
European Actuarial Journal (2024) 14:551–580
https://doi.org/10.1007/s13385-023-00362-4

ORIG INAL RESEARCH PAPER

Detection of interacting variables for generalized linear
models via neural networks

Yevhen Havrylenko1,2 · Julia Heger3

Received: 16 September 2022 / Revised: 7 April 2023 / Accepted: 28 August 2023 /
Published online: 1 November 2023
© The Author(s) 2023

Abstract
The quality of generalized linear models (GLMs), frequently used by insurance
companies, depends on the choice of interacting variables. The search for interac-
tions is time-consuming, especially for data sets with a large number of variables,
depends much on expert judgement of actuaries, and often relies on visual perfor-
mance indicators. Therefore, we present an approach to automating the process of
finding interactions that should be added to GLMs to improve their predictive power.
Our approach relies on neural networks and a model-specific interaction detection
method, which is computationally faster than the traditionally usedmethods like Fried-
man’s H-Statistic or SHAP values. In numerical studies, we provide the results of our
approach on artificially generated data as well as open-source data.

Keywords Neural network · Model interpretability · Generalized linear model ·
Interaction detection · Insurance claims prediction

1 Introduction

Insurance companies usually apply generalized linearmodels (GLMs) to predict insur-
ance claim counts due to the interpretability of these models. GLMs are constantly
improved by pricing actuaries via sophisticated choice of variable interactions. This

B Yevhen Havrylenko
yh@math.ku.dk

Julia Heger
julia.heger@uni-a.de

1 TUM School of Computation, Information and Technology, Technical University of Munich,
Parkring 11, 85748 Garching, Germany

2 Present Address: Department of Mathematical Sciences, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen, Denmark

3 Chair of Analytics and Optimization, University of Augsburg, Universitätsstraße 2, 86159 Augsburg,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13385-023-00362-4&domain=pdf
http://orcid.org/0000-0002-1877-6072

552 Y. Havrylenko, J. Heger

process is time-consuming, depends much on expert judgement, and relies on visual
performance indicators. These aspects motivate the usage of machine learning (ML)
techniques for improving the performance of GLMs by finding the next-best interac-
tion to be added to the GLM. Such automation of themanual andmainly visual process
of fine-tuning GLMs could save much time for actuaries, especially in the case of big
data setswith dozens of variables, e.g., inmotor third-party liability (MTPL) insurance.

In this paper,we propose amethodology for the detection of the next-best interaction
that is missing in a benchmark GLM. We aim at improving an arbitrary but fixed
existing benchmark GLM instead of creating a new GLM from scratch. Building a
new GLMmay necessitate drastic changes in the tariff of the MTPL insurance. Large
changes in tariffs are not desired by insurance companies for their existing business
lines. Instead, GLMs need to be improved gradually.

The approachwe suggest has three steps. First, a combined actuarial neural network
(CANN) is trained. This model is introduced in the actuarial context in [22] and
can be seen as a combination of a benchmark-GLM predictor and a neutral-network
predictor into a single neural network (NN) using a skip connection for the GLM
component. Second, the strength of each pairwise interaction learned by the CANN
model is quantified and the interactions are ranked by their strength using a neural
interaction detection (NID) algorithm. This algorithm is introduced in [19] for fully
connected feed-forward neural networks and adjusted by us to CANN models. Third,
the top-ranked interactions are analyzed with the help of mini-GLMs and the next-best
interaction to be included in the benchmark GLM is identified.

We show the performance of our approach on an artificially created data set, where
the true interactions are known from the data-generation mechanism, and on an open-
source French MTPL data set, which has been analyzed in many academic sources,
e.g., [16], [12], [3], [8], [23], etc. Finally, we comment on the advantages of our
methodology for bigMTPLdata setswithmillions observations anddozens of features,
which are common for larger insurance companies.

Literature overview: GLMs are introduced by [11] as a generalization of a linear
regression model with a normally distributed response variable. Since then, GLMs
became an important and popular tool in insurance pricing, especially MTPL insur-
ance. For more information, see [2], [14], [23].

The process of finding the best GLM becomes very challenging with the increasing
number of variables. As it is not possible to fit and compare all possible models for
a large number of variables, three classical approaches have been developed: forward
selection, backward selection, and mixed (bi-directional) selection. Forward selection
is a greedy approach and might include variables early that later become redundant.
Mixed selection can fix this challenge. As an alternative to stepwise variable selec-
tion, one can use penalized likelihood estimation, e.g., Least Absolute Selection and
Shrinkage Operator (LASSO) introduced by [18], to find the best subset of variables
for a GLM.

However, it is even more computationally challenging to use the above methods
to search for the best GLM with interacting variables, as the number of possible
interactions is too large, whereas re-fitting even one single GLM on a real-world
big data set is time-consuming. Therefore, researchers explored the usage of neural-

123

Interaction detection for GLMs via neural networks 553

network based models for predicting claim frequencies and learning from them about
the interacting variables, which can be added to a GLM to improve its performance.

First, a neural-network based model is trained. Second, interaction-detection
methods are applied. Two types of interaction-detection methods are distinguished—
model-agnostic andmodel-specific ones.Model-agnosticmethods do not use a specific
structure of the ML model. This class of methods includes Friedman’s H-statistics
[4], Greenwell statistics [6], feature interaction in terms of prediction performance
[13], and SHAP interaction values [9]. The main drawback of the above-mentioned
model-agnostic methods is their high computational cost for big actuarial data sets.
Model-specific interaction detectionmethods rely on the peculiarities of theMLmodel
under consideration. For example, [21] proposes a procedure for determining missing
interactions in the benchmark GLM via CANNs. For each interaction of interest, a
CANN that uses the interaction of interest and the prediction of the benchmark GLM
is trained. If the deviance loss function of the CANN model decreases significantly in
comparison to the deviance loss of the benchmarkGLM, then this interaction is consid-
eredmissing. [15] proposes a LocalGLMnet, which retains the additive decomposition
of the response variable as in the case of a GLM, but lets the regression coefficients
become feature-dependent. Once a LocalGLMnet is trained, one can detect whether
there is an interaction between two features by exploring smoothed plots of gradients
of the regression coefficients, also called regression attention due to their dependence
on the features. How to optimally determine interactions for categorical variables with
many levels is still an open question for LocalGLMnets.

In our approach, we also use CANN, as in [16]. We use embedding layers for cate-
gorical featureswithmany categories, as it is shown to improve predictive performance
on actuarial data sets, see [16], [21]. To extract interactions, we use a model-specific
method that is a modification of a method called Neural Interaction Detection (NID).
This method is developed in [19]. It computes the strengths of all interactions among
input neurons of a neural network very fast, since it uses only trained weights of the
neural network, and is extendable to embedding layers and the architecture of a CANN
model.

Structure: In Sect. 2, we explain the basics of GLMs. In Sect. 3, we describe in
detail our proposed algorithm for detecting the next-best interaction for a benchmark
GLM. Each subsectionwithin this section is devoted to a specific part of our algorithm.
Section4 contains case studies, where we apply the proposed algorithm to two data
sets—an artificially created one and an open-source one—and briefly comment on its
usage for big confidential data sets. We offer our conclusions in Sect. 5. Appendix A
contains R-code for the neural interaction detection algorithm.

2 Generalized linear models for modeling insurance claim
frequencies

In this section, we briefly describe the basics of a GLM for modeling claim counts.
We start with a definition of a GLM without interacting variables and then explain
how an interaction is added to a GLM. This section is mainly based on [21]. Since

123

554 Y. Havrylenko, J. Heger

their introduction in 1972, GLMs have enjoyed great popularity for modeling and
forecasting claim frequencies within the insurance sector.

Let a data set be denoted by {(Ni , xxxi , vi)}ni=1, where n ∈ N is the number
of observations, vi ∈ [0, 1] corresponds to the exposure time in years of the
i-th observation (the time length in which events occur), Ni ∈ N ∪ {0} refers
to the number of claims observed for the observation i within exposure time vi ,
xxxi = (1, xi,1, xi,2, . . . , xi,p)� ∈ X ⊂ {1} × R

p represents the vector1 of variables
(features, covariates) for the observation i excluding the exposure time, and p ∈ N is
the number of features. In the Poisson GLM context, Ni , i = 1, . . . , n, are assumed
to be independent random variables that follow the Poisson distribution. The mean
of the distribution of Ni is assumed to depend on the so-called systematic (linear)
component η(xxxi) := 〈βββ, xxxi 〉 = βββ�xxxi and the exposure time vi as follows:

Ni ∼ Poisson(vi · exp(η(xxxi))),

where βββ ∈ R
p+1 is the vector of GLM parameters.

Denote λGLM (βββ, xxxi) := exp(η(xxxi)). The vector of parameters βββ is estimated via
the maximum likelihood estimation method. We denote the estimated parameters by
β̂ββ and the estimated (expected) annual number of claims for an observation xxxi by
λ̂GLM
i := λGLM (β̂ββ, xxxi). The weighted average predicted frequency (WAPF) and the

weighted average observed frequency (WAOF) are then defined as

WAPF =
∑

i λ̂
GLM
i vi

∑
i vi

, WAOF =
∑

i Ni
∑

i vi
. (1)

An important requirement for modeling claim counts is the equality of the WAPF
and theWAOF.This property is called a balance property.AGLMsatisfies this property
on the data set used for model fitting. For the proof of this fact, an interested reader is
referred to Equation (2.10) in [20].

