
materials

Article

A Plane Stress Failure Criterion for Inorganically-Bound
Core Materials

Philipp Lechner 1,* , Christoph Hartmann 1 , Florian Ettemeyer 2 and Wolfram Volk 1,2

����������
�������

Citation: Lechner, P.; Hartmann, C.;

Ettemeyer, F.; Volk, W. A Plane Stress

Failure Criterion for Inorganically-

Bound Core Materials. Materials 2021,

14, 247. https://doi.org/10.3390/

ma14020247

Received: 2 December 2020

Accepted: 4 January 2021

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chair of Metal Forming and Casting, Technical University of Munich, Walther-Meissner-Strasse 4,
85748 Garching, Germany; christoph.hartmann@utg.de (C.H.); wolfram.volk@utg.de (W.V.)

2 Fraunhofer Research Institution for Casting, Composite and Processing Technology IGCV,
Walther-Meissner-Strasse 4, 85748 Garching, Germany; Florian.ettemeyer@igcv.fraunhofer.de

* Correspondence: philipp.lechner@utg.de; Tel.: +49-89-2891-3738

Abstract: Inorganically-bound core materials are used in foundries in high quantities. However,
there is no validated mechanical failure criterion, which allows performing finite-element calculations
on the core geometries, yet. With finite-element simulations, the cores could be optimised for various
production processes from robotic core handling to the decoring process after the casting. To identify
a failure criterion, we propose testing methods, that enable us to investigate the fracture behaviour
of inorganically-bound core materials. These novel testing methods induce multiple bi-axial stress
states into the specimens and are developed for cohesive frictional materials in general and for sand
cores in particular. This allows validating failure criteria in principal stress space. We found that a
Mohr-Coulomb model describes the fracture of inorganic core materials in a plane stress state quite
accurately and adapted it to a failure criterion, which combines the Mohr-Coulomb model with the
Weakest-Link theory in one consistent mechanical material model. This novel material model has
been successfully utilised to predict the fracture force of a Brazilian test. This prediction is based on
the stress fields of a finite element method (FEM) calculation.

Keywords: foundry cores; foundry core materials; Mohr-Coulomb; Weibull; fracture strength; water-
glass; tri-axial testing; hydrostatic pressure

1. Introduction

Inorganically-bound (IOB) core materials are used in large-scale light-metal foundries
to form cavities in cast parts, which are not possible with a permanent mould, since they
need to be free of undercuts [1]. The cores are lost cores, which are used once and have to
be destroyed in order to remove them from the cast part. This process is called decoring [2].

In contrast to organically-bound cores, inorganic core materials do not combust during
the casting process, which has ecological benefits [3]. However, this also leads to a higher
remaining core strength after the casting process, which increases the necessary effort
during the decoring of the cast parts [4].

Due to the quantity of cast parts with inorganically-bound cores, it is desirable to
perform FEM (finite element method) optimisation for various mechanical processes,
like handling and decoring, which is already state-of-the-art for most materials used in
large-scale industrial productions. In previous work, Lechner et al. measured the elastic
parameters of inorganic core materials [5]. However, a consistent and validated mechanical
material model that allows strength calculations of real geometries with complex stress
states is currently not available. From the core shooting with its subsequent mechanical
handling processes to the destruction of the cores in the decoring process, applications
of a calculation model for inorganic cores are manifold along the life cycle of the cores.
One exemplary technical processes, which will benefit from a FEM process optimisation,
is the core handling. During the automatic handling, robots and gripper systems are often
utilised to transport the foundry cores to the casting mould and to place to cores inside
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the mould [6]. In most cases, the gripper has to be specifically designed for this purpose.
The gripping force and the points of contact to the core have to be chosen. The core has
to be safely fixated but must not be damaged [7]. Without a validated material model,
this process has to be on a trial and error basis. This may lead to the necessity of redesigning
the gripper after the first cores have been produced. With an FEM calculation, this could
be avoided and the gripper can be properly designed early in the product development
process. Figure 1 shows a typical example of core handling. Due to the force of the gripper
and the weight of the product, the stresses in the core are considerable.

Foundry core

Gripper system

Robot

Figure 1. Core handling with a robot [8]. The design of the gripper and the locations of contact with
the core determine the stresses in the core.

This article is structured as follows: After the introduction with the motivation,
the state of the art and the theoretical foundations, the materials and methods are described
in Section 2. Subsequently, the testing methods are utilised to determine the fracture stress
of inorganically-bound core materials for several plane stress states and to fit two yield
criteria to the data. In Section 4, a novel formulation of the Mohr-Coulomb criterion is
proposed and fitted to the data. Section 5 validates this model, by predicting core fracture
under a complex stress state, while Section 6 discusses the results of this article.

