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Abstract: Industrial monitoring relies on reliable and resilient systems to cope with unforeseen and changing envi-
ronmental factors. The identification of critical conditions calls for efficient feature selection and algorithm
configuration for accurate classification. Since the design process depends on experts who define parameters
and develop classification models, it remains a time-consuming and error-prone task. In this paper, we suggest
an evolutionary learning approach to create filter pipelines for machine health and condition monitoring. We
apply a method called Cartesian Genetic Programming (CGP) to explore the search space and tune parameters
for time series segmentation problems. CGP is a nature-inspired algorithm where nodes are aligned in a two-
dimensional grid. Since programs generated by CGP are compact and short, we deem this concept efficient
for filter evolution and parameter tuning to create performant classifiers. For better use of resources, we in-
troduce a dependency graph to allow only valid combinations of filter operators during training. Furthermore,
this novel concept is critically discussed from a efficiency and quality point of view as well as its effect on
classifier accuracy on scarce data. Experimental results show promising results which - in combination with
the novel concept - competes with state-of-the-art classifiers for problems of low and medium complexity.
Finally, this paper poses research questions for future investigations and experimentation.

1 INTRODUCTION

Production environments depend on reliability and
performance of machinery throughout the workflow
to ensure a high level of efficiency, quality, and out-
put, to meet customers’ needs. Over the course of
their operational lifespan, machine elements experi-
ence degradation resulting from physical impacts and
varying external conditions. Without countermea-
sures, these effects lead to unexpected failures with
possibly catastrophic consequences for the process
built around these elements. As an intermediary, con-
dition monitoring (CM) allows production machines
to run within a defined tolerance window. CM enables
engineers to closely monitor key parameters along the
processing chain and obtain an up-to-date overall pic-
ture of the state of the entire production cycle. For the
manufacturing industry, detecting oncoming machine
faults helps to reduce unplanned downtime, minimize
repair effort and even decrease replacement expenses.
Furthermore, companies can minimize costs of equip-
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ment failures by planning ahead and timing procure-
ment. Hence, CM becomes an essential factor in op-
timizing operational efficiency. Parameters that can
be measured to monitor the production environment
comprise engine power, valve states and pressure of
steering fluids, to name a few.

In this paper we will consider the following parts
in particular: valve states of a hydraulic system and
eddy current data of aluminum surface structures.

As part of CM, Digital Signal Processing (DSP)
employs signal filters to detect critical states in real-
time, enabling failure prediction and maintenance
scheduling. However, designing CM systems remains
complex due to the need for individual parameterized
filters. For this purpose, we propose an Organic Com-
puting (OC) approach, employing evolutionary learn-
ing for automated digital filter design. OC (Müller-
Schloer and Tomforde, 2017) represents a design
paradigm using nature-inspired concepts. The evo-
lution of filters is set out to allow for predicting criti-
cal states in machine parts, using Cartesian Genetic
Programming (CGP) for feature selection and OC
principles, denoted self-x properties. More precisely,
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the approach is deemed to be self-configuring, self-
learning and self-optimizing, thereby employing core
principles of OC on signal processing.

As part of CM, we also consider eddy current test-
ing of carbon fiber reinforced plastics (Matvieieva
et al., 2018; Bardl et al., 2018) and the adaption of
signal filters for depth inspection. In this regard, CM
represents a preliminary step to anticipate production
downtime and unscheduled replacement of parts by
employing reactive, preventive and predictive main-
tenance.

1.1 Related Work

Various other works have concentrated on automating
the CM procedure. However, to the best of our knowl-
edge, the authors have not encountered any relevant
publications on filter evolution beyond those already
mentioned. Yang et al. presented a CM approach
for rolling-element bearings using envelopes (Yang,
2015). In the machine learning related fields of re-
search, Miller et al. introduced Cartesian Genetic Pro-
gramming (CGP) as a derivative of genetic program-
ming, initially to evolve electronic circuits (Miller
and Thomson, 2000). Subsequent work identified
great potential of CGP for learning Boolean functions
(Miller, 1999) or designing executable FPGA circuits
(Sekanina et al., 2011). Since then, several variants of
CGP have been proposed and employed in different
areas of application (Miller, 2019).

