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Abstract. Flash memory does not allow in-place updates like conven-
tional hard disks. Therefore all file systems must maintain an index that
maps identifiers for files and directories to the address of their most re-
cently written version. For efficiency, the index is typically implemented
as a Wandering Search Tree. However, the verification of Wandering
Trees is challenging since it has to deal with multiple aspects at once:
the algorithmic complexity of search trees, trees in RAM that are par-
tially loaded from snapshots on flash, where only modified parts are
incrementally saved, and the efficient representation of trees as pointer
structures. This paper proposes a modular solution that allows verifying
each aspect separately. The solution has been mechanized in the theorem
prover KIV.
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1 Introduction

Flash memory has the constraint that it does not allow direct overwriting of data.
It is organized in blocks that can only be written sequentially. Writing new data
into a block is possible only after it has been erased as a whole. Therefore, file
systems for flash memory (as well as flash translation layers used by SSDs, that
mimic an ordinary hard disk that allows overwriting) have to manage an index
that maps unique keys that identify elements of the file system to the physical
address where their latest version can be found. The keys are usually based on
inode numbers that uniquely identify files and directories, together with page
numbers that identify data pages of a file.

An efficient implementation of the index is crucial for the efficiency of the
file system. Of course, storing the index simply on flash memory itself is not
an efficient solution since, again, incremental updates in place would not be
possible. On the other hand, just keeping the index in RAM is not an option
either since the index would be lost on a crash (e.g., a power loss). The standard
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solution used nowadays in flash file systems is to use Wandering Trees [11] as
an efficient solution. In Linux, for example, UBIFS [13] uses this solution.

We will explain Wandering Trees in Section 2. They present a challenge for
verification as they combine algorithmic complexity, reasoning about pointer
structures, and incremental caching.

The contribution of this paper is a mechanized verification of Wandering
Trees using the theorem prover KIV, available online at [14]. The solution allows
addressing these verification challenges in isolation using components without
losing the efficiency of the overall solution. That pointer reasoning can be tackled
in a small separate component is a generic aspect that should be reusable in other
case studies.

We give some basic information on KIV’s logic and specification concepts in
Section 3 and discuss the concept of components and subcomponents, which are
connected by refinement, in Section 4. The verification we present here is the
last gap that was long open in the verification of Flashix, which is a fully verified
file system for flash memory, see [1] for an overview.

Section 5 will give an overview of the modularization, and Section 6 gives the
core concepts used in the verification. An interesting aspect of the verification
is that we could make use of various operators of Separation Logic [19, 23]. In
particular, we found Separation Logic and the use of the magic wand to be useful
as a concept already when viewing the index abstractly as a map, generalizing
its usual use for heaps (or other low-level resources). We also used the sharing
separation operator to verify the correct representation of snapshots on flash
memory.

Finally, Section 7 concludes.

2 Wandering Trees

Wandering Trees are used to implement an index, which maps keys that identify
file system data to addresses on flash memory. Typically, they are organized as
B+-Trees. In this paper, we will use simple binary search trees since they are
easier to explain, and rebalancing algorithms for trees are not the focus of this
paper. Verification of B+-Trees alone (without the aspects discussed here) has
already been addressed in our paper [7], and we have also verified the rebalancing
algorithms of Red-Black Trees in [24]. Several other papers have also discussed
the verification of B+-Trees in isolation, see [16,17]. Concurrent search trees have
also been verified in [15].

How Wandering Trees work is shown in Figure 1. The system keeps a current
version of the index stored as a search tree in RAM (top row), and an older
snapshot is saved on Flash memory (bottom row). The two versions are called
the ram index and the flash index. A new snapshot is saved when the log of
the file system that sequentially saves changes (log entries record additions,
modifications, and deletions) to the file system becomes full. Then the ram index
is saved to the flash index in a commit operation, which also starts a new log
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Fig. 1: Exemplary sequence of Wandering Tree operations with blue proxy nodes
and red dirty nodes. RAM content shown on top, flash content below it.

(the old log becomes regular memory). A commit is also done when shutting
down the file system, so on a reboot, a current flash index is available.

However, the flash index is not immediately loaded to the ram index, as this
would be too expensive. Instead, just the root node A is loaded to RAM, as
shown in Figure 1 a). Its child nodes B, C are proxy nodes (shown in blue):
these just store the address on flash memory of the actual nodes B, C.

Reading data from flash memory will need some part of the index to find
their current version. Since files in the same directory and pages of the same
file have similar keys, this will typically require accessing some nodes that are
close together in some subtree of the flash index. In Figure 1 b), nodes C and
E were required to find some content of flash memory. Accessing the nodes will
load their actual content. To speed up following reads and writes to these files,
they are replaced in the ram index with their actual content. A new proxy node
for D is created.

Updating files and directories will modify some nodes of the ram index. Fig-
ure 1 c) shows the changes caused by updating node E to point to a new version
of some data. This will not just update the content of node E (to E′) but it will
also set a dirty flag in all nodes on the path from the root to E (here A, C, E).
Dirty nodes, where the flag is set, are shown in red. Precisely the dirty nodes
differ between ram index and flash index.

A commit operation, that saves the content of the flash index to the ram
index will only save the dirty nodes, causing the flash index to wander (hence
the name: Wandering Trees). The effect of a commit can be seen in Figure 1 d):
only the dirty nodes A′, C ′ and E′ need to be saved on Flash memory, all nodes
in the subtrees B and D still remain valid. In the ram index the dirty flag is
cleared, since after the commit these nodes agree again with the flash index.