In GLMs, different choices of variables lead to different predictive performance.
The optimal set of variables can be found by fitting GLMs with different subsets
of variables and comparing goodness-of-fit measures like the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), etc. These model evaluation
criteria can be used for the automated selection of the best subset of available variables
for a GLM. Popular automated feature selection methods are stepwise backward,
forward, and mixed variable selection methods. As mentioned in the introduction
section, thesemethods have huge computational costs for data sets with a large number
of variables.

Next, we explain what an interactionmeans in the context of a GLM. For simplicity,
we focus on pairwise interactions, i.e., those between pairs of variables. However, the
concepts below can be extended to higher-order interactions, i.e., those among more
than two variables. In a GLM, a pairwise interaction is an additional term I (·, ·) in
the GLM’s systematic component η(xxx) and this term is a function that cannot be

1 For each vector of variables, its first component is always 1 and serves the purpose of modeling an
intercept component of a GLM.

123

Interaction detection for GLMs via neural networks 555

expressed as a sum of two separate functions of the corresponding single variables.
For example, let x1 and x2 be two numerical variables andβ1,2 be some parameter to be
estimated. Then adding the term β1,2 ·x·,1 ·x·,2 to η(xxx ·) is considered adding a pairwise
interaction, where x·,1 denotes a generic observation of feature x1 and x·,2 denotes a
generic observation of feature. However, including the term β1,2 · ln (

x·,1 · x·,2
) =

β1,2 · ln (
x·,1

)+β1,2 · ln (
x·,2

)
does not mean adding an interaction, but instead adding

two transformed variables.
The parametric form of an interaction term I (·, ·) depends on the type of the

corresponding covariates that interact. In the following, we provide three common
parametric forms of I (·, ·) depending on the type of variables.

– Interaction between two numerical covariates:
Let x1 and x2 be two numerical variables. For an observation i , the term modeling
the interaction2 between them can be given by

I (xi,1, xi,2) = β1,2 · xi,1 · xi,2,

where β1,2 is a parameter to be estimated.
– Interaction between one numerical and one categorical covariate:
Let x1 be a numerical variable and x2 be a categorical variable with J categories,
where the last one serves as a reference category (also called a base level). For an
observation i , the interaction between them can be modeled by

I (xi,1, xi,2) =
J−1∑

j=1

β j · xi,1 · 1{xi,2= j},

where β j are parameters to be estimated, 1{xi,2= j} = 1 if the observation i of
variable x2 is a category j , 0 otherwise.

– Interaction between two categorical covariates:
Let x1 and x2 be two categorical variables with R and S categories respectively,
where the last one each serves as a reference category. For an observation i , the
interaction between features x·,1 and x·,2 is modeled by

I (xi,1, xi,2) =
R−1∑

r=1

S−1∑

s=1

βr ,s · 1{xi,1=r} · 1{xi,2=s},

where βr ,s are parameters to be estimated, 1{xi,1=r} = 1 if the observation i of
variable x1 is a category r and 0 otherwise and likewise 1{xi,2=s} = 1 if the
observation i of variable x2 is a category s and 0 otherwise.

The search of important interactions is more challenging than the search of the
best subset of variables for a GLM, since the number of all possible combinations of

2 This is a simple parametric form of an interaction. In general, transformations of involved variables may
be needed, e.g., raising to a power or taking a logarithm.

123

556 Y. Havrylenko, J. Heger

interacting variables is usually larger than the number of variables.3 Therefore, actu-
aries often use their expert knowledge to decrease the number of pairwise interactions
to analyze in detail. The interactions to be analyzed are mainly explored in a visual
manner, e.g., by evaluating plots that indicate the (weighted) average of the response
variable for each unique combination of values of variables (or their binned versions).

In the next section, we describe in detail our suggested approach to detecting impor-
tant pairwise interactions. It is faster than the majority of methods proposed in the
literature and, thus, may save actuaries time to focus on other challenging tasks.

3 Algorithmic detection of the strongest interactionmissing in a GLM

From now on we refer to the GLM that is to be improved as the benchmark GLM. To
detect the next-best interaction for the benchmark GLM, we suggest an algorithm that
consists of three steps:

1. Outperform the benchmark GLM using a CANN model.
2. Rank the interactions learned by the CANN according to their strength.
3. Determine the next-best interaction among top-ranked ones using mini-GLMs.

We refer to the model developed in Step 1 as the competitor model. Note that CANNs
and other ML models cannot yet replace benchmark GLMs used by insurance com-
panies in production for various reasons: lack of interpretability, etc.

3.1 Outperforming the benchmark GLM via CANN

As previously mentioned, GLMs have been a traditional technique for modeling and
forecasting claim frequencies within the insurance sector. However, according to [20]
their performance is limited in comparison to models based on NNs, which by their
design learn non-linear interactions among variables. Thus, in Step 1 of the suggested
approach, we train a CANN that can be seen as a boosting step for the benchmark
GLM and is, essentially, a NN that uses the predictions of the benchmark GLM while
learning additional interactions among variables to improve the predictive power of
the overall model. Before explaining CANNs in more detail, we provide the basics of
NNs.

Consider a fully-connected feed-forward NN with d ∈ N hidden layers and one
neuron in the output layer. Denote by ql ∈ N the number of neurons in the l-th hidden
layer, l = 1, . . . , d. q0 ∈ N denotes the number of neurons in the input layer. In our
application of NNs, q0 will be equal to the number of neurons needed to encode p
variables in the original data set andmaybe larger than p since each categorical variable
usually needs more than one neuron in the input layer. Denote by x̃xx ∈ R

q0 the vector
of pre-processed features that serve as input to the NN. Denote by W (l) ∈ R

ql×ql−1

the weight matrices and by bbb(l) ∈ R
ql the bias vectors, l = 1, . . . , d. Denote by

wwwy ∈ R
qd and by by ∈ R the coefficients vector and bias for the output neuron.

Denote by φl(·) the activation function of neurons in the l-th layer l = 1, . . . , d + 1

3 For p variables, there are p(p − 1)/2 possible pairwise interactions.

123

Interaction detection for GLMs via neural networks 557

and
−→
φl (ξξξ) = (φl(ξ1), . . . , φl(ξql))

� for any ξξξ ∈ R
ql . Then the hidden layers zzz(l) and

the output layer consisting of one neuron y (the NN’s prediction) can be expressed as
follows:

y = φd+1

(
(wwwy)�zzz(d) + by

)
, zzz(l) = −→

φl

(
W (l)zzz(l−1) + bbb(l)

)
, l = 1, . . . , d,

with zzz(0) := x̃xx . Let φd+1(z) = z and denote the regression function of a NN by

λNN(x̃xx) := (
wy)� (

zzz(d) ◦ zzz(d−1) ◦ · · · ◦ zzz(1)
)

(x̃xx) + by . (2)

A combined actuarial neural network (CANN) for claim counts satisfies two model
assumptions:

1. Ni ∼ Poisson(vi · λCANN(x̃xxi)) with the regression function λ given by

x̃xxi �→ ln
(
λCANN(x̃xxi)

)
= ln(λ̂GLMi) + λNN

(
x̃xxi

)
(3)

2. The regression function in (3) is initialized with weights wy = (0, 0, . . . , 0)� ∈
R
qd and by = 0.

The first structural assumption means that the NN part of CANN boosts the bench-
mark GLM. The second structural assumption implies that at the beginning of the
training phase, the Poisson deviance of a CANN model equals the Poisson deviance
of the benchmark GLM. If the Poisson deviance loss is used as the objective function
for training a CANN, then during training the gradient-descent algorithm explores the
NN architecture for an additional model structure that is not present in the benchmark
GLM and that further decreases the CANN’s Poisson deviance.

It is not necessary to know the structure of the benchmarkGLM, only its predictions
are used by a CANN model. So the weights of the benchmark GLM are non-trainable
and the implementation of a Poisson CANN can be simplified by merging the annu-
alized predictions of the benchmark GLM with the given volumes. In particular, as
an alternative to the first structural assumption of a Poisson CANN, we can consider
Ni ∼ Poisson(vGLMi · λNN(x̃xxi)) with modified exposure vGLMi := vi · λ̂GLMi .

The architecture of a CANN is illustrated in Fig. 1. The neuronmarked blue takes as
input the modified exposure vGLMi and passes it directly to the output neuron marked
green, whereas the corresponding red-marked connection has a non-trainable weight
1 and a bias coefficient 0. The neurons marked black and connections among them
constitute the NN component of a CANN. In the NN component of the CANN model
shown inFig. 1,q0 = 8, q1 = 6, q2 = 4, q3 = 1.The outputλNN of theNNcomponent
is passed via the red-marked connection (with a non-trainable weight 1) to the green-
marked output neuron. The output neuron sums two incoming values and applies the
exponential activation function on the result. The CANN model is trained using the
Poisson deviance loss function.