Glette et al. (Glette et al., 2008) presented an
overview on evolutionary hardware (EHW) for clas-
sification tasks discussing the potential for digital sig-
nal processing. Following studies were dedicated to
the classification problem of hand prostheses move-
ments with evolutionary algorithms by Boschmann et
al. (Boschmann et al., 2009). Kaufmann et al. (Kauf-
mann et al., 2012) compared different classifiers for
electromyography signals using EHW. Also, Jack et
al. (Jack and Nandi, 2000) proposed a method for fea-
ture selection with GA in condition monitoring. In
a DSP related but theory based work, Hammami et
al. (Hammami et al., 2018) proposed a filter-wrapper
for feature construction using evolutionary learning.

1.2 Structure

The remainder of this paper is structured as follows:
We start by introducing the applications in Section 1
and continue by defining the adaptation of CGP for
evolutionary learning of signal filters in Section 2. In
the following Section 3 we describe the experimental
setup in which we elaborate on the datasets we used
for testing our hypotheses. We then discuss the re-

sults in Section 4 and conclude with an overview of
future applications, their potential, and research goals
in Section 5.

2 APPROACH

CM is set to monitor parameters of a machine’s con-
dition, e.g., temperature, vibration, or position. The
underlying data is usually derived from analogue sen-
sors and converted to the digital domain. In order to
evaluate a machine’s state, several parts of the same
device have to be monitored at once and analyzed.
Data processing relies on either statistical approaches
(e.g., tolerance, pre-defined parameters, probabilis-
tic methods) or machine learning techniques. In this
study, CM is employed to eddy current and valve sen-
sors to demonstrate how reliable classifiers can be de-
signed to identify critical states or make predictions
for emerging operational faults.

2.1 Design of Digital Filters

The design workflow for DSP pipelines can be di-
vided into six stages: (1) signal acquisition, (2) AD
conversion, (3) digital filtering, (4) feature selection,
(5) dimensionality reduction and (6) classification.
For stages 1 and 2, the system components, i.e. sen-
sors and converters as well as interfaces vary with the
technical environment. In the digital domain, though,
signal data can be represented in the time and fre-
quency domain and analyzed in different dimensions.
This paper takes only stages 3 to 6 into account. Sig-
nal and filter requirements share common character-
istics: 1) discrete vs. continuous nature, 2) multidi-
mensionality (channels, locality, intensity), 3) high-
volume data, and 4) their reproducibility. When deal-
ing with continuous signals, isolating the core fre-
quency is vital due to signal overlays from neighbor-
ing parts, resonances, and noise. Adding filter nodes,
such as low-pass or wave rectifiers, to the pipeline al-
lows cleaning and preparation for further processing.
Digital filters can be categorized as finite impulse re-
sponse (FIR) or infinite impulse response (IIR). For
signal filter applications that meet requirements such
as noise suppression, cutoff frequency, and pass band
matching, as well as anomaly detection, we propose
an approach utilizing CGP for evolutionary filter de-
sign. The methodology renders algorithm develop-
ment self-configuring and self-adaptive, as elaborated
in Section 2.2.

Filter Evolution Using Cartesian Genetic Programming for Time Series Anomaly Detection

301



2.2 Adaptation of Cartesian GP

2In general, CGP is an evolutionary algorithm that
represents programs as a directed acyclic graph
(DAG) with nodes arranged in rows and columns on a
Cartesian grid. In this section, we outline an approach
for grouping DSP filters to avoid non-executable con-
nections but allow all remaining valid combinations.
Regular CGP employs a two-dimensional grid to rep-
resent the genotype. Three general node types are
used for training: input nodes, function nodes, and
output nodes. All function nodes F are positioned on
the grid and can be connected using vertices to form
the DAG. However, not every node needs to be linked
to an output node, making them non-coding genes.
During training, a high number of nodes remain inac-
tive, which has been found to increase the probability
of evading local optima (Turner and Miller, 2015;
Cui et al., 2023), partly because it allows more neu-
tral genetic drift and favors genetic diversity. Typi-
cally, the genotype exhibits a significant number of
non-coding genes that have no impact on the pheno-
type. This property allows for greater variation in the
underlying encoding during training. The program P
is defined as follows:

P := {G, i,o,n,F f ,r,c, l} (1)

In the set, G represents the genotype, while the num-
ber of inputs and outputs of each pipeline are denoted
by i and o. The grid is limited by indices r and c which
indicate the number of rows and columns, adding up
to n nodes. This constraint helps mitigate genetic
bloat. The encoding is represented as a sequence of
operator nodes as can be seen in Figure 1.

