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. Introduction 

Casting is a manufacturing process most often used for making

omplex shapes which would be either difficult or uneconomical

o make by other methods ( Blair and Stevens, 1995 ). Over 70% of

ll metal castings are produced with sand as the mold material

 Rao, 2003 ). 

Sand cores consist of molding sand (with particular characteris-

ics), binders, which serve to bond the sand particles together, and

ossible additives. The optimal mixture of these constituents is of

ital importance. If the compound is not durable enough, it can-

ot withstand the casting process. On the other hand, it should be

ossible to extract the sand core after the casting without harming

he metal part. Furthermore, the geometrical accuracy of the prod-

ct is affected by the thermal expansion of the sand cores during

etalcasting ( Bakhtiyarov et al., 2007 ). Traditionally, optimization

s carried out on a trial-and-error process, often requiring expert
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nowledge not easily transferable between applications ( Iden et al.,

011b ). 

In the last couple of years, image-based characterization tech-

iques for materials on various scales have seen a flurry of activ-

ty ( Hirano et al., 1995; Ohser and Mücklich, 20 0 0; Cnudde and

oone, 2013 ). For the problem at hand, microscopic images of 2D

ections of a quartz sand inorganic binder-compound are readily

vailable, see for instance Fig. 1 . For grinding and polishing pur-

oses, the specimen was embedded with a two-component epofix

esin 4020 0 029 from Struers GmbH. Therefore, on Fig. 1 (a) three

hases can be distinguished: sand grains, binder and resin. The

and grains exhibit a strong variation both in terms of grain size

istribution and grain shape itself. Furthermore, the sand grains

re characterized by defects - both local pores and cracks are vis-

ble. However, the grinding process itself may have destructive ef-

ect on the sand grains, and the total amount of induced dam-

ge cannot be quantified from these images alone. Focussing more

losely on the regions where distinct grains touch, cf. Fig. 1 (b), the

omplexity of the sand grains’ surface becomes more explicit. Fur-

hermore, the binding bridges between the grains are readily ap-

arent. 

mailto:matti.schneider@kit.edu


                                                                                       

Fig. 1. Micro-sections of the sand core material. 
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These binding bridges act as contact surfaces between dif-

ferent quartz grains, and determine the strength properties

of the compound ( Iden et al., 2011b ). As both the 3D mi-

crostructure of these compounds can be explicitly analyzed

in terms of μXRCT images ( Willsen et al., 2012 ), and the

strength properties of individual sand grains can be measured

( Wichtmann and Triantafyllidis, 2009 ), for instance by nanoinden-

tation ( Daphalapurkar et al.,(2011) ), it should be possible to estab-

lish a link between these microscopic (geometric and mechanical)

properties with measured/observed macroscopic properties, see for

instance Caylak and Mahnken (2010) for such a macroscopic ther-

momechanical characterization including optical measurements. 

In this work, we investigate this link by relating linear elastic

properties of the constituents of the micro-scale to effective linear

elastic characteristics of the compound in terms of computational

homogenization on sand core microstructures. To further clarify

our approach and the employed methods several comments are in

order. 

First, we scan three-dimensional images of the microstructure

of sand core specimens using μXRCT. However, as the densities of

quartz sand, binder and additive are very similar, these phases can-

not be easily segmented on the basis of the grey-scale values of

the μXRCT image. Thus, we rely on computer-generated structures

to quantify the influence of both the geometric and the mechanical

characteristics of the constituents, relying upon the μXRCT images

for calibration. The literature contains a number of approaches for

modelling realistic sand grains and to pack those particles to high

volume fraction (about 60% in volume), see Section 4 for a de-

tailed overview. We have chosen a representation of sand particles,

taken from the μXRCT scans, by clusters of overlapping spheres

( Garcia, 2009 ), and to pack them by a variant of the mechani-

cal contraction method ( Williams and Philipse, 2003 ). The binder

between the grains is introduced by mathematical morphologi-

cal operations ( Ohser and Schladitz, 2009 ). Then, incorporating a

dry sieve analysis of the sand grains, statistical properties of the

μXRCT scan can be reproduced. For that purpose we model the

binder as a single material, i.e. we do not distinguish the water-

glass (liquid before curing) binder and the (solid before curing) ad-

ditive. This approach seems imperative, as these two phases react

chemically, and form a porous material with complex nanostruc-

ture ( Iden et al., 2011a ). 

To obtain effective macroscopic mechanical properties, we

rely upon the FFT-based computational homogenization technique

( Moulinec and Suquet, 1994; 1998; Willot, 2015; Schneider et al.,

g

016b; 2016a ). For the elastic bulk properties of the quartz grains,

iterature values are available. However, measuring the elastic

roperties of the binder is difficult, and subject of current research.

hus, we perform a parameter study to quantify the influence of

he elastic properties of the binder. Although precise elastic prop-

rties of the constituents are not directly available, it is easy to

dentify a plausible range of those characteristics. Plugging these

nto the simulations permits us to identify a range of computed

ffective elastic constants. These conform well to P-wave measure-

ents of bar-shaped specimens. 

This work is organized as follows. Section 2 introduces the

sed materials, their processing, and collects macroscopic mea-

urements of compound, for instance the density and the P −wave

odulus. Section 3 elaborates on the μXRCT analysis. The gener-

tion of the digital microstructures is discussed in Section 4 . Our

ffort s culminate in Section 5 , where effective elastic properties are

omputed, providing a sensitivity analysis of all relevant geometri-

al and material parameters. 

. Experimental data 

.1. Used materials and material properties 

For this work, quartz sand Haltern H32 from Quarzwerke with

 mean grain size of 320 μm served as our moulding sand. Fig. 2 (a)

hows the results of a corresponding sieve analysis at 50% relative

umidity. The number of bins (and their size) was taken from the

ata sheet of the material. To convert a grain size distribution in

erms of weight into a grain size distribution in terms of number

ercent our workflow is as follows. We assume that in each bin the

umber of particles is uniform with yet to be determined num-

er of particles in the bin - this assumption simplifies the drawing

f random numbers according to a given distribution. We consider

ur approach superior to fitting the parameters of a given distribu-

ion to the bins, because for the that approach the error does not

ecome infinitesimal if the width of the bins becomes infinitesi-

al too. To determine the unknown particle numbers we trans-

orm this distribution to a distribution of particle volumes. Here,

e assume that there is a functional relationship 

article size �→ particle volume of the form r �→ cr 3 

here c is some (unimportant) constant. Then, we determine the

article number per bin from the relative volume fraction per bin

which we consider to equal the relative mass fraction per bin, as

iven in the grain size distribution). 



