-based speech foundation models. The left shows where adapter modules for person-

alization are inserted into a single layer of the wav2vec encoder. An overview of the weight generation process for these adapter modules is shown on the right. A

vector of subject metadata is embedded together with learned layer and position embeddings resulting in Is. This embedding then conditions three hypernet-

works to generate the weights for the down- and upsampling feedforward layers and the parameters for the LN, respectively.
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skip connections. Such a transformer layer is displayed on the left of Figure 5.

Each adapter consists of a feedforward down-projection ðDÞ, Gaussian Error

Linear Unit (GeLU)69 non-linearity, up-projection ðUÞ, and layer normalization

ðLNÞ. Furthermore, an additive skip connection bypasses these components.

We denote the weight matrices and biases of the down- and up-projection as

WD ˛Rh3d , bD ˛Rd, andWU ˛Rd3h;bU ˛Rh, with h being the dimension of the

input x and d the size after down-projection. The output of the adapter d is then

computed from the input hidden state x as70

AðxÞ = LNðUðGeLUðDðxÞÞÞÞ+ x: (Equation 1)

The LN is parameterized by b˛Rh and g˛Rh:

LNðxÞ =
x � m

s
1g+ b: (Equation 2)

Mean ðmÞ and standard deviation ðsÞ are computed across the elements of x,

and b and g are learned during training. In our personalized machine learning

setting, the adapter in transformer layer l for subject S is parameterized by DS,

US, and LNS, each with distinct weights and biases.

While the above approach applies to a time-dependent personalization

strategy that uses a certain number of data points from the target subject, it

needs to be adjusted to achieve zero-shot personalization. We utilize the

concept of hypernetworks to generate the parameters for the subject condi-

tional adapter modules, as presented in37 for multi-task language modeling.

The networks are conditioned on subject embeddings IS which we project

through a network hI from metadata vectors mS. In this way, they learn to

derive shared information between individual subjects solely based on diag-

nostic and demographic information. To cut down on the number of trainable

parameters, we further apply a variation of this concept in which the parame-

ters of each adapter module throughout the whole Transformer encoder are

generated by the same hypernetworks.37 This is achieved by concatenating

layer and position (after attention or after feedforward) embeddings (li ; i˛ f0;
.; 23g, pj ; j˛ f0;1g) with the subject metadata vector mS before projection

through hI:

IS = hI

�
mS; li ;pj

�
: (Equation 3)

WhilemS is a fixed input parameter, li and pj are generated through embed-

ding matrices learned end-to-end via backpropagation. The projection

network hI consists of a fully connected (FC) layer with Rectified Linear Unit

(ReLU) activation and a linear FC layer. The weight generation process for
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the adapter and LN in encoder layer i for position j is visualised on the right

of Figure 5. Parameters for down- and up-projection layersDi;j
S andUi;j

S are pro-

duced by the hypernetworks hD and hU:

�
Di;j

S ;U
i;j
S

�
: = ðhDðISÞ; hUðISÞÞ =

�
WD;WU

�
IS; (Equation 4)

with IS defined as in Equation 3. Given input dimension h, bottleneck size d,

and subject embedding dimension s, hD and hU have to generate both weights

and biases for the down- and up-projection layers, resulting in weight matrices

WD ˛Rh3ðd+1ÞÞ3s and WU ˛Rd3ðh+1Þ3s. Similarly, hLN computes b
i;j
S ˛Rh and

g
i;j
S ˛Rh via Wb ˛Rs3h and Wg ˛Rs3h:

�
b
i;j
S ;g

i;j
S

�
: = hLNðISÞ =

�
Wb;Wg

�
IS: (Equation 5)

Model training

The personalized hyperformer models are initialized from the finetuned wav2-

vec baseline models and outfitted with adapter modules and their weight-

generating hypernetworks. As reported in Karimi Mahabadi et al.,37 the hyper-

networks and transformer base model cannot be trained conjointly in a stable

fashion. Therefore, we freeze all parameters except for the added hypernet-

works and the final fully connected prediction layer. Analogous to the baseline

wav2vecmodels, we train the personalized hyperformer with a batch size of 16

and a learning rate of 3e� 4 utilising AdamW71 with learning rate warmup for a

maximum of 10 epochs. Most of the models reach their best performance on

the validation set before the fifth epoch. We choose this best checkpoint for

evaluation on the test set.