Except for the levels back parameter l, regular
CGP configurations do not impose constraints on the
order of successive operators, generating a theoreti-
cally large number of invalid solutions in early gen-
erations. In some previous studies, the possible com-
binations between operators were considerably lim-
ited, as presented by (Margraf et al., 2017). For the
sake of efficient search space exploration, we suggest
to apply limitations only to prevent invalid solutions
during evolution. However, the configuration should
allow any executable filter combination to preserve
the probability of identifying an optimum. Therefore,
any data that has been processed by one operator and
passed to the next must carry enough information for
reasonable filtering. F consists of f functions form-
ing the search space, while l denotes the levels back
parameter. Similar to the modifications proposed by
(Margraf et al., ress) for image processing, we in-
troduce a Dependency Graph DG(T,EDG) with op-
erator type set T and connections EDG with operator
types Ti ∈ T with i = 1, . . . ,n. The dependency graph

is applied to the columns and thereby defines which
columns can be associated with a column under con-
sideration. Each node in the dependency graph rep-
resents a column in the grid. To pool the node types,
we introduce a program P′, derived from P which is
defined as follows:

P′ = {F,T,G,r} (2)
The number of layers contained in the graph G

implicitly define the number of columns c, there-
fore P′ does directly depend on c. The height of G
equals its number of columns c and its size, thereby:
c = |G|= height(G). Unlike earlier implementations
(Leitner et al., 2013)), the arity a of each function
varies according to its precondition, allowing to mu-
tate each parameter of a function, therefore:

a = max(#Inputs(Fi)) (3)
For the evaluation of DSP filter pipelines, the fit-

ness will be defined as a candidate solution’s accuracy
on the training data. More precisely, for the set of la-
beled training feature vectors X = (x, l) j the fitness of
an evolved filter pipeline p is defined by Matthew’s
correlation coefficient (MCC). MCC represents the
intersection between ground truth and prediction for
each series in the series-label pair and is established
as:

T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N +FP)(T N +FN)

(4)
This metric allows to accurately reflect the qual-

ity of binary classifications, particularly when deal-
ing with imbalanced datasets. Unlike related met-
rics, it effectively considers the ratio between positive
and negative elements, resulting in a more conclusive
evaluation. In this case, false classification is not di-
rectly penalized.

2.3 Processing Pipeline Specifications

The training yields executable chains of operators de-
noted ‘processing pipelines’. They consist of opera-
tors and their directed connections and represent ex-
plicit components in the data flow, equivalent to phe-
notypes in classical CGP. Figure 2 depicts a sample
pipeline represented as a graph with a Threshold op-
erator that outputs predictions. The left branch ap-
plies the square root of each value on input time se-
ries, while the right branch transforms the time series
with FFT and computes a Lowpass to attenuate fre-
quencies before inversing to the time domain.

DG is designed to accommodate repetitions of the
core graph. This flexibility is achieved through the
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Figure 1: Illustration of a CGP encoding for genotype G and phenotype P, visualizing the flow of information from input
nodes through non-coding (dashed border) and active nodes to the output nodes; in the bottom row, the operator type is
depicted which follows the definition given by dependency graph DG.