                                                                                       

Table 1 

Variation of parameters for ten produced bar-shaped specimens in the form mean 

value ± standard deviation. 

Length [mm] Width [mm] Height [mm] Weight [g] Density [kg/m 

3 ] 

173.36 ± 0.07 22.83 ± 0.06 22.85 ± 0.09 140.90 ± 0.67 1558.08 ± 8.98 

Table 2 

Solid volume fractions of the phases involved. 

Sand Waterglass Additive Binder Composite 

solid volume fraction [%] 57.6 0.47 0.90 1.37 58.96 
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Clearly, our approach is defective because two particles which

ave equal weight according to a sieve analysis may not have the

ame particle size (for instance, in terms of the minimal bound-

ng sphere), unless both particles are known to have equal shape

i.e. differ only by a rigid body motion). The result can be seen in

ig. 2 (b). 

For the following experiments bar-shaped specimens with a

ength of 170 mm and a quadratic cross section with 22.4 mm edge

ength and cylindrical specimens with a diameter of 50 mm and a

eight of 50 mm were produced in a core blowing process. There-

ore, 50 kg of quartz sand and 2% (mass) of waterglass (sodium

ilicate, Inotec EP 4158, in a wet state) and 1.6% (mass) additive

Inotec Promotor TC 4500), which we henceforth will call binder,

ere mixed with a Loramendi blade mixer. The core blowing pro-

ess was carried out on a Loramendi Core Blowing Machine SLC2-

5L. The shooting head, shooting nozzles and sand funnel were

ater-cooled. The core box tool was heated up by oil to a tempera-

ure of 155 °C. The specimens were blown with a pressure of 5.5 bar

or 2 s. Subsequently, the specimens were gassed with hot air

220 °C) for 15 s. Afterwards, the solid sand specimens are stored

or 24 h in a Memmert HPP 110 climate chamber with a temper-

ture of 20 °C and a relative humidity of 20%. Microscopic sections

f the dried compound are shown in Fig. 1 . 

To quantify the variation of the specimen dimensions and the

ssociated density, ten bars were produced as described. Table 1

ists the mean values and corresponding standard deviations. The

imensions of the specimens were slightly larger than intended.

owever, the variation of these lengths is negligible. The mean

ensity was determined as 1558 kg/m 

3 , with about 0.5% standard

eviation. Thus, we conclude that the density of the produced

pecimens is reproducible with high accuracy. 

To determine the volume fractions of the quartz sand and

inder phases within the compound, we relate the composite den-

ity with the densities of quartz (2650 kg/m 

3 , Anthony, 1990 ), the

ensity of (dry) waterglass (2610 kg/m 

3 , Greenwood and Earn-

haw, 1997 ) and the density of the additive (which we consider

s sodium oxide with a density of 2270 kg/m 

3 ) to the density of

he compound. At this point it is important to note that during

he drying process the waterglass loses between 50% and 70% of

ts mass because of vaporization, see chapter 3 in Polzin’s book

 Polzin, 2012 ). Assuming 60% mass loss we consider only 0.8% mass

f (dry) waterglass, and 1.3% of additive (both percentages in terms

f mass relative to the mass of quartz sand). The respective solid

olume fractions can be computed, cf. Table 2 . We see that the

and is highly densified, and the binder volume fraction is very

mall compared to the volume fraction of quartz sand. 

.2. Measuring the P −wave modulus 

The mechanical properties of the binder strongly depend on the

umidity. At room temperature, the binder (and, thus, the com-

ound) exhibits an almost perfectly brittle behavior. For higher

oisture, the mechanical behavior becomes more ductile. For large
tmospheric humidity, this effect may even lead to a destabiliza-

ion of the compound, i.e. the compound loses its form and falls

part. 

Even under stable environmental conditions the elastic charac-

erization of the sand core remains challenging, as the compound

xhibits an almost perfectly brittle behavior with a hardly recog-

izable elastic phase. In particular, for standard mechanical ten-

ile tests the clamping conditions strongly determine the measured

lastic moduli. 

Similar, but less severe, complications arise for three- and four-

oint bending experiments. Griebel and co-workers ( Griebel et al.,

016 ) determined the flexural modulus of the bar-shaped speci-

ens described above with three distinct methods: the classic way

ased on first order beam theory and two optical techniques. They

eport that the classic way leads to erratic and inconsistent re-

ults, whereas the optical techniques proved more reliable. Unfor-

unately, the results reported in Griebel et al. (2016) do not directly

pply to our case, as they used quartz sand H35, which is coarser

han the quartz sand H32 we used in our investigations. 

The problems discussed in the preceding are well-known in the

ommunity investigating the mechanical properties of cementous

aterials or rocks. To measure the elastic properties of the mate-

ials it seems imperative to measure the speed of propagation of

lastic waves in these media ( Ledbetter, 1981 ). 

We performed ultrasound through-transmission tests to obtain

he P -wave velocities of the material. In contrast to mechanical

deformation) tests, the amplitudes of pressure waves are small

nd, therefore, do not destruct the sample. The P -wave modulus

 will be obtained directly from the experimentally determined

ime-of-Flight (ToF) �t through 

 P = �l/ �t with H = c 2 P ρ. 

he density ρ of the sample is derived through measurements of

he total mass of the sample M and the related sample volume V ,

.e. ρ = M/V . The speed of the compressional wave is given by c P 
hile the length of the sample is given by �l . 

The experiment is based on a classical ultrasound through-

ransmission setup for high-attenuating (granular) materials, cf.

