
PRX QUANTUM 2, 030332 (2021)

Intrinsic Dimension of Path Integrals: Data-Mining Quantum Criticality and
Emergent Simplicity

T. Mendes-Santos ,1,2,* A. Angelone ,1,3,† Alex Rodriguez ,1 R. Fazio,1,4 and M. Dalmonte 1,3

1
The Abdus Salam International Centre for Theoretical Physics, strada Costiera 11, 34151 Trieste, Italy

2
Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany

3
SISSA, via Bonomea, 265, 34136 Trieste, Italy

4
Dipartimento di Fisica, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy

 (Received 23 March 2021; revised 6 July 2021; accepted 20 July 2021; published 23 August 2021)

Quantum many-body systems are characterized by patterns of correlations defining highly nontrivial
manifolds when interpreted as data structures. Physical properties of phases and phase transitions are
typically retrieved via correlation functions, that are related to observable response functions. Recent
experiments have demonstrated capabilities to fully characterize quantum many-body systems via wave-
function snapshots, opening new possibilities to analyze quantum phenomena. Here, we introduce a
method to data mine the correlation structure of quantum partition functions via their path integral (or
equivalently, stochastic series expansion) manifold. We characterize path-integral manifolds generated
via state-of-the-art quantum Monte Carlo methods utilizing the intrinsic dimension (ID) and the variance
of distances between nearest-neighbor (NN) configurations: the former is related to data-set complex-
ity, while the latter is able to diagnose connectivity features of points in configuration space. We show
how these properties feature universal patterns in the vicinity of quantum criticality, that reveal how data
structures simplify systematically at quantum phase transitions. This is further reflected by the fact that
both ID and variance of NN distances exhibit universal scaling behavior in the vicinity of second-order
and Berezinskii-Kosterlitz-Thouless critical points. Finally, we show how non-Abelian symmetries dra-
matically influence quantum data sets, due to the nature of (noncommuting) conserved charges in the
quantum case. Complementary to neural-network representations, our approach represents a first ele-
mentary step towards a systematic characterization of path-integral manifolds before any dimensional
reduction is taken, that is informative about universal behavior and complexity, and can find immediate
application to both experiments and Monte Carlo simulations.

DOI: 10.1103/PRXQuantum.2.030332

I. INTRODUCTION

The path-integral (PI) formulation of quantum parti-
tion functions is arguably one of the most basic concepts
in quantum many-body theory [1–3]. It provides key and
generic information about a given quantum state, typi-
cally interpreted via low-order correlation functions. More
refined properties, such as the degree of quantum correla-
tions captured by entanglement, can also be extracted from
path integrals leveraging on advanced techniques such as
the replica trick [4,5], or by analyzing the topological
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structure of their degrees of freedom [6]. On a more gen-
eral, yet abstract ground, the path integral of a many-body
problem can be construed as a very complex multidimen-
sional manifold embedded in a space that describes both
spatial and imaginary-time coordinates: within this geo-
metrical interpretation, while low-order properties of the
PI manifold (and their relation to physical observables) are
in general well understood, it is currently unclear if global
properties of such data structures can be informative about
physical phenomena at all, or if they are constrained by
universal properties of the many-body dynamics [3].

Here, we show how the full data structure of a path
integral (or its related representation as a stochastic series
expansion) of certain quantum-statistical mechanics mod-
els is able to capture genuine quantum effects such as
quantum critical behavior [3] as well as properties of quan-
tum phases. We introduce a stochastic characterization of
PI manifolds, and study it in the context of quantum spin
models by exploiting state-of-the-art techniques from the
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field of data mining [7], combined with quantum Monte
Carlo (QMC) sampling [8,9]. Our results show how very
general properties of the path-integral manifold—in par-
ticular, its intrinsic dimension [7,10]—display key signa-
tures of quantum critical behavior in several paradigmatic
cases, including second-order and Berezinskii-Kosterlitz-
Thouless (BKT) quantum phase transitions. This reveals
how universal properties do not only dictate simple path-
integral properties such as low-order correlations, but, in
fact, govern the entire data manifold—signaling, above
all, that quantum phase transitions of spin models are
accompanied by structural transitions of the correspond-
ing stochastic description of the path integral. At critical
points, the path-integral representation is parametrically
less complex than those of ordered and disordered phases:
quantum criticality is thus accompanied by an emergent
simplicity in data space, a fact that offers an alternative
angle on the representative power of recently developed
neural-network states [11–13].