Wandering Trees are crash-safe since the ram index that, like all data in
RAM, is lost on a power loss can be reconstructed: a reboot will find a non-
empty log on flash memory. Starting with the flash index, a recovery routine will



reconstruct the current ram index by replaying the entries of this log. Verification
of crash safety is part of this case study, as is ensuring that hardware errors (all
operations on flash can return errors) are handled correctly. We refer to [20] for
the theory that results in additional proof obligations for each component, but
this issue is out of scope for the remainder of the paper. We just note that for
crash safety, it is essential that the commit operation has a final atomic step
that both switches the ram index from Figure 1 c) to d) and the log to a new
empty log. Technically this is realized by switching to a new superblock, see [5].

Verification of Wandering Trees as a monolithic implementation has to deal
with three problems at the same time:

– the ram index has to correctly implement a search tree.
– the ram index implements a cache for the flash index. Replacing proxies with

actual nodes, the mechanism of having dirty nodes, and committing these
have to work correctly.

– Wandering Trees are pointer structures. It has to be verified that they cor-
rectly represent trees and that there are no space leaks.

Of course in theory, it is possible to consider all these aspects at once, but
early experiments indicated that, at least in our theorem prover, the resulting
complexity of invariants and abstraction relations becomes overwhelming.

Therefore, this paper’s contribution is a modular structure, explained in the
next section, that allows the decoupling of the three aspects and defines intuitive
invariants and abstraction relations to make the individual verification tasks
manageable.

3 Structured Specifications of Algebraic Data Types

To develop the necessary formal specifications and prove that our implementa-
tion follows them, we use the theorem prover KIV, which provides interactive
verification using a sequent calculus with explicit proof trees. The basic logic of
the specification language is higher order logic (HOL), recently extended from
monomorphic to polymorphic types.

In KIV, structured algebraic specifications are used to build a hierarchy of
data type definitions. Primitive data types may be generated freely or non-freely.
Specifications can be augmented by additional functions and combined using
standard structuring operations like enrichment, union, and renaming. It is also
possible to specify parameterized data types that can be instantiated explicitly.

3.1 Algebraic Definitions

The standard approach for proving the correctness of algorithms using complex
data structures is to specify the data structures algebraically. Binary trees can
be defined as a polymorphic free data type Bintree(κ, α) with a Leaf constructor
(which maps one key to a value) and a Node constructor. Our case study will
use type Bintree(Key ,Elem) for search trees, where the Key type is assumed to



be totally ordered. This allows to formulate a standard invariant isOrdered(bt)
for search trees bt : for any node in the tree, the keys stored in its right (left)
subtree are bigger (less or equal) than the keys stored in the node.

Bintree(κ, α) = Node(.key : κ; .left : Bintree(κ, α); .right : Bintree(κ, α))

| Leaf(.key : κ; .val : α)

For a free data type specification, KIV generates all necessary axioms, as well as
update functions (written e.g. bt.key:= newkey), including their definitions. KIV
attaches a domain to selector functions. When used in programs, this ensures
that selecting a value from a Node or the left subtree from a Leaf will raise
an exception. Therefore, proving the correct use of the data type in programs
includes showing the absence of such exceptions, i.e., one has to prove that all
operations are called with arguments within their respective domain.

3.2 Modeling the Heap and Separation Logic

Reasoning about destructive pointer algorithms requires modelling the heap,
either implicitly as part of the semantics of formulas or explicitly as an algebraic
data type. In KIV, the latter approach is realized: heaps that store objects of
type ω are specified as a polymorphic non-free data type Heap(ω).

A heap can be considered a partial function (a “map”) that maps a finite
number of references to objects, where allocation of references is explicit and
the reference type contains a distinguished element null that is never allocated
(representing the null pointer). Since Separation Logic formulas can be defined
(and will be useful for our case study) for maps in general, we define generic maps
as a generic typeMap(κ, ν) that maps arbitrary keys of type κ to arbitrary values
of type ν. Heaps then map references of type Ref (ω) to objects of type ω, i.e.,
Heap(ω) abbreviates Map(Ref (ω), ω).

The Map(κ, ν) data type is inductively generated by the empty map ∅, and
an operator m[k := v] that stores the value v under key k , either allocating
the key if it is new or overwriting the old value stored previously. A predicate
k ∈ m checks whether a key is allocated in the map, i.e., is in its domain,
and a function m[k] is used to lookup the value stored under a key (for heaps
this corresponds to dereferencing a pointer). Keys and their value can also be
removed (deallocated) by the function m -- k . The union m1 ∪ m2 of two maps
is defined when they have disjoint domains (written m1 ⊥ m2). Similar to the
selector functions of free data types, lookup m[k] and removal m -- k raise
exceptions in programs when the key is not in the map (¬ k ∈ m).

In KIV, all parameters of procedures are explicit. Hence, when reasoning
about pointer-based programs, the heap must be an explicit parameter of the
program as well. To facilitate the verification of such programs, we built a simple
library for Separation Logic (SL) in KIV. We give some information to explain
the notation used in the following. SL formulas are encoded using predicates over
maps P with type Map(κ, ν) → Bool , abbreviated as MapPrd . A map predicate
P describes the structure of a map m. Predicate emp describes an empty map:

emp(m) ↔ m = ∅



The maplet k 7→ v describes a singleton map containing only one key k mapping
to a value v . The infix operator 7→ therefore has type κ × ν → MapPrd and is
defined as

(k 7→ v)(m) ↔ m = ∅[k := v]

More complex maps can be described using the separating conjunction P * Q
asserting that the map consists of two disjoint parts, one satisfying P and one
satisfying Q , respectively. Since it connects two heap predicates, it is defined as
a function with type MapPrd ×MapPrd → MapPrd :

(P * Q)(m) ↔ ∃ m1,m2. m1 ⊥ m2 ∧m = m1 ∪ m2 ∧ P(m1) ∧Q(m2)

Separating conjunction is useful to assert that a map (or specifically: the heap)
stores a tree-shaped structure where the left and right subtree are disjoint.

