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Abstract
Hyperproperties are correctness conditions for labelled transition systems that are more expressive
than traditional trace properties, with particular relevance to security. Recently, Attiya and Enea
studied a notion of strong observational refinement that preserves all hyperproperties. They analyse
the correspondence between forward simulation and strong observational refinement in a setting
with only finite traces. We study this correspondence in a setting with both finite and infinite traces.
In particular, we show that forward simulation does not preserve hyperliveness properties in this
setting. We extend the forward simulation proof obligation with a (weak) progress condition, and
prove that this weak progressive forward simulation is equivalent to strong observational refinement.
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1 Introduction

Linearizability [19] has become a standard safety condition for concurrent objects that access
shared state. Golab, Higham and Woelfel [13] however showed that linearizability does not
preserve probability distributions in randomised algorithms. They therefore proposed a notion
called strong linearizability, which unlike linearizability, must use the same linearization
order for every prefix of a linearizable history. Strong linearizability allows consideration of
concurrent objects in the presence of adversaries and can – amongst others – be used to show
the preservation of security properties. Here, the adversary is modelled by an adversarial
scheduler, which plays the role of a strong adversary [1].

Our security properties of interest are hyperproperties [5], which are properties over sets of
sets of traces (analogous to trace properties, which are over sets of traces). Hyperproperties
allow characterisation, for instance, of information flow properties such as non-interference
and observational determinism. Like trace properties, which can be characterised by a
conjunction of a safety and a liveness property, every hyperproperty can be characterised
as the conjunction of a hypersafety and hyperliveness property. For instance, as observed
by Clarkson and Schneider [5], observational determinism [33] is a hypersafety property,
possibilistic information flow [23] is a hyperliveness property, and Goguen and Meseguer’s
noninterference property [12] is a conjunction of a hypersafety and hyperliveness property.
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Attiya and Enea [2] revisited preservation of hyperproperties in the context of concurrent
objects and proposed a generalisation of strong linearizability called strong observational
refinement. They showed that strong observational refinement preserves all hyperproperties,
when replacing an abstract library specification, A, by a concrete library implementation,
C, in a client program, P . Here, C strongly observationally refines A iff the executions of
any client program P using C as scheduled by some scheduler cannot be observationally
distinguished from those of P using A under another scheduler1.

A second claim in [2] is that forward simulation [22] is equivalent to strong observational
refinement, i.e., it is both necessary and sufficient. The claim is motivated with examples
using (hyper)safety properties, however it raises questions for (hyper)liveness. It turns
out, that the study of strong observational refinement and forward simulation by Attiya
and Enea is in the restricted setting of finite traces2, though this restriction is unclear in
their paper [2]. Thus, all hyperproperties considered by Attiya and Enea are hypersafety
properties, which leaves out a large class of hyperproperties. We described the problem,
namely that forward simulation does not preserve hyperliveness properties in out recent
brief announcement [8]. There, we also proposed a new condition called progressive forward
simulation that strengthens forward simulation so that it preserves all hyperproperties
through refinement (i.e., progressive forward simulation is a sufficient condition).

Our point of departure for this paper is the question in the other direction: “Is progressive
forward simulation necessary for strong observational refinement?” The answer, it turns out,
is no! As we shall see in §4.1, it is possible for a concrete object to be a strong observational
refinement of some abstract object, yet for there to be no progressive forward simulation
between them.

Contributions

In this paper, we present a relaxation of progressive forward simulation that is both necessary
and sufficient. Our main contribution therefore is a new result that closes the gap between
strong observational refinement and a corresponding proof technique between concurrent
objects. In particular, we provide, for the first time, a stepwise technique that coincides with
a notion of refinement that preserves all client-object hyperproperties.

Overview

In §2 we present our main example to demonstrate the inadequacy of forward simulation for
hyperliveness properties. §3 presents the formal background and recaps the key definitions
and prior results. §4 motivates and defines weak progressive forward simulation, which we
prove to be both sufficient (§5) and necessary (§6) for strong observational refinement.

2 Motivating Example

We start by giving an example of an abstract atomic object A and a non-atomic implementa-
tion C such that there is a forward simulation from C to A, but hyperliveness properties are
not preserved for all schedules.

As the atomic abstract object A we choose a fetch-and-inc object with just one operation,
fetch_and_inc(), which increments the value of a shared integer variable and returns the

1 Both of these schedulers are additionally required to be admissible and deterministic (see §3.2).
2 Private communication
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int* current_val initially 0

int fetch_and_inc ():
F1. do
F2. n = LL(& current_val )
F3. while (!SC(& current_val , n + 1))
F4. return n

Figure 1 A fetch-and-inc implementation with a nonterminating schedule when LL and SC are
implemented using the algorithm of [20].

value of that variable before the increment. Let P be a program with two threads t1 and t2,
each of which executes one fetch_and_inc operation and assigns the return value to a local
variable of the thread. Clearly, for any scheduler S, the variable assignment of both threads
will eventually occur. This “eventually” property can be expressed as a hyperproperty.

Now, consider the fetch-and-inc implementation presented in Figure 1. This implemen-
tation uses the load-linked/store-conditional (LL/SC) instruction pair. The LL(ptr)
operation loads the value at the location pointed to by the pointer ptr. The SC(ptr,v)
conditionally stores the value v at the location pointed to by ptr if the location has not
been modified by another SC since the executing thread’s most recent LL(ptr) operation. If
the update actually occurs, SC returns true, otherwise the location is not modified and SC
returns false. In the first case, we say that the SC succeeds. Otherwise, we say that it fails.

Critically, we stipulate that the LL and SC operations are implemented using the algorithm
of [20]. This algorithm has the following property. If thread t1 executes an LL operation, and
then thread t2 executes an LL operation before t1 has executed its subsequent SC operation,
then that SC is guaranteed to fail. This happens even though there is no intervening
modification of the location.

Now, let C be a labelled transition systems (LTS) representing a multithreaded version of
this fetch_and_inc implementation, using the specified LL/SC algorithm3. Figure 2 gives
a sketch of this LTS, detailing just the most important actions. Consider furthermore the
program P (above) running against the object O1. A scheduler can continually alternate the
LL at line F2 of t1 and that of t2 (with some executions of F3 in between), such that neither
fetch_and_inc operation ever completes (see the blue arrows in the LTS). Therefore, unlike
when using the A object, the variable assignments of P will never occur, so the C system
does not satisfy the hyperproperty for all schedulers.

There is, however, a forward simulation (see Definition 3.2) from C to A. Therefore,
standard forward simulation is insufficient to show that all hyperproperties are preserved.

3 Background

Notation. Let ξ and ξ′ be sequences. The empty sequence is denoted ε and the length of
ξ denoted #ξ. We write ξ ⊑ ξ′ (similarly, ξ ⊏ ξ′) iff ξ is a prefix (similarly, proper prefix)
of ξ′. Assuming m < n ≤ #ξ, we write ξ<n for the prefix of ξ of length n and ξ[m] for the
element of ξ at index m. Thus, ξ<0 = ε, and if n > 0, ξ<n = ξ[0] · ξ[1] · ξ[2] · · · ξ[n − 1]. If ξ

is finite, we let last(ξ) be the last element of ξ, i.e., last(ξ) = ξ[#ξ − 1]. For a set S, let ξ|S

3 There are several ways to represent a multithreaded program or object as an LTS, e.g., [21, 28].
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Figure 2 Sketch of labelled transition system for the example in Fig. 1 for threads t1 and t2

calling fetch_and_inc once (LLi action for execution of F2 by thread ti, SCi for F3 when the SC
returns true, !SCi when it returns false, i ∈ {1, 2}).

be the sequence ξ restricted to elements in S. We lift this to sets of sequences and define
T |S = {ξ|S | ξ ∈ T}. Let xω = x · x · x · · · be the infinite sequence comprising the element x.

3.1 LTSs, refinement and forward simulation
We describe (concurrent) systems by labelled transition systems (LTSs). An LTS L =
(Q, Qini, Σ , δ) consists of a (possibly infinite) set of states Q, an alphabet Σ of actions, initial
states Qini ⊆ Q and a transition relation δ ⊆ Q × Σ × Q. We say that an action a is enabled
in state q iff there exists a state q′ such that (q, a, q′) ∈ δ. Labelled transition systems give
rise to (finite or infinite) runs which are alternating sequences q0 · a1 · q1 · a2 · . . . of states
and actions with (qi, ai+1, qi+1) ∈ δ. We also write q0 −a1...an−−−−→ qn if there is a finite run
q0 · a1 · q1 · · · an · qn. In particular, q −ε→ q. A run is an execution of an LTS L if q0 ∈ Qini.

