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Abstract

At the core of complex and multifactorial human diseases, such as cancer, metabolic

syndrome, or neurodegeneration, are multiple players that cross‐talk in robust

biological networks which are intrinsically resilient to alterations. These multi-

factorial diseases are characterized by sophisticated feedback mechanisms which

manifest cellular imbalance and resistance to drug therapy. By adhering to the

specificity paradigm (“one target‐one drug concept”), research focused for many

years on drugs with very narrow mechanisms of action. This narrow focus promoted

therapy ineffectiveness and resistance. However, modern drug discovery has

evolved over the last years, increasingly emphasizing integral strategies for the

development of clinically effective drugs. These integral strategies include the

controlled engagement of multiple targets to overcome therapy resistance. Apart

from the additive or even synergistic effects in therapy, multitarget drugs harbor

molecular‐structural attributes to explore orphan targets of which intrinsic

substrates/physiological role(s) and/or modulators are unknown for future therapy

purposes. We designated this multidisciplinary and translational research field

between medicinal chemistry, chemical biology, and molecular pharmacology as

‘medicinal polypharmacology’. Medicinal polypharmacology emerged as alternative

approach to common single‐targeted pharmacology stretching from basic drug and

target identification processes to clinical evaluation of multitarget drugs, and the

exploration and exploitation of the ‘polypharmacolome’ is at the forefront of modern

drug development research.
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Drug discovery has seen tremendous advancements over the last

decades increasingly emphasizing integral strategies for developing

clinically effective drugs considering entire (and multiple) pathways

rather than individual targets (Morphy & Rankovic, 2007; Proschak

et al., 2019; Zimmermann et al., 2007). The “one target‐one drug

concept” ruled for decades (Anighoro et al., 2014; Jalencas &

Mestres, 2013b) due to (i) the lack of knowledge in human

physiology; (ii) the strong need to fully understand the function of
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individual players in human disease; and (iii) the assumption that high

affinity and selectivity of drugs toward individual players will cure

disease (Anighoro et al., 2014; Morphy et al., 2004). The investigation

of individual drug targets still covers the majority of today's medicinal

chemistry efforts (Anighoro et al., 2014; Jalencas & Mestres, 2013b;

Morphy & Rankovic, 2007). However, drug research shifts the focus

on more complex coherences including the consideration of several

players and entire pathways in human physiology and pathology

(Anighoro et al., 2014; Jamir et al., 2023; Morphy & Rankovic, 2007;

Olson et al., 2023; Proschak et al., 2019). The clinical picture of many

diseases is a result of cross‐talk and feedback of multiple players

which form networks that are inherently resistant to changes and

feed into cellular and/or organismal imbalance and dysregulation

(Anighoro et al., 2014; Azmi & Mohammad, 2014; Hopkins, 2008;

McKie, 2016; Morphy & Rankovic, 2007; Zimmermann et al., 2007),

finally promoting resistance to or ineffectiveness of (single‐targeted)

drug therapy (Anighoro et al., 2014; Proschak et al., 2019).

Modern systems biology and network pharmacology analyses

steadily reveal important puzzle pieces of a “big picture” of complex

diseases (Jamir et al., 2023; Olson et al., 2023) which allows for the

conclusion that biological effects of small‐molecule therapeutics in

the human body result from multiple individual interactions with

multiple targets (Anighoro et al., 2014; Jalencas & Mestres, 2013a;

Paolini et al., 2006; Schmidt et al., 2014; Vulpetti et al., 2012). Today,

modern drugs should intentionally engage multiple targets to over-

come disease and/or therapy resistance (Hopkins, 2008; Jamir

et al., 2023; McKie, 2016; Mogwera et al., 2023; Proschak et al., 2019;

Zimmermann et al., 2007) to provide additive or even synergistic

effects (Anighoro et al., 2014; Azmi & Mohammad, 2014; Proschak

et al., 2019). This becomes evident considering the multifactority of

many prevalent human diseases that can barely be addressed by

single‐targeted approaches.

Medicinal polypharmacology also stretches far into the very basis

of drug design, discovery, and development itself (Anighoro

et al., 2014; Proschak et al., 2019). Multitarget agents allow not only

for addressing multiple druggable targets of the addressable

“diseasome” (Wang & Yang, 2022); they also reach into a network

of (yet) undruggable targets by either of two ways: (i) impact on a

druggable target which subsequently reaches into a network of

undruggable targets by a known or unknown pathway; or (ii) direct

interaction with the to this point undruggable target itself (Korcs-

maros et al., 2007). Multitarget agents are suitable ligands to de‐

orphanize undruggable targets:

1. The spatial structure of proteins is more conserved than protein

sequences; thus protein structures resemble each other despite

sequential differences (Grishin, 2001; Jalencas & Mestres, 2013a;

Koch, 2011). Even phylogenetically distant protein (classes) have

common and reoccurring structural motifs (“superfolds”)