Asmentioned above, the original vector of variables xxx ∈ R
p does not enter the input

layer of a NN, but its pre-processed version x̃xx ∈ R
q0 does. In particular, all features

that appear in the input layer of a NN, must not contain missing values, should be

123

558 Y. Havrylenko, J. Heger

Fig. 1 Architecture of a CANN model

numerical, and ideally have the same range. Therefore, we use min-max-scaling to all
numerical features used for training a NN. As for categorical features, we recommend
using one-hot encoding for features with a low number of unique categories, e.g.,
below 5, and use the embedding layers technique for those with a larger number of
unique categories. These techniques are recommended in [21].

An embedding e of a categorical feature with k distinct categories {a1, ..., ak} is a
mapping

e : {a1, . . . , ak} → R
g, a �→ e(a),

with g ∈ N denoting the dimension of the embedding. This dimensionality parameter
is chosen by the user, whereby typically g � k. The components

e(1)1, . . . , e(1)g, . . . , e(k)1, . . . , e(k)g

of such an embedding of k categories constitute additional NNweights that are learned
during training. So an embedding layer of dimension g results in additional g · k
embedding weights. The embedding representation of an embedded feature, i.e., the
output of the embedding layer, equals the embedding weights. A NN with the above-
mentioned peculiarities is schematically illustrated in Fig. 2.

To reduce the risk of overfitting, we recommend using a dropout technique and
an early stopping of the NN training process. According to the drop-out technique
proposed by [17], a pre-specified percentage (a so-called dropout rate) of neurons
randomly selected in each layer is “switched off” and not updated in a NN training
step. According to the early-stopping method, the NN training is stopped as soon as
a significant deterioration or no significant improvement in the model performance is
observed within a predefined period of time.

123

Interaction detection for GLMs via neural networks 559

Fig. 2 Example of the NN part of a CANNmodel that uses a 2-dimensional embedding layer (in light blue)
encoding a categorical feature x̃·,7

A Poisson CANN model does not satisfy the balance property (1). As we will
see in the numerical studies and as it is also found in the numerical studies of [16],
the violation of the balance property is very small, since a CANN model uses the
predictions of a GLM that fulfills this property. In the view of the interaction detection
as the main focus of our paper, the violation of the balance property is negligible.
Readers interested in enforcing the balance property on neural networks are referred
to [20] and [21].

Before training the above-described CANN, one has to specify certain hyper-
parameters, e.g., the embedding dimension, the number of hidden layers, the number
of neurons per layer, the dropout rates, the activation functions, loss functions and
the optimizer, the batch size, the number of epochs, or the usage of early stopping,
etc. Our experiments on both artificial and real data sets show that choosing 3 hidden
layers, an embedding dimension of 2, the Poisson deviance as a loss function, and a
dropout rate of 10% has very high chances for a CANN to outperform sophisticated
benchmark GLMs. If one would like to further improve the performance of the ML
model, then one should exploreMLmodels with different values of hyper-parameters.
The search for the optimal values of hyper-parameters can be done either via a grid
search or a genetic algorithm. The latter approach is more time-consuming, but it can
yield a better model performance.

To compare the performance of aMLmodel (for short competitor) and a benchmark
GLM (for short benchmark) in the context of MTPL insurance claim counts, we
recommend using so-called double lift plots on the test data set. These plots are of
high practical importance for actuaries, see, e.g., Section 7.2.2 in [5]. A double lift-
plot requires predictions of each of the two models and the true observed values of the
response variable. A double lift plot is created in the following way:

123

560 Y. Havrylenko, J. Heger

1. Determine the deviance δi (also called the sort ratio), which is the relative difference
between the competitor model and the benchmark GLM:

δi = λ̂
competitor
i

λ̂benchmark
i

− 1,

where λ̂
competi tor
i denotes the i-th prediction of the competitormodel and λ̂benchmark

i
refers to the i-th prediction of the benchmark GLM.

2. Sort the observations based on δi , from smallest to largest.
3. Bucket the observations into predetermined bins in an interval of interest, e.g., bins

(−∞,−0.5], (−0.5,−0.48], (−0.48,−0.46], . . . , (0.48, 0.5], (0.5,+∞).
4. For each bin, calculate the exposure, WAOF, WAPF of the competitor model, and

WAPF of the benchmark model.
5. For each bin, plot the quantities calculated in Step 4. The left y-axis refers to the

WAOF or WAPF that are marked by dots in the double lift plot. The right y-axis
refers to the exposure that is depicted by bars below the dots.

An example of a lift plot with predetermined binning can be seen in the left
sub-figure of Fig. 3. As an alternative to bucketing the observations based on the
predetermined binning, one can use quantile-based binning. A double-lift plot of this
type can be seen in the right sub-figure of Fig. 3. In this chart, each bin has the same
number of observations and is determined based on the quantiles of the distribution
of δi .

Obviously, the evaluation of these lift plots is based on visual perception. In order
to allow for a purely quantitative model evaluation, we construct KPIs reflecting the
information captured in these lift plots and, thus, not requiring visual evaluation of lift
plots.

Fig. 3 Lift plot 1 has predetermined bins (PB). Lift plot 2 has quantile-based bins (QBB)

123

Interaction detection for GLMs via neural networks 561

Let B = {1, ..., |B|} be the set of bins in a lift plot and b ∈ B an index of a certain
bin. Define the weighted exposure wb per bin as follows:

ub =
∑

xi∈Xb
vi

∑
xi∈X vi

,

where Xb is the set of features vectors that correspond to observations in bin b ∈ B.
The numerator equals the total exposure of observations in a bin b and the denominator
is equal to the total exposure in the whole data set used for calculating this KPI. Using
this weighted exposure per bin, the mean absolute error based on the lift plot bins is
given by

mae_lift_... =
∑

b∈B
ub|WAPFb − WAOFb|.

All in all, we thereby construct a selection of numerical KPIs, namely

– mae_lift_pb and mae_lift_pb_benchmark, which are based on the lift plot with
predetermined bins and use the predictions of the competitor model and the bench-
mark model respectively

– mae_lift_qbb and mae_lift_qbb_benchmark, which are based on the lift plot with
quantile-based bins and use the predictions of the competitor model and the bench-
mark model respectively

The smaller the value of mae_lift_ . . ., the better the model. For example, if
mae_lift_pb is smaller than mae_lift_pb_benchmark, the competitor model outper-
forms the benchmark model based on the lift-plot with predetermined bins. The same
reasoning holds for the KPIs using quantile-based binning.

In summary, actuaries often rely on lift plots when evaluating model performance.
However, the visual interpretation of such lift plots may be rather subjective. Hence,
the transformation of the lift plot into a numeric KPI and using it along with Poisson
deviance for model selection may enhance reliability and the objectivity of the per-
formance evaluation. For example, it may happen4 that Poisson deviance is the same
for two models, but one model is convincingly better than the other one according to
lift-plot based KPIs.

3.2 Opening the black box: ranking learned interactions

Having found a well-performing CANN, the next step is to find the most significant
pairs of interacting variables learned by the model. Here, “significant” means that
those pairs of interacting variables that are captured by the CANN model are likely
to strongly improve the predictive power of the benchmark GLM if included in it. In
the CANN model, its NN component learns non-linear interactions among the input
features. To quantify the significance of each of the learned interactions, we apply

4 We have observed this when applying our methodology to a big proprietary data set.

123

562 Y. Havrylenko, J. Heger

Fig. 4 Generation of interactions in the first hidden layer and propagation of these interactions through the
neural network (figure adapted from [19])

a fast model-specific interaction-detection method. The method can be seen as an
adjustment of a technique called Neural Interaction Detection (NID), proposed by
[19] for fully-connected feed-forward NNs.

The original NID algorithm is based on the assumption that feature interactions are
created in the first hidden layer of a neural network. Note that learning interactions in
the first hidden layer is possible due to the usage of non-linear activation functions.
Moreover, [19] provides an empirical evidence that considering the first hidden layer is
indeed sufficient for determining interactions. These interactions are then propagated
through the whole network and influence the final prediction. This concept is exempli-
fied by Fig. 4. As can be seen, the first neuron in the first hidden layer zzz(1) (highlighted
in blue) takes inputs x̃1 and x̃3 and thereby creates an interaction between them if
the activation function of that neuron is non-linear.5 The strength of this interaction
is evaluated based on both incoming weights as well as the outgoing paths from the
neuron to the output neuron y as colored in blue in Fig. 4. The higher the incoming
weights and the higher the impact of the considered neuron on the final output, the
stronger the interaction. The strength of an interaction is quantified by an interaction
strength score.

Let I be a pair of input neurons. The interaction between these input neurons
happens at each neuron of the first hidden layer. Denote by s j (I) the strength of an
interaction between input neurons in I measured at the j-th neuron in the first hidden
layer, j = 1, . . . , q1. It is quantified as follows:

s j (I) = ζ
(1)
j · μ(|W (1)

j,I |), s j (I) ∈ R, (4)

where ζ
(1)
j represents the influence of neuron j in the first hidden layer on the model

prediction, |Wj,I | denotes the absolute value of the incoming weights from features
in I to neuron j in the first hidden layer, and μ(·) represents a so-called generalized
surrogate function used to capture the strength of the interaction based on the relevant

5 A superposition of linear functions is a linear function. Since the argument of a neuron’s activation
function is a linear function of the activation values of neurons in the previous layer of a NN, the usage
of linear activation functions leads to an output that is linear in the values of neurons in the input layer
of an NN. Hence, linear activation functions are not suitable for capturing interactions, as interactions are
dependencies among variables that cannot be represented as a sum of functions of the corresponding single
variables.