1.1. Fracture Strength of Inorganically-Bound Core Materials

Bending Bending tests are the most commonly used test of fracture strength for
core materials. For example Stauder et al. test the properties of foundry sand cores with
three-point-bending (3PB) [9]. Griebel et al. used a four-point-bending setup to determine
the Young’s modulus of various foundry core materials [10].

Compression Similar to bending, the compression test is widely used for foundry core
materials. Izdebska-Szanda et al. use the compression test to characterise the strength of
foundry core materials [11]. Popoola and Fayomi utilise the compression test to determine
green core strength [12], while Brück and Ratke test the performance of an entirely new
binder with it [13].

Bi-axial bending For ceramics, there are various related bi-axial bending tests in use.
They have in common that a plate-shaped specimen is supported by circular positioned
balls and are loaded either by one central ball [14] or by a concentric ring [15]. Depending
on the number of support balls, the supports are modelled mostly as point-loads [16].
Ramakrishnan et al. adapted the ball-on-three-balls test for IOB core materials [17].

1.2. Failure Criteria

There are various material models from engineering and geo-sciences, which, in theory,
could be applied to IOB core materials. This assumption is based on the similar porous
structure, which is built from physically or chemically-bound particles. This class of
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materials is also called cohesive frictional materials [18]. For these models, the model
complexity directly correlates to the number of parameters utilised to describe to failure
surface. The hydrostatic stress is an important influence on the fracture stress of frictional
materials [19]. Failure criteria and yield loci with only one parameter, like the von Mises [20]
and the Tresca [21] criterion, which neglect the hydrostatic stress, should not be utilised.
Therefore, two parameter models, like the Mohr-Coulomb [22] and the Drucker-Prager [23]
criterion, represent the minimum model complexity. The Drucker-Prager criterion is
a promising model for IOB core materials, since we assume an influence of the hydro-
static pressure on the fracture strength, due to similarities to the porous materials in
geo-sciences. Furthermore, Galles and Beckermann model sand cores in steel casting with
a Drucker-Prager criterion [24]. Thorborg et al. also utilise a Drucker-Prager model for core
materials [25]. The Mohr-Coulomb failure criterion is often used in geo-sciences as well,
since soil is known to fail in shear bands [18]. Stauder et al. model foundry cores with the
Mohr-Coulomb criterion [26]; however, there is no full validation.

The general shape the Drucker-Prager and the Mohr-Coulomb model have inspired a
multitude of more complex failure models for frictional materials. Two examples are the
unified failure criterion of Mengcheng et al. [27] and the Ehlers criterion [18]. Moreover,
there is research regarding the failure of concrete, which could be of interest for inorganic
core materials. Menetrey and Willam proposed a three parameter model, which describes
the failure of concrete [28]. Červenka and Papanikolaou adapted a Rankine criterion to
concrete [29], while Sucharda utilised a fracture-plastic material model for concrete [30].

However, in this article, we focus on the Mohr-Coulomb and the Drucker-Prager
model, since the small number of parameters offers the chance to parameterise them with
two well-chosen experiments. If the need for a more complex material description arises,
we will try to adapt these models, such that no further experimental effort is necessary to
parameterise the criterion. With regard to an industrial application, it is important to built
on the experimental capabilities in typical sand-core laboratories, which are bending [9]
and in part compression experiments.

1.2.1. Drucker-Prager Failure Criterion

The Drucker-Prager failure criterion is mainly used for problems of soil and concrete
mechanics. In three-dimensional principal stress space, its failure surface has the shape
of a cylindrical cone along the hydrostatic axis (σ1 = σ2 = σ3). The following equation
describes the Drucker-Prager failure surface, which is shown in Figure 2 (left) [23]:

αI1 + J1/2
2 − k = 0, (1)

I1 = σ1 + σ2 + σ3, (2)

J2 =
1
6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2], (3)

where I1 is the first invariant of the stress tensor, and J2 is second invariant of the deviatoric
stress tensor. σ1, σ2, and σ3 are the principal stresses. α and k are the parameters describing
the shape of the cone.

1.2.2. Mohr-Coulomb Failure Criterion

The Mohr-Coulomb failure criterion describes shear-induced failure. Similar to the
Drucker-Prager criterion, it is a two-parameter model, which has the shape of a hexag-
onal pyramid along the hydrostatic axis. The associated failure surface is shown in
Figure 2 (right) and described by the following equations [22]:

τmax = c + σn tan(−φ), (4)

where τmax is the shear stress in the failure plane, σn is the normal stress acting on the
respective failure plane, c is the cohesion of the material, and φ is the friction angle. In prin-
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cipal stress space, this translates to a material failure if one of the following conditions
is met:

|σ1 − σ2|
2

=
σ1 + σ2

2
sin(−φ) + c · cos(−φ), (5)

|σ2 − σ3|
2

=
σ2 + σ3

2
sin(−φ) + c · cos(−φ), (6)

|σ3 − σ1|
2

=
σ3 + σ1

2
sin(−φ) + c · cos(−φ). (7)

1

2

1

2

Figure 2. Failure criteria Drucker-Prager (left) and Mohr-Coulomb (right) in principal stress space.
The upper half describes three-dimensional stress states, while the lower half describes plane stress
states (σ3 = 0).

