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Abstract: In this article, we study the fracture characteristics of inorganically-bound foundry cores. It
will be shown that the fracture stress of inorganic cores follows Weibull’s strength distribution function
for brittle materials. Using three-point and four-point-bending experiments, the volume dependence
of the bending fracture stress is analyzed and a Weibull model fitted. Furthermore, the fracture stress
of arbitrary bending experiments can be calculated based on the Weibull parameters found.

Keywords: inorganic sand core materials; Weibull; fracture strength; water-glass; three-point-bending;
four-point-bending

1. Introduction

1.1. Mechanical De-Coring Properties of Inorganically-Bound Sand

Inorganically-bound sand is used in the casting industry as a mold material. The sand particles are
mixed with an inorganic binder system, in most cases water-glass, and hardened with a condensation
reaction induced by heat [1].

The resulting porous material is temperature-tolerant enough to serve as a material for casting
molds and cores in light metal foundries [2]. Inorganically-bound core materials are more ecofriendly
than organically-bound core materials. Due to the absence of carbon compounds in the binder system,
no combustion products emerge, except for water steam [3]. This leads to a higher residual strength of
the cores after casting compared to the organically-bound ones, whose binder is partially destroyed by
combustion [1].

The sand binder mixture is shaped into sand cores by core blowing machines. The resulting
cores are used for geometries in the casting part, which cannot be demolded. After casting, the sand
cores have to be de-agglomerated until the remaining parts can be removed from their respective
cavity, which is called “de-coring”. De-agglomeration can be achieved by various techniques, such as
hammering and shaking [4], or with pressurised air [5], or shock waves [6]. All of these de-coring
techniques represent a strain, not only on the core, but also for the cast part.

The dimensioning and parameters of the mechanical de-coring process are mostly based
on experience. Due to ever-more complex casting geometries, thinner wall thicknesses and new
developments in the field of molding materials, an early prediction of de-coring properties will become
necessary. Furthermore, this might offer the possibility to optimize the cores’ properties in order to
reduce the de-coring effort. For this purpose, knowledge of the mechanical fracture behavior of the cores
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themselves is an essential prerequisite. Much work has been done on the bending strength of sand core
materials. Stauder et al. measured the mechanical properties of sand cores by three-point-bending [7].
Furthermore, Griebel et al. analyzed strain on the surface of four-point-bending beams with optical
measurement techniques [8]. Izdebska-Szanda and Balinski studied the influence of heat treatment on
the strength of inorganic sand cores [9]. However, no published work can be found on the fracture
statistics and the influence of the test specimens’ stress state and geometry on the resulting strength.
Therefore, this article is concerned with the fracture statistics of inorganically-bound sand cores.

1.2. Weibull Statistics

The Weibull statistics is a probability distribution function. It is widely applied in the fracture
statistics of brittle materials such as ceramics, because they typically follow the weakest link theory.
Brittle fractures occur with little to no plastic deformation. The fracture originates where the weakest
(major) defect is located and stresses are concentrated in brittle materials. Therefore, the strength of
the major defect affects the individual material strength [10].

During the tests, the load is constantly increased until the tensile stress at the critical defect
reaches a value that is higher than the local strength. With brittle materials, the material strength is
described by means of a strength distribution function measured from a set of test specimens that are
identical and tested under the same conditions. The Weibull statistics show the probability of failure
while considering different aspects such as the state of stress or the stress amplitude. Using Weibull’s
theory, the number of specimens, which are fractured to measure the strength distribution, is usually
around 30 [10].

In this article, the experiments are plotted using logarithmic scales, with the induced stress in
the x-direction and the fracture probability F in the y-direction. Additionally the value for lnln 1

1−F is
added, which leads to one of the Weibull parameters (σs) at zero.

In theory, a perfectly Weibull-distributed set of data points should lead to a straight line in this
plot. The Weibull distribution used is described by two parameters, σs and m. σs is called the scale
parameter, which describes the stress causing 63.2% of the specimen to fracture. m is called the shape
parameter, because it describes the slope of the Weibullian line. m is considered a material constant,
while σs shifts depending on the stress applied [11].