123

Interaction detection for GLMs via neural networks 563

incoming weights. In our notation, | · | applied to a matrix means that the absolute
value is taken element-wise, i.e., for all matrix elements.

As per [19], the generalized surrogate function μ(·) should be such that interaction
strength is

1. Quantified as zero when the interaction does not exist;
2. Non-decreasing in the magnitude of feature weights;
3. Less sensitive to changes in large feature weights.

The third propertymitigates the impact of situations,when theweight of the connec-
tion from one input neuron has much higher magnitude than the weight of connection
from another input neuron. If the large weight grows in magnitude, then interaction
strength should not change much, but if instead the smaller (in magnitude) weight
grows at the same rate, then interaction strength should increase. Thus, maximum,
root mean square and arithmetic mean are not suitable candidates forμ(·). [19] empir-
ically investigates a selection of possible surrogate functions and concludes that the
minimum is the best-performing function that recovers the highest number of true
interactions in their experiments. The second-best choice for μ(·) was the harmonic
mean function. Therefore, we choose μ(·) as minimum in all our experiments.

The influence ζζζ (1) on the network prediction is calculated as the following matrix
product of the absolute weight matrices:

ζζζ (1) = |wwwy |� · |W (d)| · |W (d−1)| · ... · |W (2)|, ζζζ (1) ∈ R
q1 . (5)

In this case, q1 denotes the number of neurons in the first hidden layer, W (m) each
represents the weight matrix connecting the neurons in hidden layers m − 1 and m,
whereas wwwy denotes the vector of weights connecting the last hidden layer and the
output neuron. Note that ζζζ (1) results in a vector where the j-th index corresponds to the
influence of a neuron j of the 1-st hidden layer on the output neuron of aNN.According
to Lemma 3 in [19], if all activation functions in a NN are 1-Lipschitz continuous, then
expression (5) is an upper bound for the gradient magnitudes of neurons in the first

hidden layer, i.e., if
∣
∣
∣
∂φ(x)

∂x

∣
∣
∣ ≤ 1, then

∣
∣
∣
∣

∂ y

∂z(1)j

∣
∣
∣
∣ ≤ ζ

(1)
j for all j = 1, . . . , q1. Common

activation functions such as rectified linear unit, hyperbolic tangent and sigmoid are
1-Lipschitz continuous.

After having extracted the incoming weights of the NN as well as the importance
(w.r.t. the influence on the NN’s output) of each neuron in the first hidden layer, the
strength of a (local) interaction between a subset of input neurons can be computed
for each neuron of the first hidden layer. Subsequently, the final interaction strength
score for this subset of input neurons is equal to the sum of local interaction strength
scores across all q1 neurons in the first hidden layer:

s(I) =
q1∑

j=1

s j (I),

which is exemplary illustrated in Fig. 5.

123

564 Y. Havrylenko, J. Heger

Fig. 5 Illustration of the interaction-strength calculation

Recall that a CANN model is a combination of a NN and a benchmark-GLM
prediction with a skip-connection to the output neuron of the model, where the NN
component is a feed-forward fully-connected neural network. Therefore, we can apply
NID to the NN component of CANN model to quantify the strength of all pairwise6

interactions among features. We provide the R-code for the described NID approach
in Listing 5 in Appendix A.

The original NID method evaluates the strengths of interactions among input neu-
rons. However, the encoding of categorical features may require several neurons in
the input layer of a NN, e.g., in case of one-hot encoding one needs the same number
of input neurons as the number of categories. If an actuary wants to detect interactions
on a per-category level, then it is not neccessary to aggregate NID scores related to
neurons encoding a categorical variable. However, to obtain the interaction-strength
scores related to a categorical feature taken as a whole, one has to aggregate the scores
on a per-neuron basis using some aggregation function like mean, minimum, maxi-
mum. If an actuary is interested in finding interactions where themajority of categories
of the categorical feature of interest are strongly interacting with another variable, then
min is recommended. If the aim is to find categorical variables whose categories have
on average high interaction-strength scores with the other variable, then mean is a
good choice for aggregation. Finally, if an actuary is interested in finding categorical
variables where one category is especially strongly interacting with the other variable,
then we recommend to use max as the aggregation function. For example, to get the
strength of an interaction between a categorical one-hot encoded feature and a numer-

6 The strengths of interactions of the order higher than 2 can be also computed via the NID approach. In
that case, one can use a greedy approach to speed up calculations. For more information, see Section 4.2 in
[19].

123

Interaction detection for GLMs via neural networks 565

ical feature, one can take the maximum of all s(I) where I contains an input neuron
encoding a category of the categorical feature of interest and an input neuron encoding
the numerical feature of interest.

3.3 Identification of the next-best interaction for a GLM

After extracting themost significant interactions, the final step is to determine the next-
best interaction for the benchmark GLM. This step is necessary for several reasons.
First, the inclusion of any interaction in a GLM requires a parametric specification
I (·, ·) of the interaction. This is also important for preserving the interpretability of the
benchmarkGLM.Second, itmay happen that several top-ranked interactions have very
similar interaction-strength scores according to NID, which is why choosing the next-
best interaction may become ambiguous. In this case, an actuary may want to estimate
the improvement of the benchmark GLM for each of the top-ranked interactions and
afterwards decide which one to include and retrain the benchmark model with the
found interaction.

To decide which interaction to add to the benchmark GLM, we suggest to predict
the observed claim counts via “mini-GLMs” that use the predictions of the benchmark
GLMand the top-ranked interactions. This approach can also be interpreted as freezing
the coefficients of the benchmark GLM and adding one interaction on top to better
predict the claim counts. The approach works as follows:

1. For each (x j , xk) from the list of top-ranked interactions and for each relevant
parametric form of I (·, ·)
(a) Fit a mini-GLM assuming:

Ni ∼ Poisson
(
vi λ̂

benchmark
i · exp (

I (xi, j , xi,k)
))

, i = 1, 2, . . . , n.

(b) Calculate the KPIs of interest, e.g., AIC, residual deviance, etc.

2. Recommend as the next-best interaction the one that corresponds to the mini-GLM
with the best KPIs.

Remarks

1. The word “relevant” refers to the fact that the exact functional form I (x·, j , x·,k)
of the interaction between variables x j and xk depends on the types of these vari-
ables (see the Sect. 2). The expressions x·, j and x·,k denote the respective values
(realizations) of variables x j and xk in a generic observation.

2. If at least one of the interacting variables is continuous, one has multiple options
for choosing the parametric form of the interaction:

(a) Consider several continuous transformations of the continuous feature(s) of
interest. For example, an actuary may consider only parametric interactions of
the form of I (x·, j , x·,k) = β j,k · xa·, j · xb·,k for a ∈ {1, 2, 3} and b ∈ {1, 2, 3}.
The form that leads to a mini-GLM with the best KPI is chosen.

(b) Bin the continuous feature(s) of interest and include the interaction between the
binned versions of those features. A simple binning procedure can be based on

123

566 Y. Havrylenko, J. Heger

the quantiles of their distribution. A more advanced binning procedure can be
based on fitting a generalized additive model (GAM) that uses only a smooth
version of the interaction of interest and the predictions of the benchmark-
GLM as offset. Afterwards one trains a regression tree that predicts the GAM-
captured interaction effect using the interacting features and concludes the
optimal binning from the splits of the regression tree. For more information on
this method, see Section 4.2 in [7].

3. It may be computationally challenging7 to fit a mini-GLM for categorical features
with a large number of categories, e.g., postcode. For these cases, we recommend
clustering categories of such variables based on the embedded representations of
those variables.

4 Case studies

In this section, we summarize the results of several case studies, whichwe conduct on a
computer with 11th Gen Intel(R) Core(TM) i7-1185G7@ 3.00GHz processor, 32 GB
RAM, Intel(R) Iris(R) Xe Graphics, and Windows 10 Enterprise operating system. In
the first case study, we work with an artificially generated data set, where we know the
true interactions among variables in the data set. The aim of this case study is to show
that our methodology detects and recommends the true interaction. In the second case
study, we work with an open-source data set, where the true interactions in the data are
not known. In the third case study, we briefly discuss the benefits of our methodology
for big data sets, since big insurers have millions of observations and keep track of
tens of variables.

4.1 Artificial data set

In this subsection, we apply the previously described methodology to an arti-
ficially created data set. We start with generating vectors of covariates xxxi =
(xi .1, xi,2 . . . , xi,10)� ∈ R

10, i = 1, . . . , 2 · 106, such that each vector is inde-
pendent of other vectors. Variables x1, . . . , x8 are numerical and come from a
multivariate normal distribution with zero mean and unit variance, as in [15], namely
(x1, . . . , x8)� ∼ N (0,
) with
 being an identity matrix with an additional entry of
0.5 in the cells (2, 8) and (8, 2). Covariates x9 and x10 are categorical and come
from a binomial distribution. To be specific, the variable x9 ∼ Binomial(2, 0.3)
with three categories {0, 1, 2} and is independent of other variables. The covariate
x10 ∼ Binomial(5, 0.2) has six categories {0, 1, 2, 3, 4, 5} and is independent of other
covariates. For simplicity, we assume that vi = 1, i = 1, . . . , 2 · 106.