A trace is the sequence of actions of an execution and the set of traces of an LTS L
is denoted T(L), which may be partitioned into finite traces, denoted Σ∗, and infinite
traces, denoted Σω. We use σ ∈ Σ∗ and π ∈ Σω when refering to finite and infinite traces,
respectively, and ρ ∈ T (L) to refer to a trace that may be finite or infinite. Note that for
any L, T (L) is prefix closed.

An LTS is step-deterministic if it has a single initial state (i.e., Qini = {qini}), and for
every state q and action a, if q −a→ q′ and q −a→ q′′ then q′ = q′′. Step-determinism implies
that each trace corresponds to a unique run; if the trace is finite then there is at most one
state q′ such that qini −σ→ q′. In this case, we let state(σ) denote q′.4

Like [2], we use step-deterministic LTSs to describe objects and the programs that use
these objects. The terms “object” and “program” are taken from [2], the object describing a
library (e.g. of a data structure) and the program using this library by calling operations of it.
To define interfaces between objects and programs, we partition the actions of an LTS into
internal and external actions. Objects offer operations to their environment which can be
invoked (by programs) using an external invocation action from a set I with a corresponding
external response action from a set R. For this paper, the exact form of invocation and
response actions is unimportant. Besides invocations and responses, an object may have
further internal actions used to implement the operations.

A program uses objects by invoking their operations and waiting for the corresponding

4 Note that a step-deterministic LTS differs from the notion of a deterministic automaton of Lynch and
Vaandrager [22]. Attiya and Enea simply refer to step-deterministic LTSs as deterministic LTSs [2].
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responses. Thus, if P is an LTS corresponding to a program its actions can be partitioned as
follows: ΣP = I ∪̇ R ∪̇ ΓP , where ∪̇ is a disjoint union and ΓP is the set of program actions.
The composition of a program with an object is formally defined as the product of two LTSs.

▶ Definition 3.1 (Program-object composition). Suppose that P = (QP , Qini
P , ΣP , δP) and

O = (QO, Qini
O , ΣO, δO) are LTSs. The product of P with O, denoted P × O, is the LTS

(Q, Qini, Σ , δ) with
Q = QP × QO, Qini = Qini

P × Qini
O , Σ = ΣP ∪ ΣO, and

δ =
⋃

a∈ΣP ∩ΣO
{(qP , qO) −a→ (q′

P , q′
O) | qP −a→P q′

P ∧ qO −a→O q′
O} ∪⋃

a∈ΣP \ΣO
{(qP , qO) −a→ (q′

P , qO) | qP −a→P q′
P } ∪⋃

a∈ΣO\ΣP
{(qP , qO) −a→ (qP , q′

O) | qO −a→O q′
O}

Note that ΣP ∩ ΣO in our case will typically be I ∪ R.
An object can either be an abstract (often sequential) specification (denoted LA or simply

A) or a concrete implementation (denoted LC or C). A history of an LTS is a sequence ρ|∆,
where ρ is a trace of the LTS and ∆ ⊆ Σ is the set of external actions. We formally relate
the behaviours of A and C by comparing their histories. We say C is a ∆-refinement of A iff
T (C )|∆ ⊆ T (A)|∆. One can establish ∆-refinement between C and A by proving forward
simulation between the systems.5

▶ Definition 3.2 (Forward simulation). Let C and A be two LTSs with sets of actions ΣC and
ΣA, respectively, and let ∆ ⊆ ΣC ∩ ΣA. A relation F ⊆ QC × QA is a ∆-forward simulation
from C to A iff both of the following hold:
Initialisation. (qini

C , qini
A ) ∈ F ,

Simulation step. For all (qC , qA) ∈ F , if qC −a→C q′
C then there exist σ ∈ Σ∗

A and q′
A ∈ QA

such that a|∆ = σ|∆, qA −σ→A q′
A and (q′

C , q′
A) ∈ F .

Note that σ in the above definition may be ε in which case the condition a|∆ = σ|∆ reduces
to a|∆ = ε. In this case, the proof obligation for the simulation step forms a triangular
diagram. For instance, in Figure 4, the step executing τ3 forms such as diagram.

▶ Lemma 3.3 (Lynch [21]). If there is a ∆-forward simulation from C to A, then T (C)|∆ ⊆
T (A)|∆.

3.2 Strong Observational Refinement
Attiya and Enea [2] have proposed the notion of strong observational refinement, which is a
strengthening of refinement (and generalisation of strong linearizability [13]) that preserves
all hyperproperties. Strong observational refinement is defined in terms of an adversary and
is modelled by a scheduler that is assumed to have full control over a step-deterministic
LTS’s execution.

Formally, a scheduler for an LTS is a function S : Σ∗ → 2Σ that determines the next
action to be executed based on the sequence of actions that have been executed thus far. A
trace ρ is consistent with a scheduler S if ρ[n] ∈ S(ρ<n) for all n < #ρ. We write T (L, S)
for the set of traces of L that are consistent with S. A scheduler is admitted by an LTS L if
for all finite traces σ of L consistent with S, the scheduler satisfies
1. S(σ) is non-empty and
2. all actions in S(σ) are enabled in state(σ).

5 It is well known that forward simulation is sound for proving refinement, but completeness requires
both forward and backward simulation [7, 22].

CONCUR 2022
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The scheduled traces in T (L, S) can alternatively be viewed as the traces of a product
L × LTS(S), where LTS(S) is an LTS generated from S with set of states Σ∗; initial state ε;
and transitions σ −a→ σ · a, where a ∈ S(σ).

In addition to being admissible, the schedulers we consider (for the combination of
program with object, P × O) must be deterministic: they must deterministically choose one
of the enabled actions of the object. A scheduler S for P × O is deterministic if either (i)
S(σ) ⊆ ΓP (i.e., it can choose several program actions, excluding invocations and responses
of object operations) or (ii) |S(σ)| = 1 (i.e., if S chooses an action of O, including invocations
and responses, then it chooses exactly one).

Now we are ready to define strong observational refinement.

▶ Definition 3.4 (Strong observational refinement). An object C strongly observationally
refines an object A, written C ≤s A, iff for every program P and every deterministic scheduler
SC admitted by P × C, there exists a deterministic scheduler SA admitted by P × A such
that T (P × C, SC)|ΓP = T (P × A, SA)|ΓP .

Note that unlike Attiya and Enea [2], this definition of strong observational refinement
considers infinite traces, which is necessary for preservation of all hyperproperties. In this
setting, as discussed in §2, forward simulation is no longer necessary and sufficient for
establishing strong observational refinement (contrasting the results of Attiya and Enea [2]).

4 A necessary and sufficient condition

We now motivate and develop the notion of weak progressive forward simulation, providing
a proof method for strong observational refinement. We first recap progressive forward
simulation [8] and show that it is not a necessary condition (§4.1). Our new relaxed definition
is given in §4.2.

4.1 Progressive forward simulation is too strong
In [8], we developed a condition called progressive forward simulation that enhances forward
simulation with a well-founded order that rules out infinite stuttering. It is guaranteed by
an implementation, e.g., when the underlying implementation is lock-free [6,18]. First we
provide the formal definition of progressive forward simulation.

▶ Definition 4.1 (Progressive Forward Simulation [8]). Let C and A be two deterministic
LTSs and ∆ ⊆ ΣC ∪ ΣA. A relation F ⊆ QC × QA together with a well-founded order
≫ ⊆ QC × QC is called a progressive ∆-forward simulation from C to A iff

Initialisation. (qini
C , qini

A ) ∈ F ,
Step. For all (qC , qA) ∈ F , if qC −a→C q′

C then there exist σ ∈ Σ∗
A and q′

A ∈ QA such that
Simulation. a|∆ = σ|∆, qA −σ→A q′

A and (q′
C , q′

A) ∈ F , and
Progressiveness. if σ = ε then qC ≫ q′

C .

In [8], we have additionally shown that progressive forward simulation is sufficient for strong
observational refinement.

▶ Theorem 4.2 (Sufficiency [8]). If there exists a progressive forward simulation between C

and A, then C ≤s A.
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A:
qA q0

A q1
A q2

A

· · ·
i

r r′

τ̂1

r′

τ̂2

r′

τ̂3
C:

qC q0
C q1

C q2
C

· · ·
i

r r′

τ1

r r′

τ2

r r′

τ3

Figure 3 Two objects A and C such that C ≤s A, but there does not exist a progressive forward
simulation between C and A.

The main motivation for this paper has been the pursuit of a proof in the other direction,
i.e., that progressive forward simulation is also necessary for strong observational refinement.
However, it turns out that strong observational refinement does not imply the existence of a
progressive forward simulation.

