
materials

Article

Acoustical and Optical Determination of Mechanical
Properties of Inorganically-Bound Foundry
Core Materials

Philipp Lechner 1,* , Georg Fuchs 1, Christoph Hartmann 1 , Florian Steinlehner 1,
Florian Ettemeyer 2 and Wolfram Volk 1,2

1 Chair of Metal Forming and Casting, Technical University of Munich, Walther-Meissner-Strasse 4,
85748 Garching, Germany; georg.fuchs@utg.de (G.F.); christoph.hartmann@utg.de (C.H.);
florian.steinlehner@utg.de (F.S.); wolfram.volk@utg.de (W.V.)

2 Fraunhofer Research Institute for Casting, Composite and Processing Technology IGCV,
Walther-Meissner-Strasse 4, 85748 Garching, Germany; Florian.ettemeyer@igcv.fraunhofer.de

* Correspondence: philipp.lechner@utg.de; Tel.: +49-89-28913738

Received: 4 May 2020; Accepted: 28 May 2020; Published: 3 June 2020
����������
�������

Abstract: Inorganically-bound sand cores are used in many light-metal foundries to form cavities
in the cast part, which cannot be realised by the mould itself. To enable FEM simulations with core
materials, their mechanical properties have to be measured. In this article, we adapt methods to
determine the Young’s and shear modulus, the Poisson ratio and the fracture strain of sand cores.
This allows us to fully parametrise an ideal brittle FEM model. We found that the Young’s and shear
modulus can be obtained acoustically via the impulse excitation technique. The fracture strain was
measured with a high-speed camera and a digital image correlation algorithm.

Keywords: inorganic sand core materials; elastic properties; fracture strength; fracture strain;
water-glass; 3-point-bending; Young’s modulus; shear modulus; Poisson’s number

1. Introduction

A rising number of light-metal foundries are using inorganically-bound core materials instead of
organically-bound ones, due to stricter environmental laws and the need for eco-friendly production
processes [1]. A typical industrial application for inorganic cores is the casting of motor components in
the automotive industry [2]. The cores consist of sand and a binder agent, which holds the individual
particles together and forms a porous material, which can be used for foundry moulds and cores [3].
Inorganic sodium silicate binders (waterglass) do not combust during the casting, while organic
binders emit a number of hazardous combustion products. However, the absence of a combustion
process also means that more binder remains in the cast-in sand core. After a cooling period, the sand
cores have to be removed via high-energy hammer impacts to the cast component, which is called
de-coring [4].

With inorganic binders, this process is more energy-intensive and straining for the cast
components, due to the higher amount of remaining binder. In order to minimise the necessary
effort to remove the core from the cast component, one needs to find out which de-coring process
parameters are energy- and strain- minimal. This directly leads to the goal of generating de-coring
simulations which allow to evaluate if the cast part is de-corable. Subsequently, such simulations
can be utilised to optimise the process and thus reduce the strain on the component. The first step of
building such a mechanical simulation is to determine the basic material parameters, in order to build
a material model. Lechner et al. showed that inorganically-bound core materials behave like a brittle
material [5]. For a brittle material, the basic material parameters for a simulation are Young’s modulus,
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shear modulus, fracture stress and fracture strain. There are numerous articles which study mechanical
properties of inorganically-bound core materials. Most focus on the mechanical strength and the
influence of environment and heat treatment on it [6]. However, research also exists, which studies the
Young’s modulus of core materials. Stauder et al. determined fracture stress and Young’s modulus with
3-point-bending (3PB) experiments [7]. Griebel et al. showed that strain should be measured optically,
when determining Young’s Modulus with a 4-point-bending (4PB) experiment [8]. They further
showed that the Young’s modulus is dependent on the applied load, and decreases towards the point
of fracture.

Schneider et al. simulated the Young’s modulus by modelling the microstructure of the sand-
binder-compound. Furthermore, they validated their simulation with an ultrasound through-
transmission test [9]. However, to our knowledge, there is no existing literature on the shear
modulus or Poisson ratio of inorganically-bound core materials. In this article, we propose methods to
efficiently determine a complete and consistent parameter set for a brittle material model for inorganic
core materials.

2. Materials and Methods

2.1. Specimens

The specimens used for this work were produced on a Loramendi SLC2 25L core-shooting
machine (Loramendi S.Coop., Vitoria-Gasteiz, Spain) with a heated core box and a hot-gas drying
device. A H 32 quartz sand (Quarzwerke GmbH, Frechen, Germany) was bound with an inorganic
Inotec binder system (ASK Chemicals GmbH, Hilden Germany). The binder system consists of
a liquid component EP 4158 (2 wt%) and a powder additive TC 4500 (1.6 wt%), which are measured
relative to the sand mass. The temperatures were set to 155 ◦C core box and 220 ◦C gas temperature.
The specimens were stored for 16 h at 20 ◦C and 10% humidity after production. The dimensions are
173.5 mm × 22.8 mm × 22.8 mm.