For our case study we will also make use of two more operators of the same
type defined as

(P -* Q)(m) ↔ ∀ m1. m1 ⊥ m ∧ P(m1) → Q(m ∪ m1)

(P ⊛ Q)(m) ↔ ∃ m1,m0,m2. m1 ⊥ m0 ∧m0 ⊥ m2 ∧m1 ⊥ m2

∧m = m1 ∪ m0 ∪ m2 ∧ P(m1 ∪ m0) ∧Q(m0 ∪ m2)

The magic wand P -* Q asserts that adding any disjoint map m1 that satisfies
P to the current map m will result in a map that satisfies Q .

Overlapping conjunction [9, 12] P ⊛ Q asserts that the map m can be split
into three disjoint parts m0, m1, m2 such that P holds for the union of m0 and
m1, while the union of m0 and m2 satisfies Q . This is useful, when the map stores
a tree-shaped structure where the left and right subtree may have a shared part
m0 (so the structure becomes a directed acyclic graph).

Finally, some of the lemmas that we define will use implication P ⇒ Q lifted
to map predicates defined as ∀ m. P (m) → Q(m).

4 Modular Software Systems

For the development of complex software systems in KIV, we use the concept
of hierarchical components combined with the contract approach to data refine-
ment [4,26]. A component is an abstract data type (ST, Init, (Opj )j∈J) consist-
ing of a set of states ST , a set of initial states Init ⊆ ST , and a set of operations
Opj ⊆ Inj × ST × ST × Outj . An operation Opj takes inputs Ini and outputs
Outj and modifies the state of the component. Operations are specified with
contracts using the operational approach of ASMs [2]: for an operation Opj , we
give a precondition prej and a program αj in the form of a procedure declaration
opj#(inj ; st; outj ) pre prej {αj}. The program αj is given in KIV’s imperative
programming language, which supports recursive procedures and nondetermin-
ism (details on the syntax can be found in [25]), and establishes the postcondition
of the operation. The arguments of a procedure opj#(inj ; st; outj ) are grouped
into sequences of input, reference, and output parameters. KIV does not sup-
port global variables, these must be added explicitly as reference parameters.
Instead of defining initial states directly, we also give a procedure declaration
init#(ininit; st; outinit) {αinit}.
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Fig. 2: Data refinement with subcomponents. Implementation Ci uses specifica-
tion Ai+1 as a subcomponent (depicted by ). Together they are a refinement
of specification Ai (depicted by the dotted lines).

Components are distinguished between specifications and implementations.
The former are used to model the functional requirements of a (sub-)system and
are typically kept as simple as possible by heavily utilizing algebraic functions
and non-determinism. The approach is as general as specifying pre- and post-
conditions since the program choose st′, out′ with post(st′, out′) in st, out :=
st′, out′ can be used to establish any postcondition post over state st and output
out. Implementations are typically deterministic and only use constructs that
allow generating executable Scala or C code from them with our code generator.

The functional correctness of implementation components is then proven by a
data refinement of the corresponding specification components (we write C ≤ A if
C = (ST C, InitC, (OpCj )j∈J) is a refinement of A = (ST A, InitA, (OpAj )j∈J) where
C and A have the same set of operations J). Proofs for such a refinement are
usually done by first showing strong enough invariants for each component
(that are preserved by all operations) and then proving an abstraction rela-
tion abs ⊆ ST A × ST C to be a forward simulation. Proof obligations are based
on a weakest precondition calculus for programs α that borrows notation from
Dynamic Logic (DL) [10] and uses three modalities: [α]φ (corresponding to the
weakest liberal precondition wlp(α,φ)), ⟨α⟩φ (there is a terminating execution
of α that establishes φ), and ⟨|α|⟩φ (corresponding to the weakest precondition
wp(α,φ)).

Proving a forward simulation correct requires to show the following proof
obligation for each operation (i.e., j ∈ J) following the contract approach [4,26]:

abs(stA, stC) ∧ preAj (st
A) ∧ invA(stA) ∧ invC(stC)

→ ⟨|opC
j#(inj ; st

C; outj )|⟩ ⟨opA
j#(inj ; st

A; out′j )⟩(abs(stA, stC) ∧ outj = out′j )

The proof obligation assumes a pair of states stA and stC such that abs and the
already established invariants hold and that the abstract precondition is true.
It asserts that every concrete run terminates (in particular the concrete precon-
dition must be satisfied) and has a corresponding abstract run with the same
output, such that the abstraction relation holds for the resulting states (note
that the postcondition refers to the final states of both programs). It is crucial
that the calculus allows nested modalities (unlike Hoare calculus) to express the
proof obligations. For information on symbolic execution and rewriting that are
used for verification, see [25].

To facilitate the development of larger systems, we introduced a concept of
modularization in the form of subcomponents. A component (usually an imple-



mentation) can use one or more subcomponents (usually specifications). The
client component cannot access the state of its subcomponents directly but only
via calls to the interface operations of the subcomponents. Using subcompo-
nents, a refinement hierarchy is composed of multiple refinements like in Fig. 2.
A specification component Ai is refined by an implementation Ci (dotted lines
in Fig. 2) that uses a specification Ai+1 as a subcomponent ( in Fig. 2, we
write Ci(Ai+1) for this subcomponent relation). Note that we visualize specifica-
tion components as white boxes and implementation components as grey boxes
throughout (cf. Fig. 2).