Baselines

We compare our proposed zero-shot personalization strategy against a set of

baselines, consisting of non-personalized approaches and a simple metadata

personalization via subject embeddings.

FFNN

The first baseline is an FFNN with 3 hidden fully connected layers with ReLU

activation function trained on pre-extracted features. We implement two ver-

sions of this network, one trained with the eGeMAPS72 of audio functionals ex-

tracted with openSMILE73 and the other on wav2vec embeddings extracted

from the same model, which we fine-tune and personalize for our proposed

approach. For the eGeMAPSmodel, we choose a hidden size of 30 for all three

layers, while the wav2vec embeddings have a larger dimensionality,



ll
OPEN ACCESSArticle
motivating an increased hidden size of 256. We choose AdamW as optimizer

with a learning rate of 1e� 4 and train the models in batches of 128 samples for

a maximum of 100 epochs. For these FFNN models, we further experiment

with a simplified metadata personalization by embedding the same subject

vectors as used in the best-performing hyperformer configuration through a

linear projection layer and performing elementwise addition with the output

of the model backbone (after the second hidden layer).25

Fine-tuned wav2vec

We fine-tune a pre-trained wav2vec model as an additional baseline which we

later further adapt with our zero-shot personalization method. It, therefore, lets

us analyze the performance gains achieved through the personalization strat-

egymost directly. For this baseline, we utilize the pre-trainedGerman XLSR-53

large model obtained from the huggingface hub (https://huggingface.co/

jonatasgrosman/wav2vec2-large-xlsr-53-german) and freeze the weights of

the convolutional feature extractor, only fine-tuning the transformer. The

model is trained with a batch size of 16 and a learning rate of 3e� 4 for a

maximum of 10 epochs. We follow the best practices for training wav2vec;

i.e., we utilize the AdamW optimizer and perform a learning rate warmup at

the beginning of the training.

Evaluation

We evaluate all models via a speaker-independent 5-fold cross-validation

where we additionally split a portion of each training dataset’s speakers to

form a validation set. In this setup, every speaker appears exactly once in

one of the 5 folds’ test sets. For all considered approaches, we choose the

best model for evaluation on the test set based on its performance on each

fold’s speaker-independent validation set, measured in the global Spearman’s

correlation coefficient.
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Schuller, B.W. (2021). Deep learning for mobile mental health: Challenges

and recent advances. J. Colloid Interface Sci. 591, 96–105. https://doi.org/

10.1109/MSP.2021.3099293.

12. Kathan, A., Harrer, M., K€uster, L., Triantafyllopoulos, A., He, X., Milling, M.,

Gerczuk, M., Yan, T., Rajamani, S.T., Heber, E., et al. (2022). Personalised

depression forecasting using mobile sensor data and ecological momen-

tary assessment. Front. Digit. Health 4, 964582. https://doi.org/10.3389/

fdgth.2022.964582.

13. Amiriparian, S., and Schuller, B. (2021). AI hears your health: Computer

audition for health monitoring. In Int. Conf. ICT Health Access.

Wellbeing, volume 1538, E. Pissaloux, G.A. Papadopoulos, A. Achilleos,

and R. Velázquez, eds. (Springer), pp. 227–233. https://doi.org/10.1007/

978-3-030-94209-0_20.

14. Stegmann, G.M., Hahn, S., Liss, J., Shefner, J., Rutkove, S.B., Kawabata,

K., Bhandari, S., Shelton, K., Duncan, C.J., and Berisha, V. (2020).

Repeatability of commonly used speech and language features for clinical

applications. Digit. Biomark. 4, 109–122. https://doi.org/10.1159/

000511671.

15. Latif, S., Qadir, J., Qayyum, A., Usama, M., and Younis, S. (2021). Speech

technology for healthcare: Opportunities, challenges, and state of the art.

IEEE Rev. Biomed. Eng. 14, 342–356. https://doi.org/10.1109/rbme.2020.

3006860.

16. Flanagan, O., Chan, A., Roop, P., and Sundram, F. (2021). Using acoustic

speech patterns from smartphones to investigate mood disorders:

Scoping review. JMIR mHealth uHealth 9, e24352. https://doi.org/10.