üven et al. (2017) . Therefore, two (identical) contact transduc-

rs are manually fixed on two sides of the sample. To improve the

uality of the signal transferred from the transducers to the sam-

le, a silicon rolling bearing grease (Unisilikon, TK 44 N3, Klüber

ubrication) is used as coupling medium. In the present case, clas-

ical water-based contact gels cannot be applied, w.r.t. the water-

olubility of the sample. 

The electrical high-voltage square wave pulse (amplitude 400V)

s generated by a square wave pulser (Olympus 5077PR). Two iden-

ical 2 MHz broadband piezoelectric transducers (N210PL, Doppler

lectronic Technologies) are applied to transform the electronical

ignal into a mechanical source and vice versa (transmitter and re-

eiver). The averaged (mean value of 256 wave forms) low-voltage

ignal acquired by the receiver is pre-amplified (Olympus 5077PR),

ow-passed filtered and digitized by a high-resolution 14bit digi-



                                                                                       

Table 3 

Rise time measurements for the bar shaped sand core specimens. 

Rise time [μ s] Length [mm] H [GPa] E [GPa] 

measurement 1 9.964 22.9 8.31 7.73 

measurement 2 9.873 22.9 8.27 7.69 

measurement 3 10.240 22.9 7.87 7.32 

measurement 4 10.190 23.0 8.01 7.45 

average ± stdev 10.06 ± 0.15 22.925 ± 0.04 8.115 ± 0.18 7.55 ± 0.17 
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t  
tal storage oscilloscope (Picoscope 54 4 4B). The digitized wave form

is transmitted to a PC via USB, cf. Fig. 3 . In a subsequent post-

processing step, the digitized wave form is analyzed and the ToF

as well as the P -wave modulus H is derived. In the present ul-

trasound tests, we have not investigated the properties of shear

waves. For the solid-like samples under investigation S -wave con-

tact transducers are complicated to couple to the surfaces of the

sample. Nevertheless, a combination of P -wave contact transducers

and S -wave bender elements ( Lee and Santamarina, 2005 ) will be

investigated in the future in order to directly obtain both elastic

parameters (e.g. K and G ) of the isotopic medium. 

The corresponding Young’s modulus E can be computed by 

E = H 

(1 + ν)(1 − 2 ν) 

1 − ν

if we know Poisson’s ratio of the material. For the following, we

assume a Poisson’s ratio of ν = 0 . 17 , which corresponds to quartz

glass. The results of Section 6 will show that this choice is rea-

sonable. The measurements shown in Table 3 are consistent with

the values obtained by Griebel et al. (2016) , where two different

optical methods were used to measure a modulus of elasticity of

7.02 ± 0.45 GPa and 7.37 ± 0.70 GPa, respectively. 

3. Micro-computed tomography analysis 

For the μXRCT scan, a cylinder-shaped specimen was core-

blown at the Institute of Metal Forming and Casting in Garch-

ing as described in Section 2.1 . A small cuboid sample was

sawed and analyzed with the μXRCT scanner at Fraunhofer ITWM

and a voxel resolution of 4μm and 2787 × 2787 × 2267 voxels, cf.

Fig. 4 . The grey value image was post-processed with the Fraun-

hofer ITWM software MAVI, and segmented with the help of

GeoDict ( Geo, 2017 ) based upon the global threshold provided

by Otsu’s method ( Otsu, 1979 ). The binarized image was subse-

quently cropped and cleansed from voxel artifacts, resulting in a

1500 × 1500 × 2100 voxel image with a total solid volume fraction

of 60.23%. 

The total volume was divided into 4 × 4 × 4 = 64 subvolumes,

each with 375 × 375 × 525 voxels. In Fig. 5 (a) the distribution of

the volume fraction in these 64 subvolumes is shown. Most of the

samples are concentrated in the region between 60% and 62% vol-

ume fraction. However, there are notable anomalies with very low

solid volume fractions - there is one sample with 54.89% solid vol-

ume fraction, for instance. Apparently, there is a strong variance in

the local solid volume fraction. 

In the binarized image, the porosity of the sand grains on a

scale of a few micron is visible, but not correctly resolved with our

resolution. An attempted μXRCT-scan with a resolution of 1μ m was

tainted with visual artifacts, and we decided to stay with the 4μ m

scans, i.e. to treat the sand grain on the 4μ m scale as a homoge-

neous medium. For that reason, the small scale porosity needed to

be cleansed, see Fig. 6 for a 2D view of a small portion of the full

μXRCT image. On first sight, see Fig. 6 (a), the small scale pores are

not visible. However, inverting the structure ( Fig. 6 (b)) and high-

lighting the pores ( Fig. 6 (c)) clarifies the situation. For the entire

binarized μXRCT-image 0.58% of the volume are occupied by such
mall scale pores. Cleansing them, and inverting the structure fi-

ally gets rid of the small scale pores. 

. Microstructure generation 

Computer-generated microstructures are vital for computational

omogenization. Even when μXRCT-scans are available, the result-

ng microstructures never exhibit the degree of homogeniety nec-

ssary for computational homogenization. Generated microstruc-

ures enable prescribing various microstructural parameters and

elp identifying those moduli which dominate the material re-

ponse of the composite. Regularly, astonishingly small volume el-

ments turn out to be representative for the effective mechanical

ehavior. 

For the sand core microstructure, our generation strategy fol-

ows a two step procedure. First, the sand grains are inserted into

he volume element. Afterwards, the binding agent is added. Both

rocedures should take into account the correct volume fractions

ccording to Table 2 , i.e. ≈ 58% sand grains and ≈ 1.4% binder,

hich means that the sand grains are packed close to their max-

mal packing (in terms of isotropic jamming) and only a tiny por-

ion of binder is added. The procedure should furthermore take

nto account the sand grains’ shape and the results of the sieve

nalysis. Last but not least, the resulting structure should exhibit

he “correct” mechanical behavior if the respective phases are fur-

ished with suitable material laws. In particular, the structure

hould be stable (i.e. in a jammed state) in the sense that it is

onnected and supports itself. 

