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A B S T R A C T

More than two years after its outbreak, the COVID-19 pandemic continues to plague medical systems around
the world, putting a strain on scarce resources, and claiming human lives. From the very beginning, various
AI-based COVID-19 detection and monitoring tools have been pursued in an attempt to stem the tide of
infections through timely diagnosis. In particular, computer audition has been suggested as a non-invasive,
cost-efficient, and eco-friendly alternative for detecting COVID-19 infections through vocal sounds. However,
like all AI methods, also computer audition is heavily dependent on the quantity and quality of available data,
and large-scale COVID-19 sound datasets are difficult to acquire – amongst other reasons – due to the sensitive
nature of such data. To that end, we introduce the COVYT dataset – a novel COVID-19 dataset collected from
public sources containing more than 8 h of speech from 65 speakers. As compared to other existing COVID-19
sound datasets, the unique feature of the COVYT dataset is that it comprises both COVID-19 positive and
negative samples from all 65 speakers. We additionally provide an overview acoustic analysis and modelling
baselines using different partitioning strategies. We analyse the acoustic manifestation of COVID-19 on the
basis of these perfectly speaker characteristic balanced ‘in-the-wild’ data using interpretable audio descriptors,
and investigate several classification scenarios that shed light into proper partitioning strategies for a fair
speech-based COVID-19 detection.
. Introduction

In March, 2020, the world health organisation (WHO) has cate-
orised the novel COVID-19 as a pandemic, i. e., a disease characterised
y worldwide spread. Following this characterisation, and the immense
ccompanying strain on healthcare systems, several countries have
aken a series of protective measures, including testing, mask mandates,
ovement restrictions, and vaccination campaigns — all in an attempt

o stem the devastating effects of the virus. Today, more than two
ears after the outbreak of COVID-19, the world is still dealing with
ts repercussions. As of 1 December 2022, the WHO has documented
ore than 650 million cases. A substantial number of cases was only

ecorded in the first quarter of 2022 due to the recent surge of the
micron variant of COVID-19. While governmental responses are now

ransitioning towards the endemic phase in some countries, COVID-19
emains a serious health issue that warrants our continued attention.

∗ Corresponding authors.
E-mail addresses: andreas.triantafyllopoulos@uni-a.de (A. Triantafyllopoulos), florian.pokorny@medunigraz.at (F.B. Pokorny).

Widespread testing is a cornerstone of the response against COVID-
19. It informs public health agencies about the extent of virus spread
in the community, enables the detection of new, potentially danger-
ous, variants, and helps citizens protect themselves and those around
them by seeking timely medical assistance and self-isolating. Currently,
reverse transcription polymerase chain reaction (RT-PCR) and rapid
antigen tests dominate the testing strategies used to identify COVID-19
positive cases.

Recently, a plethora of artificial intelligence (AI) tools have been
proposed for the automatic detection of COVID-19 [1]; the main jus-
tification in their favour are their significantly lower costs, their eco-
friendly nature, and their potential to be deployed at a vastly larger
scale — which have been also showcased for other respiratory track
diseases [2,3]. Suggested tools analyse different types of bio-signals to
make their prediction, ranging from CT-scans [4–6] and chest X-rays
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[7,8], to heart rate signals [9], to vocal [10–15], coughing [15], and
reathing [15–17] sounds. So far, none of them has received medical
ertification and is, thus, not part of any official testing strategy mainly

due to a lower accuracy as compared to standard test approaches.
owever, as those tools become increasingly more sophisticated, and

he virus seems to gradually transition to an endemic stage requiring
ess stringent monitoring, they can nicely complement the arsenal of
OVID-19 detection mechanisms at the disposal of authorities and

ndividuals alike.
The automatic analysis of CT-scans by means of computer vision

echniques has shown much promise in detecting COVID-19 infection,
ith accuracies reaching over 90% in some studies [18]; yet the major
ownside is that this approach requires the use of sophisticated medical
quipment (computer tomographs) and the (suspected) patient to visit
medical facility — both aspects thus hampering a large-scale applica-
ility. In contrast, heart rate and/or vocal signals can be easily obtained
sing everyday sensors, such as wristbands and/or smartphones, and,
hereby, provide a useful basis for an AI-based COVID-19 detection in
large group of people without a need for them to leave their homes.

In the present work, we focus on vocal sounds, in particular speech,
s the bio-signal of choice for detecting and investigating the manifes-
ation of COVID-19. COVID-19 as a respiratory disease suggests that
coustic information can assist in its detection: coughing, shortness
f breath, and sore throat are amongst the most common reported
ymptoms. Patients with mild-to-moderate symptoms frequently report
ysphonia. Accordingly, sound researchers have investigated the effec-
iveness of acoustic information to differentiate between patients with
OVID-19 and controls. A substantial amount of that work has concen-
rated on non-verbal sounds, such as coughing or breathing [11,19].
n contrast, Bartl-Pokorny et al. [20] investigated sustained vowels.
oth non-verbal sound data and sustained vowels are usually obtained
hrough standardised procedures in controlled settings. Thereby, ex-
ctly the same type of vocal sound can be compared across patients
nd controls with less expectable effects of language and culture as
ompared to speech. However, a recorded sequence of speech covers
broader range of language-inherent sounds and sound transitions

nd might thus contain more potentially relevant acoustic information
or distinguishing between individuals with and without a COVID-19
nfection. Moreover, providing a speech sample usually represents a
ore natural setting for people than following the instruction to cough,

reath, or produce a sustained vowel. While oftentimes audio-based
ethods show lower sensitivity to detecting COVID-19 compared to

ther methods, their widespread availability and ease of use without
he help of medical personnel makes them a promising means for rapid,
biquitous early screening, which can then be complemented by more
eliable tests. Naturally, this form of screening will only be useful for
ases where the disease manifests in auditory symptoms; however, the
ame can be said about other screening methods (e.g., temperature sen-
ors rely on patients having a fever). Therefore, audio-based monitoring
an be another valuable tool in monitoring the spread of COVID-19 in
he community.