Figure 2: Sample pipeline with filter operators.

configuration of a hyperparameter called cycled N,
where N represents the number of repetitions of the
predefined initial graph. By setting the cycled N
value, the number of columns c in the graph can be
derived in a forward manner, directly from the graph
configuration. This way, DG becomes scalable by set-
ting one parameter. The extension is introduced to
steer transformation between the time and frequency
domain, as they only yield valid solutions, if a trans-
formation in one direction is reversed before connect-
ing to the output operator. The simplest solution to en-
force this rule would have been to only allow one fil-
ter operation between the transformations. The same
issue occurs for forked operator pipelines that run
parallel to each other, as it is the case for ScipySqrt
in Figure 2. For each forked pipeline, a join node

TwoSignalsToSignal has to be defined. In order to
allow more complex operator combinations while at
the same time setting a limitation to a potentially in-
creasing pipeline length, we introduced the parameter
cylced N that prevents genetic bloat in the original
sense of CGP.

Figure 3: Dependency Graph configuration with 2 cycles.

The proposed adaptation of CGP enables the gen-
eration of filter pipelines to accurately segment sec-
tions in time series data exhibiting anomalies or de-
fects. However, for multi-class differentiation, the
pre-segmented time series data needs to be further
processed using subsequent classifiers. For this pur-
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pose, common state-of-the-art classification models,
e.g. Artificial Neural Networks (ANN), k-Nearest
Neighbors (k-NN), Support Vector Machine (SVM),
Decision Trees (DT), Bayesian classifiers, Gaussian
mixtures or Hidden Markov Models can be applied.
This is, however, not part of this study, but we en-
courage the community to pursue future research in
this direction.

3 VALIDATION

In order to demonstrate the viability of signal filter
evolution by means of CGP, we tested the adapted al-
gorithm on real-world data from a) a lab-based eddy
current testing sensor and b) a hydraulics test stand
dataset proposed by (Helwig et al., 2015). The first
dataset was created in our lab using an aluminum rod
and eddy current sensor. The latter presents a proof of
concept to demonstrate automated training of a CM
application with several fault scenarios for both fixed
and random hydraulic load cycles.

3.1 Experimental Setup

An eddy current sensor operates based on the prin-
ciple of electromagnetic induction, where a changing
magnetic field induces eddy currents in a conductive
material. These eddy currents generate a secondary
magnetic field that interacts with the sensor, allowing
for the detection of conductivity, thickness or surface
defects. The sensor consists of a closed coil through
which the measured object is passed. For our experi-
ment, an aluminum rod with nuts and 8 successively
arranged grooves of different thickness was moved
through the sensor while recording the data as shown
in Figure 4. This figure plots distance (x-axis in mm)
against normalized impedance output (y-axis), show-
ing how eddy currents induced in a conductive object.
The surface variations serve as known anomalies to
trigger sharp deflections in the signal data. With the
aid of the defect positions marked with dashed lines
on the calibration tube. The eddy current signal de-
flections can be mapped to specific test defects.

In Helwig et al.’s study, four typical faults of a hy-
draulic system were simulated and recorded as mea-
surement data. The resulting dataset contains time se-
ries data and corresponding labels, and is therefore
well-suited to benchmark classification models. The
test setup comprises a primary working circuit and a
secondary cooling and filtering circuit connected via
an oil tank. In repetitive 60-second load cycles, mea-
surement data such as pressure, flow rate, and tem-
peratures are recorded at various locations in the cir-

Figure 4: Rendering of the aluminum calibration rod and
eddy current signal allocation of the surface with deflections
labelled as anomalies with a red overlay.

cuit while the state of four components (pump, cooler,
valve, and accumulator) is quantitatively modified.
Our proposed configuration was tested on valve val-
ues because the anomalies appearing in the readings
were of the most explicit among the sensor data.

The algorithm was entirely implemented using the
signal sub-package of the SciPy python library1. This
is reflected in the names of some filter operators. For
the conducted experiments, we introduced variations
in key parameters, namely the scipy series length ssl,
the number of rows r, and the cycle configuration of
the dependency graph DG denoted cycled N, which
affects the number of columns c. The parameter ssl
defines the length of the series batch utilized for fil-
tering in one operation that is sequentially performed.