A variety of approaches for modelling sand grains beyond

pherical shapes can be found in the literature, most promi-

ently by polyhedra ( Cundall, 1988a; 1988b; Höhner et al.,

010 ), but also in terms of polar representations ( Hogue and

ewland, 1994 ), discrete function representation ( Williams and

’Connor, 1999 ), Radon transform-based modeling ( Leavers, 20 0 0 ),

uper-quadrics particles ( Leavers, 1998 ), spherical harmonics

 Mollon and Zhao, 2013 ), level set functions ( Houlsby, 2009;

tafford and Jackson, 2010; Sonon et al., 2012 ), binarized images

 Jia et al., 2002 ) and clusters of overlapping ( Favier et al., 1999; Fer-

llec and McDowell, 2008; Garcia et al., 2009; Barrios et al., 2013 )

nd non-overlapping spheres ( O’Sullivan, 2011; Rowe et al., 2005 ).

oncerning particle packing possible algorithms to reach high solid

olume fractions include the Lubachevsky-Stillinger algorithm and

ts descendents based on DEM ( Stillinger and Lubachevsky, 1993;

aggi et al., 2008; Stafford and Jackson, 2010 ), sedimentation

ethods ( Bennet, 1972; Nolan and Kavanagh, 1992; Coelho et al.,

997; Heitkam et al., 2012 ), the Torquato-Jiao method using ideas

rom linear programming ( Torquato and Jiao, 2010; Marcotte and

orquato, 2013 ), Monte-Carlo-move schemes ( Torquato and Jiao,

009; Damasceno et al., 2012; Henzie et al., 2012 ), level-set as-

isted RSA ( Sonon et al., 2012 ) and the mechanical contraction

ethod of Williams and Philipse (2003) . These methods differ in

heir effectiveness when non-spherical particles are taken into ac-

ount. Thus, the choices how to describe the sand grain and how

o pack it afterwards are inherently linked. 

In this work, we choose to represent the sand grains as clus-

ers of overlapping spheres, and to use a variant of the mechanical



                                                                                       

Table 4 

Particles extracted from μXRCT image. 

Resolution Number of spheres 

particle 1 140 × 140 × 100 280 

particle 2 100 × 100 × 100 280 

particle 3 125 × 125 × 175 284 

particle 4 150 × 110 × 150 284 

particle 5 175 × 175 × 175 287 
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ontraction method of Williams–Philipse for the compaction of the

ranular medium. The chosen methods convince with their com-

utational efficiency. For DEM simulations, the bumpy surfaces of

he sphere cluster particles fail to mimick the friction behavior of

he “real” particle, see for instance Höhner et al. (2010) . For our ap-

lication, due to the presence of the binder inter-particle friction is

eglected. 

.1. Extraction of volume images of representative sand grains 

To get insight into the real grain shapes we rely upon the

XRCT-scans of Section 3 . Unfortunately, the sand grains are con-

ected by the binding agent, and both phases cannot be accurately

egmented on the basis of the grey-scale images of the μXRCT

cans. Thus, we make use of μXRCT analysis software, more pre-

isely, we invert (a few samples of) the binarized μXRCT image, i.e.

e exchange the air and solid phases, and identify pores by the

atershed transform (Chapter 4 in Ohser and Schladitz, 2009 ), im-

lemented in GeoDict ( Geo, 2017 ). Most of the identified “pores”

annot be used further. However, we successfully identified five

and grain shapes, depicted in Fig. 7 , with their original resolution

nd scale. Some of the binding bridges are still visible. 

These five particles serve as the basis of our further investiga-

ions. Even on first sight, their complexity becomes apparent. 

.2. Conversion into a cluster of overlapping spheres 

For packing particles with complex shapes, efficient collision

etection typically determines the overall performance of the algo-

ithms, in particular if non-convex particles are taken into account.

e decided to represent a given particle as a cluster of overlapping

pheres, where collision detection is simple, possibly at the ex-

ense of a large number of spheres necessary to describe the parti-

le. For conversion, we use the COS algorithm of Garcia, described

n chapter 3 of his PhD thesis ( Garcia, 2009 ), see also Ferellec and

cDowell (2008) and Li et al. (2015) for similar approaches. COS

s a Greedy algorithm, which adds spheres completely contained

n the given volume successively, with the total covered volume

erving as the objective in question. Fig. 8 illustrates the COS al-

orithm. A high number of spheres is needed to accurately model

he particle. Following Garcia, we choose 90% volume coverage as

he termination criterion. The number of spheres which are neces-

ary is summarized in Table 4 , and varies between 280 and 287. If

e interpret this number to measure the degree of non-sphericity

f a particle, apparently for all of these five particles the degree of

on-sphericity is very similar. Once the particle cluster is identi-

ed, it is saved in a text file, including the volume, the center of

ass, the inertia tensor, a minimal bounding sphere, and all the

ndividual spheres. This “template” can be re-scaled w.r.t. the cen-

roid to generate particles of the same shape, but different size, en-

bling an accurate recovery of the sieve analysis. We use the diam-

ter of the bounding sphere to sort the particle into the correct bin

or sieve analysis. Due to the non-sphericity, the generated parti-

les are smaller than their μXRCT counterparts. This can be seen in

ig. 13 . However, as computational homogenization of elasticity is

ize-independent, the mean grain size does not enter the effective
lastic constants. Instead, only the degree of non-uniformity of the

ize distribution enters. To keep the generated volume elements

s small as possible, we do not rely upon drawing the particle

izes randomly from the pre-selected distribution. Indeed, this type

f Monte Carlo sampling the relevant quantities only converge as

 

− 1 
2 in the number of particles N . Thus, to obtain a relative error

f 1% on the order of 10,0 0 0 particles are required on average. To

educe the number of necessary particles we sample the particle

ize distribution by the Sobol sequence ( Sobol, 1967 ), starting with

he 101st element of the sequence. This type of low-discrepancy

equence ( Dick and Pillichshammer, 2010 ) leads to a convergence

rder of 1/ N , reducing the number of necessary particles to obtain

 relative error of 1% to the order of 100. 