AI-based digital health tools are often criticised for making unrealis-
ic assumptions that limit their applicability in real-world applications.
ecently, Coppock et al. [19] provided an overview of seven specific
riticisms on audio-based COVID-19 detection — denominated as seven
grains of salt’:

1. Just investigating COVID-19 vs healthy condition (neglecting
other diseases),

2. Presence of (confounding) background noise,
3. Subject knowledge of infection status which potentially impacts

vocal expression (e. g., through emotion),
4. Questionable validity of (self-reported) COVID-19 status,
5. Lack of sound data and code availability,
6. Ignorance of demographic characteristics,
2

7. Lack of speaker-disjoint experiments. c
In the present work, we introduce the COVYT speech dataset, which
ttempts to mitigate several of those issues. Using an easily scalable
ollection and pre-processing protocol allowing to make data from
ocial media channels scientifically exploitable, we provide a unique
ultilingual dataset for investigating COVID-19 detection from free

peech that features COVID-19 positive and negative speech samples
rom exactly the same speakers. In this way, we control for bias poten-
ially introduced by imbalances in intrinsic speaker characteristics, such
s gender, age, and language. In addition, the presence of both positive
nd negative samples from the same speakers allows us to explore
ersonalisation approaches which disentangle the effects of infection
rom individual voice characteristics that can confound analysis [3,
4]. We present baselines with respect to (i) the manifestation of a
OVID-19 infection in different acoustic descriptors and (ii) automatic
OVID-19 detection in various scenarios addressing several factors that

nfluence model performance. The COVYT dataset as well as the code
or our machine learning experiments are publicly available to facilitate
eproducibility and to motivate further research comparable to the
rovided baselines [21,22].

The remainder of this work is organised as follows. In Section 2, we
ntroduce our COVYT speech dataset and present related data collection
nd pre-processing protocols, statistics, and partitioning. In Section 3,
e compare the COVYT speech dataset to other relevant currently
xisting vocal sound datasets for COVID-19 detection. Section 4.3 then
eveals our dataset baselines, while Section 5 positions the COVYT
ataset and our findings with respect to previous research and discusses
he strengths and limitations of our work, connecting it to the above
entioned seven ‘grains of salt’. We conclude our work in Section 7.

. COVYT dataset

.1. Data collection

As the pandemic is a global phenomenon that has dominated the
ublic’s attention since its very beginning, people – and in particular
elebrities – have often ‘announced’ their positive results on social
edia. Some of those cases, like that of the former US president Donald
rump Jr., receive considerable media attention due to the nature and
osition of the person affected. It became common for news outlets
o run features using footage of well-known people discussing their
xperiences on having (had) a COVID-19 infection; or even for celebri-
ies spreading footage by themselves through their private channels.
uch footage is typically recorded in the days following a positive
OVID-19 test, when subjects are required to stay in quarantine. Hence,
he COVID-19 status labels are self-reported and cannot be officially
erified.

The data collection phase for the COVYT speech dataset took place
etween November 2020 and November 2021. During that time, two
opular media platforms are combed for appropriate material, namely
ouTube and TikTok. Different data collection protocols for positive
ases are utilised for each platform. A targeted search is performed on
ouTube, where high-profile cases, e. g., actors, politicians, celebrities,
tc. that come to the authors’ attention through the media, are inten-
ionally looked for. In contrast, a global search is performed on TikTok
y using keywords like ‘‘COVID’’ or ‘‘symptoms’’. In both scenarios,
hen finding an eligible COVID-19 positive example, we search for
ploads of the same speakers preceding the date of infection to serve
s negative examples. In case we easily find more than one positive
xamples of a speaker, all clips are included. Different protocols serve
o mitigate potential biases in our data collection process by incorporat-
ng diverse recording scenarios, ranging from high-quality, professional
nterviews to homemade smartphone videos. In all identified clips,
he speakers were audio-video recorded or recorded themselves while
alking, e. g., during an interview, a public speech, a narrative, or a
story’. As most clips were released by speakers to explicitly inform the

ommunity about their infection status, we are able to harness them for
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Table 1
Overview of dataset statistics. We show the language-wise and total number of (#) speakers as well as # utterances and utterance duration for
the respective points in time at which the speakers had a COVID-19 infection (T+) and the respective points in time at which the speakers did
not have a COVID-19 infection (T−). Gender-wise numbers and durations are given in parentheses in order male/female.

T+ T−

Language # Speakers # Utterances Duration (hh:mm:ss) # Utterances Duration (hh:mm:ss)

Chinese 2 (0/2) 112 (0/112) 00:03:43 (00:00:00/00:03:43) 28 (0/28) 00:00:53 (00:00:00/00:00:53)
English 40 (28/12) 2454 (1988/466) 01:59:45 (01:36:00/00:23:45) 4686 (4068/618) 03:45:54 (03:12:52/00:33:03)
French 2 (2/0) 84 (84/0) 00:04:10 (00:04:10/00:00:00) 96 (96/0) 00:03:04 (00:03:04/00:00:00)
German 2 (1/1) 27 (16/11) 00:01:26 (00:00:48/00:00:38) 85 (65/20) 00:04:28 (00:02:59/00:01:29)
Greek 14 (5/9) 544 (187/357) 00:29:28 (00:08:33/00:20:55) 869 (179/690) 00:43:27 (00:08:46/00:34:41)
Polisha 1 (1/0) 23 (23/0) 00:02:01 (00:02:01/00:00:00) 254 (254/0) 00:11:59 (00:11:59/00:00:00)
Portuguese 1 (1/0) 21 (21/0) 00:00:50 (00:00:50/00:00:00) 118 (118/0) 00:05:33 (00:05:33/00:00:00)
Slovakian 1 ( 1/0) 54 (54/0) 00:02:54 (00:02:54/00:00:00) 273 (273/0) 00:12:41 (00:12:41/00:00:00)
Spanish 2 (1/1) 35 (18/17) 00:01:02 (00:00:29/00:00:33) 650 (632/18) 00:23:35 (00:22:32/00:01:03)

Total 65 (40/25) 3354 (2391/963) 02:45:18 (01:55:45/00:49:33) 7059 (5685/1374) 05:31:35 (04:20:26/01:11:09)

a A portion of the negative utterances of this speaker is actually in English; however, we consider this to have a negligible effect on our
analysis.
coustic analysis and model training. Recordings during the COVID-19
ositive state were taken mostly indoors – at home, a hospital, a TV/
adio studio, or a press conference room – as subjects had to be under
uarantine. To avoid undesired interference, only videos with minimal
ackground noise or quiet music, e. g., from news reports and media
overs, are accepted for this work. In total, we include 185 videos —
9 positive and 96 negative examples. Of these, 83 just contain a single
peaker, whereas the rest contain multiple ones — requiring additional
rocessing to extract the utterances of the target speaker.