2. Materials and Methods

In the following, we describe various test setups to determine fracture strength of IOB
core materials. All tests are performed on a universal testing machine ‘Z020’ equipped
with a 20 kN force sensor (ZwickRoell GmbH & Co. KG, Ulm, Germany). Please note that
the fracture of IOB cores is following a Weibull distribution. This makes a correction of
the fracture stresses according to the effective volumes for each test setup necessary [31].
Comparing specimens with a shape factor m and different volumes V, the fracture stress
σs follows:

V1

V2
=

(
σs2

σs1

)m
. (8)
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The effective volume for each test setup can be calculated such that:

Ve f f =
∫

V

(
σ

σmax

)m
dV, (9)

where σ is the local stress in the volume cell used for the integration, and σmax is the
maximum stress in the specimen.

2.1. Specimens

There are three types of specimens produced for this study, which are shown in
Figure 3. A bending beam with a quadratic cross-section with 22.8 mm edge length and a
length of 175 mm, a disc with 50 mm diameter and 6 mm width, and a cylinder with 50 mm
diameter and 50 mm height. The bending beam is either used for bending experiments in its
full length or shortened to a cubical shape and a length of 20 mm for compression tests. The
disc is used for bi-axial bending tests. Both tests will be described in the following section.

D = 45 mm

H = 6.3 mm

H = 22.8 mm

W = 22.8 mm

L = 20 mm

H = 22.8 mm

W = 22.8 mm

L = 173 mm

D = 50 mm

H = 50 mm

Figure 3. Specimens used in this study: A disc with 45 mm diameter and 6.3 mm height, two cuboids
with a 22.8 × 22.8 mm2 cross-section and a length of 20 mm and 175 mm, respectively, and a cylinder
with 50 mm diameter and 50 mm height.

Consistent with previous studies, the specimens were produced on a Loramendi
SLC2 25L core-shooting machine (Loramendi S.Coop., Vitoria, Spain) with a heated tool
and a hot-gassing device. A H32 silica sand (Quarzwerke GmbH, Frechen, Germany)
with an average grain size of 0.32 mm was bound with an inorganic Inotec binder system
(ASK Chemicals GmbH, Hilden, Germany). The sodium silicate binder system consists
of a liquid component EP 4158 (2 wt%) and a powder additive TC 4500 (1.6 wt%), which
are measured relative to the sand mass. The temperatures were chosen at 155 °C core
box and 220 °C hot-gassing temperature. Figure 4 shows a microscopic analysis of the
sand-binder micro-structure. The hardening of the binder results in binder bridges between
the individual sand grains. The specimens were stored at 20 °C and 10 % humidity after
production [31].

Figure 4. Microscopic analysis of the sand-binder micro-structure. On the left-hand side, an unpro-
cessed sand-binder structure is depicted, while it is polished on the right side.
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2.2. Uni-Axial Compression Experiment

We used the 20 mm× 22.8 mm× 22.8 mm cubic for uni-axial compression tests. The
load F was induced on the 22.8 mm× 20 mm surface area A by the testing machine. Thus,
the fracture stress was calculated to:

σp =
F
A

. (10)

The position of this and the following experiments in principle stress space are shown
in Figure 5.

2.3. Uni-Axial Tension Experiment

We choose the three-point-bending experiment to measure uni-axial tension fracture
stresses, since the results are experimentally more stable than other known methods to
induce uni-axial tension, like the dog-bone and the Brazilian disc test. The dog-bone
test is unstable regarding the clamping of the specimen to the testing machine, since a
lot of specimens fracture in the vicinity of the clamping mechanism, which renders the
result invalid. The Brazilian disc test induces pure tension into the specimen in theory,
but, studies have shown that, in reality, there is a multi-axial complex stress state around
the two load points [32]. This excludes the Brazilian disc test, since we are searching for
experiments with stress states as simple and stable as possible, both for uni- and bi-axial
stress, to validate a material model for IOB core materials.

We used the bending beam described in Section 2.1 with a distance c of 150 mm
between the supports and a force F. The calculation of the maximum fracture stress in the
beam follows Bernoulli’s beam theory [33]:

σ3PB(x, z) =
F3PB

2 (x− 2〈x− c
2 〉1)

I
z, (11)

where σ3PB is the stress in the beam at the coordinates x and z. x is the coordinate along the
beam’s length, while z is the distance from the neutral layer. F3PB is the maximum force at
fracture, and I is the geometrical moment of inertia.