To see this consider the labelled transition systems depicted in Figure 3. We assume an
abstract object A and concrete implementation C with a single operation, external actions
i, r, r′ ∈ I ∪ R, abstract internal actions τ̂k ∈ ΣA \ (I ∪ R), and concrete internal actions
τk ∈ ΣC \ (I ∪ R). The objects A and C differ in that C continually allows both r and r′

after c, whereas A only allows both r and r′ immediately after i; it stops offering r after τ̂1.
It is straightforward to show that C ≤s A:

1. if C generates a run qC · i · q′
C · r or qC · i · q′

C · r′ without executing any internal actions
after i, a corresponding run can clearly be generated by A;

2. if C generates a run qC · i · q0
C · τ1 · · · τn · qn

C · r or qC · i · q0
C · τ1 · · · τn · qn

C · r′ executing
the internal actions τ1,. . . , τn, then a corresponding run can be executed in A by not
executing any of the internal actions of A;

3. if C generates a (diverging) run qC ·i·q0
C ·τ1 ·q1

C ·τ2 · · · that never responds, a corresponding
run qA · i · q0

A · τ̂1 · q1
A · τ̂2 · · · can be generated in A.

Thus, for any program P and scheduler SC , there exists a scheduler SA such that T (P ×
C, SC)|ΓP = T (P × A, SA)|ΓP .

Now we show that there does not exist a progressive forward simulation. First, there
exists a forward simulation, F , that allows each τk to behave as the corresponding τ̂k and as
a stuttering step, i.e., (qj

C , q0
A) ∈ F for each j. However, there is no well-founded ordering

over the states since stuttering is unbounded, thus progressiveness cannot be guaranteed.
The problem is that progressiveness enforces 2 above, but does not account for the possibility
of 3.

The main result of this work is a weaker form of progressive forward simulation that
we prove to coincide with strong observational refinement. Weak progressiveness does not
necessitate a well-founded order when the concrete implementation executes an infinite
number of consecutive internal actions provided that the abstraction can also execute an
infinite number of consecutive internal actions. This relaxation accounts for the scenario
highlighted by 3 above.

4.2 Weak progressive forward simulation

In our LTSs, distinguishing between internal and external actions allows us to define divergent
states. State q is ∆-divergent (written q −∞−→\∆) if there exists an infinite run q · a1 · q1 · a2 · · ·
such that ai ∈ Σ \ ∆ for all i ≥ 1.

We therefore obtain the following definition of weak progressive forward simulation, which
relaxes the progressiveness condition from Definition 4.1.

CONCUR 2022



1:8 Weak Progressive Forward Simulation is Necessary and Sufficient

▶ Definition 4.3 (Weak Progressive Forward Simulation). Let C and A be two deterministic
LTSs and ∆ ⊆ ΣC ∪ ΣA. A relation F ⊆ QC × QA together with a well-founded order
≫ ⊆ QC × QC is called a weak progressive ∆-forward simulation from C to A iff
Initialisation. (qini

C , qini
A ) ∈ F ,

Step. For all (qC , qA) ∈ F , if qC −a→C q′
C then there exist σ ∈ Σ∗

A and q′
A ∈ QA such that

Simulation. a|∆ = σ|∆, qA −σ→A q′
A and (q′

C , q′
A) ∈ F , and

Weak progressiveness. if σ = ε then either qC ≫ q′
C or qA −∞−→\∆.

Note that we do not require that any triangular diagram with qC −a→C q′
C , (qC , qA) ∈ F ,

and (q′
C , qA) ∈ F with no diverging trace from qA to have qC ≫ q′

C . We only require this if
there is no other (q′

C , q′
A) ∈ F with qA −σ→A q′

A and σ ̸= ε.
Also note that for concrete LTSs without any divergence, all three notions (forward

simulation, strong observational refinement and weak progressive forward simulation) coincide
(because without divergence s ≫ s′ iff s −τ→ s′ for some internal action τ is a well-founded
order). For example, progress conditions such as lock-freedom [18] would be sufficient to
ensure absence of divergence in the concurrent object (see also [11,14,17]).

This definition weakens the progressiveness condition: Either the concrete state must
decrease in the well-founded order, or qC corresponds to a qA that diverges. A standard
forward simulation would allow one to relate all concrete states of the diverging run to qA,
“hiding” the divergence. Weak progressiveness ensures that divergence on the concrete level
is not possible without a corresponding diverging run from qA. Our earlier definition of a
progressive forward simulation always required the well-founded ordering to decrease for a
stuttering concrete transition. With this change in place, we can now show equality of strong
observational refinement and this form of forward simulation.

▶ Theorem 4.4. C ≤s A iff there exists a weak progressive (I ∪ R)-forward simulation from
C to A.

The rest of the paper is now devoted to proving this theorem. We prove sufficiency in §5
and necessity in §6.

5 Weak Progressive Forward Simulation implies Strong Observational
Refinement

We start with the sufficiency of weak progressive forward simulation for strong observational
refinement. This proof is an adaptation of the proof for progressive forward simulation [8, 9],
so we relegate the details to the appendix.

▶ Theorem 5.1. If there exists a weak progressive I ∪ R-forward simulation from C to A,
then C ≤S A.

Given two LTLs C and A for which a weak progressive forward simulation (F, ≫) exists and
given an arbitrary program P together with a scheduler SC for traces over P×C , our proof has
to construct a scheduler SA such that T (P × C , SC )|ΓP = T (P × A, SA)|ΓP . The construction
is in two steps: First a function f is constructed that maps traces ρC ∈ T (P × C , SC ) to
traces f(ρC ) ∈ T (P × A), such that the executed program actions in ΣP are the same for
both traces.

The construction is shown in Fig. 4. Steps of C are mapped to fixed steps of A using
a mapping m (a formal definition is in the appendix), such that the forward simulation is
preserved. Program steps in ΓP are mapped by identity, such that the program states of
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f(πC) :

πC :

(qini
P , qini

A ) (q1
P , qini

A ) (q2
P , q1

A) (q2
P , q3

A) ...

m(qini
C , a1, qini

A )
= a1

m(qini
C , i2, qini

A )
= α1i2α2

m(q1
C , τ3, q1

A)
= ϵ m(q2

C , τ4, q1
A)

= α

(qini
P , qini

C ) (q1
P , qini

C ) (q2
P , q1

C ) (q2
P , q2

C ) (q2
P , q3

C ) ...
a1 ∈ ΓP i2 ∈ I τ3 τ4

F F F F F

Figure 4 Constructing f(πC ) ∈ T (P × A) from πC ∈ T (P × C , SC ) with τ3, τ4 ∈ ΣC \ (I ∪ R),
α, α1, α2 ∈ (ΣA \ (I ∪ R))∗ and q1

C ≫ q2
C

both traces are always equal. For finite traces ρC ∈ T (P × C , SC ) this results in a finite
trace with the same program steps.

Infinite traces πC ∈ T (P × C , SC ) are mapped either to infinite traces directly, or by
exploiting that the forward simulation is weakly progressive: if the abstract trace is finite,
ending with (qP , qA) while the concrete trace ends with an infinite sequence of stuttering
steps, then a diverging run of A from qA is guaranteed to exist. This run (where all A-states
are combined with qP) can then be attached at the end to give an infinite trace which is
defined to be f(πC ). Again, πC and f(πC ) will have the same program steps.

A formal definition of f will be given in the appendix. Given f , an abstract scheduler
SA can be defined that schedules exactly all the steps of f(ρC ). For this definition to be
well-defined it is crucial that the traces in the image of f form a tree-shaped structure, where
branching points are at program actions only. We have the following theorem.

▶ Theorem 5.2. T (P × A, SA) = {σA | ∃πC ∈ T (P × C , SC ). σA ⊑ f(πC )}.

Theorem 5.1 then is a simple consequence, since both πC and f(πC ) have the same program
actions, and each πA ∈ T (P × A, SA) is some f(πC ) as stated by Theorem 5.2.

6 Strong Observational Refinement implies Weak Progressive Forward
Simulation

We now prove the necessity theorem for weak progressive forward simulation.

▶ Theorem 6.1. If C ≤s A, then there exists a weak progressive (I ∪ R)-forward simulation
from C to A.

Given that C is a strong observational refinement of A, we must show that a weak progressive
forward simulation exists between A and C . Since we are tasked with finding a forward
simulation, we must also instantiate a client program and concrete scheduler that act as
witnesses to the forward simulation. Our proof proceeds in stages (see Figure 5) for a client
program P that invokes the operations of the object in question and concrete scheduler SC .
This method is similar to that of Attiya and Enea [2], but the underlying formal mechanisms
have been completely reworked.