Based on the above-generated features and exposure, we generate the claim counts
as follows. First, we calculate

7 Some versions of the actuarial software Emblem have a technical limit on the number of categories in
categorical variables used in a GLM.

123

Interaction detection for GLMs via neural networks 567

Table 1 Distribution of the number of claims

Number of observed claims Claim

0 1 2 3 4 5 6 total

Full Num. 1887159 105560 6516 645 103 15 2 112841

% 94.3580 5.2780 0.3258 0.0323 0.0052 0.0075 0.0001 100.00

Train Num. 1509486 84518 5250 540 88 11 2 90409

% 94.3491 5.28272 0.3281 0.0337 0.0055 0.0007 0.0001 80.12

Val. Num. 189254 10441 630 56 7 1 0 11135

% 94.4433 5.2104 0.3144 0.0279 0.0035 0.0005 0.0000 9.87

Test Num. 188419 10601 636 49 8 3 0 11297

% 94.3435 5.3080 0.3185 0.0245 0.0040 0.0015 0.0000 10.01

xxx ∈ R
10 �→ μ(xxx) = exp

(−3 + 0.5 · x1 − 0.25 · x22 + 0.5 · |x3| · sin(2 · x3) + 0.5 · x4x5
+ 0.125 · x25 x6 − 0.1 · 1{x9=1} − 0.2 · 1{x9=2} + 0.1 · 1{x10=1}
+ 0.2 · 1{x10=2} + 0.3 · 1{x10=3} + 0.4 · 1{x10=4} + 0.5 · 1{x10=5}

)
.

For a small number of feature vectors it holds μ(xxx) > 1. In those cases we set
μ(xxx) = 1 to avoid unrealistically large number of claim counts for those vectors. In
the final step of the data generation process, we obtain claim counts by generating
them as follows:

Ni ∼ Poisson(vi · (μ(xxxi))), i = 1, . . . , 2 · 106.

The structure of the resulting data set is summarized in Listing 1.

Listing 1 Structure of the artificial data set

’data.frame ’: 2000000 obs. of 14 variables:
$ claim_total_nb : int 0 0 0 1 0 1 0 0 0 0 ...
$ annual_exposure: num 1 1 1 1 1 1 1 1 1 1 ...
$ x_1 : num -0.185 1.131 1.305 1.049 0.355 ...
$ x_2 : num 0.465 0.444 -1.664 -1.004 0.99 ...
$ x_3 : num 0.2259 -0.4888 0.0332 0.2362 1.0171 ...
$ x_4 : num 0.696 -0.537 -3.043 1.849 -1.085 ...
$ x_5 : num 1.932 0.276 -0.41 1.086 1.257 ...
$ x_6 : num 0.716 0.11 -0.214 1.137 0.63 ...
$ x_7 : num -0.533 -1.466 -0.276 -1.457 -1.446 ...
$ x_8 : num 0.5058 -0.0455 -1.0353 0.8823 -1.2143 ...
$ x_9 : Factor w/ 3 levels "0","1","2": 1 3 1 2 2 1 1 2 ...
$ x_10 : Factor w/ 6 levels "0","1","2","3" ,..: 2 2 1 1 3 ...

Wesplit the data set as follows: 80%for training, 10%for validation, 10%for testing.
This is a rule for splitting data according to [1]. The training set is used for fitting the
model, the validation set is utilized for fine-tuning the hyper-parameters of the ML
model, and the test set is used for evaluating the final out-of-sample performance of
the chosen best-performing ML model. This results in the claim distributions shown
in Table 1.

123

568 Y. Havrylenko, J. Heger

To fit a benchmark GLM, we use both training and validation data. In this GLM, we
include terms x1, x22 , x3, x

2
3 , x9, x10, which appeared in the data generation process.

However, we do not include in the benchmark GLM the interactions between features
x4 and x5 and between features x5 and x6, which are the true interactions according to
the process of the artificial data generation. If our interaction-detection methodology
works correctly, one of these interactions will be recommended as the next-best one
to be included in the benchmark GLM.

4.1.1 Step 1: training CANN

We conduct the following data pre-processing steps prior to training the CANNmodel:

– Use one-hot encoding for the categorical feature x9.
– Use a 2-dimensional embedding layer for the categorical feature x10.
– Apply min-max scaling to all numerical features x1, . . . , x8:

x̃·, j = 2 · (x·, j − min(x·, j))
max(x·, j) − min(x·, j)

− 1, j = 1, . . . , 8.

To fit a CANN, we use the R package keras. The search for the optimal hyper-
parameters of a CANN is based on the KPIs introduced in Subsection 3.1. To find
the best CANN model, we search for the best combination of hyper-parameters along
a pre-defined grid of hyper-parameters. We focus on the leaky rectified linear unit
(LReLU), sigmoid (σ) and hyperbolic tangent (TanH) activation functions that are
defined as

LReLU(w, α) = max(w, α · w),

σ (w) = 1

1 + e−w
,

TanH(w) = 2σ(2w) − 1,

with w denoting the weighted sum of the inputs of the neuron to which the activation
function is applied and α ∈ (0, 1) is a parameter, which we set to 0.3 in all our
case studies. We use the Poisson deviance loss function, which is minimized via the
RMSProp optimizer. To prevent overfitting, we use drop out rate of 5% and early
stopping of model training when the value of the loss function is not improved 5
epochs in a row. We set the dimension of embedding layers to 2 and the number of
neurons in the first, second and third hidden layers to q1 = 20, q2 = 15, q3 = 10
respectively. In addition, the batch size is set to 1000 and the number of epochs to 100.

According to both Poisson deviance and the lift-plot-based KPIs mae_lift_pb and
mae_lift_qbb, the best CANN model (among those we tested) for the artificial data
has LReLU activation function in all neurons of all hidden layers. This architecture is
summarized in Fig. 6.

As can be seen, the input layer is composed of 13 neurons corresponding to the 8
numeric features and the one-hot encoded feature capturing 3 categories.Moreover, the
categorical feature x10 is encoded via an embedding layer of dimension two. The input

123

Interaction detection for GLMs via neural networks 569

Fig. 6 The architecture of the NN component of the best-performing CANN model

Table 2 KPIs on the test data for the best-performing CANN model

Pois. dev Pois. dev. bench Lift_pb Lift_pb_benchm Lift_qbb Lift_qbb_benchm

0.3049 0.3314 0.0033 0.0277 0.0042 0.0278

layer is connected to the first hidden layer via the weight matrix W (1). Similarly, the
first and the second hidden layers are connected via weight matrix W (2), the second
and the third hidden layers are connected via weight matrix W (3). The third (last)
hidden layer is connected to the output layer via the vector of weightswwwy .

The KPIs for the best CANN are summarized in Table 2.

4.1.2 Step 2: ranking of learned interactions via neural interaction detection

From the best-performing CANN model, we extract the weight matrices W (1), W (2),
W (3) as well as the vector wwwy . The weight matrices can be extracted using the
get_weights function in R. The structure of the resulting output is shown in List-
ing 2. The first element of the list corresponds to the embedding weight matrix
W (e(x̃12)) ∈ R

7×2 depicted in Fig. 6. The second list element represents the trans-
posed version of the weight matrix W (1) connecting the input layer consisting of 13
neurons (11 numeric & one-hot features + 1 ·2 neurons of the embedding layer related
to x10) with the first hidden layer, which has 20 neurons. Likewise, the fourth ele-
ment of the list and the sixth one correspond to the transposed versions of the weight
matrices W (2) and W (3) respectively. The eighth element of the list is the vector wwwy

that connects the last hidden layer of the NN component with its output neuron y.
The third, the fifth, the seventh and the ninth element of the list represent bias vectors
corresponding to the three hidden layers and the output layer of the NN component of
a CANN, respectively. The tenth and eleventh element of the list are the non-trainable
weights of the NN component (see red connections in Fig. 1). The twelfth (last) ele-
ment of the list is the (non-trainable) bias element related to the output neuron of
CANN.

123

570 Y. Havrylenko, J. Heger

Table 3 Top 5 pairwise interactions according to the CANN + NID approach

Interaction rank Feature 1 Feature 2 Interaction strength score

1 x4 x5 70.0263

2 x5 x6 37.3492

3 x4 x6 34.7608

4 x5 x10 24.3280

5 x4 x10 23.9654

Listing 2 Weight matrices extracted from the CANN model

> model_weights <-get_weights(model)
> str(model_weights)
List of 12
$: num [1:7, 1:2] 0.0358 0.063 0.0683 0.0792 0.0507 ...
$: num [1:13, 1:20] 0.0656 0.0494 -0.9771 0.3547 ...
$: num [1:20(1d)] 0.049 -0.0885 -0.1021 0.0257 ...
$: num [1:20, 1:15] 0.287 -0.234 0.371 -0.104 0.799 ...
$: num [1:15(1d)] -0.0183 -0.02 -0.1593 0.0207 0.0435 ...
$: num [1:15, 1:10] 0.2464 -0.0183 -0.4323 0.5566 ...
$: num [1:10(1d)] 0.083 -0.0328 0.0171 0.0682 0.0687 ...
$: num [1:10, 1] -1.165 0.674 0.579 0.641 -0.802 ...
$: num [1(1d)] 0.138
$: num [1, 1] 1
$: num [1, 1] 1
$: num [1(1d)] 0

Next, we apply the modified NID to calculate the strength of interactions for each
pair of features. Following the recommendation of [19], we use min(·) as a surrogate
function μ(·). Having obtained the strength of interactions for each pair of input
neurons, we apply the aggregation procedure for categorical features, as proposed in
Subsection 3.2. In particular, we use minimum as the aggregation function.8 Finally,
we sort the resulting list and provide top 5 entries in Table 3.