The probability of failure in a pure tensile test with constant volume and stress is described as
follows by Weibullian statistics [12]:

Pf (σ) = 1− exp
{
−
[

σ

σs

]m}
(1)

where Pf is the probability of failure and σ is the applied stress. Comparing specimens with different
volumes V or stress, σs follows [10]:

V1

V2
=

(
σs2

σs1

)m
(2)

In order to calculate the probability of failure based on the bending strength σb of bending
tests, the effective volume Ve f f has to be calculated, since the stress in the specimen’s volume is not
constant [13]:

Ve f f =
∫

V

(
σ

σb

)m
dV (3)

where σ is the local stress in the volume cell used for the integration and σb is the bending strength of
the specimen.

2. Materials and Methods

In order to describe the fracture behavior properly, various test setups such as tensile, bending or
pressure tests are available. In this study, bending tests were chosen, since they are easy to perform
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and the induced stresses can be evaluated analytically using the beam theory. This assumes ideal
Bernoulli beams with infinitesimally small load and support points, as well as homogeneous material
properties. The validity of this simplification will be checked in Section 4.

Here, only the tensile component of the bending stress is considered for further calculations since
the compressive strength is assumed much higher than the tensile strength for sand core materials.

2.1. Specimen

The sand core specimens used were produced using H32 quartz sand from Quarzwerke GmbH
(Frechen, Germany) and W65 Bauxite sand from Hüttenes-Albertus Chemische Werke GmbH
(Duesseldorf, Germany). Both sand types are bound with two inorganic Inotec binder systems from
ASK Chemicals GmbH (Hilden, Germany). The binder system is composed of a liquid component
and an additive in powder form and is measured in wt% relative to the sand mass. This system will
be referred to as “binder” in the following sections. For Specimen Type A, H32 sand and 2 wt% fluid
binder EP4158 with 1.9 wt% additive WJ4500 were used. For Specimen Type B, H32 sand and 2 wt%
fluid binder EP4158 with 1.6 wt% additive TC4500 were used. For Specimen Type C, W65 sand and
2 wt% fluid binder EP4158 with 1.6 wt% additive TC4500 were used.

The specimens were produced on a Loramendi SLC2 25L core blowing machine (Loramendi
S.Coop., Vitoria-Gasteiz, Spain) with a heated core box and a hot air drying device. The temperatures
were set to 155 ◦C core box and 220 ◦C air temperature. After production, the specimens were stored
for 20 h in a climate chamber at 20 ◦C and 20% relative humidity. The dimensions of the sand cores
were 22.8 × 22.8 × 170 mm3.

2.2. Uni-Axial Constant Stress

The mechanical testing was performed on a Zwick&Roell Z020 Universal Testing Machine
(ZwickRoell GmbH & Co. KG, Ulm, Germany) with a 4-point-bending (4PB) and a 3-point-bending
(3PB) fixture. The testing machine was equipped with a 20-kN load cell.

In order to induce uni-axial constant stresses in the surface layer of the tensile side, 4-point-bending
tests were performed. A specimen rests on the two lower supports and is strained with a flexural
load through the upper supports. Figure 1a shows the test setup. This design ensures a constant and
uni-axial stress between the upper supports in the x-direction for a given distance from the neutral
layer and a linear increasing absolute stress in the z-direction. The distance between the supports c
was chosen to be 150 mm and the testing speed as 1 mm/min. The distance between the load points
was varied and will be listed with the results. The force-deflection value pairs were measured by the
testing machine. Of these, only the maximum force was used to calculate the tensile stress component
in the specimen according to beam theory with Föppl notation [14,15]:

σ4PB(x, z) =
F4PB

2 (x− 〈x− a〉1 − 〈x− (a + b)〉1)
I

z (4)

where σ4PB is the stress in the beam, depending on the coordinates x and z resulting from
4-point-bending, F4PB is the force applied by the testing machine, a is the distance from the supports to
the load point and b is the distance between the load points. I is the geometrical moment of inertia,
and z is the distance from the neutral layer.
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Figure 1. Test setup for the 4PB (a) and 3PB (b) experiments.

2.3. Uni-Axial Non-Constant Stress

In order to induce uni-axial non-constant stress in the beam, 3-point-bending experiments were
performed on the same Z020 testing machine. The test setup is depicted in Figure 1b. Again, the chosen
distance between the supports was 150 mm. The stress in the the beam was determined according
to [14,15]:

σ3PB(x, z) =
F3PB

2 (x− 2〈x− c
2 〉1)

I
z (5)

where σ3PB is the stress in the beam depending on x and z and resulting from 3-point-bending, F3PB is
the force applied by the testing machine and c is the distance between the supports. I is the geometrical
moment of inertia, and z is the distance from the neutral layer.