Before continuing, it is worth stressing that, beyond
the basic theoretical goal of characterizing the geometry
of path integrals, our approach is directly motivated by
recent experimental developments in the field of quantum
computing and quantum simulation [14,15]. While the full
characterization of a many-body wave function via state
tomography is experimentally prohibitive (when applica-
ble at all), over the last few years stochastic sampling
of wave functions has become possible in both atomic
and solid-state platforms [16–23]. In particular, the com-
bination of high-fidelity in situ imaging techniques and
very fast repetition rates has enabled experiments to col-
lect thousands of wave-function snapshots, that, as we
argue below, are intimately related to specific types of
path-integral quantum data sets. These impressive experi-
mental capabilities have already been exploited in a variety
of ways, including measurement of entanglement proper-
ties and tomography of small partitions [16,18,24]. Our
approach here differs from these previous attempts, in the
fact that we are not targeting specific wave-function prop-
erties (such as entropies), but rather, we focus solely on
extracting universal information by analyzing the data as a
manifold.

The first element in our analysis concerns the definition
of proper “quantum” data sets describing the path-integral
manifold. In a previous work [25], some of us have shown
how classical partition functions exhibit very specific pat-
terns in data space, that are universal in the vicinity of
criticality, and where the corresponding structural transi-
tion can be understood utilizing simple arguments based
on correlation functions (we note that, while this paper was
in preparation, two works have appeared [26,27] that suc-
cessfully apply the diagnostic we introduced in Ref. [25] to
specific forms of wave-function representations). Since PIs
can be construed as a highly anisotropic classical partition
functions [2], one could naïvely apply methods already

developed to understand the latter on the former. However,
this turns out to be not only a very inefficient formula-
tion of data mining—as one would have to investigate
structural transitions in a data space where one dimen-
sion, the imaginary time, is typically very large—but, most
relevantly, one that will necessarily mix in an uncon-
trolled manner real-space and imaginary-time correlations.
In addition, the blind application of the “classical” pro-
cedure will conceal a key aspect of the path-integral
representation—namely, the fact that quantum-mechanical
variables do not commute. This last aspect will be particu-
larly important in the presence of non-Abelian symmetries,
as we argue below comparing in detail the classical and
quantum cases. One thus needs to identify the proper infor-
mation to be mined, and cannot simply translate from the
classical case—irrespectively on how insightful that might
be on its own.

We thus introduce two classes of quantum data sets cor-
responding to the PI stochastic descriptions [see Fig. 1(a)].
The first class is obtained by taking snapshots that are
instantaneous in imaginary time, while the second one
incorporates within the data set a finite, discrete frac-
tion of imaginary-time “slices.” We discuss in detail how
both of these choices differ drastically from the equivalent
classical description for the two reasons above. Impor-
tantly, both data sets are immediately available when
sampling partition functions via quantum Monte Carlo
methods [2,28,29], and the first one is additionally readily
obtained from experiments, and from the output of exact
and variational wave-function-based methods.

The second part concerns instead the identification and
application of the proper tools to characterize the com-
plex data structures correspondent to PIs. The latter are
defined in high-dimensional manifolds and may display
nontrivial curvature and topology, in addition to inhomo-
geneous density distributions. The first property of the PI
manifold we investigate is the intrinsic dimension—that
is, the minimum number of dimensions needed to accu-
rately describe the manifold itself [see Fig. 1(b)]. This
allows us to minimally characterize the sampled PI mani-
fold with a single number, that can be efficiently estimated
with state-of-the-art algorithms.