2.2. Determination of Elastic Properties with the Impulse Excitation Technique

The impulse excitation technique allows the identification of natural frequencies of the tested
specimen [10]. An impact, in our case induced by a hammer, excites the specimen with a short impulse,
and causes the subsequent approximately free oscillation of the specimen measured [11]. There are
various possibilities for measuring this oscillation. The sound can be recorded with a microphone or
the specimen can be tracked with a contact-less laser vibrometer or a piezo crystal [12]. Furthermore,
the induced strains can be measured using strain gauges. Regardless of the method, the data are
recorded in the time domain and Fourier-transformed to the frequency domain. In the subsequent
spectrum, every excited natural frequency is represented by a peak.

With the dimensions of the cuboid specimen and its density, the obtained natural frequency peaks
can be used to calculate elastic properties of the material used. There are several analytic solutions for
the Young’s modulus and the shear modulus. We use the following equations to calculate the Young’s
modulus E, the shear modulus G and the Poisson ratio ν in this article [13]:

E = 0.946
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where m is the mass of the specimen, l the length, b the width and h the height. f f1 , fl1 and ft1 are the
first bending, longitudinal and torsional eigenfrequencies, respectively.
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2.3. Test Setup for Acoustic Determination of Elastic Properties

The three main components of the acoustic test bench are the automatic hammer, the control
unit which controls the microphone (S241 from Superlux, New Taipei, Taiwan) and the hammer,
and the support structure with two parallel steel cords. The automatic hammer is actuated by a stepper
motor and has a steel tip. One challenge with an automatic hammer is to avoid multiple hits of
the specimen. Our hammer is made of ABS polymer, which means that it is flexible. The stepper
motor starts retracting the hammer before it hits the specimen. This leads to a deflection of the
hammer and a subsequent impact on the specimen, while the stepper motor is already moving
backwards. This allows to retract in good time after the first hit, thus avoiding multiple hits of the
specimen. The specimen rests on two parallel steel wires. The control unit consists of a Raspberry
Pi, which controls the microphone and the stepper motor via custom python software. The sampling
frequency of the system is 96 kHz which leads to a resolution in the frequency domain of 6 Hz.

Figure 1 shows the test bench. The impact position was chosen in one corner of the beam in order
to excite both flexural and torsional eigenmodes. Figure 2 shows the algorithm used in this article to
determine elastic properties via impulse excitation technique and FEM simulation. The measured and
calculated eigenfrequencies are compared and the Young’s modulus and Poisson ratio are optimised
such that the error between the measured and the calculated eigenfrequencies is minimal. In order to
achieve a mechanical representation of the real elastic behaviour as accurate as possible, more than the
first flexural and torsional frequency can be used to calculate the Young’s modulus and the Poisson
ratio. We simulated natural frequencies at support points for the following tupel of Young’s modulus
and Poisson ratio [(5500,0);(5500,0.28);(6000,0.14);(6500,0);(6500,0.28)] in FEM. The results were used to
fit a linear model, which calculates natural frequencies in the two-dimensional space of the support
points. Additionally, we introduced an error function which calculates the root mean square error (rms)
for multiple peaks between experiment and simulation. This model can be optimised such that the
rms is minimal and thus fits the elastic model optimally to the obtained experimental data. This was
performed via linear optimisation in Matlab (MathWorks Inc., Natick, MA, USA).

Frame

Microphone

Specimen

Automatic hammer

Figure 1. Test-bench for determining elastic properties via impulse excitation technique. The main
components are a microphone, a specimen, an automatic hammer system and the frame of
the test-bench.
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Figure 2. Algorithm for determining elastic parameters via impulse excitation technique and FEM
simulation. The measured and calculated eigenfrequencies are compared and the Young’s modulus
and Poisson ratio are optimised such, that the error between the measured and the calculated
eigenfrequencies is minimal.