Client Program and Concrete Scheduler

The program for concrete object C = (QC , Qini
C , ΣC , δC ) that we use is given by the LTS

P = (QP , Qini
P , ΣP , δP), where

QP = {qini
P , qdiv} ∪ {qe, qrec(e) | e ∈ I ∪ R},

CONCUR 2022



1:10 Weak Progressive Forward Simulation is Necessary and Sufficient

A

P × A × SA

P × C × SC

C

(F3, ≫3)

(F2, ≫2)

(F1, ≫1)

Figure 5 Proof overview

qini
Pqdiv

qe

qrec(e)

g(q)

div
e

g(e, q)

rec(e)

Figure 6 Representation of client P used as a witness
to the forward simulation, where q ∈ QC and e ∈ I ∪ R

Qini
P = {qini

P },
ΓP = {div} ∪ {g(q), g(e, q), rec(e) | q ∈ QC ∧ e ∈ I ∪ R},
ΣP = ΓP ∪ I ∪ R,
δP = {qini

P −div−→ qdiv} ∪⋃
e∈I∪R,q∈QC

{qini
P −g(e,q)−−−→ qe, qe −e→ qrec(e), qrec(e) −rec(e)−−−→ qini

P , qini
P −g(q)−−→ qini

P }

This program is depicted in Figure 6, where dashed states and transitions are used
to denote families of states and transitions. We refer to g(q) and g(e, q) as guess actions
and rec(e) as record actions. These are used to make the (internal) choices made by the
client program, concrete object and scheduler visible in the traces of T (P × C × SC )|ΓP .
Additionally, we use an external action div that is enabled whenever the underlying object
can diverge, i.e., div is enabled in qC iff qC −∞−→\(I∪R). The program P can only synchronise
with div when it is in state qini

P . Once executed, the program transitions to state qdiv and
from this point, it is only possible to schedule internal actions of C in P × C.

We now define a particular admissible scheduler. The concrete scheduler SC must schedule
the actions of P × C , i.e., define the next action for a given trace σ ∈ (ΣP ∪ ΣC )∗.

SC (σ) =



{τ} if div ∈ σ, τ ∈ ΣC \ (I ∪ R), and
∃qC . state(σ|ΣC )−τC−→ qC ∧ qC −∞−→\I∪R

{τ} else if last(σ) = g(qC ) and
τ ∈ ΣC \ (I ∪ R) ∧ state(σ|ΣC ) −τ→ qC

{e} else if last(σ) = g(e, qC )
{rec(e)} else if last(σ) = e

{div | state(σ|ΣC ) −∞−→\I∪R} ∪
{g(qC ) | ∃τ ∈ ΣC \(I ∪ R). state(σ|ΣC )−τ→ qC }
∪ {g(e, qC ) | ∃e ∈ I ∪ R. state(σ|ΣC ) −e→ qC }

otherwise

Note that state(σ|ΣC ) is calculated wrt the LTS C as opposed to the composition P × C.
Furthermore, the scheduler decides on the next action of P × C based on the last action
in the given trace σ. The first two cases determine the next action of C depending on
whether the program has executed div. In the first two cases, there may be a choice of τ , the
scheduler chooses one such that the resulting set is a singleton. Clearly the third case results
in a singleton set since the action g(e, qC ) fixes the only external action e allowed by the
scheduler. Therefore, the scheduler SC defined above is deterministic.

The last two cases describe the scheduler’s behaviour wrt to a program action. As per
Figure 6, these are the record and guess actions as well as div. In the fourth case, action rec(e)
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must be scheduled if the last action executed in σ is e. In the final case, the scheduler may
choose to diverge (if the program diverges), perform a guess action, g(qC ) (corresponding
to an internal transition of C ) or a guess action, g(e, qC ) (corresponding to an external
transition of C ). Note that for both g(qC ) and g(e, qC ), state qC is the post state of the
given action after executing from state(σ).

By design, we therefore have the following proposition for P × C .

▶ Proposition 6.2. Let σ ∈ T (P × C , SC) for the scheduler SC . If div ∈ σ holds then
state(σ|ΣC ) −∞−→\(I∪R) and (∃ q′

C . state(σ|ΣC ) −SC (σ)−−−→ q′
C ∧ q′

C −∞−→\(I∪R)).

Simulation (F1, ≫1)

Our first step is the construction of a weak progressive forward simulation (F1, ≫1) between
C and P × C × SC (see Figure 5) with F1 ⊆ QC × (QP × QC × Σ∗

P×C ). We define F1 such
that (qC , (qP , qC , σ)) ∈ F1 iff

qini
C −σ|ΣC−−−→ qC ,

div /∈ σ and last(σ) /∈ {g(q), g(e, q), e | q ∈ QC ∧ e ∈ I ∪ R} (so that σ is either empty or
ends with rec(e) or an internal action; thus the next step is a guessing step),
qP = qini

P , and
state(σ) = qC .

▶ Lemma 6.3. (F1, ∅) is a weak progressive forward simulation from C to P × C × SC .

Simulation (F2, ≫2)

Our next step is to show that a weak progressive forward simulation (F2, ≫2) from P ×C ×SC
to P × A × SA exists, when SA is any scheduler with T (P × C, SC)|ΓP = T (P × A, SA)|ΓP

that exists due to the assumption C ≤s A. The proof follows from a general completeness
result for refinements for ∆-deterministic systems.

▶ Lemma 6.4. If C ∆-refines A and A is ∆-deterministic, then there exists a ∆-forward
simulation.

A ∆-deterministic LTS is one, where every history h ∈ ∆∗ has a unique state q that
can be reached with shortest executions that have history h. (A formal definition of ∆-
deterministic LTSs is given in Definition B.1.) Such a shortest execution is empty, if h = ϵ,
and otherwise has the last element of h as the action of its last step (note, that this definition
of ∆-deterministic is weaker than the ones given in [2] and [22]). Clearly, P × A × SA is
ΓP-deterministic, so the theorem applies. The proof of 6.4 shown in the appendix constructs
a forward simulation F2 that relates all states of P × C × SC that are reached with history h

to the unique minimally reachable state of P × A × SA with the same history. F2 is weak
progressive, since SC never schedules more than one internal action in a row. Our definition
of the program P guarantees that F2 also preserves the actions e ∈ I ∪ R, since each of these
is followed by the corresponding rec(e) action, that is already preserved.

▶ Lemma 6.5. There exists a weak progressive ΣP-forward simulation (F2, ≫2) between
P × C × SC and P × A × SA.

CONCUR 2022
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Simulation (F3, ≫3)

We now define the weak progressive (I ∪ R)-forward simulation F3 between P ×A×SA and A.
The states of P×A×SA includes those of A. Thus we keep the two LTSs synchronised, i.e., the
forward simulation is over pairs of the form ((qP , qA, σ), qA), where (qP , qA, σ) ∈ QP×A×SA .
For (qP , qA, σ) ∈ QP×A×SA , let F3 = {((qP , qA, σ), qA) | (qP , qA, σ) ∈ QP×A}.

The well-founded ordering that we use is the relation ≫3, where:
1. (qini

P , _, _) ≫3 (qe, _, _)
2. (qrec(e), _, _) ≫3 (qini

P , _, _)
3. (qini

P , _, _) ≫3 (qdiv, _, _)

▶ Lemma 6.6. (F3, ≫3) is a weak progressive forward (I ∪ R)-simulation between P ×A×SA
and A.

It is trivial to prove that F3 is a forward simulation. We therefore focus on a proof of
weak progressiveness, which provides further insight into our choice of P and the inclusion of
the div action in our model.

Note that from (qdiv, _, _), the only possible transition is an −a→ step, where a ∈ ΣA \
(I ∪ R), which is non-stuttering. Similarly, from (qe, _, _), the only possible transition is −e→,
where e ∈ I ∪ R. Thus, when we reach a state that is minimal wrt ≫3, no more stuttering is
possible. Any transition from state (qrec(e), _, _) is guaranteed to reduce w.r.t. ≫3, as are
transitions corresponding to g(e, q) and div from (qini

P , _, _).
This leaves us with transitions corresponding to g(q) from (qini

P , qA, σ), which may stutter
infinitely often. We we can show that such stuttering only exists if A contains a diverging
run from qA, i.e., div is enabled in (qini

P , qA, σ) ∈ QP×A×SA .
Suppose there exists an infinite run

(qini
P , qA, σ) −g(q1)−−−→ (qini

P , qA, σ · g(q1)) −g(q2)−−−→ (qini
P , qA, σ · g(q1) · g(q2)) −g(q3)−−−→ . . . .