2.4. Bi-Axial Compression Experiment

For the bi-axial compression stress state, we developed a test jig, which allows intro-
ducing compression stresses into the cubic specimen. The test jig consists of a support and
two triangular wedges. The support has three planar surfaces, which are perpendicular
and act as mechanical stops on three of the six sides of the cube. These surfaces position the
cube in the support. On two of the free sides are inclined planes with an angle of 60°. This
allows inserting wedges into the test setup, which redirect the force of the testing machine
onto two sides of the specimen. The force is induced into the specimen via separate plates
to avoid a friction contact between the moving wedge and the specimen. The wedges are
coated with Polytetrafluorethylen (PTFE) to reduce friction in the test setup. The force of
the testing machine is applied to the wedges via two force sensors S20S (Bosche GmbH &
Co. KG, Damme, Germany). The contact between the wedges and the force sensor can be
adjusted with a screw, which allows for asymmetrical stress states in the specimen.

All surfaces with a contact to the specimen are equipped with a 1 mm polymer pad to
ensure an evenly distributed stress field and to allow for approximately free transversal
contraction of the specimen. The last side of the cube remains free to enable for an
approximate plane stress state when neglecting the stresses resulting from transversal
contraction and friction. An outline of the test jig and its flow of forces is shown in Figure 6.
With the angle of the wedges, the force Fs applied to one side of the specimen can be
calculated to:

Fs = tan(π/3)Fp, (12)
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with Fp being the force of the testing machine on each wedge. We quantified the friction in
comparison to a classical compression experiment. If only one of the two wedges is applied
in the test setup, a uni-axial compression state is achieved, which can be directly compared
to the standard uni-axial compression test. We found that the fracture stress in the new test
setup is increased by 7.4 %, due to the friction of the moving wedges. This friction factor
can be applied to both wedges for reasons of symmetry. In the following, this friction is
subtracted from the test results.

Uni-axial 

compression, 

(a)

Uni-axial 

tension, 

(b)

Bi-axial 

compression, 

(c)

Bi-axial 

tension

(d)Rubber ring

p

p

F

Specimen

p

𝜎1

𝜎2

𝜎1

𝜎2

𝜎1

𝜎2

𝜎1

𝜎2

p

Figure 5. Uni- and bi-axial testing methods for compression (a), tensile (b), bi-axial compression (c),
and bi-axial tensile (d), together with their respective position in principal stress space.
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Specimen

Plates

Polymer 

pads

p

p
Wedges

Support 

tool

Force 

sensors

Figure 6. Test setup for bi-axial compression experiments on a universal testing machine.

2.5. Bi-Axial Tension Experiment

Bi-axial tension experiments are often used for brittle materials, like ceramics. As men-
tioned in Section 1.2, the tests most often used are the ball-on-ring and the ball-on-three
balls experiment. However, both tests are inadequate to measure Weibull material pa-
rameters for IOB core materials, since both are based on point contact. While this is
acceptable for hard materials, like ceramics, with IOB core materials, the surface of the
specimen is easily damaged, which transforms the near-perfect point contact to a groove.
This changes the stress state considerably compared to the respective mechanical model
based on plate theory.

To avoid this problem, we designed an experiment for bi-axial tension stress states
based on the Bulge experiment [34], which is shown in Figure 7. A plate-shaped specimen
is placed on a ring for support. In case of IOB core materials, a flexible polymer ring is
used, since it distributes the load of the support more evenly onto the specimen, even
if the surface is not perfectly flat. A shaft bearing is placed upon the specimen, whose
inner diameter is equal to the diameter of the support ring. We placed a polymer balloon,
which is filled with water, inside this bearing. The force of the universal testing machine is
applied to this water pad through a piece of shaft. Due to the constraints of the bearing and
the shaft on the water pad, the force is evenly distributed over the area of the specimen.
The test setup is shown in Figure 5e. The bi-axial stress state can be described with [35]:

σr =
3pa2

4
(3 + ν)

(
1− r2

a2

)
z
b3 , (13)

σφ =
3pa2

4

[
2(1− ν) + (1 + 3ν)

(
1− r2

a2

)]
z
b3 , (14)

where σr and σφ are the radial and the tangential stresses, respectively. p is the applied
pressure, and a and b are the radius and the width of the specimen. ν is the Poisson ratio.
r and z are the two variables, which describe the location on the specimen (radius and
distance from the neutral plane). Assuming that shear stresses are negligible, σr and σφ are
equal to the principal stresses σ1 and σ2. Lechner et al. found that the Poisson ratio for the
core material, used in this article, is approximately 0.18 [5]. This Poisson ratio is used in
the following, as well.
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Steel shaft

Rubber ring

Water pad

p

Specimen

Bearing

r

z

Figure 7. Bi-axial bending test setup. A circular disc specimen is placed on a rubber ring and loaded
with a surface pressure through a water-filled pad. The resulting bi-axial stresses can be calculated
with plate theory.