.3. Grain packing by the mechanical contraction method 

Suppose we wish to pack N particles, each represented by a

phere cluster. For each index i ∈ { 1 , 2 , . . . , N } the sphere cluster

s described by its centroid c i , n i vectors v ia and radii r ia , where n i 
enotes the number of spheres within each cluster. As a set, the

 th cluster is given as 

x ∈ R 

3 
∣∣‖ x − c i − v ia ‖ ≤ r ia for some a ∈ { 1 , 2 , . . . , n i } 

}
, 

here ‖ ·‖ denotes the Euclidean distance. We wish to pack

he sphere clusters in a cubical box Y = [0 , L ] 3 with periodic

oundary conditions. The mechanical contraction method, origi-

ally formulated for spheres and spherocylinders ( Williams and

hilipse, 2003 ), starts with an initial configuration of particles

overlapping or non-overlapping) with a very low volume fraction.

hen, two different phases are executed in an alternate fashion: 

1. mechanical contraction 

2. overlap removal 

For the mechanical contraction, the box Y = [0 , L ] 3 (and the

entroids of the particles inside) is re-scaled by a factor ρ ∈ (0, 1),

.t. the new cell is given as Y ′ = [0 , L ′ ] with L ′ = ρL . As only the

entroid, but not the size of the particles are re-scaled, the volume

raction is increased, possibly at the expense of generated induced

verlap. The non-interpenetrability condition of the N particles in

he box Y (where we drop the prime for notational clarity) is clas-

ically formulated in terms of inequalities 

dist Y (c i + v ia , c j + v jb ) > r ia + r jb for all 1 ≤ i < j ≤ N, 

a ∈ { 1 , 2 , . . . , n i } , b ∈ { 1 , 2 , . . . , n j } , (1) 

here dist Y stands for the periodic Euclidean distance w.r.t. the cell

 , which we rewrite in the form of an equality 

max 

(
0 , max 

1 ≤a ≤n i , 1 ≤b≤n j 

[
r ia + r jb − dist Y (c i + v ia , c j + v jb ) 

])
= 0 

for all 1 ≤ i < j ≤ N. 

o remove possible overlap, the mechanical contraction method

imicks a penalty method (without objective function) and seeks

 minimizer of the associated energy 

f (c 1 , . . . , c N , R 1 , . . . , R N ) = 

∑
1 ≤i< j≤N 

δ2 
i j , 

here δij is a shorthand notation for 

i j = max 

(
0 , max 

1 ≤a ≤n i , 1 ≤b≤n j 

[
r ia + r jb − dist Y (c i + R i v ia , c j + R j v jb ) 

])

nd the R i ∈ SO (3) are rotations. f is a continuously differentiable

unction of its arguments, and f = 0 precisely if the inequality con-

traints (1) are satisfied. To minimize f , Williams–Philipse propose



                                                                                       

Fig. 2. Grain size distribution for the used Quartz sand. 

Fig. 3. Schematic of the P−wave measurement device. 
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a gradient method with step size h ≤ 0.5, i.e. in our context, the

variables c i and R i are updated according to the formulae 

c i ← c i − h ∇ c i f and R i ← exp (−h ∇ R i f ) R i , 

where exp denotes the matrix exponential. Formulae for the gra-

dient ∇f are easily computed. The method just described enables

computing random jammed packings of sphere clusters. For parti-
Fig. 4. Preparation of a cuboid sample for μXRCT-sc
le 1 and the sieve analysis depicted in Fig. 2 , a packing ratio of

bout 68% solid volume can be reached cf. Fig. 9 , where the vol-

me fractions in the “mechanical contraction” phase are increased

y 0.25% volume at each step. 

However, for the core blowing application, no such strict jam-

ing is needed. We use the sequence {10, 20, 30, 40, 45, 50, 55,

0, 61} of volume fractions (in %) to obtain our packings. Then, for

he obtained packings each particle is re-scaled w.r.t. its centroid

n such a way that the total volume fraction equals 58.16%. Packing

o higher volume fractions than 61% does not affect the effective

roperties after rescaling, but takes much more computing time.

otice that we do not directly pack to 58.16%. For such a non-

escaled pack some particles are touching, and others are much

arther apart. In particular, the variance of the effective properties

s extremely increased. The latter phenomenon can be easily seen

lready for monodisperse sphere packings, where particle collec-

ions with higher packing density (subsequently rescaled) turn out

o be much more homogeneous and reliable for our application. 

.4. Particle coating and adding binder 

Suppose a granular packing of the desired volume fraction is

eached. Subsequently, we wish to add the binding agent in such a
anning and a surface view of the μXRCT scan. 



                                                                                       

Fig. 5. Distribution of volume fractions and computed Young’s moduli (see Section 5 ) for the 64 subsamples of the μXRCT images. 

Fig. 6. Removing the small scale pores from the μXRCT image. 



                                                                                       

Fig. 7. Sand particles, manually identified from the μXRCT image. 

Fig. 8. Illustration of the COS method for particle 1, including the number of spheres and the covered volume. 



                                                                                       

Fig. 9. Illustration of different compactifications obtained by the mechanical contraction method for particle 1, 64 sand grains and the sieve analysis of Fig. 2 . 
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ay that binding bridges form a load-bearing structure. In contrast

o the preceding algorithms, which were based on an analytical de-

cription of the granular packing, from this part on we change to a

oxel description of the microstructure, i.e. a binarized representa-

ion on a periodic cubical grid. 

To add binder, we rely upon the AddBinder function avail-

ble in Geo (2017) , which implements techniques of mathemati-

al morphology: dilation and erosion by spheres, see Chapter 4 in

hser and Schladitz (2009) . For dilation and erosion spheres of dif-

erent radii are used. These radii are adjusted iteratively until the

esired volume fraction of binder is reached. This AddBinder tech-

ique is used to connect different particles, as will be shown in

he next paragraph. However, for sphere clusters, it leads to an un-
esired ancillary effect: binder is also added to each particle, fill-

ng the ridges between the overlapping spheres, cf. Fig. 10 . Thus,

e cannot precisely control the volume fraction of the binder con-

ributing to the load-bearing capacity. 