2.4. Finite Element Model

Deviations of the stress in the specimen from the Bernoulli equation are investigated by the finite
element method (FEM) in Abaqus (Dassault Systems, Velizy-Villacoublay, France). A quarter of the
beam was modeled using both symmetries, as displayed in Figure 2. A Young’s modulus of 7550 MPa
and a Poisson’s ratio of 0.17 as published by Schneider et al. [16] were utilized. C3D8 elements
(size: 1.00 × 1.04 × 0.99 mm3) were used for the beam, while the support and load were modeled by
analytical rigid bodies with the same dimensions as measured in the universal testing machine. The
beam was loaded with the force at a failure probability of 63.2%, corresponding to each load case.

Load

Support

Load

Support

xy

z

xy

z

Figure 2. Quarter model of the beam for 4PB 75.5 mm and 3PB.

3. Results

3.1. Characterisation of the Fracture Behavior

In order to determine whether the fracture behavior can be described as brittle or ductile,
SEM images of broken binder bridges were taken. Figure 3 shows broken binder bridges and
an overview of the broken micro-structure in the sand-binder-compound. The SEM (Jeol, Tokyo,
Japan) images show very sharp edges in the area of the broken water-glass binder bridges between the
quartz particles, which indicates a brittle fracture.

The classical way to measure the strength of foundry cores is to use three-point-bending devices
and breaking a statistically-relevant number of specimens. Evaluating these measured data points,
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the strength is then given as a mean value. Mostly, the scatter of the data points is neglected, or if
studied, the standard deviation is given [7,8].

This implies that the fracture behavior follows the Gaussian probability distribution. However,
inorganically-bound sand cores show a quite brittle material behavior. In materials science, this kind
of fracture is described with Weibull’s probability distribution, not with the Gaussian one [17,18].
Consequently, in this article, experimental results are analyzed in relation to the probabilistic
distribution of the specimens’ strength.

(a) (b)

Figure 3. Overview of inorganically-bound quartz sand with broken binder bridges (a) and a broken
binder bridge with signs of brittle failure (b).

3.2. Probabilistic Distribution of the Strength of Inorganically-Bound Sand Cores

In this section, experimental results for the strength of inorganically-bound sand core materials
will be shown and tested if the results can be described with a Weibullian probability distribution.

In order to derive the probability of failure for a specific dataset, which consists of fracture stress
results for multiple specimens, the data need to be sorted by value in ascending order. The probability
then follows [19]:

Pf (σi) =
i− 0.5

n
(6)

where Pf is the probability of failure, σi is the i-th value in the sorted dataset and i is the position of
this value in it. n is total number of measured points.

Figure 4 shows a Weibull plot of 52 inorganically-bound specimens. Additionally, Weibull and
Gauss distributions were fitted to the data with the maximum likelihood method, utilizing MATLAB
functions “wblfit” and “normfit” [20]. The data are plotted with logarithmic scales, which leads to
a straight line if the data follow the Weibull distribution and a curved line if they follow the Gauss
distribution. It is evident that the Weibullian distribution fits the data better than the Gaussian. To
validate this assumption, a Lilliefors test was performed with MATLAB [20]. The hypothesis of
a Gauss distribution was rejected at a 5.5% significance level, while the Weibull distribution was not
rejected. Thus, a Weibullian distribution is assumed for all modeling purposes in this paper. A direct
consequence of the Weibullian distribution is the volume-dependence of the specimens’ tensile and
bending strengths. This can be easily shown with a four-point-bending and a three-point-bending
fixture, since the effective volume Ve f f varies for different test setups. The two parameters of the
Weibull distribution σs and m can be calculated with Equations (1)–(3).
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Figure 4. Strength probability distribution with Gaussian and Weibullian fit.

3.3. Volume-Dependence of the Tensile Strength

Figure 5 shows two sets of data. While the distance between the supports was constant, the effective
volumes differed between the three-point-bending and the four-point-bending experiment according
to Equation (3). The two datasets confirm the assumption of a volume-dependence: the bending
strength was evidently influenced by the loaded effective volume, since the two datasets were clearly
distinguishable and had different values for σs.
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Figure 5. Fracture probability for a 3PB and a 4PB (load distance 63 mm) dataset with different
effective volumes.