2.4. FEM Calculation of Natural Frequencies

The natural frequencies and eigenmodes of the specimen were calculated with the FEM-Software
Abaqus 2018 (Dassault Systems, Velizy-Villacoublay, France). The model is shown in Figure 3.
The specimens were measured and modelled, including minor production inaccuracies: for example
the imprint I on the front side of the beam is due to the shooting nozzle. The model was meshed
with tetrahedron elements with an approximate global size of 2 mm. The calculation was done with
a Lanczos solver. Figure 4 depicts FEM results for eigenmodes 1–6. The simulation shows that each
flexural eigenmode is split in two very close neighbours, due to the asymmetry on the front side of the
beam, which results from the production process. For reasons of simplicity, only the first one of the
neighbour-pairs will be considered in this article.

x=17
3.5 mm

y=22.8 mm

z=22.8 mm

Imprint I

Figure 3. Meshed specimen for FEM calculation of natural frequencies and eigenmodes.

1st flexural eigenmode (f1) 1st torsional eigenmode (t1)

2nd flexural eigenmode (f2) 1st longitudinal eigenmode (l1)

3rd flexural eigenmode (f3) 2nd torsional eigenmode (t2)

Figure 4. Eigenmodes 1–6 of the specimen obtained by FEM simulation.
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2.5. Digital Image Correlation Algorithm and High-Speed Imaging

For simplicity, reliability and flexibility reasons, digital image correlation (DIC) has been
established as the standard for optical deformation analysis in experimental mechanics of solids.
Digital image correlation rests on registration algorithms based on correlation functions. Based on
the merging, relative displacements between subsequent images are calculated. The method has been
extensively investigated and various task-specific correlation criteria are proposed and used in different
fields [14]. Integer-pixel accuracy can be achieved using simple correlation criteria. For sub-pixel
resolution data, interpolation is necessary, for example coarse-to-fine searching [15], peak-finding
algorithms [16], genetic algorithms [17], gradient-based algorithms [14], B-splines, artificial neural
networks [18] and finite elements [19]. Given adequate image acquisition, DIC features scale-invariance
leading to a large field of applications.

For the DIC analysis in this article, the ICGN algorithm presented by Pan et al. has been
adapted [20]. No artificial speckle pattern has to be applied, since the natural texture of the specimen
suffices for adequate analysis. First-order shape functions for warping, a subset size of 15 × 15 pixels
and a discrete cosine transform filter proposed by Garcia are used [21]. Further details on the
precision, accuracy and present implementation of the algorithm are presented by Hartmann et al. [22].
A high-speed camera (Os3-S2 from IDT, Pasadena, CA, USA) with magnification optics (Ultrasonic
from Canon, Tokyo, Japan) is used for the acquisition of the deformation (8-bit grey-scale images).
The images are recorded at a frequency of 8500 Hz. A macro cold light source (Xenon Nova 300 W,
Storz, Tuttlingen, Germany) is used for illumination. The test setup is shown in Figure 5.

High-speed cameraSupport

Punch Specimen

Figure 5. Test setup for a 3-point-bending experiment with high-speed imaging. The camera is oriented
orthogonal to the specimen’s surface.

2.6. Test Setup for Measuring Fracture Stress and Strain

We used 3-point-bending (3PB) experiments to determine the tensile fracture stress and strain.
The distance between the supports was 150 mm. The experiments were carried out on a Zwick Z20
(ZwickRoell GmbH & Co. KG, Ulm, Germany) equipped with a 20 kN force sensor. The stress was
calculated from the maximum force at fracture, via beam theory according to [23]:

σ3PB =
3F3PBl
2bh2 (4)

where σ3PB is the maximum stress in the beam. F3PB is the applied force and l is the distance between
the supports. b is the width and h the height of the beam.

The fracture strain was determined using 3PB as well. The high-speed camera was aligned to
the area around the punch, which has the highest tensile stresses. The high-speed data was evaluated
with the algorithm described in Section 2.5.
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3. Experimental Results

3.1. Acoustical Determination of Elastic Parameters

We simulated the exact geometry of the beam to obtain the natural frequencies (<20 kHz) based
on a purely elastic model, with Young’s modulus and the Poisson ratio as parameters. Comparing the
simulation results with the measured spectrum allows the identification and matching of the specific
eigenmodes with the peaks of the spectrum. Figure 6 shows a spectral analysis of one exemplary data
set. We calculated the Young’s and shear moduli via Equations (1) and (2). Subsequently, the natural
frequencies were calculated using FEM and the obtained elastic parameters. These natural frequencies
are marked in the figure with dotted vertical lines and assigned to the specific eigenmodes with
the sequence of eigenfrequencies from FEM. Until 5.5 kHz, the FEM results fit the measured peaks,
while for higher frequencies they do not, especially for torsional frequencies.