2.6. Validation Experiment

The multi-axial and complex stress state, which is induced by the Brazilian test is well
suited for a validation experiment after the material characterisation. We will perform
experiments and a FEM simulation and compare the prediction of the fracture force with
the experimental results to validate the utilised material models. The classic Brazilian test
setup induces a diametrical load into the cylindrical specimen with two parallel plates.
In theory, the contacts between the specimen and the testing machine are line contacts.
Due to the elasticity of the material the line contact becomes a small contact surface with
high pressure. This type of contact is difficult to model in a simulation, which leads an
adaption of the Brazilian test. We utilised two polymer parts with 5 mm width and 50 mm
length to transmit the load to the specimen. The parts are rounded in the contact area
with a radius of 25 mm, which fits to the radius of the specimen. This leads to a well
defined contact between the test setup and the specimen. The surface pressure can be
approximated with a homogeneous stress, which is calculated with the load force and the
contact area. This test setup is shown in Figure 8 (left). The specimen is modelled with one
symmetry in the FEM software Abaqus 2018. The load is induced with a surface pressure
boundary condition on the area of contact. The model is meshed with cubic elements
of type C3D8R with an edge length of 2 mm in general and an edge length of 0.5 mm in
the vicinity of the contacts. In total 156,100 elements are utilised. The model is shown in
Figure 8 (right). The simulation is parameterised with a Young’s modulus of 5.75 GPa and
a Poisson ratio of 0.18, which was acquired in a previous publication [5]. The density of
the material was determined to 1570 kg/m3. The calculated stress tensors and element
volumes are exported to Matlab. Subsequently, the effective volume is calculated from the
stress tensors and the element volumes according to Equation (9). Which yield criterion
is suitable best will be decided according to the following experiments. However, the
strength parameter of the utilised yield criterion is scaled to the effective volume of the
Brazilian test with Equation (8), according to Weibull’s theory. Finally, the stress fields are
evaluated for material failure according to the yield criterion in question.
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Load

Figure 8. Brazilian test setup. To accurately describe the contact surface the Brazilian test was
adapted with polymer supports with a circular contact surface (left). This load was modelled with a
surface pressure in a symmetrical finite element model (FEM) model (right).

3. Experimental Results

Please note that in this section all experimental results are scaled to the effective
volume of the three-point-bending experiment according to Weibullian statistics and the
approach proposed by Lechner et al. in an earlier article [31]. Furthermore, we only
determined data points on one side of the hydrostatic axis in Figure 2, due to the axial
symmetry of the Drucker-Prager and the Mohr-Coulomb criteria.

3.1. Uni-Axial Results

To determine the failure strength for uni-axial stress states, we utilised three-point-
bending and compression test experiments. The bending stress was calculated with
Equation (11) to a Weibull scale parameter of 3.3 MPa with a shape parameter of 36
(8 specimens). The compression strength was determined to be 8.01 MPa with a shape
parameter of 11 (10 specimens). The single compression test results are shown in Figure 9,
and the Weibull data points for both uni-axial test setups are depicted in Figure 10 as a
diamond and a square, respectively.

Typical examples of fractured specimens are shown in Figure 11. The black arrows
mark the sides of the specimens, which are utilised to induce the load. The crack path
indicates shear failure, especially in the uni-axial compression experiment. The crack path
of the uni-axial bending experiment is probably determined by the local micro-structure
and the path from the tensile stress maximum to the compressive stress maximum with the
lowest local material strength.

3.2. Bi-Axial Compression Experiment

The results of the bi-axial compression experiments are shown in the compression-
compression quadrant of Figure 9. The test results (23 specimens) are a point cloud along
the σ1 axis, since it is not possible to distribute the force of the testing machine perfectly
symmetrical to the two wedges. The distance between the wedges and the punch can be
adjusted by screws. However, the position of the wedges is defined by the exact dimension
of the specimen, which is underlying typical tolerances. We adjusted the screws such
that most points are close to the axis of symmetry, since this area distinguishes the Mohr-
Coulomb criterion from the Drucker-Prager criterion very well. Furthermore, we also
adjusted σ1 such that a uni-axial stress state was achieved. We did not calculate one data
point for the compression-compression quadrant. Instead, we fitted a linear function into
the point cloud including the uni-axial test results, as shown by a dashed line in Figure 9.
In our opinion, this line describes the mechanical failure behaviour in this quadrant better
than a single data point and the slope of this line will discriminate between the Mohr-
Coulomb and the Drucker-Prager criterion. The σ2 fracture stress is nearly constant with a
small increase towards higher values of σ1. With the uni-axial compression results from the
standard compression test and from this test setup, the friction in the bi-axial test setup can
be quantified to 7.4 %. The scale parameter and the mean value of the σ2 component can be
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found in Table 1, as well. The course of the crack is similar to the uni-axial compression
experiment and shows signs of a shear failure. However, the bi-axial load leads to a crack,
which results in only two parts. Comparing the uni-axial and bi-axial crack indicates that
it originates on both loaded surfaces for the bi-axial compression experiment. The cracks
meet in the specimen, which leads to the two remaining parts.