To overcome this limitation we insert an additional step: we

oat each particle individually, disregarding the other particles.

his process is illustrated in Fig. 11 . Adding 5% of the particles vol-

me as binder closes the ridges of the sphere cluster, cf. Fig. 11 (c).

nterestingly, the resulting coated particle resembles closely the

XRCT image we started out with, compare Fig. 11 (e) and 11 (a). We

xperimented with different levels of added binder. Adding 10% of

he particles volume introduces cusps not present for the original

rticle, cf. Fig. 11 (d). 



                                                                                        

Fig. 10. Undesired effects of naively adding binder: binder is distributed into the ridges on the particles’ surface, reducing the volume fraction of the binder bridges signifi- 

cantly. 

Fig. 11. Illustration of particle coating. We compare the original volume image with the sphere cluster representation and 5% as well as 10% added coating, respectively. The 

dark gray in (c) and (e) shows the coating added to the light grey sphere clusters. Figs. (c) and (d) show the same particle, but in (d) the coating is also shown in light grey 

to better compare it to (a). 
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In order to have the correct volume fraction taking into account

the coating procedure, before coating the particles are shrunk by

a factor of 1/0.95 (w.r.t. their centroid). As each particle is coated

individually, overlap between different particles might occur. How-

ever, for all the structures used in this article, the overlapping vol-

ume was below 0.01%. Thus, we do not consider this a problem. 

In a last step, binder is added to the coated granular pack, as

shown in Fig. 12 . Although the deviations are not as large as be-

fore, it is still not always possible to reach the prescribed binder
ontent exactly. This is due to the voxel discretization based mor-

hological operation used in the AddBinder procedure of GeoDict.

he radii of the spheres used for the dilation and erosion oper-

tions can effectively only be a multiple of the voxel resolution.

hus, the resulting binder volume fractions are quantized, which

s problematic in particular for very low binder volume fractions,

.e. below 2%. To adapt to this situation, we plot the computational

esults as functions over the reached volume fractions, and select

he “best” microstructures a posteriori. 



                                                                                        

Fig. 12. Adding binder to the coated granular pack, with different volume fractions. 

Fig. 13. Visual comparison of a 375 3 subsample of the μXRCT image and a computer-generated structure. 
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s  
. Effective elastic properties 

.1. Setup, methods and software 

To compute effective elastic properties of microstructures we

se computational homogenization ( Holister and Kikuchi, 1994 ). As

ur microstructures are periodic and given on a voxel grid, we rely

pon a variant of the FFT-based homogenization method, intro-

uced by Moulinec and Suquet (1994, 1998) . The original method

ould not handle porous microstructures, directly. However, this

imitation could be overcome by a change of discretization ( Willot,

015; Schneider et al., 2016b; 2016a ). For the problem at hand,

e use a discretization on a staggered grid ( Harlow and Welch,

965; Gerritsma, 1996; Schneider et al., 2016b ), solved by an FFT-

reconditioned conjugate gradient method ( Zeman et al., 2010;

risard and Dormieux, 2010; 2012 ), implemented in the Fraunhofer

TWM software FeelMath ( Finite, 2017 ). 

For linear elastic homogenization, 6 load cases, correspond-

ng to 3 tensile and 3 shear loadings, are computed. The result-

ng effective stresses are combined into an effective elastic tensor

 

e f f . We seek an isotropic approximation C 

e f f,iso ( Browaeys and

hevrot, 2004 ), optimal w.r.t. the Euclidean norm on the Voigt ma-

rix representation of the elastic tensor. In this way, we can talk

bout effective elastic moduli, Poisson’s ratios and isotropic ap-

roximation errors. 
6  

5  
.2. Comparison of μXRCT images to generated structures 

.2.1. Simulations based on μXRCT scans 

In a first step, we wish to assess if the generated structures lead

o effective elastic properties comparable to those of the μXRCT

pecimen, cf. Fig. 13 . On the μXRCT image, sand grains and binder

annot be distinguished. Thus, we furnish both the μXRCT image

nd both the sand as well as the binder phases of the generated

icrostructures with fictitious elastic constants, and compare the

ffective properties. As the elastic properties of sand and binder

re of the same order of magnitude (for dry climate conditions),

his should give a good impression on the usefulness of the com-

uter generated structures. For E = 100 GPa and ν = 0 . 17 effec-

ive elastic tensors of the 64 subsamples of the scan (cropped to

75 3 voxels) were computed, see Fig. 5 (b) for the distribution of

he computed values. The smallest Young’s modulus was 8.39 GPa,

hich corresponds to the on subsample with a total solid vol-

me fraction below 5%, cf. Fig. 5 (a). The average computed Young’s

odulus was 11.38 GPa with a standard deviation of 0.87 GPa. At

1.46 GPa, the median is very close to the average. 

.2.2. Resolution study 

A resolution study serves as the starting point of our parameter

ensitivity investigation. We consider a microstructure containing

4 3 sand grains of particle 1 ( Fig. 7 (a)) with a volume fraction of

8.41% and a binder volume fraction of 1.10%, initially resolved by



                                                                                        

Table 5 

Results for the resolution study of Section 5.2.2 . 

Resolution Young’s modulus E [GPa] Poisson’s ratio ν Isotropic approximation error [%] 

64 3 10.87 0.167 12.25 

128 3 10.65 0.162 9.43 

256 3 10.87 0.160 8.78 

512 3 10.91 0.160 8.55 

Fig. 14. Microstructure and local von Mises equivalent stress fields for 0.5% extension in e x -direction, 64 = 4 3 grains. 
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256 3 cubical voxels with dimension 3.8μ m. This initial structure

was down-sampled by factors of 2 3 and 4 3 , and up-sampled by a

factor of 2 3 , and the effective elastic tensors of these four struc-

tures was computed, see Table 5 . 

The computed effective elastic parameters differ only insignif-

icantly for this particular microstructure. However, the isotropic

approximation error decreases by increasing the resolution. These

two observations mean that for a coarse resolution, the effec-

tive elastic properties become more anisotropic, yet the (orienta-

tion) average remains similar to the high resolution counterpart.