.2. Data preparation

First, we download all identified videos in .MP4 format using freely
vailable tools. We then manually annotate the acoustic environment
f each video according to recording location — ‘indoor’ vs ‘outdoor’

and recording setting. For recording setting, we distinguish between:
. speeches (or press-releases), which are longer recordings, where the
arget speaker releases a statement in front of staged, professional-grade
ameras; 2. interviews, where the target speaker is part of a (live or
nline) conversation; and 3. self-recordings, where the target speaker
ses his or her own smartphone to make a short video (usually a social-
edia-style ‘story’). Following this annotation, we extract the audio

treams and store them as .WAV files in format 16 kHz, 16 bit, single-
hannel, PCM. The clips range in duration from 10 s to 1h 11m — some
lips contain long monologues of the target speaker. Therefore, we seg-
ent all clips into single utterances for further processing. We choose
semi-automatic segmentation approach conservative in the amount

f utterances it keeps. We employ a recurrent neural network (RNN)-
ased voice activity detection (VAD) model [23] as the initial stage,
ollowed by a manual verification stage using ELAN1 [24]. Utterances
hat do not exclusively contain speech of the target speaker or samples
hat contain music or background noise are excluded.

.3. Facts and figures

An overview of dataset statistics is given in Table 1. The COVYT
ataset contains 10 413 utterances with a total duration of 8h 15m
f speech from 65 speakers – 25 females and 40 males – at ages
anging from 23 to 74 years at time of infection (mean = 46 years ±
3 years standard deviation). Each speaker has an average number of
61utterances — 52 COVID-19 positive and 109 COVID-19 negative ex-
mples. Henceforth, the respective point in time at which the speakers
ad a COVID-19 infection is referred to as T+; the point in time at
hich they did not have a COVID-19 infection is referred to as T−.
peakers are celebrities of various domains: actors, athletes, journal-
sts, models, musicians, politicians, presenters, reporters, singers, and

1 https://archive.mpi.nl/tla/elan
3

writers. Moreover, the dataset covers 9 different languages, namely
Chinese (CN), English (EN), French (FR), German (DE), Greek (GR),
Polish (PL), Portuguese (PT), Slovakian (SK), and Spanish (ES), with a
majority of English speakers (40) followed by Greek speakers (14). The
number of speakers and utterances is given in detail in Table 1. With
regard to location and setting, most clips were recorded indoors rather
than outdoors (T−: 92 vs 4; T+: 83 vs 6); most clips were recorded
in an interview setting (T−: 55; T+: 27), followed by a speech/press-
release setting (T−: 29; T+: 6), and, lastly, by a self-recording setting
(T−: 12; T+: 56). Naturally, the chance to give a speech or an interview
decreases following a COVID-19 diagnosis, as speakers have to self-
quarantine or are hospitalised for a certain time. Interviews at T+ took
place through online teleconferencing, and speeches were made in front
of staged cameras (presumably without the presence of reporters or
assistants due to quarantine restrictions).

2.4. Partitioning

Proper partitioning is a crucial aspect of any dataset if used for
machine learning (ML) purposes, as the data must be split in a way
that allows for building well-performing models, but also enables a
fair evaluation. Taking into account the relatively small size of the
COVYT dataset, with a total of 10 413 samples, we opt for a cross-
validation scheme, for which we provide training/development/testing
folds. Given that we also aim to investigate different scenarios of
COVID-19 detection, we introduce four different partitioning strategies,
each targeted to a different aspect of interest. Some of our partitioning
strategies are intentionally not speaker-independent to test the influ-
ence of having the same speakers in the training and evaluation folds.
The number of speakers and samples for each fold in each partition is
shown in Appendix.

1. Speaker-disjoint partitioning: As discussed in Coppock et al.
[19], a major limitation of several existing COVID-19 datasets
is their lack of subject-disjoint evaluation. If data from the
same speaker is involved in both training and testing, perfor-
mance will be most probably higher because the model might
re-identify the speaker identity instead of performing the ac-
tual target task. Individual voice characteristics often negatively
impact generalisation; having the same speaker in the train-
ing and testing partitions results in obtaining over-optimistic
performance scores. This particular partitioning scheme is imple-
mented by randomly splitting the speakers into 3 disjoint groups
(𝐺1, 𝐺2, 𝐺3), and subsequently taking all possible permutations
of this set, resulting in 6 folds (the permutations are obtained
by training on 𝐺1, validating on 𝐺2, testing on 𝐺3, then train-
ing on 𝐺2, validating on 𝐺1, testing on 𝐺3 — so each fold is
train/validated/tested on twice).

https://archive.mpi.nl/tla/elan
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Table 2
Comparison of the COVYT dataset with other datasets for audio-based COVID-19 detection.

Dataset # Speakers (+ ) Sound type # Languages Data availability COVID-19 labels ± Same speaker Baseline

COVIDTelephone [25] 19 (10) free speech N/A ✓ level-1 ✗ AUC: .92
AI4COVID [26] 543 (70) coughing N/A ✗ unknowna ✗ Acc: .93
Coswara [27]/DiCOVA [28]b 941 (104)/990 (60) breathing

coughing
vowels digit
counting

multiple ✓ level-1 ✗ AUC: .74

COUGHVID [29] 14787 (410 coughing N/A ✓ level-1 ✗ N/A
YourVoiceCounts [20] 22 (11) coughing

vowels read
speech

1 ✗ level-2 ✗ N/A

CoughAgaistCovid [30] 3621 (2001) coughing N/A ✗ level-2 ✗ AUC: .68
COVID19 [31] 78 (29) coughing

vowel/voiced
consonant
counting
digits

1c ✗ level-2 ✗ AUC: .81

YourVoiceCounts audEERING [10] 39 (19) coughing
vowels read
speech

1 ✗ level-1/2 ✗ UAR: .63

Cambridge Longitudinal [14] 212 (106) breathing
coughing
read speech

8 level-1 ✓ AUC: .79

COVID-19 Sounds [32] 36116 (2496) breathing
coughing
read speech

8 level-1 ✓ AUC: .71

COVYT 65 (65) free speech 9 ✓ level-1 ✓

# = number of; + = COVID-19 positive; ± = COVID-19 positive and COVID-19 negative (samples)
evel-1 self-assessment/no test required; level-2 Medically certified COVID-19 test result required.