Subsequently, we conducted the experiments us-
ing 6 distinct hyperparameter settings for N and ssl
and 4 variations of r, resulting in the generation of
144 data tuples for the hydraulic valve data. For the
eddy current dataset, only 5 variations of ssl were
applied, which returned 120 tuples. All experiment
data were collected with particular emphasis on the
MCC fitness score, which ranges between 0 and 1.
We minimize the fitness value, which means a fitness
of 1 indicates a perfect solution. The evolved oper-
ator pipelines were compared against state-of-the-art
filters and evaluated through time series segmentation
tasks.

3.2 Comparison of Hyperparameters

The top heatmap plot in Figure 5 illustrates the MCC
fitness values corresponding to various configurations
of cycled N, the number of rows r, and the series
length ssl. Similarly, the bottom plot presents the
rows r associated with each dependency graph con-

1see https://scipy.org/
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Figure 5: Fitness values achieved on valve data of the hy-
draulic system for parameters ssl, rows and cycled N.

figuration DG, ssl, and their respective mean fit-
ness values MCC. In contrast, Figure 6 depicts
the results for the eddy current measurement data.
They provide visualizations of dependencies among
the same four parameters. A range of edge cases
was tested for cycled N, including values of N ∈
{2,5,10,20,40,60}, as well as varying numbers of
rows r ∈ {0,50,500,5000}, and series lengths ssl ∈
{6k,18k,30k,60k,120k,300k}. The intervals were
chosen to reveal potential trends while balancing
computational time and effort. Despite an initial ex-
amination not revealing a clear pattern, the obtained
results display significant heterogeneity. In the fol-
lowing section, we will critically analyze the con-
ducted experiments.

Figure 6: Fitness values achieved on calibration rod scan
data for parameters for ssl, rows and cols.

As illustrated in Figure 6, the fitness fMCC of
the eddy current filter pipelines achieves values for
fMCC > 0.5. However, despite the overall high fit-
ness results observed across various hyperparameter

settings, the range still varies from 0.5 < fMCC < 0.8.
It is worth noting that one particular experiment en-
countered failure due to an assignment error for ssl =
150,r = 5000,N = 60. On the other hand, the sec-
ond experiment conducted on the hydraulic data test
demonstrates a more diverse range of fitness values.
This wider range spans between 0.2 < fMCC < 1.0 for
the given set of parameters. Additionally, it is impor-
tant to mention that in this experimental setup, too,
three experiments failed due to assignment errors for
ssl = 12k,r = 50,N = {2,5,10}. Nevertheless, the
results allow for a thorough assessment of the param-
eters for signal filtering using CGP.

4 RESULTS AND DISCUSSION

This section presents a detailed account of the find-
ings and offers critical reflections on the results ob-
tained through this approach.

4.1 Evaluation of Experiments

The test rod data exhibits clear anomalies in the sig-
nal, which can be effectively analyzed using con-
cise and compact filter programs, as can be seen
in our experiments. Through the evolutionary pro-
cess of CGP, favorable fitness values are consistently
achieved, generating filter pipelines that contain at
most 8 operators for both datasets. For the experi-
ments, the number of generations was set to 150 with
10 iterations. Although this experimental setup repre-
sents a straightforward and low-complexity problem,
it demonstrates the successful utilization of CGP to
evolve compact pipelines with varying hyperparame-
ters.

Upon visually examining the parameter plots, it
appears that smaller values of ssl tend to yield better
results. An analysis of the specific Pearson r corre-
lation allows for more objective insights. The cor-
relation between the mean fitness and the ssl shows
a weak but measurable positive correlation, with a
Pearson r of ρ(ssl,µ f it) > 0.3. This indicates that,
as the series length decreases, the potential fitness in-
creases. There are several potential reasons for this
effect. One possibility is that longer series introduce
higher complexity, requiring more powerful opera-
tors. However, CGP is specifically designed to han-
dle problems with lower complexity. This observa-
tion suggests that trainings should be performed with
ssl < 6000. It should be mentioned that the valve
dataset labels were transformed to binary classifica-
tion (OK / NOK) although the original labels distin-
guish between 4 fault types. The class definitions
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were merged to one class to train for one pipeline.
Since several fault types appear in the label data that
substantially differ from each other potentially in-
creases the segmentation complexity.