As can be seen, ourmodifiedNID procedure ranks the interactions between features
x4 and x5 and between features x5 and x6 as the first and the second respectively.
Interestingly, the NID procedure suggests that the third-ranked interaction happens
between x4 and x6. The reason for it is that x5 appears in two interactions: 0.5 ·
x4x5 and 0.125 · x25 x6. The strength of interactions among other variables is quantified
as much lower.

Next we compare our method with another approach used by practitioners, namely
training a gradient boostingmachine (GBM) and calculating Friedman’sH-statistic for
each pair of features. Training one GBMmodel takes around 120 seconds. Calculating
Friedman’s H-statistic is very time-consuming for the whole data set. Therefore, we
consider only a small portion of data, namely 104 observations, which is 0.5% share
of all data. In this case, the calculation takes about 40 seconds. We report the results
in Table 4.

8 Using the arithmetic average as the aggregation function for categorical variables does not change the
ranking of top 5 interactions.

123

Interaction detection for GLMs via neural networks 571

Table 4 Top 5 pairwise interactions according to GBM + Friedman H-statistic approach

Interaction rank Feature 1 Feature 2 Interaction strength score

1 x4 x5 0.8495

2 x5 x6 0.2223

3 x3 x5 0.0156

4 x3 x6 0.0055

5 x3 x4 0.0001

According to Table 4, the true interactions have the largest H-statistic and are, thus,
the strongest ones according to the method of training a GBM model and calculating
Friedman’s H-statistic for all possible pairs of variables. However, a different amount
of data may lead to a different computation time and may result in a different ranking.
For example, the calculation of this interaction-strength measure for the same GBM
model but using 5% of data (105 observations) took about 350 seconds and indicated
a few strong but false interactions, e.g., interactions between variables x1 and x2, x7
and x8 had the H-statistic of 1.

We would like to close this subsubsection with a brief comparison of two methods.
According to [10], Friedman’s H-Statistic:

1. Can be applied to any model;
2. Is defined through the partial dependence decomposition and calculates the share

of variance that is explained by the interaction;
3. Is usually (but not always) between 0 and 1, which allows for comparison across

different models;
4. Detects all forms of interactions, independently of their specific structure;
5. Can be used for quantifying the strength of higher-order interactions, i.e., the inter-

action among 3 or more features
6. Is computationally time-consuming;
7. May lead to unstable results if not all data points are used, as the estimates also vary

from run to run, which is why it is recommend to compute the H-statistic multiple
times;

8. Does not provide a clear answer whether the interaction is statistically significant
and it is not clear whether H-statistic is large enough to consider an interaction
“strong”;

9. Does not give the functional form of the interaction;
10. Has the assumption that features can be shuffled independently, which is, however,

violated if features are strongly correlated;
11. May yield unexpected results for small amount of data.

Our approach of applying NID method to the NN component of a CANN model:

1. Is model specific and works only for feed-forward NNs with some regularity con-
ditions on activation functions;

2. Is based on the decomposition of the strength of interaction between input neurons
into two parts: the strength of connections from those input-layer neurons to the

123

572 Y. Havrylenko, J. Heger

neurons in the first hidden layer, the influence of neurons in the first-hidden layer
on the output neuron of the NN;

3. Does not lead to the interaction-strength score that is normalized between 0 and 1,
which makes it challenging to compare the scores across different NNs;

4. Detects all forms of interactions learned by the NN, independently of their specific
structure;

5. Can be used for quantifying the strength of higher-order interactions, i.e., the inter-
action among 3 or more features;

6. Is computationally fast, since it requires only cumulative matrix multiplications of
the matrices with absolute values of trained weights in the NN;

7. Always leads to the same result, given that the NN is fixed, since the method does
not explicitly use data points;

8. Does not provide a clear answer whether the interaction is statistically significant
and it is not clear whether the NID score is large enough to consider an interaction
“strong”;

9. Does not give the functional form of an interaction;
10. Has the assumption that the interactions learned by the neural network are captured

in the first hidden layer.

4.1.3 Step 3: recommendation of the next-best interaction

As described in Subsection 3.3, for each interaction from Table 3 we fit a mini-GLM
and keep track of the corresponding KPIs.

The mini-GLM based on the interaction between features x4 and x5 has the lowest
AIC and the lowest residual deviance among all 5mini-GLMs. Therefore, it is selected
as the next-best interaction to be included in the benchmark GLM.

The addition of the interaction between features x4 and x5 to the benchmark GLM
improves the performance of the benchmark GLM. Its residual deviance drops from
596992 to 561969 and its AIC decreases from 804445 to 769424, implying that the
model with this interaction should be favored. The Poisson deviance on the test data
drops from 0.3314 to 0.3134.

After the benchmark GLM has been updated by adding the recommended inter-
action between x4 and x5, we can repeat the whole process. Namely, training a new
CANN model that uses the predictions of the updated benchmark GLM and applying
the NID method to the NN component of the trained CANN model, we obtain the
ranking of learned interactions as shown in Table 5. We see that the true interaction
between features x5 and x6 is ranked as the strongest one. It has a much higher score
than others. For each of the 5 top-ranked interactions, we train a mini-GLM with
simple parametric forms of the interaction, which are described at the end of Sect. 2.
As expected, the winning mini-GLM is related the true interaction between features
x5 and x6. This model has an AIC of 769406 and a residual deviance of 561960 on
1800737 degrees of freedom. The Poisson deviance on the test set is 0.3134.

If we train mini-GLMs with a larger class of parametric forms for interactions,
namely, I (x·, j , x·,k) = β j,k ·xa·, j ·xb·,k for a ∈ {1, 2} and b ∈ {1, 2}, the best-performing

mini-GLM corresponds to the interaction of the form I (x·,5, x·,6) = β5,6 · x2·,5 · x·,6.

123

Interaction detection for GLMs via neural networks 573

Table 5 Top 5 pairwise interactions in according to the CANN + NID approach

Interaction rank Feature 1 Feature 2 Interaction strength score

1 x5 x6 25.1675

2 x3 x10 18.8742

3 x3 x5 17.8092

4 x3 x6 15.6298

5 x6 x10 14.8482

This mini-GLM has an AIC of 763910 and a Poisson deviance of 0.3105 on the test
set. Adding this interaction to the benchmark GLM leads to an AIC of 763805 and a
Poisson deviance of 0.3104 on the test set.

To justify that our approach does not only work as desired but is additionally way
more time efficient, we measure the time required for executing the above described
steps of training the CANN model, applying the NID technique, and fitting mini-
GLMs. This yields on average approximately 170.3 seconds for the training of one
CANN architecture, 1.19 seconds for the application of NID and 6.7 seconds for fitting
one mini-GLM.

In this case study, we have verified that our methodology leads to a correct recom-
mendation of the next-best interaction for the benchmark GLM and showed that NID
is faster than Friedman’s H-statistic. In the next case study, we work with a real-world
open-source data set that has more features than in the toy example considered before.

4.2 Open-source data set freMTPL2freq

In this subsection, weworkwith an open-source data set freMTPL2freq, which is a part
of the R package CASdatasets. We choose this data set, since it has been analysed in
several papers, e.g., [16], [20], [21], [23].We take [16] as themain reference and use the
benchmark GLM as indicated on page 5 there. Afterwards, we apply our interaction-
detection methodology and compare our results with those stated in Section 3.5 of
[16].

The data set consists of 678013 observations. Listing 3 provides a glimpse on the
data.

Listing 3 Structure of the data set

> str(freMTPL2freq)
’data.frame ’: 678013 obs. of 12 variables:
$ IDpol : num 1 3 5 10 11 13 15 17 18 21 ...
$ ClaimNb : num 1 1 1 1 1 1 1 1 1 1 ...
$ Exposure : num 0.1 0.77 0.75 0.09 0.84 0.52 0.45 ...
$ VehPower : int 5 5 6 7 7 6 6 7 7 7 ...
$ VehAge : int 0 0 2 0 0 2 2 0 0 0 ...
$ DrivAge : int 55 55 52 46 46 38 38 33 33 41 ...
$ BonusMalus: int 50 50 50 50 50 50 50 68 68 50 ...
$ VehBrand : Factor w/ 11 levels "B1","B10","B11" ,..: 4 4

4 4 ...
$ VehGas : Factor w/ 2 levels "Diesel","Regular": 2 2 1

1 1 ...

123

574 Y. Havrylenko, J. Heger

$ Area : Factor w/ 6 levels "A","B","C","D" ,..: 4 4 2
2 2 ...