Not specified; however, most likely level-2 as the study was conducted in medical facilities.
DiCOVA is derived from Coswara; Coswara is constantly growing so DiCOVA is bigger than the 1st version.
Not mentioned; presumably Hebrew as the study was conducted in Israel.
i
r
i
r
s

3

C
i
c
(
t
v
s
s
s
o
c
t
v
w
b
w
d
a
t
f
d
f

l
o
I

2. Speaker-inclusive partitioning: This partitioning is intention-
ally introduced to quantify the effect of having negative and
positive data of the same speakers in training and testing. The
data of all files from each speaker is randomly split into three
partitions; then, the partitions are permuted to obtain 6 folds in
a similar fashion as before.

3. File-disjoint partitioning: With this partitioning strategy, we
want to investigate whether a speaker-inclusive, but file-disjoint
partitioning would also yield a disproportionately good perfor-
mance. In particular, we ensure that the same speaker is present
in the test and either the training or development partitions, but
the same file is not. This enables us to quantify whether it is
indeed the individual speaker characteristics that cause models
to overperform in the speaker-inclusive scenario, or whether it
is simply the side-effect of having an identical recording (which
contains data from the same acoustic conditions). Given that for
most speakers the COVYT dataset contains only one original clip
per state (COVID-19 negative or COVID-19 positive), we ran-
domly split speakers into two groups, 𝐺1 and 𝐺2. We then create
two test sets, 𝑇1 and 𝑇2, with 𝑇1 containing all T+ instances of
𝐺1 and all T− instances of 𝐺2, and 𝑇2 in contrast with all T−
instances from 𝐺1 and all T+ instances of 𝐺2. This ensures that
each test set contains files from all speakers but in only one of
the two conditions (COVID-19 negative or COVID-19 positive),
thus, ensuring that files are disjoint (as each recording contains
the speaker in only one condition). For each fold, we additionally
create 2 variants where the training set is randomly split into 2
training/development sets (this time in speaker-disjoint fashion,
as most speakers have only one clip per condition), resulting in
a total of 4 folds when taking all permutations.

4. Language-disjoint partitioning: For this final scheme, we split
the data by taking language information into account. As most of
our data is either English or Greek, we bundle all other languages
in a separate ‘other’ group, thus resulting in 3 folds. Once again,
we utilise all permutations to create 6 folds.
4

We note that the information regarding partitioning is included
n the metadata released together with the dataset, thus ensuring
eproducibility of our results and a fair comparison of different scenar-
os. However, not all partitioning schemes are relevant for potential
eal-world applications. We encourage authors to primarily use our
peaker-disjoint partitioning for future work.

. COVYT vs other datasets

Table 2 provides a representative overview of currently existing
OVID-19 sound datasets and specifies aspects that the COVYT dataset

s meant to improve on. In particular, we focus on the type of audio
ontent that each dataset contains. The COVYT dataset contains free
multilingual) speech; this is in contrast to most other listed datasets
hat primarily focus on breathing and coughing sounds, on sustained
owels, or on reading standard texts. Besides some advantages of free
peech (please also see Section 1; coverage of several language-inherent
ounds, natural recording setting), our motivation to use this type of
ound data is a pragmatic one: Free speech is most easily available
n the data sources we examined. The amount of different languages
ontained in a dataset and their distribution are mostly relevant for
hose including linguistic sound types, such as speech or sustained
owels; however, it also serves as a proxy for demographic diversity
hich is an important consideration for making datasets fair and audio-
ased COVID-19 detection applicable across different countries. This is
hy we make the COVYT dataset as diverse as possible and provide
ifferent partitioning strategies including a language-disjoint one. Data
vailability is in turn crucial for ensuring study reproducibility and
ransparency of research findings, and also for fostering new advances
rom researchers without access to own datasets. Here, the COVYT
ataset enjoys an advantage over other datasets, as it is sourced entirely
rom the public domain.

This leads to the issue of label reliability. Relying on self-reported
abels and crowdsourced data holds lots of potential for scaling the size
f a dataset. However, it comes with the danger of erroneous labels.
n contrast, manually collected datasets with strict medical protocols,
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where the label is verified through proper medical examination and
urther audited by a medical practitioner is the gold standard for
igital health applications, but is harder to scale due to the amount of
esources it requires. Our approach lies somewhere in between. While,
echnically, we still rely on self-reported labels, we make use of the
crutiny that celebrities are subjected to from the press, which renders
fake COVID-19 report rather unlikely (though not impossible). To

oughly distinguish between different quality types of labelling pro-
ocols, we adopt a 2-level system, which ranks datasets according to
hether they solely rely on self-reported labels (level-1), or whether a
edically certified test result was required (level-2). The COVYT dataset

alls under the level-1 category.
Additionally, we include another indicator in our comparison,

amely whether a dataset contains samples of the same speaker with
nd without infection. We consider this as an important aspect to-
ards minimising potential biases caused by imbalances in specific

peaker characteristics, such as gender, age, or any other intrinsic
natomical/voice-physiological properties. Investigating exactly the
ame voice with vs without infection across many speakers, respec-
ively, increases the chance to effectively identify disease-related phe-
omena. Moreover, recent findings from the Cambridge Longitudinal

dataset [14] suggest that there are individual effects in the manifes-
tation of COVID-19 in the voice (in their case, non-linguistic vocalisa-
ions). To the best of our knowledge, the COVYT dataset is the only
ataset alongside Cambridge Longitudinal and COVID-19 Sounds (both
ariants of the same data) to fulfil the criterion of having COVID-
9 positive and negative samples from the same speakers, and, in
articular, the only one to fulfil this criterion and to contain free
peech samples, which enables the use of personalised ML algorithms,
hich have been shown to improve performance in other speech-based

asks [33]. However, it has to be considered, that the recording setting
recording equipment, location, situation, speaker mood, etc.) might
iffer between the respective positive and negative sample of one and
he same speaker, which potentially introduces systematic acoustic
ias.