By construction, P × A × SA is an “abstraction” of P × C × SC such that T (P × A, SA)|Γ =
T (P × C , SC )|Γ, thus, (σ|Γ) · g(q1) · g(q2) · g(q3) · · · · ∈ T (P × C , SC )|Γ. Thus, there exists a
qC such that last(σ) = g(qC) and

(qini
P , qC , σ) −g(q1)·τ1−−−−→ (qini

P , q1, σ·g(q1)·τ1) −g(q2)·τ2−−−−→ (qini
P , q2, σ·g(q1)·τ1 ·g(q2)·τ2) −g(q3)·τ3−−−−→ . . .

where τk ∈ ΣC \(I ∪ R) for all k. Note that the definition of SC enforces a −g(qk)·τk−−−−−→ transition
for each −g(qk)−−−→ transition in P × A × SA. This execution, when restricted to the actions of
C corresponds to a diverging run of C :

qC −τ1−→ q1 −τ2−→ q2 −τ3−→ . . .

Since this is an infinite run of internal actions, by definition, the action div must be offered by
P × C × SC , and enabled in (qini

P , qC , σ). Moreover, since T (P × A, SA)|Γ = T (P × C , SC )|Γ,
div must also be possible in P × A × SA. In particular, div must be enabled in (qini

P , qA, σ).
Now, P × A × SA contains a run with final state σ. Therefore, P × A × SA also contains a run

(qini
P , qA, σ) −div−→ (qdiv, qA, σ) −τ ′

1−→ (qdiv, q′
1, σ) −τ ′

2−→ (qdiv, q′
2, σ) −τ ′

3−→ . . .

where τ ′
k ∈ ΣA \ (I ∪ R) for all k since P ×A×SA can no longer schedule any further external

actions after executing div, i.e., must schedule an internal action. Thus, we must have a
diverging run in A as well.
Combined simulation. Finally, to derive at a weak progressive simulation from C to A,
we show that the relation of weak progressive forward simulation is transitive.
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▶ Theorem 6.7. Let (F1, ≫1) be a weak progressive ∆-forward simulation from C to B, and
(F2, ≫2) one from B to A. Then there exists a weak progressive ∆-forward simulation (F, ≫)
from C to A.

The proof of this theorem uses F = F1 ◦ F2 and ≫ as defined by qC ≫ q′
C if qC −a→ q′

C
for an internal action a ̸∈ ∆ such that one of the following two conditions holds:

(1) ∃qB. (qC , qB) ∈ F1 ∧ (q′
C , qB) ∈ F1 ∧ qC ≫1 q′

C ∧ ¬qB −∞−→\∆,

(2) ∃qB, α, q′
B, qA. (qC , qB) ∈ F1 ∧ (q′

C , q′
B) ∈ F1 ∧ qB −α→ q′

B ∧ qB ≫2 q′
B

∧ (qB, qA) ∈ F2 ∧ (q′
B, qA) ∈ F2 ∧ ¬qA −∞−→\∆

where α is a finite sequence of internal actions.
Case (1) requires a triangular diagram for the lower simulation from B to C with a

non-diverging state qB, where ≫1 decreases. Case (2) requires an arbitrary commuting
diagram for the lower simulation, and a triangular diagram for the upper simulation from A
to B, where the abstract state qA does not have a diverging run, and ≫2 decreases.

7 Progressive and weak progressive examples

We now present two example programs to demonstrate the implications of progressive and
weak progressive forward simulation on program design. The first satisfies progressive forward
simulation (and hence weak progressive forward simulation) w.r.t. its abstract specification,
while the second satisfies weak progressive simulation only.

7.1 FAI with Lock-free LL/SC
Consider the FAI implementation from Figure 1, but where the LL/SC is assumed to be
lock-free. We refer to this implementation as FAI-lf. Unlike the example in §2, we assume
that an LL operation executed by one thread does not interfere with an LL in another thread.
If two concurrent threads have loaded the same LL value, then only one SC will succeed.
Forward simulation for FAI-lf holds for the same reason as FAI. We now define a global
well-founded order over states using the technique described in [6], which implies a weak
progressive forward simulation. This in turn guarantees that all hyperproperties (including
hyperliveness) of the abstract specification are preserved by FAI-lf.

The well-founded order is straightforward to define: it is a lexicographic ordering that
captures how “close” a thread is to successfully executing a successful SC operation. The
base of the well-founded ordering guarantees that some thread will successfully execute its
SC operation. The generic lexicographic scheme is the following, where b, b′ are booleans and
pc, pc′ are program counter values:

b ≫B b′ =̂ b ∧ ¬b′

(b, pc) ≫L (b′, pc′) =̂ b ≫B b′ ∨ (b′ = b ∧ (b ∧ pc ≫✓ pc′) ∧ (¬b ∧ pc ≫✗ pc′))

where ≫B orders true before false and ≫L is a lexicographic order with a different orderings
on pc depending on whether or not b holds. We instantiate this generic scheme over states
as follows, where current_val, nt and pct are the variables of the algorithm in Figure 1 for
a thread t. In particular, current_val corresponds to the shared variable current_val, nt

corresponds to the local variable n of thread t, and pct is the program counter for thread t

taking values from the set {F1, F2, F3, F4, idle}.

q ≫ q′ =̂ ∃t. (q(current_val) = q(nt), q(pct)) ≫L (q′(current_val) = q′(nt), q′(pct))
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All that remains is the instantiation of ≫✓ and ≫✗. The order ≫✓ is empty, since
q(current_val) = q(nt) implies that q(pct) = F3, and execution of thread t corresponds
to a successful SC operation. We define F2 ≫✗ F3, representing a retry since this order allows
t to make progress towards making q(current_val) = q(nt) true.

7.2 FAI with backoff
We now consider a load-balancing FAI specification, which we refer to as FAI-lb. In this
example, we weaken the specification to either perform the FAI or perform an operation
backofft for a thread t that causes the FAI executed by thread t to be delayed. Abstractly,
backofft is equivalent to a skip action. Note that although the resulting specification is
non-deterministic, the LTS is still step-deterministic since the execution of each action from
any state results in exactly one next state.

For FAI-lb, we can prove weak progressive forward simulation even for the obstruction-
free FAI implementation from §2. Informally, the interference caused by an LL by thread t

on another thread’s SC can be mapped to a backofft operation executed by thread t. Thus,
although the obstruction-free implementation in §2 has a divergent execution, this execution
can be matched by the specification FAI-lb.

8 Related work

The study of refinement, and in particular linearizability [19], in the context of adversaries was
initiated by the work of Golab, Higham and Woelfel [13] who observed that replacing atomic
objects by linearizable implementations in randomized algorithms [1] does not guarantee
the expected substitutability result of linearizability. Instead, the probability distribution of
results may differ when using a linearizable implementation instead of an abstract atomic
object. The difference is due to the abilities of adversaries scheduling process steps depending
on the current system state. To alleviate this problem, Golab, Higham and Woelfel suggested
strong linearizability, requiring a “prefix preservation” property in addition to the conditions
of linearizability.

Following this proposal, Attiya and Enea studied the preservation of hyperproperties by
linearizability. They proposed the definition of strong observational refinement and showed it
to (a) preserve all hyperproperties, and (b) to coincide with strong linearizability for atomic
abstract specifications. They also proved strong observational refinement to be equivalent to
forward simulation. In a brief announcement [8], Derrick et al. gave a counter example to
this proof, and provided an alternative result for one direction of the equivalence, proposing
progressive forward simulation and proving it to imply strong observational refinement. Our
work in this paper closes the missing gap of the relationship between progressive forward
simulation and strong observational refinement by proving strong observational refinement to
imply (yet another) version of forward simulation, weak progressive forward simulation. In
addition, we strengthen the result of Derrick et al. [8] and show that weak progressive forward
simulation also implies strong observational refinement, thereby arriving at an equivalence
once again.

The relationship between (the standard definition of) linearizability and forward and
backward simulation has already been investigated before, with Schellhorn, Wehrheim and
Derrick [27,28] showing linearizability proofs in general to require both forward and backward
simulations, and Bouajjani et al. [3] studying under what circumstances and how forward
simulation alone can be employed. The relationship between observational refinement,
safety (linearizability) and progress in the context of atomic objects has been studied in
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prior works [11, 14]. The use of well-founded orderings to enforce progress for a forward
simulation has already been used in the context of ASM refinement [25,26] and non-atomic
refinement [10]. Another form of simulations employing well-founded orders are the normed
(forward and backward) simulations of Griffioen and Vaandrager [15, 16]. They require every
matching internal (τ) step to decrease a norm defined on a well-founded set. It has been
shown that normed forward simulations do not agree with ordinary forward simulations, even
on divergence-free LTSs. As weak progressive forward simulations does coincide with forward
simulation on divergence-free LTSs, we thus get inequality of normed forward simulation and
weak progressive forward simulation.

The study of notions of refinement and equivalence taking internal actions into account
has been actively pursued in the field of process algebras, with weak bisimulation [24] for
CCS and failures-divergences refinement [4] for CSP being the two most prominent examples.
Failures-divergences refinement explicitly considers divergences (i.e., infinite sequences of
internal actions) during the comparison. For bisimulation, there are also extensions for
divergence, e.g. [31,32]. A comparison of various such semantic equivalences and preorders
for systems with internal actions has been given by van Glabbeek [30]. Finally, the game-
theoretic characterisation of bisimulation [29] is in spirit similar to the idea of adversaries in
strong observational refinement which try to bring the concrete object into an execution that
can or cannot be mimicked by the abstract object.