0 2 4 6 8 10 12

Frequency in kHz

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
lis

e
d
 a

m
p
lit

u
d
e

f
1

t
1

f
2

l
1

f
3

t
2

f
4

t
3

l
2

f
5

t
4

Figure 6. Spectral analysis of the impulse excitation data. The doted lines mark natural frequencies
based on FEM calculations, with Young’s modulus and the shear modulus calculated analytically using
f1 and t1, respectively.

The reason for this is that the mechanical reality differs from the material model utilised in
the FEM-calculation. We studied the distance between successive natural frequencies to show this
and calculated ratios of successive natural frequencies. This ratio is independent of the elastic
parameters in simulation. For example, the first and second flexural frequency can both be used
to determine the Young’s modulus. Their quotient is determined by the geometrical dimensions of
the specimen. Since the dimensions of the measured beam and the simulation are approximately
identical, this can serve as a criterion to show how well the elastic two-parameter model corresponds
with the mechanical reality. Table 1 shows a comparison between the simulation and the experiment.
There are small deviations between the simulation and the experiment, which is to be expected.
However, one outlier can be identified. The ratio ft1/ ft2 is significantly smaller in the experiment
(1.81 compared to 2.00). To exclude the test setup as a reason for this behaviour, we changed the
support to a cross, and included steel specimens as well. A variation of the supports had no influence
on this effect, while a measurement using steel showed a ratio close to 2.00. This leads to the conclusion
that this effect is in fact a typical behaviour for the inorganically-bound core materials used and that,
contrary to the initial impression, the physics in the simulation corresponds better to the experiment at
higher torsional frequencies.
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Table 1. Ratios of successive natural frequencies obtained by simulation and experiment. The ratios
are independent of the elastic parameters.

f f1 / f f2 f f2 / f f3 f f3 / f f4 ft1 / ft2 ft2 / ft3 fl1 / fl2

Simulation 2.54 1.78 1.50 2.00 1.50 2.00

Experiment 2.59 1.75 1.50 1.81 1.50 1.98

Figure 7 shows the results of the parameter optimisation, described in Section 2.4 (eigenmodes
used: f1, f2, f3, t1, t2, t3, l1, l2). The simulated eigenmodes match significantly better to the measured
spectrum, while t1 remains an outlier. In Table 2 the elastic parameters for seven specimens S1–S7 are
shown. The mean Young’s modulus is 5.75 GPa with standard deviation of 0.391 GPa. The mean shear
modulus is 2.43 GPa with a standard deviation of 0.203 GPa. With Equation (3), this leads to a mean
Poisson ratio of 0.183.
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Figure 7. Spectral analysis of the impulse excitation data. The doted lines mark natural frequencies
based on FEM calculations. The Young’s and shear modulus of the FEM material model result from
a error minimisation between the peaks in the spectrum and the calculated eigenfrequencies (<12 kHz).

Table 2. Results for elastic parameters of inorganically-bound core materials. The evaluation of
the acoustical data was performed with an error minimisation for the Young’s modulus and the
shear modulus.

Specimen No. S1 S2 S3 S4 S5 S6 S7

Young’s modulus in GPa 6.18 5.92 5.62 5.15 5.89 - 5.89

Shear modulus in GPa 2.70 2.59 2.36 2.24 2.27 - -

Strain in µm/m 597 - - 578 - 580 576

Stress in MPa 2.92 2.95 2.84 2.78 2.51 2.70 2.21

3.2. Optical Determination of Fracture Strain with High-Speed Images
In this section, we determine the fracture strain via digital image correlation and compare the

result to a strain calculation based on the Young’s modulus and on the fracture force calculated using
Equation (4) and Hooke’s law. Figure 8 shows the strain εxx in the beam in the area under the punch
for nine different points in time, taken from one exemplary high-speed data set. It should be noted
that positive stress translates to tension, and negative stress to compression.
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Figure 8. Strain calculation via digital image correlation for a 3-point-bending (3PB) experiment and
10 points in time (t1–t10). Only the area under the punch is analysed. Starting at t2, the strain starts to
localise until the fracture is complete at t9, which is still undetectable by the human eye. We added
a scale to the plots

As can be expected from a 3PB setup, there are tensile stresses in the lower half of the beam.
Furthermore, the fracture is initiated under the punch at the lower beam surface, where analytically
the highest tensile stresses are located. Starting from time t2, the tensile stresses start to localise. In t9,
the fracture is complete. However, the fracture is not yet visible to the human eye. A fracture can
be seen as soon as the beam starts to fall and the fracture opens up at time t10. This image cannot be
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evaluated with the DIC-algorithm any more, since the fracture opening is too wide. For the fracture
strain calculation, we used the last image without localising tensile strain. In our exemplary data
set, this is t1. The strain was calculated with a mean over a region of interest, which is placed at the
location of the subsequent stress localisation, as marked with a rectangle in t1. Please note, that only
four specimens were recorded with the high-speed camera. The average of the evaluated results is
583 µm/m, and the results are shown in Table 2.