Finally, we included the baseline model performance reported with
he introduction of each dataset (when available). Different authors
omputed different metrics; most used area under the curve (AUC),
hereas one work used accuracy (ACC) and another unweighted av-
rage recall (UAR). This allows us to compare with our work, where
e use fairly straightforward baseline methods. Performance ranges

rom a lowest 63% UAR to a highest 93% accuracy. This illustrates
ow performance might vary depending on dataset, which can be
xplained by various reasons, such as recording conditions or patient
emographics.

. Baseline evaluations

In the following, we provide standard solutions for answering two
ain research questions (RQs) on the basis of COVYT data: (4.2) Which

peech parameters differ most between speakers at T− vs T+? (4.3) Can
− and T+ be automatically differentiated from speech? To this end,
e derive different audio representations from the available utterances.
he generated results shall serve as a benchmark for future analyses
arried out using the COVYT dataset.

.1. Audio representations

Speech processing applications typically rely on hand-crafted sets
f less than 100 until several 1000 features, which attempt to holisti-
ally describe an input utterance [34,35]; importantly, certain features
llow for signal interpretation from a voice-physiological perspective.
n recent years, however, learnt representations have shown superior
erformance and robustness in several tasks [36,37], driving their
daptation from the community. In the present study, we carry out
xperiments using three different audio representations:
5

We begin with the extended Geneva minimalistic acoustic parame-
er set (eGeMAPS) [34] — a rather small set of 88 acoustic parameters
hat has previously been shown to contain relevant information for the
anifestation of COVID-19 in sustained vowels [20]. In contrast, the

nterspeech Computational Paralinguistics ChallengE (ComParE) set is
large-scale feature set of 6 373 acoustic parameters. As the official

aseline feature set of the ComParE series from 2013 until 2021 [35,38],
t has been successfully used for several computer audition tasks over
he last decade. Both the eGeMAPS and the ComParE set are extracted
sing the open-source toolkit openSMILE [39].

Finally, we use learnt representations from w2v2-large-xlsr [37], a
ultilingual variant of wav2vec2.0 [36]. This model was pre-trained

n self-supervised fashion on a large corpus containing 53 languages.
e thus expect this network to generalise better to our multilingual

ata than the vanilla wav2vec2.0. The architecture consists of 7 con-
olutional neural network (CNN) feature extraction layers followed by
4 transformer (self-attention) layers. Here, we use the intermediate
eatures which are extracted by the CNN layers. These roughly corre-
pond to 25ms of audio with a stride of 20ms, which we subsequently
verage over time to obtain the final embeddings. We also experiment
ith the contextualised representations, which are extracted after the

elf-attention layers. However, we get consistently worse performance.
s our intention here was to obtain competitive baselines, we do not

ine-tune w2v2-large-xlsr on COVYT, even though this is known to lead
o substantially better performance [40].

.2. Acoustic analysis (RQ1)

The analysis of acoustic differences between speakers at T+ vs
− is done on the basis of the extracted eGeMAPS representation, as
GeMAPS features generally offer interpretability from a clinical/voice-
hysiological perspective. To ensure equal speaker and COVID-19 sta-
us weighting, we average feature values across all utterances of a
ingle speaker at T+ and T−, respectively. Thus, for each of the 88
GeMAPS features, we produce exactly one value per speaker at T+
nd one value per speaker at T−. We find that the values of the single
eature at T+ and T− are not normally distributed. Thus, we feature-
isely apply the Mann–Whitney U test and derive the effect size 𝑟,

. e., the absolute value of the correlation coefficient calculated as the
-value divided by the square root of the number of samples [41].
e finally rank the eGeMAPS features according to the effect size and

efine top features to have an 𝑟 > 0.3 (fair correlation at minimum). In
ddition, we report two-sided 𝑝-values; however, we do not consider
hem to accept or reject a null-hypothesis and, therefore, do not adjust

them for multiple comparisons.
We identify three top features, namely (I) the coefficient of variation

of the spectral flux, i. e., spectral change between consecutive time
frames [34], in voiced regions, (II) the coefficient of variation of local
shimmer, i. e., change in amplitude between consecutive fundamental
frequency periods [34], and (III) the coefficient of variation of the
spectral flux in the entire speech segment. Fig. 1 reveals the respective
boxplots for T− vs T+ alongside the effect sizes and 𝑝-values. In all three
top features, T+ is characterised by a lower coefficient of variation
as compared to T−. This means that there is restricted variation with
regard to spectral and amplitude change within an utterance in COVID-
19-related speech. Fig. 2 exemplarily shows the spectrograms of an
utterance produced at T− and an utterance produced at T+. Both
utterances originate from the same speaker, namely the speaker with
the highest average top feature (coefficient of variation of spectral
flux in voiced regions) difference between T+ and T−. Obviously,
the utterance produced at T+ exhibits more inharmonic overtones in
voiced sounds as compared to the utterance produced at T−, which
is associated with more vocal coarseness as typical for a respiratory
disease. Moreover, the presented spectrogram related to T+ indeed
suggests less variation of spectral change over time in voiced regions.
However, this finding has to be interpreted with caution, as not only



                                                                           