3.4. Predicting Fracture Stresses for Arbitrary Bending Test Setups

Using Equation (2), it is possible to calculate the scaling parameter σs for arbitrary bending
test setups based on one dataset. In order to compare the effective volumes of the three- and
four-point-bending test setups, the whole volume of the four-point-bending beam is considered,
not just the volume between the load points.

Figures 6–9 show the results of this prediction. They are structured as follows: The measured
input dataset, upon which the prediction is based, is shown as points, the target data-set with circles
and the prediction itself with a dashed line.
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Figure 6. Specimen Type A: prediction of fracture probability from 4PB (75.5 mm) to 3PB.
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Figure 7. Specimen Type A: prediction of fracture probability from 4PB (28.8 mm) to 3PB.

2.4 2.6 2.8 3
Stress in MPa

1.8 

4.9 

12.7

30.8

63.2

93.4

99.9

F
ra

ct
ur

e 
pr

ob
ab

ili
ty

 F
 in

 % specimen Type A n = 35

-4

-3

-2

-1

0

1

2

ln
ln

 1
/(

1-
F

)

4PB 75.5 mm (input)
4PB 28.8 mm (target)
analytical prediction

-4

-3

-2

-1

0

1

2

ln
ln

 1
/(

1-
F

)

-4

-3

-2

-1

0

1

2

ln
ln

 1
/(

1-
F

)

Figure 8. Specimen Type A: prediction of fracture probability from 4PB (75.5 mm) to 4PB (28.8 mm).
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Figure 9. Specimen Type B: prediction of fracture probability from 4PB (63 mm) to 3PB.

Figure 6 shows the prediction of a three-point-bending test based on a four-point-bending test
with 75.5 mm load distance for specimens of Type A. The measured σs is 2.880 MPa, and the predicted
σs is 2.959 MPa.

Figure 7 shows the same prediction based on a load distance of 28.8 mm. The predicted σs is
2.929 MPa, which fits the experiment significantly better, though it still overestimats the bending
strength by 0.05 MPa.

Figure 8 compares two 4PB tests. The prediction is calculated for the 28.8-mm load distance based
on the 75.5-mm measurement. The prediction also overestimates the strength of the target (measured:
2.717 MPa, predicted: 2.763 MPa).

Clearly, the Weibull model overestimates the strength for smaller effective volumes to some
degree. The effective volume in the four-point-experiment is inversely proportional to its load
distance. The theoretical extreme is a load distance of zero with the same effective volume as for
the three-point-bending. The closer the four-point load distance approaches this extreme, the more
accurate the prediction becomes.

For validation reasons, a second type of specimen (B) was used for another
four-point-/three-point-bending comparison. The load distance chosen was 63 mm, which is
shown in Figure 9. As expected, the bending strength is over-estimated, and the offset of the prediction
is similar to the 75.5-mm load distance of Specimen Type A (measured: 2.901 MPa, predicted:
2.992 MPa).

3.5. FEM Simulation of the Four-Point Bending Test Setup

In order to investigate the observed overestimation, FEM calculations were performed to
determine modeling errors induced by the ideal beam theory calculations. The FEM models described
in Section 2.3 were utilized to calculate stresses for a three-point-bending load and four-point-bending
loads with a 75.5-mm, 63-mm and 28-mm load distance. The results for the 3PB and the 4PB with
a 75.5-mm load distance are shown in Figures 10 and 11. While beam theory predictes a constant
moment between the load points in a 4PB load case, the FEM simulation shows symmetrical stress
concentrations 8.75 mm from the load points for a 75.5-mm load distance. To validate these results,
another four-point-bending experiment was performed. Ten specimens of Type C were tested, and the
location of the crack was measured on the tensile side of the beam, relative to the coordinate system in
Figure 1. The results are shown in Figure 12. The fracture locations are clearly grouped around the stress
maxima shown in Figure 11, supporting the results of the FEM simulation.
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which were used for the calculation of the effective volume.
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Based on these FEM results, the Weibull parameters from Figures 6–9 were reevaluated with new
effective volumes. Instead of the analytically-calculated stresses, the σxx stresses from the simulations
were numerically-integrated with the trapezoidal method [21] according to Equation (3) to obtain
the specific effective volume. Figures 13 and 14 show the results for the new prediction of the
three-point-bending scale parameter σs based on four-point-bending load cases with a 75.5-mm
and 28.8-mm load distance. The scale parameter of the 3PB load case is predicted to be 2.851 MPa
(4PB 75.5 mm) and 2.841 MPa (4PB 28.8 mm), compared to the measured scale parameter of 2.880 MPa.
The reevaluation of Figures 8 and 9 leads to predicted scale parameters of 2.738 MPa (measured:
2.717 MPa) and 2.854 MPa (measured: 2.901 MPa).
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Figure 13. Specimen Type A: Prediction of fracture probability from 4PB (75.5 mm) to 3PB based
on FEM analysis.
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Figure 14. Specimen Type A: Prediction of fracture probability from 4PB (28.8 mm) to 3PB based
on FEM analysis.