This pattern then repeats in the sense that Ai+1 is refined further by an
implementation Ci+1 that again uses a subcomponent Ai+2 and so on. If it is
not the top-level specification, Ai may also be used as a subcomponent of an
implementation Ci−1. The complete implementation of the system then results
from composing all individual implementation components C0(C1(C2(...))). In [6]
we have shown that C ≤ A implies M(C) ≤ M(A) for a client component M which
ensures that the composed implementation is a correct refinement of its top-level
specification A0, i.e., C0(C1(C2(...))) ≤ A0. This allows us to divide a complex
refinement task into multiple, more manageable ones, as demonstrated in the
following sections for our Wandering Tree implementation.

5 Modularization

To specify and verify the different aspects of Wandering Trees separately, we
employed the refinement hierarchy shown in Fig. 3. Starting from a concise and
simple specification, multiple refinement steps are applied down to an efficient,
pointer-based Wandering Tree implementation.

5.1 Specification of the Index

The top-level specification component Index completely abstracts from the tree
data structure. Instead, the index is modeled as a map (i.e., a partial function)
from index keys, which must be totally ordered, to values of an unspecified type
Elem. The distinction between the cached and persisted version is realized by
keeping two maps of type Map(Key ,Elem): the ram index (ri) representing the
current state of the index and the flash index (fi) storing the latest committed
state.

For the actual implementation, the Elem type is instantiated with a type Adr
of flash addresses. However, as both index and data nodes are stored under these
addresses in the file system, we keep the type abstract here to avoid confusion
with addresses used for storing index data structures introduced with subsequent
refinements.

Figure 4 lists the full Index specification. Initially, i.e., after formatting the
file system, ri and fi are both empty (operation init#, lines 1-3). Modifications
to the index are performed only on the ram index: store# adds a key/value
pair to ri resp. updates the value stored under the respective key (lines 5-9),



Fig. 3: The refinement hierarchy for Wandering Trees. Each component lists its
state (first compartment) and its most important operations (second compart-
ment). Together, the four refinements Index Refinement, Tree Refinement, RAM
Refinement, and Flash Refinement guarantee correctness of the combined Wan-
dering Tree implementation, i.e., Tree(WanderingTree(Heap, Flash)) ≤ Index.

and remove# deletes an entry from the index (lines 11-15). Note that both
operations return a flag exists signaling whether an entry for the requested key
existed before the execution and, if so, the old value of the entry in old (otherwise,
old is set to a random value ?). contains# checks whether a key is allocated in
ri (lines 16-17), and lookup# additionally returns the value stored under key
(lines 19-23). The flash index is altered only during a commit# (lines 25-26),
where it is updated to the current version stored in ri . Conversely, recovery after
a crash is specified as restoring ri from fi (lines 28-29).

5.2 Index Refinement

In a first step, Index is refined by the component Tree using TreeBasic as a
subcomponent (written Tree(TreeBasic) ≤ Index). This refinement addresses
the realization of the index as a (binary) search tree. But instead of switch-
ing to a pointer representation directly, TreeBasic uses the algebraic trees



init#()
initialization

{ ri := ∅, fi := ∅ }

store#(key , v ; ; old , exists) {
exists := key ∈ ri ;
if exists then old := ri[key] else old := ?;
ri[key] := v ;

}

remove#(key ; ; old , exists) {
exists := key ∈ ri ;
if exists then { old := ri[key]; ri -- key }
else old := ?;

}
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contains#(key ; ; exists)
{ exists := key ∈ ri }

lookup#(key ; ; exists, v) {
exists := key ∈ ri ;
if exists then v := ri[key]
else v := ?

}

commit#()
{ fi := ri }

recover#()
{ ri := fi }
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Fig. 4: Abstract representation of Wandering Trees: the component Index.

tree, backup : Bintree(Key ,Adr) as state (cf. Sec. 3.1), representing the indices
ri and fi , respectively. The state of TreeBasic also contains boolean flags empty
and bempty , which are necessary to model that the respective tree is empty since
Bintree only defines non-empty trees (consisting of at least a Leaf).

TreeBasic provides an interface for fine-grained manipulations of tree at a
given location, like inserting a key/value pair in form of a Leaf with add# or
reading the key of the current node with getKey#. These operations are used
by the client component Tree to implement the interface of Index. For this,
TreeBasic also has a state path : Path describing the way from the root of the
tree to the current location, where Path is defined as a sequence of LEFT and
RIGHT markers, i.e., Path ≡ List(LEFT | RIGHT). To navigate within the tree,
Tree calls the operations up#, left#, and right# to extend or shorten path.

The models use several algebraic operations for accessing and updating the
trees: the predicate p ∈ t checks whether a path p is valid for a tree t, i.e., p
points to a subtree within t, the function t[p] selects the subtree of t that is
reached when traversing t along p (if p ∈ t), and the function t[p := t0] yields
the tree t where the subtree t[p] is replaced with the tree t0 (again, only defined
for p ∈ t). These operations are defined recursively over the tree structure, for
example, the following axioms are given for t[p]:1

t[[]] = t

Node(key , t0, t1)[LEFT+ p] = t0[p]

Node(key , t0, t1)[RIGHT+ p] = t1[p]

Using these axiomatized operations, the main part of the tree algorithms (and
thus, their complexity) is placed in Tree, while the specification of TreeBasic is
kept as simple as possible (most of the operations consist only of a single assign-
ment). The verification of the Tree algorithms only needs to consider algebraic
trees, abstracting from the more efficient but more complex tree representation
used for the implementation of Wandering Trees.