Of course, the isotropic approximation error does not become neg-

ligible as one cannot expect isotropy for a 64 particle ensemble.

Taking a look at the local stress fields, cf. Fig. 14 , shows that not

all stress concentrations are captured on the coarsest scale. There

is, however, no large difference between the fields for 128 3 , 256 3 

and 512 3 voxels, respectively. Thus, we conclude that a downsam-

pling of the structure by a factor of 2 in each coordinate direction

leads to results sufficiently accurate for our purposes. 

l  
.3. Influence of the number of grains in the microstructure 

We study the influence of the number of grains in the gran-

lar packing on the effective Young’s modulus. For this purpose,

ackings with 4 3 = 64 , 5 3 = 125 , 6 3 = 216 and 7 3 = 343 re-scaled

opies of particle 1 were prepared as explained in Section 4 , for

0 realizations. Binder was added with 0.5%, 1%, 1.5% and 2%. The

omputations were carried out for 128 3 (64 grains), 160 3 (125

rains), 192 3 (216 grains) and 224 3 (343 grains) voxels, each with

 resolution of about 8μm. 

The computed effective elastic moduli are shown in Fig. 15 (a).

he plot emphasizes the scattering caused by the inaccuracies of

he morphology-based scheme to add binder. Apparently, in the

egime considered, the effective modulus of elasticity is approxi-

ately a linear function of the added binder. Surprisingly, increas-

ng the number of grains does neither decrease the variance of the

esulting binder volume fraction nor does it change the shape of

he modulus of elasticity-binder volume fraction relationship. The

atter phenomenon is rooted in our use of quasirandom numbers



                                                                                        

Fig. 15. Studies on the influence of grain number, grain shape and the particle size distribution on the effective modulus of elasticity. 

Table 6 

Seven microstructures which fit the computational results of the μXRCT image best. 

A B C D E F G 

number of grains 64 216 216 216 216 343 343 

sand volume fraction 58.58 58.60 58.60 58.58 58.58 58.57 58.57 

binder volume fraction 1.28 1.33 1.36 1.36 1.30 1.29 1.32 

resolution 128 3 192 3 192 3 192 3 192 3 224 3 224 3 

E eff [GPa] 11.42 11.78 11.67 11.76 11.52 11.69 11.70 
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or selecting the particle sizes. With these results in hand, we stick

o 4 3 = 64 grains for our further studies. 

.4. Influence of the particle shape 

To study the influence of the grain shape, we prepared gran-

lar packs with all five particles shown in Fig. 7 , and, addition-
lly, spherically-shaped grains. For each particle shape, 64 grains

ere packed according to the sieve analysis of Fig. 2 , 10 realiza-

ions each. To each of these 60 microstructures, 0.5%, 1%, 1.5% and

% volume fraction of binder was added. The results of the com-

utational homogenization on these 240 128 3 microstructures can

e read from Fig. 15 (b). We see that the particles 1, 2, 3 and 5 lead

o more or less the same Young’s modulus. The effective Young’s



                                                                                        

Table 7 

Elastic parameters computed for the seven microstructures of Table 6 and realistic material 

parameters. 

A B C D E F G average 

H e f f 
x [GPa] 9.04 9.41 8.59 8.26 8.52 8.85 8.66 8.76 ± 0.35 

H e f f 
y [GPa] 8.48 8.16 8.60 9.00 8.25 8.54 8.74 8.54 ± 0.26 

H e f f 
z [GPa] 7.94 8.88 8.76 8.95 8.95 8.70 8.49 8.67 ± 0.33 

E eff [GPa] 7.78 8.06 7.98 8.03 7.90 7.98 7.96 7.96 ± 0.09 

νeff 0.183 0.182 0.181 0.181 0.180 0.179 0.181 0.181 ± 0.001 

err iso [%] 6.55 6.71 3.82 4.25 3.72 3.73 3.61 

Fig. 16. Variation of the Young’s moduli of binder and sand. 
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moduli of particles 1 and 2 are almost identical, and particles 3–5

induce slightly larger Young’s moduli. Notice, for comparison, that

spherical particles lead to a much higher effective Young’s modu-

lus. For instance, at 1% binder volume fraction, particle 1 leads to

E ≈ 10 GPa, whereas spherical particles lead to E ≈ 14 GPa, which is

an increase of about 40%. For the “correct” binder volume fraction

of 1.2% the structures generated on the basis of the grain shapes

extracted from the μXRCT image are very close to the μXRCT im-

age results. Using spherical particles, on the other hand, lead to

Young’s moduli which are 20–40% too high, and the values of the

μXRCT image cannot be reproduced in that way. Last but not least

we have carried out simulations where all five particles shapes are

mixed at equal portions, termed “mixed” in Fig. 15 (b). The result-

ing Young’s modulus coincides with the predictions using only a

single grain shape. 

5.5. Influence of the particle size distribution 

We compare our previous results to 10 packed structures with

64 particles of template 1, each of which is identical in size. In

Fig. 15 (c) we see that monodisperse packings lead to a severely

higher effective Young’s modulus, by about 20%. Furthermore, we

compare to another particle size distribution which has the same

mean grain size, but a higher variance, cf. Fig. 15 (d), also with 64

particles of template 1. We see that a higher variance in the grain

size leads to a lower effective Young’s modulus. The latter phe-

nomenon is easy to explain: Grain size distributions with higher

variance also have a higher volume fraction at which they reach

their maximally jammed state. So suppose variant A reaches a

higher volume fraction than variant B . If both are rescaled to some

fixed (lower) volume fraction, then the average distance between
he particles for A is higher than for B . Thus, if we further add

inder, the contact area between the grains in A will be smaller

han for B , too. Thus, A will have lower Young’s modulus. 

.6. Best fitting microstructures 

From the microstructures generated with particle 1 as the tem-

late we have selected 7 microstructures which fit the computed

verage modulus of elasticity 11.38 GPa based on the μXRCT im-

ges best. We label these structures from A to G. Their properties

re listed in Table 6 . 