(Grishin, 2001; Koch, 2011; Orengo et al., 1994; Russell

et al., 1998). Superfolds can form chemoisosteric “super-

sites” (Anighoro et al., 2014; Jalencas & Mestres, 2013b; Jalencas

& Mestres, 2013a; Russell et al., 1998) (“multitarget binding

sites”) (Namasivayam, Silbermann, Pahnke, et al., 2021) that

attract common sets of ligands (Russell et al., 1998). Multitarget

agents form a large interconnected network (Jalencas &

Mestres, 2013b) of phylogenetically distant proteins and protein

families, making them model molecules for the exploration and

exploitation of undruggable targets of which no structural

information is known other than the presence of superfolds and

supersites. Multitarget drugs (“privileged ligands”) (Jalencas &

Mestres, 2013b; Kim et al., 2014) bear an invaluable potential as

anchor points at the forefront of today's target identification and

validation processes at the very beginning of the drug develop-

ment pipeline.

2. Reoccurring molecular‐structural motifs and physicochemistry

profiles of multitarget agents are also limited (Anighoro et al.,

2014; Hu & Bajorath, 2010; Jalencas & Mestres, 2013b;

Namasivayam, Stefan, Gorecki, et al., 2022; Paolini et al., 2006).

The definition of multitargeticity (“when is a multitarget agent a

multitarget agent?”) and its association to molecular‐structural and

physicochemical characteristics (“what makes a multitarget agent a

multitarget agent?”) promotes the elucidation of “multitarget

fragments” and “multitarget fingerprints” (altogether “superpat-

terns”) which allow for virtual screening of (almost infinite)

chemical space. Recently, such a workflow successfully discov-

ered novel multitarget drugs targeting ATP‐binding cassette (ABC)

transporters (Namasivayam, Stefan, Gorecki, et al., 2022,

Namasivayam, Stefan, Silbermann, et al., 2022; Namasivayam,

Silbermann, Pahnke, et al., 2021; Namasivayam, Silbermann,

Wiese, et al., 2021). The creation of high‐quality and high‐

diversity compound libraries of privileged ligands (Jalencas &

Mestres, 2013b; Zimmermann et al., 2007) by virtual screening

and diversity‐oriented synthesis (Kim et al., 2014) could represent

the starting point of future target identification and validation

processes.

This opportunity space between structural limitation of target

proteins and molecular‐structural limitation of multitarget agents is

referred to by us as “polypharmacolome.” The knowledge about the

polypharmacolome bears high potential for both single‐ and multi-

targeted approaches. Annotation of multitarget fragments with

multiple biological effects can be used for intentionally designing,

synthesizing, and optimizing selective agents (Stefan et al., 2022,

Stefan et al., 2023), contributing to the still immense need to

understand individual protein function(s) in disease. These annota-

tions may also be used to shape the safety profile of (multi‐ and

single‐targeted) drugs, for example, by circumventing off‐targets in

drug metabolism (e.g., cytochrome P450 [CYP] enzymes) or disposi-

tion (e.g., ABC transporters or solute carriers [SLCs]) (Bowes

et al., 2012; Stefan et al., 2022).

Several key advancements promoted medicinal polypharmacol-

ogy: (i) chemical space grew magnificently, offering today billions of

novel make‐on‐demand compounds in more or less uncharted

synthesis and bioactivity space; (ii) structural biology approaches

thrived over the last two decades improving protein resolution
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techniques (Brunst et al., 2021; Jalencas & Mestres, 2013a; Morphy

& Rankovic, 2007; Proschak et al., 2019; Ravikumar &

Aittokallio, 2018); and (iii) genome‐wide association studies, multi-

omics, and “big data” extended the relevant target space by actively

uncovering new pharmacological drug targets and/or coherences.

Systems biology and network pharmacology analyses applying

computational approaches, particularly machine learning, neural

networks, and artificial intelligence (Proschak et al., 2019; Ravikumar

& Aittokallio, 2018) allow nowadays for more sophisticated analyses

and the development of novel concepts.

Medicinal polypharmacology with all its facets is, however, still at

an early stage. As a small and young field, major obstacles are

addressed by a small number of researchers only:

1. It requires a large‐scale biological assessment platform and

interdisciplinary work environment to cover a vast panel of

various targets, even if one particular protein (super)family is

considered only (Jalencas & Mestres, 2013b; Stark, 2004;

Stefan & Rafehi, 2024). A systematic screening of the entire

human proteome is impossible (Anighoro et al., 2014;

Jalencas & Mestres, 2013b). Minimum screening requirements

(Bajorath, 2021) and safety screening panels (Bowes et al., 2012;

Kim et al., 2014; Peters, 2013; Ravikumar & Aittokallio, 2018) to

accurately profile ligands/small‐molecule drugs may support

resource and logistic management.

2. High throughput screenings (HTS) using physical compound libraries

bear the chance to serendipitously find hit candidates. However, the

biological relevancy, drug likeness, and molecular‐structural diversity

of used physical compound libraries are insufficient particularly

considering several biological targets (Breinbauer et al., 2002; Kim

et al., 2014), as mostly focusing one particular ligand class and/or

target (family) only.