1 [] denotes the empty path, a + p denotes a path consisting of one leading element
a and a remaining path p.



search#(key ; ; exists) {
let isEmpty = ? in {

tree basic isEmpty#(; ; isEmpty); // isEmpty := empty
if isEmpty then exists := false

else let isLeaf = ?, key0 = ? in {
tree basic toRoot#(); // path := []

tree basic isLeaf#(; ; isLeaf ); // isLeaf := tree[path].leaf?
while ¬ isLeaf do {

tree basic getKey#(; ; key0); // key0 := tree[path].key
if key0 < key then

tree basic right#(); // path := path + RIGHT

else
tree basic left#(); // path := path + LEFT;

tree basic isLeaf#(; ; isLeaf ); // isLeaf := tree[path].leaf?
};
tree basic getKey#(; ; key0); // key0 := tree[path].key
exists := (key = key0);

}
}

}
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Fig. 5: Tree auxiliary procedure for performing a binary search for an element
elem within the tree.

Fig. 5 shows how the interface of TreeBasic is used by Tree to implement
a standard binary search. The auxiliary routine search# is used in most inter-
face operations of Tree and searches for a key , returning a boolean flag whether
a corresponding entry exists in the tree (set in lines 4 or 17, respectively).
The comments in green show the implementation of the primitive operations
of TreeBasic. For a non-empty tree (the state variable empty is set to true
iff the tree does not contain any nodes), the tree is traversed by incrementally
extending path with LEFT or RIGHT markers, depending on how the key key0 of
the current node compares to key , stopping when a leaf is reached (loop in lines
8-15). When search# has finished, path points to the location at which the ac-
tual modification (or lookup) of the respective Tree operation can be performed,
e.g., adding/removing a node or reading the value.

At this level, commit# and recovery# are still modeled as simple atomic
assignments of complete trees (backup := tree and tree := backup, respectively).
Furthermore, tree always describes the complete index tree, so optimizations like
lazy loading or caching modifications of individual nodes are not yet considered.
These aspects are introduced with the next refinement step.

5.3 Tree Refinement

The refinement WanderingTree(RAM, Forest) ≤ TreeBasic introduces the con-
cepts of multiple tree snapshots stored on flash memory and partially loaded
trees in volatile memory. However, both aspects are again modeled using alge-
braic trees instead of pointer structures.

The Forest component stores multiple binary trees in a map forest of type
ForestMap ≡ Map(Adr ,Bintree(Key ,Elem)), where each entry represents a
snapshot of the (full) tree created during a commit#. These snapshots are



load#() {
let isProxy = ? in {

ram isProxy#(; ; isProxy); // isProxy := rtree[rpath].proxy?
if isProxy then let adr = ?, key = ?, isLeaf = ? in {

ram getAdr#(; ; adr); // adr := rtree[rpath].fadr
forest getKey#(adr ; ; key); // key := forest[adr].key
forest isLeaf#(adr ; ; isLeaf ); // isLeaf := forest[adr].leaf?
if isLeaf then let v = ? in {

forest getValue#(adr ; ; v); // v := forest[adr].val
ram loadLeaf#(key , v);
// rtree[rpath] := Leaf(key , rtree[rpath].fadr, v)

} else let ladr = ?, radr = ? in {
forest getLeft#(adr ; ; ladr);
// ladr with ladr ∈ forest ∧ forest[adr].left = forest[ladr]
forest getRight#(adr ; ; radr);
// radr with radr ∈ forest ∧ forest[adr].right = forest[radr]
ram loadNode#(key , ladr , radr);
// rtree[rpath] := Node(key , rtree[rpath].fadr, Proxy(ladr), Proxy(radr))

}
}

}
}
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Fig. 6: WanderingTree auxiliary procedure for instantiating a proxy node at the
current path rpath by loading the node from flash.

stored at an abstract Adr on flash, and froot stores the address of the most re-
cent snapshot, which is crucial for recover#. Note that since all trees in forest
are algebraic, the snapshots are completely disjoint and do not share any sub-
trees (in contrast to the final implementation, cf. situation d) in Fig. 1). Thus,
verification on this level does not have to cope with the additional complexity
of sharing/aliasing.

The RAM component introduces proxy nodes, using a Proxytree(Key ,Elem)
instead of a Bintree for the volatile version of the tree. The polymorphic data
type Proxytree(κ, α) is specified analogously to Bintree(κ, α) but uses an addi-
tional constructor Proxy that represents not yet loaded subtrees and extends
Node and Leaf nodes to also contain a field .fadr storing the address of the
corresponding persisted tree on flash:

Proxytree(κ, α) = Node(.key : κ; .fadr : Adr ; .left : Proxytree(κ, α);

.right : Proxytree(κ, α))

| Leaf(.key : κ; .fadr : Adr ; .val : α) | Proxy(.fadr : Adr)

For dirty (sub)trees, i.e., trees that contain uncommitted modifications, there is
no corresponding flash address. These utilize the invalid null address to signal
their dirty state. Note that, for the concepts presented in this paper, a simple
boolean flag instead of the .fadr field would be sufficient to distinguish between
dirty and clean trees. We store the addresses to identify flash locations that
become garbage during a commit, which must be freed during a garbage collection
algorithm (cf. [5]). However, this mechanism is implemented on another level of
the file system, so it is outside the scope of this paper.