9 Conclusion

In this paper, we have proposed a new type of forward simulation which is both necessary
and sufficient for strong observational refinement, thereby closing an existing gap. The
importance of strong observational refinement lays in the fact that it preserves safety and
liveness hyperproperties which are themselves of fundamental significance for the area of
security. As future work, we plan to look at concrete case studies, and to this end will
develop a formalization of weak progressive forward simulation within a theorem prover. We
furthermore plan to re-investigate the third contribution of Attiya and Enea [2], namely
the fact that strong linearizability coincides with strong observational refinement for atomic
abstract objects. Since the proof of this property assumes equality of forward simulation
and strong observational refinement, this–in the light of our result–also requires a fresh
investigation.
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A Proofs for §5

The proof of theorem 5.1 assumes that two LTLs C and A are given, for which a weak
progressive simulation (F, ≫) exists. Given an arbitrary program P together with a scheduler
SC for traces over P×C , the proof has to construct a scheduler SA such that T (P×C , SC )|ΓP =
T (P × A, SA)|ΓP . The construction is in two steps: First a function f is constructed that
maps traces ρC ∈ T (P ×C , SC ) to traces f(ρC ) ∈ T (P ×A). This function has to be carefully
defined to then allow the definition of a scheduler SA that schedules exactly all the steps of
f(ρC ). Weak progressiveness is key to ensure that for an infinite trace ρC the trace f(ρC ) is
infinite as well. This then allows to schedule actions for any prefix.

The construction of f shown in Fig. 4 first has to fix a unique sequence of abstract actions
in f(ρC ) that correspond to a single step of ρC . To this end, a mapping m is defined. For
two states qC ∈ QC and qA ∈ QA with (qC , qA) ∈ F and an action a ∈ ΣC , m returns a fixed
sequence σ ∈ Σ∗

A such that (q′
C , q′

A) ∈ F holds again for the (unique) states with qC −a→C q′
C

and qA −σ→A q′
A. Mapping m chooses a triangular diagram with σ = ϵ only, when there is no

nonempty choice, so qC ≫ q′
C is implied. The existence of σ is guaranteed by the main proof

obligation for a weak progressive forward simulation. To be useful for constructing traces
over P × A when a step of a trace over P × C is given, we extend the definition to allow a
program action a ∈ ΓP as well. In this case m just returns the one element sequence of a.
Intuitively, in addition to the commuting diagrams of the forward simulation this defines
commuting diagrams that map program steps one-to-one. Formally,

m : QC × (ΣP×C ) × QA → (ΣP×A)∗

is defined to return m(qC , a, qA) := a when a ∈ ΓP , and to return the fixed sequence σ as
described above when a ∈ ΣC .

It is then possible to define partial functions f0, f1, . . . (viewed as sets of pairs) with
dom(fn) = {σC ∈ T (P × C , SC ) : #σC ≤ n}, cod(fn) ⊆ T (P × A), such that f0 ⊆ f1 ⊆ . . .

inductively as follows:

f0 = {(ε, ε)}
fn+1 = fn ∪ {(σC · a, f(σC ) · α) | σC · a ∈ T (P × C , SC ), #σC = n,

α = m(state(σC ).obj, a, state(f(σC )).obj)}

The inductive definition maps the new action a ∈ SC (σC ) to the corresponding sequence
α that is chosen by m. In the definition (qP , qC ).obj := qC and the final state of σC is
state(σC ) = (qP , qC ). Analogously (qP , qA).obj = qA.

The states (qP , qC ) = state(σC ) and (q′
P , qA) = state(fn(σC )) reached at the end of

two corresponding traces always satisfy qP = q′
P and (qC , qA) ∈ F . The use of m in the

construction guarantees that all the fn are prefix-monotone: if fn is defined on σ and σ′ ⊑ σ,
then fn(σ′) ⊑ fn(σ).

Now, define f :=
⋃

n fn. Function f is obviously prefix-monotone as well. Intuitively, it
maps all finite traces of T (P × C , SC ) to a corresponding abstract trace, where m is used in
each commuting diagram to choose the abstract action sequence.

If πC is an infinite trace from T (P × C , SC ), and σn
A := f(πC

<n), then σ0
A ⊑ σ1

A ⊑
σ2

A ⊑ . . .. Therefore a natural choice for extending f to infinite traces is to use the limit
of this ascending chain. We define f lim(πC ) to be the limit and will use function f lim

in several of the lemmas below. There are two cases in this definition. Either the length
of σn

A always eventually increases. Then the sequences converges to an infinite sequence
f lim(πC ) = πA ∈ T (P × A). Otherwise, the σn

A eventually become a constant finite trace σA
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and we can set f lim(πC ) = σA. In this case the final state state(σA) must have a diverging
run, since the forward simulation is weak progressive (otherwise the well-founded relation
would have to decrease infinitely often, which is impossible). In this case a diverging run
from state(σA) can be fixed with an infinite sequence πA of internal actions. Adding this
infinite sequence to the trace is necessary for defining the abstract scheduler, so different
from setting f lim(πC ) := σA we set f(πC ) := σA · πA.

We will now define a scheduler SA, that will schedule exactly those traces in σA ∈ T (P ×A)
where σA is a prefix of some f(πC ) such that πC is an infinite trace in T (P × C , SC ). Before
we can do this properly, a number of lemmas is needed.

▶ Lemma A.1. f(σC )|ΓP = σC |ΓP for all σC ∈ T (P × C , SC ).

Proof. This should be obvious from the construction, since the forward simulation guarantees
that m(qC , a, qA)|ΓP = a|ΓP for all a ∈ I ∪ R, while a ∈ ΓP is mapped by identity. ◀

▶ Lemma A.2. For two finite traces σC , σ′
C ∈ T (P × C , SC ): if f(σC ) and f(σ′

C ) have the
same program actions in ΓP , then σC is a prefix of σ′

C or vice versa, and the longer one just
adds internal actions of C.

Proof. Lemma A.1 implies σC |ΓP = σ′
C |ΓP . If the lemma would be wrong, then there

would be a maximal common prefix σ0 and two actions a ̸= a′ such that σ0 · a ⊑ σC and
σ0 · a′ ⊑ σ′

C . The case where both a and a′ are external actions is impossible, because
otherwise the external actions in σC and σ′

C would not be the same. If however one of
them is internal, then SC (σ0) is a one-element set, and both a and a′ must be in the set,
contradicting a ̸= a′. ◀

▶ Lemma A.3. For all finite prefixes σA of f lim(πC ), there is a unique n, such that
f(πC

<n) ⊑ σA ⊏ f(πC
<n) · α), where α := m(state(πC

<n).obj, π[n], state(f(πC
<n)).obj) ̸=

ε.

Intuitively, each element of f lim(πC ) is added by a uniquely defined commuting diagram.

Proof. First, note that f(πC
<n+1) = f(πC

<n)·α. Since the lengths of f(πC
<n) are increasing

with n to the length of f lim(πC ) (and f(πC
<0) = f(ε) = ε) n is the biggest index where the

length of f(πC
<n) is still less or equal to #σ. ◀

▶ Lemma A.4. Assume πC , π′
C ∈ T (P × C , SC ). if σA is a prefix of both f(πC ) and f(π′

C ),
then there is m such that πC

<m = π′
C

<m and σA ⊑ f(πC
<m).

The lemma says, that a common prefix of two traces in the image of f is possible only as
the result of a common prefix in the domain of f .