-10 -5 5

1
 in MPa

-10

-5

5

2
 i
n

 M
P

a

Figure 9. Test results of the uni- and bi-axial compression tests. The dashed line is a linear best fit to
the test results.

-15 -10 -5 5 10 15

1
 in MPa

-15

-10

-5
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10
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2
 i
n

 M
P

a Uni-axial bending

Bi-axial bending

Uni-axial compression

Bi-axial compression

Drucker-Prager fit

Mohr-Coulomb fit

Figure 10. Experimental results for strength of inorganically-bound (IOB) core materials loaded
with various uni- and bi-axial stress states. A Drucker-Prager and a Mohr-Coulomb model are fitted
optimally to the test results.
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Load

Uni-axial 

compression

Bi-axial 

compression

Bi-axial 

bending

Uni-axial 

bending

Load

Figure 11. Typical examples of fractured specimens for the performed experiments. The compression
and uni-axial experiments show signs of a shear failure.

3.3. Bi-Axial Tension Results

We determined the bi-axial tensile strength with the new bulge-like experiment de-
scribed in Section 2.5. The radial and tangential stresses were calculated with Equations (13)
and (14). Assuming that shear stresses are negligible in this case, these stresses are equiva-
lent to the principal stresses in the disc. The maximum tensile stresses are expected in the
middle on the lower surface of the disc. The principal stresses are equal in the middle of
the disc, due to the point symmetry of the whole test-setup. After scaling the results to the
effective volume of the three-point-bending experiments, the bi-axial tensile strength was
determined to be 2.69 MPa with a shape parameter of 19 (12 specimens). The data point is
shown in Figure 10 with the x-symbol. Figure 11 shows that the plate fractures typically
into four parts. An example of the raw data for each of the performed experiments is de-
picted in Figure 12. The results, including a statistical evaluation for each experiment, can
be found in Table 1. In Table 1, the mean value is without volume scaling, while the scale
parameter is calculated for the effective volume of the three-point-bending experiment.
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Figure 12. Typical examples of force signals of the performed experiments. On the left-hand side, one
example for each of the bending experiments is depicted, while the two compression experiments are
shown on the right. The bi-axial compression experiment has two independent force components.
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Table 1. Data collection and statistical evaluation of the performed experiments.

Experiment Stress
Component

Sample
Size

Scale
Parameter

Shape
Parameter

Mean Standard
Deviation

Uni-axial
bending

σ1 8 3.31 MPa 36 3.26 MPa 0.109 MPa

Uni-axial
compression

σ2 10 −8.01 MPa 11 −4.88 MPa 0.265 MPa

Bi-axial
bending

σ1/σ2 12 2.69 MPa 19 2.05 MPa 0.130 MPa

Bi-axial
compression

σ2 23 −8.96 MPa 9.2 −5.81 MPa 0.674 MPa

Brazilian
test

- 5 3.33 kN 14 3.21 kN 0.274 kN

3.4. Optimisation of Model Parameters

We combined these experimental results in two-dimensional principal stress space
in Figure 10. Additionally, we fitted a Drucker-Prager and a Mohr-Coulomb model to
these experimental results. Both models are depicted in Figure 10 as a dotted and a
dashed line, respectively. Clearly, the Mohr-Coulomb model fits better to the experi-
mental data sets than the Drucker-Prager model. In particular, the near constant σ2 in
the compression-compression quadrant cannot be modelled accurately by the Drucker-
Prager failure criterion. The Mohr-Coulomb parameters after least-square optimisation are
c = 2.87 and φ = 0.61.

4. Mohr-Coulomb Failure Criterion Based on Weakest-Link Theory

With the experimental results in this article and previous literature [31], which show
that IOB cores follow Weibull statistics and a Mohr-Coulomb failure criterion, we have to an-
swer the question of how both findings can be merged to one consistent mechanical model.