To implement the functionality of TreeBasic, WanderingTree accesses RAM
and Forest. Recall that this functionality comprises only fine-grained accesses



setDirty#() {
let isRoot = ? in {

ram isRoot#(; ; isRoot);
while ¬ isRoot do {

ram up#();
ram setAdr#(null);
ram isRoot#(; ; isRoot);

}
}

}

1

2

3

4

5

6

7

8

9

10

Fig. 7: WanderingTree procedure for
marking modified parts of the index dirty.

commit#() {
let isEmpty = ?, adr = null in {

ram toRoot#();
ram isEmpty#(; ; isEmpty);
if ¬ isEmpty then {

save#(; ; adr);
};
forest setRoot#(adr);

}
}
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Fig. 8: WanderingTree procedure
for committing the RAM index.

to the tree at a single location. Analogously to TreeBasic, this location is de-
termined by a path rpath as part of the state of RAM. Since rtree is usually not
fully loaded, the operations of WanderingTree first check whether rpath points
to a Proxy tree in RAM and load the node from Forest if necessary. This is done
with the auxiliary routine load# listed in Fig. 6. Again, the comments in green
show the implementation of the primitive operations of the subcomponents RAM
and Forest, respectively. If rtree[rpath] is a Proxy node, its flash address is
used to determine whether the node is a Leaf and to read its key from flash
(lines 3-7). For a leaf node, its value v is read from flash, and the proxy tree in
rtree is replaced with a Leaf storing the loaded key/value pair (lines 9-11).2 For
a non-leaf, the proxy tree is replaced by a Node, which in turn stores only Proxy

trees for its children (containing their loaded flash addresses, lines 13-18). That
way, the RAM tree is loaded only as far as the respective Tree operation requires.

The other important responsibility of WanderingTree is to cache index up-
dates in RAM until they are committed to flash. To determine the parts of the
index that have to be written to flash during a commit, the path between an
updated location and the root must be marked dirty. Therefore, the auxiliary
operation setDirty# (shown in Fig. 7) is called after each modification: starting
from the current location in RAM (determined by rpath, which points to the just
modified subtree), rtree is traversed bottom-up until the root is reached (lines
4-8), setting all .fadr fields to null (line 6).

The commit# operation (shown in Fig. 8) calls an auxiliary operation
save# (line 6), which saves a new tree in forest for each dirty node in rtree[rpath],
returning the new root address adr of the saved tree. Crucially, the root address
froot of Forest is only updated at the very end of the operation (line 8), which
ensures atomicity of the commit process w.r.t. crashes. In case of a crash during
commit#, the RAM tree is initialized with the old froot address, under which
the latest committed version of the index is still present.

The save# operation (listed in Fig. 9) has an interplay between RAM and
Forest similar to load#: For a dirty Leaf in rtree, a corresponding Leaf is
stored in forest (lines 8-10). For a dirty Node in rtree, the tree is traversed
recursively (recursive calls in lines 13 and 16 for its left and right subtrees,
respectively) before the corresponding Node is saved in forest with the flash

2 The assignment tree[path] := t0 is an abbreviation for tree := tree[path := t0].



save#(; ; adr) {
let isDirty = ? in {

ram isDirty#(; ; isDirty); // isDirty := rtree[rpath].dirty?
if isDirty then let key = ?, isLeaf = ? in {

ram isLeaf#(; ; isLeaf ); // isLeaf := rtree[rpath].leaf?
ram getKey#(; ; key); // key := rtree[rpath].key
if isLeaf then let v = ? in {

ram getValue#(; ; v); // v := rtree[rpath].val
forest saveLeaf#(key , v ; ; adr);
// adr with ¬ adr ∈ forest∧adr ̸= null in forest[adr] := Leaf(key , v)

} else let ladr = ?, radr = ? in {
ram left#(); // rpath := rpath + LEFT

save#(; ; ladr);
ram up#(); // rpath := rpath.butlast
ram right#(); // rpath := rpath + RIGHT

save#(; ; radr);
ram up#(); // rpath := rpath.butlast
forest saveNode#(key , ladr , radr ; ; adr);
// adr with ¬ adr ∈ forest ∧ adr ̸= null in
// forest[adr] := Node(key , forest[ladr], forest[radr])

};
ram setAdr#(adr); // rtree[rpath].fadr := adr

} else {
ram getAdr#(; ; adr); // adr := rtree[rpath].fadr

}
}

}
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Fig. 9: WanderingTree auxiliary procedure for recursively saving all dirty parts
of rtree to flash, starting from the node at the current path rpath.

addresses ladr and radr of its stored children (lines 18-20). In both cases, the
tree is stored under a new address adr in forest . Finally, the flash addresses of
committed nodes in rtree are also updated and thus marked clean (line 22).

5.4 Pointer Structures in the Heap and on Flash

Finally, the algebraic trees are implemented by pointer structures: RAM Refine-
ment realizes the proxy tree of RAM by a structure of HNodes in the heap, which
is explicitly given as state h : Heap(HNode) with references Ref (HNode), and
Flash Refinement realizes the binary trees of Forest as structures of FNodes
stored on flash memory, which is modeled as a map flash : Map(Adr ,FNode).
In [24], we used a similar modularization and refinement methodology to verify
an efficient Red-Black Tree implementation: we also utilized an algebraic tree as
an intermediate representation to abstract from the complexity of pointer-based
rotations for maintaining balance. In this work, we revisit the methodology but
apply it to simplify reasoning over the lazy loading and caching mechanisms at
the level of WanderingTree(RAM, Forest). For the refinements Heap ≤ RAM and
Flash ≤ Forest, the only (real) remaining proof task is to show that the pointer
structures form correct trees (matching their algebraic counterparts) and that
navigation via paths can be realized by dereferencing pointers.