M
v
o

a

m
r
f
y
r
r

4

p
S
f
f
t
c
t
.
p
d
t
o
b

i
w
a
o
f
t
p
e
T

Fig. 1. Comparison of speakers at their respective point in time without COVID-19 infection (T−) vs the point in time with COVID-19 infection (T+) by means of boxplots for
the three identified acoustic features with a differentiation effect 𝑟 > 0.3. Boxplots are ordered according to a decreasing 𝑟 from left to right. Effect size 𝑟 and 𝑝-value of the

ann–Whitney U difference test are given above each boxplot. 𝑟 is rounded to two decimal places. 𝑝 is rounded to three decimal places. Outliers (red plus symbols) are defined as
alues more than 1.5 times the interquartile range away from the bottom or top of the respective box. SDnorm = standard deviation normalised by arithmetic mean (= coefficient
f variation), VR = voiced regions.
Fig. 2. Spectrograms of utterances produced by one and the same speaker (gender: female, nationality: Greek, age at T+: 43) at a point in time without COVID-19 infection (T−)
nd at a point in time with COVID-19 infection (T+).
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echanisms of voice production but also room acoustics affect the
ecorded audio signal and, thereby, a wide range of derived acoustic
eatures. An auditory inspection of the utterances presented in Fig. 2
ields that the utterance produced at T+ was obviously recorded in a
oom with a longer reverberation time as compared to the utterance
ecorded at T− (please also see limitations discussed in Section 6).

.3. Automatic COVID-19 detection (RQ2)

In this subsection, we present our automatic COVID-19 classification
erformance results on all four partitioning strategies described in
ection 2.4. In all cases, we perform z-score normalisation on each
eature separately, computing the statistics on the training set of each
old in our cross-validation setup separately, and consequently applying
hem on the development and test partitions. As a typical baseline
lassifier, we utilise support vector machines (SVMs), where we op-
imise the complexity parameter 𝐶 in [.0001, .0005, .001, .005, .01,
05, .1, .5, 1] as well as the kernel function across the types linear,
olynomial, and radial basis function (RBF). Optimisation is always
one on the development partition of each fold. We additionally utilise
wo distinct evaluation protocols, each highlighting a different aspect
f the underlying problem. As our metric of choice we use the AUC for
oth.

The first protocol is adhering to standard ML practice. As discussed
n Section 2.2, the downloaded clips are segmented into utterances,
hich we use as training/validation/testing instances in the context of
ML pipeline. These instances inherit the label (presence or absence

f a COVID-19 infection) from the file they originate from. In each
old, the model is trained on the training instances and evaluated on
he test instances, resulting in one prediction value per instance. These
redictions are then evaluated against the ground truth labels over the
ntire test set to provide a general, segment-level performance score.
his procedure is repeated for each fold in each partitioning scheme.
6

u

ithin the standard evaluation protocol, this procedure is affected by
he fact that utterances coming from the same file are not independent
nstances. This biases our results and in particular confidence measures
nd subsequent analysis. Therefore, we only report it for the sake of
ompleteness and focus on the following, second protocol.

The second protocol is motivated by the clinical evaluation setting
or which our application is intended. Under this perspective, the dif-
erent utterances resulting from the segmentation process can be seen
s repeated measurements of the same underlying variable, namely
he manifestation of COVID-19 in the speaker’s voice. In this setting,
egment-level decisions are aggregated to provide a final, holistic eval-
ation, which takes all utterances into account and provides a single
abel for each file in the test partition. As our present focus is on
roviding a set of competitive baselines, we adopt the simplest possible
ggregation process, namely max voting, where the label corresponding
o each file is defined as the most often-predicted label across all its
tterances. As this results in only one prediction per file, we have now
ndependent measures of each speaker’s COVID-19 status for each file.

We present AUC results for all partitioning scheme and audio rep-
esentation combinations in Table 4, as well as the accompanying ROC
urve for the speaker disjoint partitioning in Fig. 3. For all partitioning
trategies, we compute average AUC and 95% bootstrap confidence
ntervals (CIs), using 1000 bootstrap samples. For file-level results, we
ompute the CIs by sampling instances with replacement from the
ile-level predictions (this is possible because they are independent).
or segment-level results, where predictions per file are not indepen-
ent, we compute the CIs as follows: (a) We first sample speakers
andomly with replacement. This accounts for the lack of independence
aused by the same speaker having multiple utterances in the same
tate from the same file. (b) For each sampled speaker, we randomly
ample utterances (also with replacement) from their pool of available
tterances. This accounts for the randomness caused by the different

tterances as some might have better predictive power than others.
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Table 3
Average Brier score and 95% CIs for all partitioning strategies and audio representations using support vector machines (SVMs) with different
features.

Partitioning Speaker-disjoint Speaker-inclusive File-disjoint Language-disjoint

eGeMAPS .245 (.181–.317) .121 (.095–.152) .258 (.205–.318) .297 (.221–.374)
ComParE .206 (.157–.258) .120 (.092–.151) .206 (.157–.258) .246 (.176–.326)
wav2vec2.0 .187 (.115–.269) .038 (.018–.061) .202 (.144–.272) .237 (.159–.324)
Table 4
Cross-validation area under the curve (AUC) results for all partitioning strategies and audio representations using support vector machines (SVMs) with different features. We report

ean AUC and 95% confidence intervals over all folds.
Partitioning Speaker-disjoint Speaker-inclusive File-disjoint Language-disjoint

Audio representation Segment-level
AUC

File-level
AUC

Segment-level
AUC

File-level
AUC

Segment-level
AUC

File-level
AUC

Segment-level
AUC

File-level
AUC

eGeMAPS .629 (.453–.774) .687 (.544–.816) .952 (.929–.967) .919 (.873–.958) .658 (.529–.781) .685 (.569–.794) .534 (.357–.690) .586 (.415–.760)
ComParE .761 (.599–.883) .779 (.649–.891) .960 (.935–.977) .916 (.872–.954) .772 (.635–.865) .769 (.668–.861) .643 (.490–.781) .722 (.558–.860)
wav2vec2.0 .758 (.586–.902) .818 (.693–.920) .997 (.994–.999) .984 (.966–.997) .816 (.695–.915) .798 (.698–.884) .706 (.536–.860) .736 (.577–.876)
Fig. 3. ROC curve with mean (lines) and 95% CIs (shaded areas) of true positive rates over all folds for the speaker disjoint partitioning.
t

c) We accumulate all bootstrap AUC estimates and compute 95% CIs
or each fold. (d) We compute the average CI ranges over all folds
or each partition scheme. At first glance, wav2vec2.0 results in the
ighest performance across all schemes with an AUC of .818 on the
peaker-disjoint partition, followed by ComParE (AUC: .779), while
GeMAPS is lagging further behind (AUC .687). This demonstrates the
ower of learnt representations for COVID-19 detection in free speech
amples.