The simplest way to combine Weakest-Link-Theory with the Mohr-Coulomb model is
to utilise the principle of independent action (PIA), which states that the probabilities of sur-
vival resulting from each of the principal stresses can be multiplied to one probability [36].
Since the Mohr-Coulomb model is based on three shear stresses, we adapted that princi-
ple to multiply the probabilities of survival p of each shear stress component. The three
probabilities can be expressed by adapting the Weibullian probability of survival [37]:

pi = exp
(
−
(

τi
τMCi

)m)
, (15)

where pi is the probability of survival of each of the principal shear stresses τi and m is the
Weibull shape parameter. τmci is the critical shear stress from the failure criterion described
in Equations (5) to (7) (right side of the equations). According to PIA, we multiply these
probabilities of survival and calculate a Weibullian scale parameter, which describes the
material strength for general complex stress states:

1−
3

∏
i=1

pi = 1− 1
exp 1

= 0.6321; (16)

with Equations (5) to (7) and (15), this leads to:
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exp
[
−
(

0.5|σ1 − σ2|
0.5(σ1 + σ2) · sin(−φ) + c · cos(−φ)

)m

−
(

0.5|σ2 − σ3|
0.5(σ2 + σ3) · sin(−φ) + c · cos(−φ)

)m

−
(

0.5|σ3 − σ1|
0.5(σ3 + σ1) · sin(−φ) + c · cos(−φ)

)m]
= exp 1−1

. (17)

This equation represents a three parameter failure criterion for brittle materials based
on the Mohr-Coulomb model. Figure 13 shows the result for the shape parameter m = 10
(compression experiments) and m = 22 (mean of all experiments) for plane stress and in
the deviatoric plane. The originally sharp edges of the Mohr-Coulomb model are rounded,
since for near critical multi-axial stress states the two smaller shear stresses are contributing
significantly to the total fracture probability. This is in contrast to the original Mohr-
Coulomb criterion, which only considers the highest shear stress for the fracture. The effect
is increasing with an increasing scatter, which corresponds to a lower shape parameter.
In case of the compression experiments, this can explain the lower uni-axial strength,
compared to the asymmetrical bi-axial compression strength (σ1 < σ2). The symmetrical bi-
axial compression strength should also be lower than the asymmetrical strength; however,
we do not have enough data points in the vicinity of the axis of symmetry to show this
effect. The bi-axial bending strength is slightly lower than the uni-axial strength as well.
The average shape parameter for all experiments is m = 21.8. The optimisation of this new
Mohr-Coulomb equation to the experimental data leads to c = 2.93 and φ = 0.61. While
the friction angle φ remains unchanged, the cohesion c is slightly increased compared to
the classical Mohr-Coulomb criterion (c = 2.87).

Furthermore, we propose to calculate the effective volume of complex core geometries
based on the local shear stresses, instead of the maximum principle stresses. In the state
of the art, the effective volume is calculated with the assumption of a principle stress
criterion. However, we showed in this article, that core materials follow a Mohr-Coulomb
criterion. Therefore, the effective volume should be calculated in accordance with the
material failure, which is shear-induced. Furthermore, all shear stresses should be taken
into account, since they all contribute to the fracture probability. This leads to the following
equation to calculate the effective volume:

Ve f f =
∫

V

(
τ1

τmax

)m
dV +

∫
V

(
τ2

τmax

)m
dV +

∫
V

(
τ3

τmax

)m
dV, (18)

where τx are the principal shear stresses, and τmax is the maximum shear stress in the
specimen. The calculation of the effective volume should reflect the applied failure criterion.
The calculation of the effective volume based on the principle stresses makes sense for
ceramics, which are often modelled with the Rankine criterion. However, for core materials,
a shear-based calculation of the effective volume is better suited.
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Figure 13. Comparison of the failure surfaces for the theoretical Mohr-Coulomb criterion without
scatter (black) and a Mohr-Coulomb criterion adapted with Weakest-Link-Theory (blue). Weibull
shape parameters are m = 10 and m = 22.

5. Validation

To validate this material model, we performed Brazilian tests as described in Section 2.6.
Additionally, the test was simulated with FEM to predict the fracture force and to compare
the results. The calculated stress field is evaluated for fracture with the novel weakest-link-
based Mohr-Coulomb model and two typical failure criteria from literature as a reference.
The first is the classic Mohr-Coulomb criterion without volume scaling, which has been
proposed for core materials by Stauder et al. [26]. The second is the classic Drucker-Prager
criterion, which is utilised for core materials by Thorborg et al. [25]. The calculated stresses
are inserted into Equations (1), (5)–(7), and (17). If the maximum stresses are exceeding the
predicted strength, material failure is assumed.

Figure 14 shows the stress field in the specimen for a load of 2000 N. Of the nine
components of the Cauchy stress tensor, only four show significant stresses, which are
compared to one half of a fractured specimen in the figure. The components σxx and σyy
are depicted in the upper row, while the component σxy is in the lower row. Since the σxy
and the σyx components are symmetrical, only one is necessary. The compressive stresses
in the σyy component are significantly higher than the tensile stresses in the σxx component.
This validates the assumption that the Brazilian test is not suitable as an experiment for
tensile fracture strength, as often done in literature. Furthermore, there is a considerable
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shear stress component σxy. The course of the fracture in the specimen reflects these three
stress fields. A triangular gap is generated by two symmetrical stress peaks in σxy near the
load points. Subsequently, the course of the fracture is along the stress maxima in the σxx
and the σyy components.