3. Historically, many multitarget drugs were discovered serendipi-

tously by HTS and subsequently stored on public databases (Zhan

& Liu, 2009). However, HTS is prone to unspecific effects due to

assay artifacts. No standardization/harmonization of procedures

exists amongst journals and other research platforms how to

properly assess compound unspecificity, and if it did, it would not

account for already published data. Thus, clever approaches are

necessary to harness historical HTS data despite their potential

lack of accuracy and/or reliability (Nissink & Blackburn, 2014).

4. Millions of small‐molecules are known and stored on public

databases, such as PubChem. However, the number of com-

pounds annotated with multiple biological information, particu-

larly with biological activity against the targets of interest, is very

limited. Most databases store chemical and biological information

on a “one target‐one compound” basis only, necessitating

(i) complementary and redundant biological assessments of new

compounds; and (ii) curation of data sets of already published

compounds (Mousavian & Masoudi‐Nejad, 2014; Stefan

et al., 2022; Wu et al., 2022). This is particularly true considering

(i) literature pollution with bad actors (Stork & Kirchmair, 2018);

(ii) the overall limitation in data comparability and accuracy

(Kalliokoski et al., 2013; Kramer et al., 2012; Stefan, 2019), leading

to incomplete and/or noisy data (“data barrier”) (Schneider, 2014);

and (iii) inaccurately and/or incompletely described assay proce-

dures, limiting reproducibility (Goldmann et al., 2014).

5. Follow‐up experiments with multitarget agents will inevitably lead

to (i) the identification of bad actors; and (ii) compounds with a

much larger extent of polypharmacology than anticipated,

including off‐target, antitarget, and adverse effects. Rigorous

complementary assessment of hit molecules with an additional

array of tests is necessary to exclude false‐positive hits, which

requires additional resources.

6. From a structural perspective, the vast majority of proteins, even

from similar protein (super)families, have not yet been resolved at

all or at insufficient resolutions only. Artificial intelligence‐based

deep learning methodologies like AlphaFold (Senior et al., 2020)

indeed support computational approaches in structural biology.

However, particularly large and complex proteins with heteroge-

nous surfaces, such as membrane‐bound transporters [e.g., ABC

or SLC transporters] with extended molecular trajectories can be

predicted to a very limited extent only. Certain computational

tools exist for (multitarget) binding site comparison; however,

they strongly depend on the quality and accuracy of the template

structures (Jalencas & Mestres, 2013a; Zhang et al., 2017).

7. Multitarget agents have pharmacokinetic constraints that need to

be overcome for therapeutic effectiveness (Morphy & Rankovic,

2006). The search for novel chemotypes that represent merged

multitarget agents is key as these molecules are closer to drug

likeness with greater likelihood to fulfill physicochemical parame-

ters critical for pharmacokinetics (Morphy & Rankovic, 2006).

However, even if desired scaffolds, fingerprints, or templates

were discovered with preferred polypharmacological profiles, the

optimization processes will consume precious resources to result

in clinically usable candidates.

In conclusion, medicinal polypharmacology allows for the

development of novel therapeutic strategies by multitarget disrup-

tion of crosstalk, feedback, and resistance of redundant pathways

within the proteome. Additionally, it supports our understanding of

the distinctive role of yet under‐explored individual drug targets in a

vastly growing opportunity space for target druggability. To harness

the immense power of the polypharmacolome, two major goals are:

1. The identification of privileged ligands and their subjection to

drug and/or target (class) repurposing and target hopping

approaches to (i) synergize with effects coming from the

modulation of multiple targets (Anighoro et al., 2014; Proschak

et al., 2019); (ii) gain an anchor point to explore yet undruggable

targets (Kim et al., 2014; Korcsmáros et al., 2007; Paolini

et al., 2006); and (iii) use these anchor points for a fast targeted

development of urgently needed drugs (e.g., pandemic events).

2. The identification of multitarget fingerprints (“superpatterns”) to

explore chemical and synthesis space to achieve both: (i) the

discovery of structurally distinctive and functionally novel hit
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molecules with improved polypharmacological profile (Stefan

et al., 2022, Stefan et al., 2023). Structural distinctiveness

represents originality which is a prerequisite for patents.

Functional novelty (identification of alternative modes‐of‐action,

e.g., activation, allosteric modulation, correction, potentiation,

etc.) can particularly be discovered in (almost infinite) chemical

space where the associated bioactivity space is multidimensional

(Namasivayam, Stefan, Gorecki, et al., 2022), and thus, may

contribute to advances in therapy; and (ii) the gain of crucial

knowledge to circumvent off‐target effects to profile drug safety

including an accurate risk assessment (Anighoro et al., 2014).

The ensemble of (i) a large‐scale biological assessment platform;

(ii) structural biology techniques; and (iii) advanced computational

ligand‐ as well as structure‐based prediction methodologies will allow

for the exploration and medical exploitation of yet undiscovered,

under‐studied, and under‐explored drug targets of the future.
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