We additionally report Brier scores (average and 95% CIs) for file-
evel probabilities in Table 3. Brier score is the mean squared difference
etween classifier probabilities and classes. It takes values in the range
f ({0, 1}; 0: perfect accuracy, 1: perfect inaccuracy), with values ≤ .25
eing better than a classifier assigning an equal random probability
0.5) to both outcomes. It thus quantifies how well the probabilities
re calibrated, beyond the accuracy of the predictions. We note that for
VMs classifiers, probabilities are derived using Platt scaling, which
oes not always correspond to the model decision; nevertheless, we
onsider it an acceptable proxy. File-level probabilities are computed
y taking the average over segment-level probabilities. For the speaker-
isjoint experiments, we observe lower scores for wav2vec2.0 features
.187) indicating a better calibration than ComParE (.206) and eGeMAPS
.247).
7

The different partitioning schemes allow us to find the answers of
wo important questions:

1. How important is the use of speaker-disjoint sets? The vastly su-
perior performance of all audio representations on speaker-
inclusive experiments, where wav2vec2.0 reaches an average
AUC of .997 on the instance- and .985 on the file-level, com-
pared to the alternative partitioning strategies, where wav2vec2.0
reaches a maximum average AUC of .758 and .818 on instance-
and file-level evaluations, respectively, shows that this par-
titioning can result in a large overestimation of real-world
performance and should, therefore, be avoided. However, the
drop of performance observed when switching to file-, but not
speaker-disjoint evaluations also indicates that it is not neces-
sarily the presence of the same speaker in training and testing
partitions per se that causes this overestimation, but potentially
(also) the splitting of the same recording (whose utterances
form repeated measurements of the same speaker in the same
acoustic environment). Actually, the difference between our
speaker-disjoint and file-disjoint partitioning schemes is neg-
ligible, showing that the speaker effect is small when taking
care to avoid other confounders (e. g., recording conditions,

background noise, etc.). Still, to be on the safe side, future
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work on the COVYT dataset and comparable datasets (where
applicable) should avoid the use of speaker-inclusive partitions
in order to obtain accurate generalisation estimates.

2. Is a speech-based detection of COVID-19 universally possible, i. e.,
across languages? The evidence here is inconclusive. Our
language-disjoint partitioning turns out to be the most challeng-
ing for the audio representations tested here, with performance
dropping to .706/.736 even for the best-performing wav2vec2.0,
while resulting in random-chance performance for eGeMAPS
(.534/.586). This is expected, as several speech-based computer
audition tasks struggle with cross-language generalisation. Even
so, the fact that the learnt representations of wav2vec2.0, which
has been pre-trained on several languages, still shows the highest
performance is a promising sign that future ‘multilingual’ foun-
dation models might bridge this gap and form the basis of a
universal COVID-19 detection model. Though, until that time,
it is highly recommended that models are applied with special
care to different languages/cultures, and (if possible) evaluated
on a representative test set beforehand.

. Discussion

Our findings confirm that COVID-19 detection from free speech
amples is feasible. Using standard procedures, we are able to obtain de-
ection rates in the range of 70%–80%AUC for the most realistic testing
cenarios — which are comparable to those achieved for other datasets
ith free speech. For example, Schuller et al. [38] report the best result

or the COVID-19 speech sub-task of the 2021 ComParE (the baseline) at
2% unweighted average recall (UAR), whereas Dang et al. [14] report
n AUC of .66 on CambridgeLongitudinal, which increases to .79 when
tilising the longitudinal nature of the data. This showcases that speech
s suitable for the detection of COVID-19. Free speech is easier to obtain
han read texts/scripted speech, as it can be unobtrusively collected by
eans of passive recordings instead of requiring the speaker to actively

ecord data and follow any instructions; we therefore expect this type
f data to prove highly relevant for future COVID-19 speech research.

An undesirable side-effect of the ‘wildness’ of our data is that
t makes the task harder to solve with interpretable features. This
s reflected both in the lower detection performance obtained with
GeMAPS and the fact that our acoustic analysis did not yield that
lear trends as seen, e. g., in studies using data acquired in a more
ontrolled setting, such as Bartl-Pokorny et al. [20]. Nevertheless, there
s some consistency between our present findings and those of Bartl-
okorny et al. [20]: Both studies report shimmer and spectral flux to
e relevant for the identification of speakers with COVID-19. The fact
hat other features, such as variations in the fundamental frequency
r the harmonics-to-noise ratio are not found to be relevant in our
tudy might be related to the different sound type used — free speech
n the present study vs sustained vowels in Bartl-Pokorny et al. [20].
oreover, it needs to be considered that the COVYT dataset used in

he present study includes multiple languages and, thus, a huge range
f phonemes and phoneme transitions, making a feature comparison
ith monolingual studies difficult.

. Contributions and limitations

The COVYT dataset is the first of its kind COVID-19 speech dataset
ourced from public multimedia platforms — a heretofore untapped
esource for such data. Moreover, the presence of the same speaker with
nd without infection makes it a natural candidate for personalisation
pproaches, which are expected to improve COVID-19 detection per-
ormance as previous work found its symptom manifestation to have
n individualised component [14]. These two aspects, combined with
he open-source nature of the data, make the COVYT dataset a prime
asis for further research in voice-based COVID-19 detection, which has
8

huge potential to massively increase future testing capacities while
aving waste at the same time. However, the COVYT dataset inherently
omes with a number of limitations, especially as the exploited video
lips were not recorded with the intention to generate data for later sci-
ntific analyses. We thus return to the ‘seven grains of salt’ of Coppock
t al. [19], and attempt to position the contributions and limitations
f our work accordingly.

1. COVID-19 vs other diseases. The COVYT dataset does not fulfil
this requirement as it primarily contains healthy or COVID-19
positive samples. Information about potential chronic diseases,
such as asthma, are not reliably available. However, this also
holds true for most previous works. → Minor limitation.