4.2 Analysis and Interpretation

In general, the MCC fitness achieved on the eddy cur-
rent dataset reached favorable MCC values indepen-
dent of the hyperparameter settings. Although the
dataset contains anomalies with a comparably large
deflection that is supposedly easy to filter, the ex-
periments suggest that the CGP configuration allows
evolving compact and well-suited filter pipelines.
This is noteworthy because an obvious use case for
filter pipeline evolution is the preprocessing of raw
signal data before passing it to a more complex clas-
sification model.

Figure 7: Fitness evolution of the best run on the hydraulic
valve dataset.

For one run on the hydraulic valve data, we ob-
served a remarkable top scorer with an fMCC = 0.99,
which is already considered high. As Figure 7 shows,
a significant leap appears in the early stages of the
evolution appeared for experimental runs that yield
high fitness. This pattern suggests that it would be
more efficient to evaluate the evolving pipelines on
a small subset of training data initially, as improve-
ments can be achieved more efficiently with fewer
data points. As the generations progress, the eval-
uation set can be gradually expanded to encompass
the full-scale dataset for comprehensive assessment.
This approach would save valuable time during the
early stages. Additionally, an alternative strategy in-
volves computing similarities and analogies between
datasets, training on multiple representative datasets,
and logging the results. Once the dataset reaches
a certain size, efforts can be made to find a suit-
able match and initiate the evolution with ‘pretrained’
pipelines to attain a higher fitness state.

5 CONCLUSION

CM and PdM to hold significant potential for enhanc-
ing efficiency, due to its high impact in continuously
running production systems. In environments with
tightly linked schedules that leave little room for un-
foreseen incidents, maintenance shutdowns set free a
chain of complications. The risk for economical dam-
age increases at the same rate as the probability of
failures of wear parts while it becomes even less pre-
dictable. Therefore, CM will help to keep track of ma-
chine conditions and helps to evaluate possible risks
more precisely.

5.1 Summary

We presented an evolutionary learning approach for
filter evolution to process signal and time series data
and detect anomalies or remove noise. The proposed
CGP adaptation employed on time series data from
different industrial applications show promising re-
sults for filter pipeline evolution, specifically for em-
bedded applications or preprocessing in combination
with subsequent classifier models. Since data streams
from both valve and eddy current sensors were con-
verted to time series, we use a widespread data rep-
resentation that can be found throughout CM applica-
tions. Despite the popularity of ANNs, evolutionary
algorithms still exhibit a substantial advantage: the
dependency from large training sets is less severe. It
should be emphasized that other physical data will
likely enhance the success of predictive maintenance,
as suggested in this paper. Ultimately, we plan to ex-
amine the detection accuracy for different samples of
condition sensors to evaluate a wider product range.

The adaption of CGP for evolving signal filters
is regarded as an implementation encompassing both
the principles of Automated Design of Processing
Pipelines (ADPP) and Life Long Learning (Stein
et al., 2018). Since these concepts coincide with
Automated Algorithm Design (AAD) and Automated
Algorithm Configuration (AAC), there will be future
effort to integrate evolutionary learning for DSP into
ADPP.

5.2 Outlook

By evolving compact filter pipelines for industrial sig-
nal data, the efficiency of monitoring systems is in-
creased. Research work should be continued in this
spirit by conducting experiments with smaller search
spaces. This would allow for a deeper understand-
ing of how fitness evolves. Also, single operators
should be improved to target specific filter problems.
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However, the use of further classification models, es-
pecially more complex machine learning algorithms,
was not examined. Employing further machine learn-
ing models to classify the preprocessed signal data
can increase the accuracy of anomaly detection and
classification. We encourage the community to ex-
plore the potential of CGP when interacting with re-
lated ML techniques, e.g. by evolving filter programs
for data preparation and cleansing before the actual
classification. In industrial applications, this approach
constitutes a promising concept for future OC efforts
with high potential. The adaptation of CGP allows
integrating self-optimizing signal filtering in exist-
ing condition monitoring systems. This approach can
help advance the digitalization of production lines in
the manufacturing industry to enhance efficiency, re-
duce scrap and optimize processes.
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