2196/24352.

17. Ringeval, F., Schuller, B., Valstar, M., Cummins, N., Cowie, R., Tavabi, L.,

Schmitt, M., Alisamir, S., Amiriparian, S., Messner, E.-M., et al. (2019).

AVEC 2019workshop and challenge: State-of-mind, detecting depression

with AI, and cross-cultural affect recognition. Proc. 9th Int. Audiov. Emot.

Chall. Workshop, 3–12. https://doi.org/10.1145/3347320.3357688.

18. Cummins, N., Dineley, J., Conde, P., Matcham, F., Siddi, S., Lamers, F.,

Carr, E., Lavelle, G., Leightley, D., White, K., et al. (2022). Multilingual

markers of depression in remotely collected speech sample. J. Affect.

Disord. 341, 128–136. https://doi.org/10.21203/rs.3.rs-2183980/v1.

19. Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., and

Quatieri, T. (2015). A review of depression and suicide risk assessment us-

ing speech analysis. Speech Commun. 71. https://doi.org/10.1016/j.spe-

com.2015.03.004.
Patterns 4, 100873, November 10, 2023 13

https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german
https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german
https://doi.org/10.1146/annurev-publhealth-031912-114409
https://doi.org/10.1146/annurev-publhealth-031912-114409
https://doi.org/10.1016/j.jad.2012.10.024
https://doi.org/10.1016/j.jad.2012.10.024
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref3
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref3
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref3
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref3
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref4
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref4
https://doi.org/10.1146/annurev.clinpsy.121208.131305
https://doi.org/10.1016/j.cbpra.2014.01.010
https://doi.org/10.1016/j.cbpra.2014.01.010
https://doi.org/10.1016/j.jad.2021.04.097
https://doi.org/10.1002/cpp.504
https://doi.org/10.1002/cpp.504
https://doi.org/10.1136/eb-2017-102757
https://doi.org/10.1136/eb-2017-102757
https://doi.org/10.1016/j.jad.2019.11.156
https://doi.org/10.1109/MSP.2021.3099293
https://doi.org/10.1109/MSP.2021.3099293
https://doi.org/10.3389/fdgth.2022.964582
https://doi.org/10.3389/fdgth.2022.964582
https://doi.org/10.1007/978-3-030-94209-0_20
https://doi.org/10.1007/978-3-030-94209-0_20
https://doi.org/10.1159/000511671
https://doi.org/10.1159/000511671
https://doi.org/10.1109/rbme.2020.3006860
https://doi.org/10.1109/rbme.2020.3006860
https://doi.org/10.2196/24352
https://doi.org/10.2196/24352
https://doi.org/10.1145/3347320.3357688
https://doi.org/10.21203/rs.3.rs-2183980/v1
https://doi.org/10.1016/j.specom.2015.03.004
https://doi.org/10.1016/j.specom.2015.03.004


ll
OPEN ACCESS Article
20. Abdullah, S., Matthews, M., Frank, E., Doherty, G., Gay, G., and

Choudhury, T. (2016). Automatic detection of social rhythms in bipolar dis-

order. J. Am. Med. Inf. Assoc. 23, 538–543. https://doi.org/10.1093/jamia/

ocv200.

21. Amiriparian, S., H€ubner, T., Karas, V., Gerczuk, M., Ottl, S., and Schuller,

B.W. (2022). DeepSpectrumLite: A power-efficient transfer learning frame-

work for embedded speech and audio processing from decentralized

data. Front. Artif. Intell. 5, 856232. https://doi.org/10.3389/frai.2022.

856232.

22. Karam, Z.N., Provost, E.M., Singh, S., Montgomery, J., Archer, C.,

Harrington, G., and Mcinnis, M.G. (2014). Ecologically valid long-term

mood monitoring of individuals with bipolar disorder using speech. Proc.

IEEE Int. Conf. Acoust. Speech Signal Process. 2014, 4858–4862.

https://doi.org/10.1109/ICASSP.2014.6854525.

23. Johnstone, T., van Reekum, C.M., Hird, K., Kirsner, K., and Scherer, K.R.

(2005). Affective speech elicited with a computer game. Emotion 5,

513–518. https://doi.org/10.1037/1528-3542.5.4.513.