2. Background noise. Due to our strict data collection and prepara-
tion protocols, we expect only a limited amount of background
noise (if at all) to be present in our processed utterances. Further-
more, by collecting data ‘in-the-wild’ from several sources, we
cover a wide range of recording conditions relevant for potential
future test applications while still ensuring a higher data quality
as compared to fully crowd-sourced datasets. On the downside,
most COVID-19 positive samples were recorded in isolated envi-
ronments without other people present, as subjects were under
quarantine, whereas COVID-19 negative samples encompass a
wider gamut of recording environments; see data statistics in
Section 2.3. Thus, we are aware of potential systematic differ-
ences in background noise and room acoustics/reverberation as
well as recording setting, which models may be able to exploit.
→ Balanced.

3. Subject knowledge of infection status. Subjects were not only aware
of their infection status, but in many cases created the recordings
ad hoc to convey this status to a wider public. Given that our
dataset consists of celebrities who rely on building emotional
ties with their audience, it is highly possible that some of them
modulated their voice accordingly. Thus, (intended) emotion
could be a potential confounder when building COVID-19 de-
tection models on the basis of the COVYT dataset. Nevertheless,
(negative) affect is also a potential disease indicator [42]. Fur-
thermore, it is possible that the vocabulary speakers use when
infected (T+) and are making a press-release/interview con-
tains explicit mentions to their health status which can act as
‘shortcuts’ for the models to learn instead of the actual task.
This is particularly relevant for large, pre-trained models like
wav2vec2.0 which are known to rely on linguistic information
(when available) [40,43,44]. However, this effect is stronger in
the deeper transformer layers [43,44], not the earlier convolu-
tion ones whence we extracted our embeddings here — thus
we expect this effect to be absent from our study. → Major
limitation.

4. Validity of labels. Although the labels used here are essentially
self-reported, the high level of scrutiny which celebrities are
being subject to (especially w. r. t. a positive diagnosis in the
early days of the pandemic) strengthens our confidence in la-
bel validity. More problematic than the fact of just knowing a
speaker’s COVID-19 status in terms of negative vs positive is
the missing knowledge about (i) the period between a positive
COVID-19 test and the time of recording, (ii) the type of the used
COVID-19 test, (iii) the cycle threshold (CT) value at the time
of recording in case of a PCR test, (iv) the specific COVID-19
variant, (v) the range and severity of the speaker’s symptoms at
the time of recording, (vi) potential diagnoses of other (chronic)
diseases, (vii) the speaker’s vaccination status, etc. → Minor
limitation.

5. Data and code availability. The COVYT dataset as well as the code
for all experiments presented in this work are publicly released
(see Section 1). → Major contribution.
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Table A.5
Number of speakers and utterances (in parentheses) for each fold and partitioning strategy.

Partitioning Speaker-disjoint Speaker-inclusive File-disjoint Language-disjoint

Fold Train Dev Test Train Dev Test Train Dev textbfTest Train Dev Test

Fold 1 19 (3361) 23 (3804) 23 (3248) 65 (3463) 65 (3574) 65 (3376) 28 (2650) 28 (2651) 37 (5112) 40 (7080) 14 (1413) 13 (1920)
Fold 2 19 (3361) 23 (3248) 23 (3804) 65 (3463) 65 (3376) 65 (3574) 28 (2651) 28 (2650) 37 (5112) 40 (7080) 13 (1920) 14 (1413)
Fold 3 23 (3804) 19 (3361) 23 (3248) 65 (3376) 65 (3574) 65 (3463) 37 (2556) 37 (2556) 28 (5301) 13 (1920) 14 (1413) 40 (7080)
Fold 4 23 (3804) 23 (3248) 19 (3361) 65 (3376) 65 (3463) 65 (3574) 37 (2556) 37 (2556) 28 (5301) 13 (1920) 40 (7080) 14 (1413)
Fold 5 23 (3248) 19 (3361) 23 (3804) 65 (3574) 65 (3463) 65 (3376) N/A N/A N/A 14 (1413) 40 (7080) 13 (1920)
Fold 6 23 (3248) 23 (3804) 19 (3361) 65 (3574) 65 (3376) 65 (3463) N/A N/A N/A 14 (1413) 13 (1920) 40 (7080)
D

A

K
H

A

R

6. Demographic variability. The COVYT dataset does not cover sub-
jects from a wide range of socioeconomic backgrounds; celebri-
ties typically come from the upper echelons. Nevertheless, we
provide samples in 9 different languages, produced by speakers
from different ethnicities (not all English speakers were natives)
and age groups. → Minor contribution.

7. Speaker-disjoint experiments. Speaker identity is available for all
utterances. Thus, speaker-disjoint partitions can be created. We
provide a baseline partitioning scheme to allow standardised
evaluation protocols. Furthermore, the COVYT dataset is the
only dataset alongside the Cambridge Longitudinal dataset [14],
which contains data of the same speakers with and without
infection, which enables future research in personalised ap-
proaches that account for individual differences in the manifes-
tation of COVID-19 in human voices. → Major contribution.

. Conclusion

We introduced the COVYT speech dataset for the investigation
f (i) the acoustic manifestation of a COVID-19 infection as well as
ii) the audio-based automatic detection of COVID-19 in free speech
amples. The dataset contains 8+ hours of publicly available audio
aterial and, in contrast to most other datasets in this research field,

t features both COVID-19 positive and negative speech samples of
ll 65 included speakers. In our baseline experiments, we identified
hree acoustic features – two related to spectral flux and one related to
ocal shimmer – to differ between the COVID-19 positive and negative
amples. Moreover, we obtained a AUC over 0.7 for the automatic
lassification of speech samples according to COVID-19 status by using
re-trained speech models.

The COVYT dataset together with the provided benchmarks shall
oost further research in the field of speech-based COVID-19 detection
hile ensuring reproducibility and comparability of results. Further-
ore, as the dataset contains samples of the same speakers with and
ithout COVID-19 infection, we expect it to prove a valuable conduit

or future efforts in personalisation approaches that can adapt to the
haracteristics of individual speakers and, thus, improve performance
nd reliability.
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