4. Discussion

4.1. Model Offset

There are two possible explanations for the observed overestimation of the fracture strength:
First, the offset is some kind of measuring problem, resulting from the fixtures used. Two different
fixtures were used for the three-point-bending and four-point-bending experiments. This means that
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the offset would have to be caused in a similar way by both fixtures. Moreover, the prediction
for the three-point-bending based on the four-point-bending experiment with 28.8 mm fits the
experimental data much better than that with 75.5 mm. This is probably due to the smaller difference
in effective volume.

This makes the second option the more probable choice: The stresses were calculated according
to ideal beam theory equations (Equations (4) and (5)). In reality, the stress state under the load and
support points is more complex than these ideal circumstances. Finite element calculations of the
four-point-bending experiment show that there are local stress concentrations under the load points
on the tensile side, which will affect the real effective volume. This leads to an overestimation of
σs. Obviously, these effects are included in all the measurements presented, but they do have more
impact in cases of smaller effective volume, since the proportion of unmodeled stresses is greater.
This explains why reducing the effective volume is weighted disproportionately, since the local stress
concentrations, which are not modeled, account for a larger part of the real effective volume. The ideal
analytic evaluation can serve as an upper boundary for the specimens’ strength, which is shown by
Figures 6–9. The results in Figures 13 and 14 show that these stresses can be modeled by calculating the
effective volumes based on FEM results. Moreover, the remaining error is now less dependent on the
difference in effective volume during the prediction, which shows that the FEM-based model is more
stable. The remaining prediction errors are well below 2% of the original absolute measured values.

4.2. Distinguishing between Volume and Surface Failure

In the Weibull theory, one can distinguish between surface and volume defects. For surface defects,
an equation is deduced analogously to Equation (3). Usually, the quality of the fits for the surface and
volume model is compared, which subsequently leads to the dominant failure type. However, it is
not possible to separate between surface and volume failure for bending tests, since the surface area
changes proportionally with the volume of the beam. Only a small fraction of the beam volume is
contributing to the effective volume and the fracture probability in any case. Analyzing Equation (3)
shows that the calculation of the Weibull parameters and the fracture process is predominantly
influenced by the surface-near volume with the highest bending stress.

This shows that, at least for bending stresses, the mechanical properties of sand core materials are
mainly influenced by the sand layers near the surface. This is especially important for simulations of
the porous micro-structure of sand core materials [16], since it answers the question about from which
part of the non-homogeneous cores the samples for the testing of material parameters should be taken.

5. Conclusions

Today’s state of the art of inorganically-bound cores comprises different fracture data for different
specimens and experiments such as four-point-bending, three-point-bending, pressure and Brazilian
tests. The resulting fracture stresses of these experiments were not comparable until now, since the
influences of the stress state and the geometry of the specimens were unknown. In this article, we
have shown that the fracture of inorganically-bound core materials follows a probabilistic Weibull
distribution and that the fracture strength is influenced by the volume of the test specimen. Taking
the effective volumes into account offers the possibility to compare different test specimens in the
future. A Weibullian model for the fracture stress was fitted to four-point-bending experiments with
constant uni-axial stress in the beam. Based on these parameters, an upper boundary was predicted
analytically for the three-point-bending strength. Furthermore, it was shown that a prediction based
on an FEM analysis leads to a more accurate and more stable model. In future work, we will extend
the experimental setup to multi-axial stress fields and implement the model in an FEM software to
simulate more complex stress states and geometries. In particular, the question of how an equivalent
stress can be calculated to represent these complex stress tensors has to be answered. This allows the
implementation of a Weibull material model for de-coring simulations and to predict the fracture stress
and location of the cast-in cores.
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