$ Density : int 1217 1217 54 76 76 3003 3003 137 137 ...
$ Region : Factor w/ 21 levels "Alsace","Aquitaine" ,..:

21 21 ...

We conduct data pre-processing as in Section 1.3. of [16] and split the data into
training data (80%), validation data (10%), and data for testing (10%). Next we train
the benchmark GLM, referred to as GLM2 in Section 1.3 of the mentioned paper. The
resulting benchmark GLM is summarized in Listing 4.

Listing 4 Model summary of the benchmark GLM

> summary(benchmark.GLM)

Call:
glm(formula = ClaimNb ~ VehPowerGLM + VehAgeGLM +

BonusMalusGLM + VehBrand + VehGas + DensityGLM +
Region + AreaGLM + DrivAge + log(DrivAge) +

I(DrivAge^2) + I(DrivAge^3) + I(DrivAge^4), family =
poisson (), data = data.trainval , offset =
log(Exposure))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9626 -0.3782 -0.2891 -0.1629 6.7970

...

Null deviance: 200978 on 610346 degrees of freedom
Residual deviance: 190836 on 610300 degrees of freedom
AIC: 253210

Number of Fisher Scoring iterations: 6

4.2.1 Step 1: training CANN

As in the first case study, we conduct the following data pre-processing steps prior to
training CANNs:

– Use one-hot encoding for all categorical features with 5 or fewer categories.
– Use embedding layers for all categorical features with more than 5 categories.
– Apply min-max scaling to all numerical features.

We focus on CANNswith three hidden-layers such that q1 = 20, q2 = 15, q3 = 10,
and use the same grid of hyper-parameters as the one in the case study with artificially
generated data.

The best-performing CANN model has LReLU activation function in all hidden
layers. The KPIs of this model on the test data are summarized in Table 6.

On the test data set, the best-performing CANNmodel outperforms the benchmark
GLM in terms of all considered KPIs. This is an indication that the NN component
that boosts the benchmark GLM may have found some interactions missing in the
benchmark GLM.

123

Interaction detection for GLMs via neural networks 575

Table 6 KPIs on the test data for the best-performing CANN

Pois. dev Pois. dev. bench Lift_pb Lift_pb_bench Lift_qbb Lift_qbb_bench

0.3636 0.3749 0.0067 0.0326 0.0096 0.0317

Table 7 Top 10 pairwise interactions according to the CANN + NID approach

Rank Feature 1 Feature 2 NID interaction-strength score

1 VehAge BonusMalus 34.5956

2 VehAge VehGas 25.8459

3 BonusMalus VehGas 25.5106

4 BonusMalus Area 24.5642

5 BonusMalus Region 24.4570

6 BonusMalus VehBrand 23.2495

7 VehAge VehBrand 22.9104

8 VehAge Region 21.9878

9 DrivAge BonusMalus 21.1584

10 VehAge Area 20.8879

4.2.2 Step 2: ranking of learned interactions

After training the CANNmodel, we apply the NID algorithm to calculate the strengths
of pairwise interactions that were learned by the NN component, as described in
Subsection 3.2. Similar to the case study with an artificial data set, we use minimum
as a surrogate function and minimum as an aggregation function. Table 7 summarizes
the resulting strongest 10 interactions.

According to Table 7, the interaction between variables VehAge and BonusMalus
is much stronger than all other pairwise interactions. The other 4 interactions have a
comparable magnitude and do not exhibit a clear “winner” among them.

Next we relate our results to those of [16] by reporting the interactions the
researchers identified and indicating their interaction-strength rank according to our
methodology: (VehPower; VehAge) with NID rank of 22, (VehPower; VehBrand) with
NID rank of 26, (VehAge; VehBrand) with NID rank of 7, (VehAge; VehGas) with
NID rank of 2, (DrivAge; BonusMalus) with NID rank of 9. Interestingly, the inter-
action between BonusMalus and regional variables Area or Region was not detected
by the methodology proposed in [16], neither was detected the interaction between
VehAge and BonusMalus.

Finally, we compare our results to the method based on GBMs and Friedman’s
H-statistic. We choose the following grid of hyper-parameters to search for the best-
performing GBM

– Number of trees 100, 200, 300;
– Minimal number of observations in a node 10, 25, 50;
– Shrinkage parameter 0.01, 0.05, 0.1,

123

576 Y. Havrylenko, J. Heger

Table 8 KPIs of the best-performing GBM model on the test data

Pois. dev Pois. dev. bench lift_pb lift_pb_bench lift_qbb lift_qbb_bench

0.3431 0.3749 0.0493 0.0718 0.0512 0.0595

Table 9 Top 8 pairwise interactions according to the GBM + Friedman’s H-statistic approach

Rank (H-stat.) Feature 1 Feature 2 Friedman H-statistic Rank (NID)

1 VehAge VehGas 0.3436 2

2 DrivAge Region 0.2728 15

3 DrivAge BonusMalus 0.1660 9

4 BonusMalus VehBrand 0.0997 6

5 VehAge BonusMalus 0.0729 1

6 VehGas Region 1.9 · 10−14 12

7 VehBrand Region 1.6 · 10−14 18

8 VehAge DrivAge 6.7 · 10−15 20

and train the corresponding 27 GBM models with the benchmark-GLM prediction as
an offset. Training one GBM takes on average 80 seconds for the data under consid-
eration. The best-performing GBM in terms of Poisson deviance has 100 trees, 50
as the minimal number of observations in a node, the shrinkage parameter of 0.1,
and the bag-fraction parameter 0.5. The KPIs of this model are reported in Table 8.
Interestingly, the best-performing GBM model has a better Poisson deviance than the
best-performing CANN model, but its lift-plot based KPIs are worse.

When the whole data set is used, the calculation of Friedman’s H-statistic for each
pair of variables takes around 5 minutes. We report the corresponding strongest 8
pairwise interactions in Table 9. The H-statistic for each of the remaining pairwise
interactions is 0.

We see that the first-strongest pairwise interaction according to the GBM + Fried-
man’s H-statistic is the second strongest interaction according to the CANN + NID.
The first-strongest pairwise interaction according to our approach is ranked as the fifth
strongest according to GBM+ Friedman’s H-statistic. Interestingly, the pairwise inter-
action between BonusMalus and regional variables is not captured by the approach of
GBM + Friedman’s H-statistic.

4.2.3 Step 3: Recommendation of the next-best interaction

As described in Subsection 3.3, for each interaction from Table 7 we fit a mini-GLM
and keep track the KPIs of interest. All mini-GLMs lead to the Poisson deviance of
0.3696 on the test set. Based on the AIC, the winning mini-GLM achieves the lowest
AIC of 279859.2 and corresponds to the interaction between BonusMalus and Region.
This interaction is then recommended to an actuary for improving the benchmark
GLM.

123

Interaction detection for GLMs via neural networks 577

If an actuary prefers to use another performancemeasure, itmaywell be that another
interaction is recommended as the next-best one. For example, usingBIC for evaluating
mini-GLMs, our methodology would suggest the interaction between VehAge and
VehGas, since the corresponding mini-GLM has the lowest BIC (279941.9).

In contrast to the case study with the artificial data set, we do not know the true
functional form of the interaction between variables. Therefore, one may want to
explore more sophisticated pairwise interaction terms, as mentioned in Section 3.3 in
Remark 2. All in all, the determination of the optimal functional form of the next-best
interaction is beyond the scope of this paper. The final decision is to be made by the
actuaries.

4.3 Brief discussion on proprietary data sets

Data sets of large insurance companies contain millions observations (policy snippets)
with dozens of features.9 Some of the categorical features, e.g., postcode or vehicle
model, have a high number of categories. In such cases, our methodology is especially
powerful. Due to a very large number of possible pairwise interactions, comparing all
of them by training as many mini-models or refitting as many times the benchmark
GLMwould comewith huge computation-time costs. An alternativemethod of finding
the best-performing GBM model that uses the benchmark-GLM predictions as offset
and then evaluating the strength of all interactions via Friedman’s H-statistic is very
time-consuming, as we already saw in the previous case studies for smaller open-
source data sets. Our approach to interaction detection is instantaneous, once the
CANN model is trained. Moreover, embedding layers in the trained CANN model
allow to efficiently cluster categories of categorical variables with a large number of
categories (e.g., postcodes, car brands) to be able to include them in the benchmark
GLM.

5 Conclusion

In this paper, we propose an approach to detect the next-best interaction to be added
to an arbitrary but fixed benchmark GLM in the context of claim counts modeling.
First, we trained a CANNmodel, which can be seen as boosting the benchmark GLM
by a neural network. Second, we applied a fast model-specific method called Neural
Interaction Detection to quantify the strength of interactions between each pair of
features and ranked interactions by their strength. Third, we identified the next-best
interaction by comparing a small number of mini GLMs that corresponded to the top-
ranked interactions. In the case studies, we validated the approach on two different
data sets and discussed its usage for large proprietary data sets.

There are two advantages of our methodology. First, it is a fully automatable way
of enhancing a benchmark GLM by including the next-best interaction missing in

9 For example, we had a chance to work with approximately 11 million observations and over 50 features.
The calculation of Friedman’s H-statistic was computationally expensive, whereas our methodology was
fast.