24. Low, D.M., Bentley, K.H., and Ghosh, S.S. (2020). Automated assessment

of psychiatric disorders using speech: A systematic review. Laryngoscope

Investig. Otolaryngol. 5, 96–116. https://doi.org/10.1002/lio2.354.

25. Song, M., Triantafyllopoulos, A., Yang, Z., Takeuchi, H., Nakamura, T.,

Kishi, A., Ishizawa, T., Yoshiuchi, K., Jing, X., Karas, V., et al. (2023).

Daily mental health monitoring from speech: A real-world japanese data-

set and multitask learning analysis. In ICASSP 2023 - 2023 IEEE Int.

Conf. Acoust. Speech Signal Process (ICASSP), pp. 1–5. https://doi.org/

10.1109/icassp49357.2023.10096884.

26. Schuller, B.W. (2018). Speech emotion recognition: Two decades in a

nutshell, benchmarks, and ongoing trends. Commun. ACM 61, 90–99.

https://doi.org/10.1145/3129340.

27. Amiriparian, S., Pugachevskiy, S., Cummins, N., Hantke, S., Pohjalainen,

J., Keren, G., and Schuller, B. (2017). CAST a Database: Rapid Targeted

Large-Scale Big Data Acquisition via Small-World Modelling of Social

Media Platforms (Seventh Int. Conf. Affect. Comput. Intell. Interact.

ACII), pp. 340–345. https://doi.org/10.1109/ACII.2017.8273622.

28. Mayfield, D.G. (1968). Psychopharmacology of alcohol: i. affective change

with intoxication, drinking behavior and affective state. J. Nerv. Ment. Dis.

146, 314–321. https://doi.org/10.1097/00005053-196804000-00006.

29. Feldman, L.A. (1995). Valence focus and arousal focus: Individual differ-

ences in the structure of affective experience. J. Pers. Soc. Psychol. 69,

153–166. https://doi.org/10.1037/0022-3514.69.1.153.

30. Barrett, L.F. (1998). Discrete emotions or dimensions? The role of valence

focus and arousal focus. Cognit. Emot. 12, 579–599. https://doi.org/10.

1080/026999398379574.
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73. Eyben, F., Wöllmer, M., and Schuller, B. (2010). Opensmile: The munich

versatile and fast open-source audio feature extractor. In Proc. Int.

Conf. Multimed. - MM 10 (ACM Press), p. 1459. https://doi.org/10.1145/

1873951.1874246.
Patterns 4, 100873, November 10, 2023 15

https://doi.org/10.1016/0165-0327(95)00097-6
https://doi.org/10.1016/0165-0327(95)00097-6
https://doi.org/10.1017/S0033291710002333
https://doi.org/10.1016/0191-8869(94)00128-F
https://doi.org/10.1016/0191-8869(94)00128-F
https://doi.org/10.1016/0191-8869(90)90045-S
https://doi.org/10.1016/j.jad.2007.01.025
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1016/j.invent.2021.100437
https://doi.org/10.1016/j.invent.2021.100437
https://doi.org/10.1037/emo0000440
https://doi.org/10.1037/abn0000378
https://doi.org/10.1037/abn0000378
https://doi.org/10.1016/j.brat.2014.03.003
https://doi.org/10.1109/tpami.2023.3263585
https://doi.org/10.1109/tpami.2023.3263585
https://doi.org/10.1109/ICME51207.2021.9428217
https://doi.org/10.5281/zenodo.8328092
https://doi.org/10.5281/zenodo.8328092
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref68
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref68
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref68
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1607.06450
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref71
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref71
http://refhub.elsevier.com/S2666-3899(23)00263-5/sref71
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1145/1873951.1874246

	Zero-shot personalization of speech foundation models for depressed mood monitoring
	Introduction
	Results
	Dataset
	Speech recordings and mood ratings
	Available demographic and diagnostic information

	Exploratory data analysis
	Performance of the proposed approach
	Influence of speech content
	Ablation of chosen metadata
	Fairness

	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Zero-shot personalization through metadata-conditioned hyperformers
	Model training
	Baselines
	FFNN
	Fine-tuned wav2vec

	Evaluation

	Acknowledgments
	Author contributions
	Declaration of interests
	Inclusion and diversity
	References