Since [24] covers the general concept of refining algebraic trees with pointer
trees in detail, we just give a brief overview of the used tree data structures.

HNode = HNode(.key : Key ; .fadr : Adr ; .parent : Ref (HNode); (1)

.left : Ref (HNode); .right : Ref (HNode))

| HLeaf(.key : Key ; .fadr : Adr ; .parent : Ref (HNode); .val : Elem)

| HProxy(.fadr : Adr ; .parent : Ref (HNode))

FNode = FNode(.key : Key ; .left : Adr ; .right : Adr) (2)

| FLeaf(.key : Key ; .val : Elem)

Analogously to Proxytree, the heap node data type HNode is defined with con-
structors for inner nodes (HNode), leaf nodes (HLeaf), and proxy nodes (HProxy).
The in-memory tree structure is formed via .left/.right pointers of HNodes.
Additionally, each node contains a pointer to its parent node, which is neces-
sary to navigate efficiently within the tree, e.g., for implementing up#. All heap
nodes store the address of their persistent counterpart, i.e., the corresponding
FNode on flash, in the .fadr field (or null if the node is dirty).

The flash node data type FNode defines a standard pointer representation
of binary trees with constructors for inner (FNode) and leaf nodes (FLeaf), but
flash addresses are used instead of heap references to the left and right children.
Parent pointers are omitted since the tree is traversed top-down only.

Note that the representation as a map in Flash is not the final representation
of data in the full implementation of the Flashix file system. There, an Adr
storing an FNode will be allocated in blocks of flash memory. Thus, in the
actual integration into the full Flashix file system, the Flash component will
call memory allocation from a subcomponent again instead of just choosing a
new Adr when allocating. The interested reader can find information on these
lower level components, which do caching and a mapping from logical to physical
blocks, in [20,21].

6 Verification

This section gives a rough overview of the verification of the individual refine-
ments. For brevity, we only give the most important invariants of the components
and the definitions of the abstraction relations needed to verify the individual
refinements. This should enable the reader to understand the main ideas used
in the proofs, which are available online [14]. Since the concepts for the refine-
ment Heap ≤ RAM are basically the same as in [24], we skip them here, although
the refinement is crucial for having an efficient implementation that is based on
efficiently modifying pointer structures.

6.1 Correctness of the Tree Component

Verification of the top-level refinement Tree[TreeBasic] ≤ Index first has to
prove total correctness of search# with precondition empty ∨ isOrdered(tree)



and postcondition

¬ empty → (path ∈ tree ∧ tree[path].isLeaf

∧ (neighbor(LEFT, path) = [] ∨ tree[neighbor(LEFT, path).butlast].key < key)

∧ (neighbor(RIGHT, path) = [] ∨ key ≤ tree[neighbor(RIGHT, path).butlast].key))

which asserts that the path found indeed points to the right node. In the formula
neighbor(LEFT/RIGHT, p) computes the previous/next path of p in the tree.
For the leftmost path (of the form LEFT∗), the previous path is empty, and for
p = p0 RIGHT LEFT

∗, it is p0 LEFT. p.butlast removes the last element from this
path. The keys of the previous and next path are the relevant ones to verify
that subsequent modifications of the tree at path preserve isOrdered. The loop
invariant used is similar to the postcondition.

The main proof of refinement has to verify that the two abstract maps fi , ri :
Map(Key ,Adr) are correctly represented by the two trees tree and backup and
the two boolean flags empty and bempty that indicate that the empty map needs
no tree for representation. The definition of the abstraction relation3

(empty ⊃ emp; absI(tree))(ri) ∧ (bempty ⊃ emp; absI(backup))(fi))

uses predicate absI : Bintree(Key ,Adr) → MapPrd defined as

absI(Leaf(key , v)) = key 7→ v absI(Node(key , lt , rt)) = absI(lt) * absI(rt)

Note that separating conjunction is used here for the maps of the abstract spec-
ification; the common case is to use it to represent an abstract structure by a
pointer structure as in the refinement Heap ≤ RAM. The refinement proofs use
the magic wand to prove correctness of adding and removing an element. The
main lemma needed is that for a valid path p ∈ bt we have

absI(bt) ⇒ absI(bt[p]) * (absI(rt) -* absI(bt[p := rt]))

which says that the tree bt consists of two parts: the old subtree bt[p] that is re-
placed in the operation by a new subtree rt , resulting in the new tree bt[p := rt].
For removal of a key , when bt[p] = Node(key ′, Leaf(key , v), rt) we then have

absI(Node(key ′, Leaf(key , v), rt)) * (absI(rt) -* absI(bt[p := rt]))

= absI(Leaf(key , v)) * absI(rt) * (absI(rt) -* absI(bt[p := rt]))

= (key 7→ v) * absI(rt) * (absI(rt) -* absI(bt[p := rt]))

⇒ (key 7→ v) * absI(bt[p := rt]))

where the last step applies the standard modus ponens rule for magic wand.
Removing the maplet key 7→ v from the map (with m -- key), we get that
absI(bt[p := rt])(m) holds, i.e., the new map is correctly represented by the
updated tree. The proof for adding a key/value pair is similar.