123

578 Y. Havrylenko, J. Heger

it. Second, our methodology is faster than other approaches based on Friedman’s H-
statistic. Therefore, ourmethodology is especially suitable for big data setswith dozens
of features and millions of observations. As a result, it can substantially decrease the
amount of time that pricing actuaries spend on searching for interactions to improve
their GLMs, which is usually visual and time-consuming.

The interaction-detection procedure we have introduced has several degrees of
freedom, e.g., the encoding of features, hyper-parameters of the NN, the KPIs for
selecting the best-performingCANN, and those for comparingmini-GLMs.Therefore,
it would be interesting to analyze how sensitive our approach is to different choices
for each degree of freedom.

Acknowledgements We acknowledge the support of ERGO Center of Excellence in Insurance, funded
by the ERGO Group AG. We thank Kay Adam for providing the data as well as for valuable suggestions
and Frank Ellgring for the opportunity to gain practical insights in actuarial pricing at Global P&C Pricing
Department at ERGO Group AG. We acknowledge the support of Noel Stein, Samarth Mehrotra, Mario
Ponce-Martinez, and Yichen Lou in the preparation phase of this project.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability statement The R code for the generation of the artificial data described and analyzed in
Subsection 4.1 of this paper is available on GitHub in the repository interactions-for-glm-via-nn, https://
github.com/Y-I-H/interactions-for-glm-via-nn/tree/main/code. The freMTPL2freq data set described and
analyzed in Subsection 4.2 of this paper is available as a part of the Rpackage CASdatasets, http://cas.
uqam.ca/. The proprietary data set mentioned in Subsection 4.3 of this paper is confidential and cannot be
publicly shared.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A A code for NID algorithm

Listing 5 Code for executing NID algorithm to the NN component of a CANN

extract weights from CANN
model_weights <- get_weights(CANN_model)
IL = input layer , OL = output layer , HL = hidden layer
Index of weight matrix from IL to HL 1
layer_1_index <- num.embed.features + 1
Index of weight matrix from HL1 to HL2
layer_2_index <- layer_1_index + 2
Index of weight matrix from HL2 to HL3
layer_3_index <- layer_2_index + 2

123

https://github.com/Y-I-H/interactions-for-glm-via-nn/tree/main/code
https://github.com/Y-I-H/interactions-for-glm-via-nn/tree/main/code
http://cas.uqam.ca/
http://cas.uqam.ca/
http://creativecommons.org/licenses/by/4.0/

Interaction detection for GLMs via neural networks 579

Index of weight matrix from HL3 to OL
layer_4_index <- layer_3_index + 2
transpose(W^(1)), take abs. vals. of elements
m1_matrix <- model_weights[layer_1_index][[1]]
m1_matrix_abs <- abs(m1_matrix)
transpose(W^(2)), take abs. vals. of elements
m2_matrix <- model_weights[layer_2_index][[1]]
m2_matrix_abs <- abs(m2_matrix)
transpose(W^(3)), take abs. vals. of elements
m3_matrix <- model_weights[layer_3_index][[1]]
m3_matrix_abs <- abs(m3_matrix)
w^y, take abs. vals. of elements
m4_matrix <- model_weights[layer_4_index][[1]]
m4_matrix_abs <- abs(m4_matrix)

Compute the influence vector
influence_matrix <- m2_matrix_abs %*% m3_matrix_abs
%*% m4_matrix_abs

Compute the interaction strength score
between the input neurons i and j
calc_interaction_strength_ij <- function(i, j,
m1_matrix_abs , influence_matrix){

Input: indices of input neurons , weight matrix (m1),
influence matrix
Outut: score of the interaction strength
between input neurons i and j
total_interaction <- 0

iterate through neurons of first hidden layer ,
compute interaction strength scores
at each neuron in the 1st HL , sum up scores
for (m in 1:length(influence_matrix)){

w_i <- m1_matrix_abs[i,m]
w_j <- m1_matrix_abs[j,m]
interaction_strength <- min(w_i,w_j)
interaction_influence <- interaction_strength *
influence_matrix[m]
total_interaction <- total_interaction +
interaction_influence
}

return(total_interaction)
}

In keras the matrices extracted by the function get_weights are the transposed
versions of the matrices used in our notation as well as the notation by Tsang et

al. [19]. Therefore, in the code above influence_matrix corresponds to
(
ζζζ (1)

)� =
|W (2)|� · |W (3)|� · |wwwy | in the notation of our paper, d = 3.

References

1. Burkov A (2020) Machine learning engineering. True Positive Inc
2. Denuit M, Walhin JF, Pitrebois S, Maréchal X (2007) Actuarial modelling of claim counts: risk clas-

sification. Credibility and bonus-malus systems. Wiley

123

580 Y. Havrylenko, J. Heger

3. Ferrario A, Noll A, Wüthrich MV (2018) Insights from inside neural networks. Available at SSRN
3226852

4. Friedman JH, Popescu BE (2008) Predictive learning via rule ensembles. Ann Appl Stat 2:916–954
5. Goldburd M, Khare A, Tevet D, Guller D (2020) Generalized Linear Models for Insurance Rating.

Casualty Actuarial Society
6. Greenwell B, BoehmkeB,McCarthyA (2018)A simple and effectivemodel-based variable importance

measure. arXiv:1805.04755
7. Henckaerts R, Antonio K, Clijsters M, Verbelen R (2018) A data driven binning strategy for the

construction of insurance tariff classes. Scand Actuar J 2018(8):681–705. https://doi.org/10.1080/
03461238.2018.1429300

8. Henckaerts R, Antonio K, CôtéMP (2022)When stakes are high: balancing accuracy and transparency
with model-agnostic interpretable data-driven surrogates. Expert Syst Appl 202:117230. https://doi.
org/10.1016/j.eswa.2022.117230

9. Lundberg S, Lee SI (2017) A unified approach to interpreting model predictions. https://doi.org/10.
48550/ARXIV.1705.07874

10. Molnar C (2019) Interpretable machine learning. Lulu.com
11. Nelder JA,Wedderburn RWM (1972) Generalized linear models. J R Stat Soc 135(3):370–384. https://

doi.org/10.2307/2344614
12. Noll A, Salzmann R, Wüthrich MV (2020) Case study: French motor third-party liability claims.

Available at SSRN 3164764
13. Oh S (2019) Feature interaction in terms of prediction performance. Appl Sci 9(23):5191. https://doi.

org/10.3390/app9235191
14. Ohlsson E, Johansson B (2010) Non-life insurance pricing with generalized linear models. Springer

Berlin Heidelberg, Heidelberg
15. Richman R, Wüthrich MV (2023) LocalGLMnet: interpretable deep learning for tabular data. Scand

Actuar J 2023(1):1–25. https://doi.org/10.1080/03461238.2022.2081816
16. Schelldorfer J,WüthrichMV (2019) Nesting classical actuarial models into neural networks. Available

at SSRN 3320525
17. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to

prevent neural networks from overfitting. J Mach Learn Res 15(56):1929–1958
18. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B (Methodol)

58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
19. TsangM, Cheng D, Liu Y (2018) Detecting statistical interactions from neural network weights. ICLR

2018
20. Wüthrich MV (2019) Bias regularization in neural network models for general insurance pricing. Eur

Actuar J 10:179–202
21. WüthrichMV (2020) From generalized linear models to neural networks, and back. Available at SSRN

3491790
22. WüthrichMV,MerzM (2019) Editorial: Yes, we cann! ASTIN Bull. https://doi.org/10.1017/asb.2018.

42
23. WüthrichMV,MerzM(2022)Statistical foundations of actuarial learning and its applications. Springer.

https://doi.org/10.1007/978-3-031-12409-9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1805.04755
https://doi.org/10.1080/03461238.2018.1429300
https://doi.org/10.1080/03461238.2018.1429300
https://doi.org/10.1016/j.eswa.2022.117230
https://doi.org/10.1016/j.eswa.2022.117230
https://doi.org/10.48550/ARXIV.1705.07874
https://doi.org/10.48550/ARXIV.1705.07874
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
https://doi.org/10.3390/app9235191
https://doi.org/10.3390/app9235191
https://doi.org/10.1080/03461238.2022.2081816
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1017/asb.2018.42
https://doi.org/10.1017/asb.2018.42
https://doi.org/10.1007/978-3-031-12409-9

	Detection of interacting variables for generalized linear models via neural networks
	Abstract
	1 Introduction
	2 Generalized linear models for modeling insurance claim frequencies
	3 Algorithmic detection of the strongest interaction missing in a GLM
	3.1 Outperforming the benchmark GLM via CANN
	3.2 Opening the black box: ranking learned interactions
	3.3 Identification of the next-best interaction for a GLM

	4 Case studies
	4.1 Artificial data set
	4.1.1 Step 1: training CANN
	4.1.2 Step 2: ranking of learned interactions via neural interaction detection
	4.1.3 Step 3: recommendation of the next-best interaction

	4.2 Open-source data set freMTPL2freq
	4.2.1 Step 1: training CANN
	4.2.2 Step 2: ranking of learned interactions
	4.2.3 Step 3: Recommendation of the next-best interaction

	4.3 Brief discussion on proprietary data sets

	5 Conclusion
	Acknowledgements
	Appendix A A code for NID algorithm
	References