4. Discussion

Comparing the results of the eigenmode simulation and the acoustically obtained data shows
that it is necessary to calculate the Young’s modulus and the shear modulus with multiple natural
frequencies. This is in contrast to EN 843-2, which standardises the determination of elastic parameters
of ceramics. There, the recommendation is to use the first flexural and the first torsional natural
frequency to calculate the Young’s and shear moduli, respectively. Our results show that especially the
first torsional eigenfrequency differs from the theoretical one obtained by mechanical calculations based
on an elastic material model with two parameters (Young’s modulus and Poisson ratio). This effect
is due to the complex material behaviour, which results from a inhomogeneous micro-structure of
the sand-binder compound. However, taking more eigenmodes into account minimises this model
error, since the simulation model fits quite well for higher frequencies and the flexural eigenmodes in
general. Minimising the error between multiple peaks in the measured spectrum and the simulation
leads to a stable evaluation of the acoustical data obtained with the impulse excitation technique.

In literature, only the Young’s modulus for inorganically-bound core materials can be found,
while the shear modulus and Poisson ratio are yet to be determined. Furthermore, the Young’s modulus
is highly influenced by the production parameters, environmental conditions, the type of sand and the
binder used for the core shooting. This makes it difficult to validate the results obtained in the relevant
literature. Griebel et al. determined the Young’s modulus of a different type of inorganic core to be
approximately 7 GPa. They further showed that the Young’s modulus is influenced by the applied
load, which leads to a Young’s modulus which is 20% lower upon fracture stress [8]. This is a known
behaviour for various materials including metals, which has led to the practice of using only low-stress
parts of the strain–stress curve for the calculation of the Young’s modulus [24]. Here, acoustical
determination of the elastic parameters has two advantages over tensile tests. First, the impulse
excitation technique only applies a low load on the specimen. Second, with a tensile test, the shear
modulus cannot be determined without an additional torsion test.

Further validation of the acoustic results can be achieved by comparing them to the DIC data
through Hook’s law.

σ = Eε (5)

where σ is the stress, E the Young’s modulus and ε the strain. Calculating the theoretical strain at
fracture with the mean Young’s modulus and the mean fracture stress of our experiments yields
a fracture strain of 468 µm/m, which is 20% lower than the actual measured fracture strain. Since the
Young’s modulus is obtained with an acoustical low-load measurement, this is in close agreement with
Griebel et al., and validates both, the strain and the Young’s modulus measurement [8].

Analysing the scatter of the results for fracture strain and fracture stress shows that the results of
the fracture strain have significantly less scatter than the fracture stress. This is due to the calculation
of the fracture stress, which assumes that the applied load is supported by a homogeneous specimen
with spatially constant material behaviour. However, core-shooting leads to a complex micro-structure
which does not always fulfil this assumption. Taking specimen S7 as example: The fracture stress
is significantly lower, while the fracture strain is in close agreement with the other specimens.
This leads to the assumption that the specimen had a local defect which was the origin of the premature
fracture, and shows that the local measurement leads to a more precise and stable determination of the
fracture behaviour.
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However, the numerical requirements, the manual evaluation effort and the high data amount,
which has to be stored and moved by the high-speed camera (10 GB per measurement) makes it
a time-expensive method. For this reason, we propose to parametrise future FEM simulations with
a fracture strain calculated from acoustical determined elastic parameters and a fracture stress, which is
corrected by the factor 0.8 determined in this article.

5. Conclusions

In this article, we developed methods to determine all necessary physical properties for an ideal
brittle material model of inorganically-bound core materials. The Young’s and shear moduli were
determined via the impulse excitation technique. For the core material used in this article, the Young’s
modulus was determined to be 5.75 GPa, while the shear modulus was 2.43 GPa. The fracture strain
was determined using an universal testing machine and a high-speed camera to be 583 µm/m. With the
test methods, proposed in this article, inorganically-bound core materials can be simulated with a fully
parametrised ideal brittle model for the first time. This enables a simulation of complex stress states
with FEM, and a comparison of the elastic simulation results with physical experiments. Our future
work will include a study regarding the yield surface of inorganically-bound core materials, in order to
characterise the plastic material behaviour in addition to the elastic model investigated in this article.
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