For the core material utilised in this publication, the experiments show a fracture
force of 3325 N for a sample size of 5 experiments. The classic Drucker-Prager and Mohr-
Coulomb criteria are significantly underestimating the fracture force and predict it at
1690 N and 1410 N, respectively. The weakest-link-based Mohr-Coulomb model predicts
the fracture significantly better at 2940 N. Figure 15 shows the two major principle stress
components for each element in the calculation for two load levels. Dark grey corresponds
with the force at which the classic Drucker-Prager model predicts the fracture. Light grey
corresponds with the fracture load force in the experiment. It becomes clear that both classic
failure criteria are significantly underestimating the fracture force. The Drucker-Prager
criterion is indicating material failure in elements with a near uni-axial compression, due to
its oval form, while the Mohr-Coulomb model indicates failure in elements with a bi-axial
stress field.

x
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in MPa
3

−13

σxx σyy

σxy

Figure 14. Stress field in the specimen of the Brazilian test. The stress components are calculated
with FEM for a load force of 2 kN. The course of fracture in the specimen reflects the stress peaks in
these stress components.
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Figure 15. Two major principle stress components in the brazilian test. Each point represents the two
major principle stress components at a specific load level. Points in dark grey depict the stress state
at a load force of 1690 N, which is the fracture force according to the classic Drucker-Prager criterion.
Light grey represents the load level for the experimental fracture force.
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6. Discussion

Comparing the Drucker-Prager and the Mohr-Coulomb failure criterion to the results
of Section 3, the Mohr-Coulomb model describes the fracture behaviour better than the
Drucker-Prager model. However, the available data points in the plane stress state em-
phasise the difference in quality of the fits, since the Drucker-Prager criterion is not able
to describe accurately the fracture behaviour in the compression-compression quadrant.
The Mohr-Coulomb-based failure criterion for brittle materials, proposed in this article,
is rounding the edges of the Mohr-Coulomb criterion depending on the scatter in the
experimental data, which brings it closer to the shape of the Drucker-Prager. For the
shape parameters, which we extracted from the experiments in this article, the influence is
only significant for the compression tests. In any case, it is important to have a consistent
mechanical theory, which combines the results of the fracture statistics with the results
regarding the macroscopic failure criterion. Furthermore, Equation (16) offers more advan-
tages compared to the classical Mohr-Coulomb Equations (5) to (7). It can be expressed as
one implicit equation and the originally sharp edges are rounded, which is advantageous
for numerical differentiation. The third parameter m does not increase the parameterisation
effort, since the scatter can be calculated from the experimental data, which is already
necessary for a two-parameter Mohr-Coulomb failure criterion.

Furthermore, we were able to validate the proposed failure criterion for complex
stress states in a Brazilian test. Compared to the predictions of a classic Mohr-Coulomb
or Drucker-Prager model it predicts the fracture force significantly better. The reason for
this difference is the scaling of the material parameters according to the effective volume in
the core. The effective volume of the Brazilian test is smaller than the effective volume of
the test specimens. Therefore, the fracture force is scaled up, which is evidently necessary
to predict the experimental results correctly. This validation experiment further shows
that it is possible to predict the fracture load of arbitrary load cases in simulation with
the methodology proposed in this publication. This knowledge can be directly applied to
handling simulations of foundry cores, as proposed in the introduction. Now, grippers can
be designed with a FEM simulation synchronously to the design of the core.

Based on the results in this article, we recommend using the weakest-link-based
Mohr-Coulomb model for IOB core materials.

7. Conclusions

In this article, we introduced new and adapted known bi-axial testing methods to IOB
core materials. We further showed, that inorganically-bound (IOB) core materials follow
a Mohr-Coulomb failure criterion, when loaded with plane-stress states. A new failure
criterion was proposed and validated, which combines weakest-link-theory and the Mohr-
Coulomb criterion in one implicit equation. The failure model has only two parameters
and can be parameterised with just a bending and a compression experiment in common
sand laboratories. For the first time, a validated material model can be implemented in
FEM calculations to predict the fracture of foundry cores under complex stress states.
The testing methods in this article enable further research on the mechanical behaviour
of core materials. For example, the failure surface of foundry cores after the casting is
highly relevant for the decoring process. This failure surface could be characterised with
the methodology introduced in this article. Furthermore, we will generalise the weakest-
link-based Mohr-Coulomb failure criterion from plane-stress states to general stress states
with tri-axial test methods in the upcoming month.
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