Proof. Since σA ⊑ f(πC ) and each step from f(πC
<n) to f(πC

<n+1) adds at most one
program action, a minimal index n can be found such that σA has the same program actions
as f(πC

<n), while f(πC
<n−1) has fewer when n ̸= 0. Note that when f lim(πC ) is finite, n is

less than its length, since the diverging run attached at the end has no program actions at all.
Similarly, a minimal index n′ can be found such that σA|ΓP = f(π′

C
<n′

). By Lemma A.2
above, it follows that πC

<n is a prefix of π′
C

<n′
or vice versa, with only internal C -actions

added to the longer one. When both are equal, then n = n′ and m can be set to be n.
However, when the two are not equal, the longer one, say π′<n′

ends with an internal C -action.
But then, since this action is mapped to a sequence of internal A-actions f(π′<n′−1) also
has the same program actions than σA, contradicting the minimality of n′. ◀

CONCUR 2022
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Equipped with these lemmas, it is now possible to define the scheduler SA and to
prove it is well-defined. We define SA(σA) for any finite prefix σA of any f(πC ), where
πC ∈ T (P × C , SC ). There are two cases. Either σA is not a prefix of f lim(πC ). Then it
has the form f lim(πC )σ′

A where σ′
A is a prefix of the infinite sequence of internal actions

that is used in the definition of f in this case that schedules a diverging run. The next
action to be sceduled then is the next action of this sequence. Otherwise the definition
uses Lemma A.3 to find unique index n, such that f(πC

<n) ⊑ σA ⊏ f(πC
<n · α. where

α = m(state(πC
<n).obj, π[n], state(f(πC

<n)).obj) ̸= ϵ. Since σA is a proper prefix, there is
an event a, such that σA · a ⊑ f lim(πC

<n) · α, and a is an element of α. If a is an external
action in ΓP , then a must be equal to πC [n] (α contains either πC [n] if it is an external
action, or no external action at all). In this case, we set SA(σA) := SC (πC

<n). Note that a

is enabled and in SC (πC
<n) in this case. Otherwise, when a ̸∈ ΓP , we set SA(σA) := {a}.

▶ Theorem A.5. SA is well-defined.

Proof. Assume that σA is a prefix of two traces f(πC ) and f(π′
C ). We prove that this

never leads to two different definitions of SA(σA). First, Lemma A.4 gives an index m with
πC

<m = π′
C

<m and σA ⊑ f(πC
<m) If σA is a proper prefix of f(πC

<m), then the n used
in the construction of SA must satisfy n + 1 ≥ m, and the prefix f(πC

<n+1) = f(πC
<n) · α

on which the definition of SA is based, is the same for both traces. The remaining case is
m = n + 1 and σA = f(πC

<n+1). In this case the next elements πC [n + 1] and π′
C [n + 1] in

the two traces πC and π′
C could be different. If one of them is internal (i.e. not in ΓP), then

this is not possible, since then SC (πC
<n+1) is a one-element set that contains both of them.

However, it is possible that π[n + 1] and π′[n + 1] are two different program events a ̸= a′,
both in ΓP , but in SC (πC

<m). However, in this case SA(f(πC
<m)) is defined in both cases

cases to be SC (πC
<n+1). ◀

The following lemma is the inductive step of the theorem below, that shows that SA
allows exactly all f(πC ) as scheduled traces.

▶ Lemma A.6. Given σA ∈ T (P × A, SA), for which a πC ∈ T (P × C , SC ) exists with
σA ⊑ f(πC ), then σA · a ∈ T (P × A, SA) (or equivalently a ∈ SA(σA)) is equivalent to the
existence of some π′

C ∈ T (P × C , SC ) such that σA · a ⊑ f(π′
C ).

Proof. The case, where σA ̸⊑ f lim(πC ) is simple, since after f lim(πC ) a unique diverging
trace is attached that is the scheduled one. Otherwise, Lemma A.3 asserts that there is
a unique n such that f lim(πC

<n) ⊑ σA ⊏ f lim(πC
<n+1). Let πC

<n+1 = (πC
<n) · a and

α = m(state(πC
<n).obj, a, state(f(πC

<n)).obj).

Case 1: a ̸∈ ΣC . Then α = a, a1 = a by definition, implying σA = f(πC
<n).

“⇒”: If σA · a ∈ T (P × A, SA), then a ∈ SA(σA) is equivalent to a1 ∈ SC (σA), since a1 = a
and SA(σ) is defined to be equal to SC (πC

<n). Since actions in SC (πC
<n) are enabled,

and every finite trace can be extended to an infinite one, there is an infinite trace π′
1 with

(πC
<n) · a1 ⊑ π′

1. π′
1 has the required prefix πC · a1 such that σA · a1 = f(πC

<n) · a
“⇐”: if π′

C exists with σA · a ⊑ f(π′
1), then like in the well-definedness proof πC

<n and
π′

1
<n must be the same (both have the same program actions as σA). Therefore a1 = a is

scheduled after πC
<n as required.

Case 2: a ̸∈ ΣC . Then α is a nonempty sequence of internal actions and α is the only
continuation of f(πC

<n) compatible with SA. σA is f(πC
<n) concatenated with some proper

prefix of α.
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“⇒”: If σA ·a ∈ T (P ×A, SA), then a must be the next element in α. Then, setting π′
1 := πC

we get the required prefix f(πC
<n+1) = f(πC

<n) · α of which σA · a is still a prefix.
“⇐”: Assume σA · a ⊑ f(π′

1). Then σA · a is a prefix of both f(πC ) and f(π′
1), so Lemma

A.3 implies that there is some m, such that σA · a ⊑ π′
1

<m = πC
<m. Obviously, m ≥ n + 1,

so the next element after σA in π′
1 is the scheduled a too. ◀

With this, we are now ready to prove Theorem 5.2, which implies the main Theorem 5.1.

Proof. The proof is by contradiction. If the theorem does not hold, then there is a trace
σA ⊑ T (P × A, SA) of minimal length and some action a, such that a ∈ SA(σA) is not
equivalent to the existence of some π′

C ∈ T (P × C , SC ) such that σA · a ⊑ f(π′
C ). However,

this equivalence is asserted by Lemma A.6. ◀

B Proofs for §6

▶ Lemma 6.3. (F1, ∅) is a weak progressive forward simulation from C to P × C × SC .

Proof. First of all, observe that (qini
C , (qini

P , qini
C , ε)) ∈ F1. Now let (qC , (qP , qC , σ)) ∈ F1 and

let qC −a→C q′
C be a step of C . There are two cases to consider.

Internal steps: a ∈ ΣC \ I ∪ R.
The diagram illustrates the simulation.

(qini
P , qC , σ)

(
qini

P , q′
C , σ · g(q′

C ) · a
)

qC q′
C

g(q′
C ) a

a

F1 F1

Since last(σ) = qC , we get (by definition of SC ) that g(q′
C ) ∈ SC (σ) and a ∈ SC (σ ·g(q′

C )).
Hence, the following transitions are possible:

(qini
P , qC , σ) −g(q′

C )−−−→ (qini
P , qC , σ · g(q′

C )) −a→ (qini
P , q′

C , σ · g(q′
C ) · a)

We furthermore get (qC , (qini
P , q′

C , σ · g(q′
C ) · a)) ∈ F1.

Invokes and returns: a ∈ I ∪ R.
The diagram illustrates the simulation.

(qini
P , qC , σ)

(
qini

P , q′
C , σ · g(a, q′

C ) · a · rec(a)
)

qC q′
C

g(a, q′
C ) a rec(a)

a

F1 F1

Since last(σ) = qC , we get g(a, q′
C ) ∈ SC (σ). By definition of SC we hence get

(qini
P , qC , σ) −g(a,q′

C )−−−−→ (qa, qC , σ · g(q′
C )) −a→ (qrec(a), q′

C , σ · g(q′
C ) · a) −rec(a)−−−→

(qini
P , q′

C , σ · g(q′
C ) · a · rec(a))

We furthermore get (qC , (qini
P , q′

C , σ · g(q′
C ) · a · rec(a))) ∈ F1.

This is furthermore a weak progressive forward simulation as the matching steps are never
empty (no triangular diagrams), so that we can take ≫1 to be empty. ◀

▶ Definition B.1. Given an LTS L, and a subset ∆ ⊆ Σ a state q is

CONCUR 2022
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reachable with h ∈ ∆∗, written reachL(h, q) if q = last(ξ) for an execution ξ that has
history h.
minimally reachable, written if additionally, the execution ξ is shortest: its trace σ is
either empty when h = ϵ (then the state is initial), or the last action of σ is the last of h.

We then say that an LTS is ∆-deterministic if the set of minimally reachable states for every
history h consists of a single element which we write minstateL(h).

▶ Lemma B.2. The two LTSs P × C × SC and P × A × SA are ΣP-deterministic.

Proof. We first prove that P × C × SC and P × A × SA are ΓP-deterministic. To do so
we show that given two finite traces σ1 and σ2 with h = σ1|ΓP = σ2|ΓP the corresponding
executions must be prefixes of each other by induction over the length of the shorter one.
The initial states are the same since the initial state of deterministic systems is unique. Given
that the executions agree up to step n, the next action is the same: either it is the single
scheduled internal one, or the next action is the common one of the history. Since the steps
are deterministic the next state is equal as well. It follows that there is only one minimally
reachable state for every history, since in particular the final states of two minimal executions
must agree, as their traces must be the same. For our specific program a minimal execution
with history h also executes the same actions from I ∪ R, since each such action e is followed
by the corresponding record-action rec(e), otherwise it would not be minimal. Therefore the
two LTS are ΣP-deterministic too. ◀

▶ Lemma 6.4. If C ∆-refines A and A is ∆-deterministic, then there exists a ∆-forward
simulation.