For all the models considered here, the intrinsic dimen-
sion displays a minimum at transition points—indicating
that the geometry of the PI manifold simplifies at critical-
ity. This observation points to the fact that the PI manifold
behaves independently from quantum correlations such as
bipartite entanglement, that are often maximal at quan-
tum critical points (QCPs) [5,30]; our findings are instead
suggestive of the fact that the PI data structure is inherit-
ing simplicity from the fact that the low-energy properties
are captured by very few degrees of freedom (DOF)—and
thus, constrain the PI structure. This is reminiscent of the
fact that energy spectra are also highly constrained by
universal properties: however, while the latter typically

030332-2



INTRINSIC DIMENSION OF PATH INTEGRALS... PRX QUANTUM 2, 030332 (2021)

(a) (b)

FIG. 1. Data structure of quantum partition functions and generic data-set features. The partition function of a quantum system can
be described by an extended configuration space with one extra dimension τ (known as imaginary time). As an example, we illustrate
in (a) a specific space-time configuration of a system with four spins. Each slice |αi〉 is defined in terms of the spatial degrees of
freedom, i.e., |αi〉 = (Sz

1,i, . . . , Sz
Ns,i). Here, we consider data sets generated by either (i) single or (ii) multiple slices. The data structure

of quantum partition functions is described by the manifold generated by the set of points X in a high-dimensional space. To pictorially
explain our approach, we consider in (b) a synthetic data set embedded in three dimensions. We investigate generic features of data sets
associated to the statistics of nearest- and next-nearest-neighbor configuration distances, r1 and r2, respectively: namely, the intrinsic
dimension, Id, and the variance �r1 of the distribution function f (r1) (see text). Our main result is to show that the Id and �r1 exhibit
universal critical behavior in the vicinity of different types of quantum phase transitions (see Fig. 2 as an example) and reveal genuine
quantum properties (without classical counterpart) of raw data sets.

depend solely on low-order correlation functions, the con-
strained structure we observe is related to arbitrary order
correlations.

The relation between PI data structure and universal
behavior becomes apparent when performing a finite-size
scaling (FSS) analysis of the intrinsic dimension [8]: the
latter displays universal scaling collapse, whose functional
form is dictated by the universality class (second-order
or BKT), and by its critical exponent ν. An example of
such scaling collapses is illustrated in Fig. 2(a) for the case
of BKT transition in the one-dimensional (1D) XXZ spin
model, which we investigate below.

(a) (b)

FIG. 2. As a representative example of our results, we show
the universal data collapse of both the Id (a) and �r1 (b)
for the one-dimensional 1/2-XXZ model in the vicinity of the
Berezinskii-Kosterlitz-Thouless transition (see text).

In addition to the intrinsic dimension, we also inves-
tigate the statistical properties of the distances between
nearest-neighbor (NN) configurations in the path-integral
data space. At the qualitative level, the corresponding dis-
tribution describes fluctuations of configurations within
the path-integral manifold: the broader it is, the stronger
we expect correlations in our data set—that is, cor-
relations in both space and imaginary time. We show
how this quantity—of simpler experimental and compu-
tational access than the intrinsic dimension—also pro-
vides key signatures of critical behavior [see Fig. 2(b)].
Moreover, beyond the critical regime, we show that
it reveals fundamental properties of symmetry-broken
phases.

On general grounds, our work aims to learn quantum
phases and their transitions in a purely unsupervised man-
ner, i.e., without prior knowledge of the system (e.g.,
the nature of phases or the phase transitions). While a
series of works have recently adopted similar approaches
[15,31–41], it is worth mentioning that our route is com-
plementary, and to some extent alternative, to these works,
as we access data-based quantities without any projec-
tion or compression of the data set. Our approach consists
of data-mining data sets as a whole, which, as we illus-
trate below, allows one to access universal properties of
quantum systems (while other properties might not be
retrievable).
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The paper is structured as follows. In Sec. II, we review
the formulation of quantum partition functions using path
integrals and stochastic series expansions: this allows us to
fix notations, and to define the quantum data sets we are
interested in. In Sec. III, we introduce the tools we adopt
to analyze quantum data sets (i.e., the intrinsic dimension
and the statistics of distances) and review the estimators
we employ. In Secs. IV and V, we discuss our analysis
of second-order and BKT quantum critical points, respec-
tively. In Sec. VI, we investigate the role of non-Abelian
symmetries, and contrast it to the classical case. Finally, in
Sec. VII, we draw our conclusions.

II. QUANTUM DATA SETS AND MODELS

In order to investigate the properties of our quantum
many-body systems of interest, we perform quantum-to-
classical mappings, which transform the original config-
urational space of the quantum model into an equivalent
classical one, amenable to simulations via appropriate
Monte Carlo (MC) algorithms. Subsequently, we ana-
lyze the data set of the configurations sampled during the
MC simulations via the data-mining-inspired observables
mentioned above.