. Parameter variation 

.1. Setup 

The seven microstructures identified in the previous section

erve as our working horses for studying the influence of the elas-

ic parameters on the constituents. Recall that - due to their chem-

cal similarity - we could not distingiush binder and sand grains

n the μXRCT image. However, for our identified structures we

an vary both the Young’s modulus and Poisson’s ratio for the two

hases individually. 

Following Daphalapurkar et al. (2011) we use a Young’s mod-

lus of 66.9 GPa as the reference value for the quartz sand, and

ary around a Poisson’s ratio of 0.25, cf. Wichtmann and Triantafyl-

idis (2010) . Getting hands on elastic moduli of potassium silicate

s much harder. Thus we use quartz glass as a reference, E = 71 . 7 ,

= 0 . 17 Sanditov et al. (2009) , but take into account a large vari-

tion of these moduli. The computed effective elastic constants for

he 7 microstructures can be read from Table 7 . 



                                                                                        

Fig. 17. Variation of the Poisson’s ratio of binder and sand 64 3 voxels, plotted: E . 

Fig. 18. Variation of the Poisson’s ratio of binder and sand 64 3 voxels, plotted: ν . 
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We see that the standard deviation of Young’s modulus is

maller by a factor of 3 to 4 compared to the standard devia-

ion of the P −wave moduli. This is consistent with our resolu-

ion study, an isotropic approximation reduces the variance sig-

ificantly. Compared to the measurements of Table 3 , the average

omputed P −wave modulus of 8.66 GPa overestimates the mea-

ured average of 8.12 GPa by 6.6%. A similar trend is observed for

he Young’s modulus, which is overestimated by 5.4%. 

.2. Variation of Young’s modulus 

First we fix all elastic constants but the Young’s modulus of the

uartz sand, which we vary between 40 GPa and 100 GPa, which is

 typical range for measured Young’s moduli of quartz sand grains

 Daphalapurkar et al., 2011 ). The effective Young’s modulus varies

inearly between 5 GPa and 10.8 GPa, with almost no differences

etween the 7 structures. Typically, quartz sand is not solely com-

osed of quartz, but often the elastic parameters of pure quartz,
hich lie between 80 and 100 GPa, are used for modelling quartz

and. Fig. 16 (a) quantifies the consequences. In the regime consid-

red, the effective Young’s modulus is an affine linear function of

he Young’s modulus of the sand grains. 

Secondly, we vary the binder’s modulus of elasticity between

0 GPa and 100 GPa. The resulting curve, cf. Fig. 16 (b), is roughly

quare-root-shaped. In particular, if the binder’s Young’s modulus

s not too small, the effect of changing the binder’s modulus of

lasticity is not dramatic. In particular, in the region between 50

nd 80 GPa ( Pedone et al., 2007 ), which we consider a realis-

ic range for E binder (dry state), E eff computes in the interval [7.27,

.12] GPa, which is in line with the experimental data. We fur-

hermore observe that for small E binder the effective Young’s mod-

lus becomes small very quickly. In particular, as increasing hu-

idity dramatically decreases the stiffness of waterglass (and in-

uences E sand insignificantly), also the effective elastic properties

f the sand core composite decrease drastically. 
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6.3. Variation of Poisson’s ratio 

Poisson’s ratio of quartz sand and waterglass are difficult to de-

termine experimentally. Thus, we choose to work with only rough

approximations. In this section, we examine the dependence of the

effective isotropic elastic constants on the Poisson’s ratio of the

two micro-constituents. 

First, we vary Poisson’s ratio of the sand grains. The effective

Young’s modulus, cf. Fig. 17 (a), only changes slightly. Indeed, the

differences between the 7 microstructures dominate the changes

induced by varying νsand . νeff, on the other hand, changes linearly

with νbinder , cf. Fig. 18 (a). Thus, we conclude that changing Pois-

son’s ratio of the sand grains only changes the effective Poisson’s

ratio, but does not have a significant effect on the effective mod-

ulus of elasticity. Similar conclusions hold for varying νbinder , see

Figs. 17 (b) and 18 (b), but the influence on the effective properties

is much smaller. 

7. Conclusions 

In this work we have modelled the microstructure of chemi-

cally bonded quartz sand cores by combining a packing algorithm

with mathematical morphological operations to insert the binder

bridges. These microstructures, which share the same statistical

properties and the same complexity as the μXRCT scan, but per-

mit distinguishing binder and sand grains, served as the input for

FFT-based computational homogenization, leading to computed ef-

fective elastic constants which turned out to be close to P −wave

measurements. 

Most importantly, it would be desirable to have means for mea-

suring the elastic properties of the binder. However, due to the

curing process and the induced nanostructure the “effective” elas-

tic constants of the binder appear not to be material properties,

but, rather, are outcomes of the processing condition during cur-

ing and the local arrangement of the sand grains. These difficulties

are subject to current research, which was unavailable during the

writing of this article, but will be published in the near future. Still,

there is a good agreement between measured and computed elas-

tic properties, and it would be interesting whether the method de-

veloped in this article can be applied to other compositions of sand

cores, i.e. if the sieve line or the sand type is varied, or the binding

agent changes. Furthermore investigating the strength properties of

the compound, can be tackled. 

From a methodological perspective it is satisfying to see that

this type of homogenization problem can be tackled - despite all

apparent complexity. In particular, the chosen sand grain shape

had little influence, and the “representative volume” turned out

to be unexpectedly small. We attribute this amazing simplicity to

the core blowing process itself (which we model by the packing

algorithm): due to the high packing density, the apparent chaos

becomes ordered. For instance, two sand grain shapes appear dif-

ferent at first. However, when compacted, their differences shrink

because of the rearrangement induced by the packing. Of course,

something like the average number of nearest-neighbor-contacts

plays an important role, explaining the differences between spher-

ical and realistic grain shapes ( Fig. 15 (b)). However, the randomly

chosen five particles appear to be similar in this regard. 

Concerning efficiency the most time consuming step at the mo-

ment is the coating of each individual particle. This limitation

might be overcome by more intelligent algorithms. 
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