Proof. Define the forward simulation F as

F = {(qC , qA) | ∃ h ∈ ∆∗. reachC (h, qC ) ∧ qA = minstateA(h)}

where reachC (h, qC ) and minstateA(h) are from Def. B.1 . The proof obligations of a forward
simulation are satisfied: The initial concrete state is related to the initial abstract one by
choosing h = ϵ. Given (qC , qA) ∈ F , and qC −a→ q′

C there are two cases: If a is internal, then
doing a stuttering step by choosing q′

A = qA is sufficient to show (q′
C , qA) ∈ F . If a ∈ ∆,

then (qC , qA) ∈ F implies that there is a history h and a minimal execution of A with this
history and final state qA = minstateA(h). Also ha is a history of C that has final state
q′

C , so by refinement h · a is a history of A too. Therefore, there exists a minimal execution
with this history h · a of A ending in some state q′

A. This state fits our correctness proof
obligation: since the execution has a minimal prefix with history h (the prefix removes a and
all internal actions after the last one of h), uniqueness of the minimal reachable state implies
that it must pass through qA. The trace σ of the remaining steps then has a|∆ = σ|∆ and
qA −σ→A q′

A as required, and (q′
C , q′

A) ∈ F holds by definition. ◀

▶ Lemma 6.5. There exists a weak progressive ΣP-forward simulation (F2, ≫2) between
P × C × SC and P × A × SA.

Proof. Since strong observational refinement implies ΓP-refinement, and the abstract system
is ΣP-deterministic (Lemma B.2) Lemma 6.4 ensures that a ΣP-forward simulation F exists.
This forward simulation is weak progressive, since the concrete system never executes more
than one internal action in a row (SC (σ′ · a) is external, when a is internal). Thus the
well-founded order can be chosen to have (q′

P , q′
C , σ′)) ≫ (qP , qC , σ) iff qP = q′

P = qini
P and

there is an internal action a with qC −a→ q′
C and σ′ = σ · a. ◀
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▶ Lemma 6.6. (F3, ≫3) is a weak progressive forward (I ∪ R)-simulation between P ×A×SA
and A.

Proof. First we prove that F3 is a forward simulation.
Stuttering steps The stuttering steps are a ∈ {g(q), g(e, q), div, rec(e)}. The proofs for each

of these are trivial, but for completeness, we consider each of these in turn. We have the
following transitions:

a = g(q). We have (qini
P , qA, σ) −g(q)−−→ (qini

P , qA, σ · g(q)).
a = g(e, q). We have (qini

P , qA, σ) −g(e,q)−−−→ (qe, qA, σ · g(e, q)).
a = div. We have (qini

P , qA, σ) −div−→ (qdiv, qA, σ).
a = rec(e). We have (qrec(e), qA, σ) −rec(e)−−−→ (qini

P , qA, σ · rec(e)).

In each of these, if F3 holds in the pre-state, it holds again in the post state since qA is
unchanged, and the abstract system, i.e., A does not take a step.

Non-stuttering steps All internal and external steps of A are non-stuttering. Since F3
ensures that the states of A at the concrete and abstract states coincide, these can be
trivially discharged too. In particular, the possible transitions are:

a = e ∈ (I ∪ R). We have (qe, qA, σ) −e→ (qrec(e), q′
A, σ · e).

a ∈ ΣA \ (I ∪ R). We have
(q, qA, σ) −a→ (q, q′

A, σ).

In both cases, in A, we can take the corresponding transition qA −a→ q′
A, preserving F3.

We now prove weak progressiveness of F3. Note that for each stuttering transition, except
g(q), the program state changes. We define the well-founded order to be the relation ≫3
such that:
1. (qini

P , _, _) ≫3 (qe, _, _)
2. (qrec(e), _, _) ≫3 (qini

P , _, _)
3. (qini

P , _, _) ≫3 (qdiv, _, _)
Note that from (qdiv, _, _), the only possible transition is an −a→ step, where a ∈ ΣA \ (I ∪ R),
which is non-stuttering. Similarly, from (qe, _, _), the only possible transition is −e→, where
e ∈ I ∪ R. Thus, when we reach a state that is minimal wrt ≫3, no more stuttering is
possible. Any transition from state (qrec(e), _, _) is guaranteed to reduce w.r.t. ≫3, as are
transitions corresponding to g(e, q) and div from (qini

P , _, _).
This leaves us with transitions corresponding to g(q) from (qini

P , qA, σ), which may stutter
infinitely often. We we can show that such stuttering only exists if A contains a diverging
run from qA, i.e., div is enabled in (qini

P , qA, σ) ∈ QP×A×SA .
Suppose there exists an infinite run

(qini
P , qA, σ) −g(q1)−−−→ (qini

P , qA, σ · g(q1)) −g(q2)−−−→ (qini
P , qA, σ · g(q1) · g(q2)) −g(q3)−−−→ . . . .

By construction, P × A × SA is an “abstraction” of P × C × SC such that T (P × A, SA)|Γ =
T (P × C , SC )|Γ, thus, (σ|Γ) · g(q1) · g(q2) · g(q3) · · · · ∈ T (P × C , SC )|Γ. Thus, there exists a
qC such that last(σ) = g(qC) and

(qini
P , qC , σ) −g(q1)·τ1−−−−→ (qini

P , q1, σ·g(q1)·τ1) −g(q2)·τ2−−−−→ (qini
P , q2, σ·g(q1)·τ1 ·g(q2)·τ2) −g(q3)·τ3−−−−→ . . .
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where τk ∈ ΣC \(I ∪ R) for all k. Note that the definition of SC enforces a −g(qk)·τk−−−−−→ transition
for each −g(qk)−−−→ transition in P × A × SA. This execution, when restricted to the actions of
C corresponds to a diverging run of C :

qC −τ1−→ q1 −τ2−→ q2 −τ3−→ . . .

Since this is an infinite run of internal actions, by definition, the action div must be offered by
P × C × SC , and enabled in (qini

P , qC , σ). Moreover, since T (P × A, SA)|Γ = T (P × C , SC )|Γ,
div must also be possible in P × A × SA. In particular, div must be enabled in (qini

P , qA, σ).
Now, P × A × SA contains a run with final state σ. Therefore, P × A × SA also contains a run

(qini
P , qA, σ) −div−→ (qdiv, qA, σ) −τ ′

1−→ (qdiv, q′
1, σ) −τ ′

2−→ (qdiv, q′
2, σ) −τ ′

3−→ . . .

where τ ′
k ∈ ΣA \ (I ∪ R) for all k since P ×A×SA can no longer schedule any further external

actions after executing div, i.e., must schedule an internal action. Thus, we must have a
diverging run in A as well. ◀

▶ Theorem 6.7. Let (F1, ≫1) be a weak progressive ∆-forward simulation from C to B, and
(F2, ≫2) one from B to A. Then there exists a weak progressive ∆-forward simulation (F, ≫)
from C to A.

Proof. We show that (F, ≫) is a weak progressive forward from C to A. Standard refinement
results (e.g. Proposition 4.9 in [22]) imply, that refinement by forward simulation is transitive,
i.e. F1 ◦ F2 is a ∆-forward simulation. The definition of ≫ also clearly implies that the
order ≫ decreases on a triangular diagram, when its abstract state has no diverging run. It
remains to be shown that ≫ is well-founded. An infinite descending chain q0

C ≫ q1
C ≫ . . .

leads to a contradiction as follows: by definition of ≫ the states are the ones of a diverging
run of C that starts with q0

C . Since F1 is a forward simulation, there is a corresponding run
of B with states q0

B, q1
B, . . .. For all k both (qk

C , qk
B) ∈ F1 and qk

B −αk

−→ qk+1
B hold, where each

αk is a sequence of internal actions. Some αk may be empty, so states may occur several
times. It is, however, not possible that there is a final state qk

B such that qk
B = qk+1

B = . . .,
since then qk

C ≫1 qk+1
C ≫1 . . . would be implied, contradicting well-foundedness of ≫1. Note

that qk
B cannot start a diverging run in this case, otherwise qk

C ≫ qk+1
C would not hold by

definition. Therefore, the states q0
B, q1

B, . . . are some states of an infinite diverging run too.
By applying the same argument for the upper simulation a sequence q0

A, q1
A, . . . of states

of A can be found, such that for all k (qk
B, qk

A) ∈ F2 and qk
A −βk

−→ qk+1
A holds. Again the βk

are sequences of internal actions, and the existence of a final state with qk
A = qk+1

A = . . .

would contradict well-foundedness of ≫2. Therefore the construction results in a diverging
run from q0

A, contradicting the definition of q0
C ≫ q1

C which required that no corresponding
abstract state q0

A with a diverging run exists. ◀
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