6.2 Correctness of Wandering Trees

The refinement WanderingTree(RAM, Forest) ≤ TreeBasic is the most complex
of the case study since it has the most complex algorithms. However, since it is
purely based on recursive definitions over algebraic structures, the proofs of this

3 (φ ⊃ e1; e2) abbreviates if φ then e1 else e2



refinement were best to automate. As a first step of the proof, all operations of
the Forest component have to maintain the critical invariant invForest for the
map forest that stores the flash index on this level. The invariant states that,
whenever some Node(lt , key , rt) is stored as a value in the map, its two children
lt and rt are also stored under some address, i.e., the map is closed against
subtrees. This guarantees that the operations getLeft# and getRight#, which
return the addresses of the children (see lines 13 and 15 in Figure 6), are always
successful. The invariant is preserved since the only operation modifying forest
is save#, which is called with a node which has its children saved already.

The main correctness argument for the refinement then uses a function
merge : Proxytree(Key ,Adr)× ForestMap → Bintree(Key ,Adr) defined as

merge(Leaf(k , v , adr), forest) = Leaf(k , v)

merge(Node(k , lt , rt , adr), forest) = Node(k , merge(lt , forest), merge(rt , forest))

merge(Proxy(adr), forest) = forest[adr]

which replaces all proxies with the content stored in forest . This function is
used in the main invariant invMerge(rtree, forest) of component WanderingTree
which asserts that, for all clean nodes of rtree that store a non-null address
adr , the subtree below the node agrees with the tree stored at forest[adr]. The
invariant is again defined recursively as

invMerge(t , forest) ↔ (t.fadr ̸= null → forest[t.fadr] = merge(t , forest))

∧ (t.node? → invMerge(t.left, forest) ∧ invMerge(t.right, forest))

It is preserved since new nodes are allocated dirty with t.fadr = null, so
invMerge does not make an assertion for those. Again, only save# commits
(the top-level node of a) tree t for which t.fadr ̸= null, but for such a node
the definition of merge directly computes forest[t.fadr].

The merge function is also used to define the abstraction relation

rpath = path ∧ (empty ↔ rtree = Proxy(null))

∧ (¬ empty → tree = merge(rtree, forest))

∧ (bempty ↔ froot = null) ∧ (¬ bempty → backup = forest[froot])

which states that the abstract tree can be reconstructed by replacing proxies in
rtree, and that the current flash index backup is stored under froot .

As one part of the refinement proof, the load# program has to be shown to
be correct, which modifies the ram index rtree by replacing proxy nodes with real
nodes (the transition from a) to b) in Figure 1). Essentially this proof reduces
to showing that the result of merge(rtree, forest) is unchanged by the operation.
Similar lemmas have to be proved for the setDirty# from Figure 7 and the
save# program from Figure 9, which do the main work in the transitions from
b) to c) to d) in Figure 1.

6.3 Correctness of Flash Representation

The refinement Flash ≤ Forest has to show that the abstract representation of
flash memory as a forest : ForestMap, which stores whole trees under addresses,
can be replaced with a node-based representation as flash : Map(Adr ,FNode)



(see (2) for the definition of type FNode). Since the various snapshots of the flash
tree now share parts (as can be seen in Figure 1 d)), we found it convenient to
define the abstraction relation absF in terms of the sharing separation operator
from Section 3.2.

absF(Leaf(key , v), adr) = adr 7→ FLeaf(key , v) * true

absF(Node(key , lt , rt), adr) =

∃ ladr , radr . (adr 7→ FNode(key , ladr , radr)) ⊛ absF(lt , ladr) ⊛ absF(rt , radr)

Note that the base case has a “* true” clause that allows the representation to
contain extra old data, e.g., the old node A in Figure 1 d). The full abstraction
relation states that the root is unchanged, both maps have the same domain
(selected with dom) of addresses, and that any tree in forest can be reconstructed
from the pointer representation:

froot = root ∧ dom(flash) = dom(forest)

∧ ∀ adr . adr ∈ dom(forest) → absF(forest[adr], adr)(flash);

Since nodes are always added but never deleted on flash memory, using overlap-
ping conjunction made the proof of this refinement really simple.

7 Conclusion

In this paper we have presented a modular decomposition of the concept of
Wandering Trees into 4 components, each consisting of an abstract specification
and an implementation. The decomposition allows the verification of the three
main verification problems in isolation: correctness of search trees, caching with
proxies and dirty nodes, representation as pointer structures.

In particular, most of the problems could be addressed on the abstract level of
algebraic trees, keeping verification effort manageable. Overall the effort for the
case study was ca. one month to work out the concepts and ca. three months for
verification. Our approach could be combined with one of the many techniques
to further automate individual component proofs, e.g., [3, 8, 18,22,27].

Given that we could again (as in [24]) split away a small component that rea-
sons about pointers from the main part, which addresses other correctness issues,
increases our confidence that the component decomposition we employ should
be usable in many other case studies that use pointer structures to represent
abstract data types without having to compromise efficiency.

The final implementation, which composes all implementations (the grey
parts of Figure 3), is purely imperative and does not use any functional data
structures like trees but pointer structures only. After inlining calls to subcom-
ponents (as done by our code generator for Scala and C), the code is almost
identical to and as efficient as a monolithically programmed version.
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Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday, volume
13360 of LNCS, pages 408–436. Springer, 2022.

26. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

27. B. Zhan. Efficient Verification of Imperative Programs Using Auto2. In Proc.
of Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 10805 of LNCS, pages 23–40. Springer, 2018.


	 Refinement and Separation: Modular Verification of Wandering Trees  