In this section, we offer a discussion of the Hamil-
tonians studied in our work, with particular focus on
their ground-state (quantum) critical behavior, followed
by an introduction to the employed quantum-to-classical
mappings.

A. Models

We analyze the transverse-field Ising model (TFIM; see,
e.g., Ref. [3] for a thorough introduction)

H = −2h
L∑

i=1

Sx
i − 4

∑

〈i,j 〉
Sz

i Sz
j (1)

for a one-dimensional system of size L with periodic
boundary conditions (PBCs), where Sx

i (Sz
i ) denotes the x

(z) component of the quantum spin-1/2 operator Si act-
ing on site i, and 〈i, j 〉 denotes a sum over NN pairs of
sites. In the ground-state regime, the TFIM undergoes a
second-order phase transition at the critical field value
hc = 1 between a paramagnetic and a ferromagnetic (FM)
state, corresponding to h > hc and h < hc, respectively.
Section IV A focuses on the determination of the posi-
tion of the TFIM critical point via data mining of the
configurational data set.

We also study the spin-1/2 Heisenberg bilayer model
[42,43], described by the Hamiltonian

H =
∑

a=1,2

∑

〈i,j 〉
Si,a · Sj ,a + g

Ns∑

i=1

Si,1 · Si,2, (2)

where the layer index a identifies one of two symmetrical
square lattices of Ns = L × L sites composing the bilayer
geometry, and g is the relative strength of the interlayer
onsite Heisenberg term with respect to the intralayer NN
one. In the ground-state regime, the model displays an
SU(2)-symmetry-broken antiferromagnetic (AFM) phase
and an SU(2)-disordered phase for weak and strong g,
respectively. The transition between these states has been
shown to belong to the three-dimensional O(3) (Heisen-
berg) universality class, and to be characterized by a value
of the critical parameter g = gc = 2.5220(1), and a cor-
relation length critical exponent ν = 0.7106(9) [43]. The
determination of these two quantities via unsupervised
learning of the QMC configurational data sets is discussed
in Sec. IV B.

Finally, we investigate the one-dimensional spin-1/2
XXZ Hamiltonian [44,45]

H =
Ns∑

i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)
. (3)

In the � > 0 region, the phase diagram of the model dis-
plays a gapless critical phase for � < 1, separated from a
Z2-symmetry-broken antiferromagnetic phase by a BKT
critical point at � = 1 [44]. The features of this kind
of phase transition are radically different from those of
second-order criticality such as the examples mentioned
above, and include, e.g., the nonlocality of the order
parameter associated to the transition, as well as an expo-
nential (rather than power-law) divergence of the correla-
tion length in proximity of the transition. The results of our
application of data-mining-related observables to the study
of this kind of critical behavior in the one-dimensional
XXZ model are discussed in Sec. V.

B. Quantum-to-classical mappings and quantum data
sets

The partition function of a quantum system described by
a Hamiltonian H is

Z =
∑

{|α〉}
〈α|e−βH |α〉, (4)

where β = 1/T is the inverse temperature of the system (in
units of the Boltzmann constant), and {|α〉} is a complete
basis set for the Hilbert space in which H operates. In the
following, we employ a basis set in terms of the eigen-
values of Sz operators: |α〉 = (Sz

1, . . . , Sz
Ns

) for all models
considered. In the MC approaches considered in this work,
many-body configurations are sampled with a probability
proportional to their contribution to the partition function,
making the evaluation of terms such as those in the sum in
Eq. (4) crucial.
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The first of the MC techniques adopted in this work is
known as path-integral Monte Carlo (see, e.g., Ref. [28]),
and allows a direct, unbiased sampling of the path-integral
manifold. In this approach, the Hamiltonian of the original
quantum system is decomposed as H ≡ H0 + H1, where
the two terms are diagonal and nondiagonal on the basis
set formed by the |α〉, respectively: the partition function
in Eq. (4) can then be rewritten as

Z =
∑

{|α〉}
〈α|

M−1∏

k=0

e−ε(H0+H1)|α〉 (5)

=
∑

{|αk=1,...,M 〉}

M−1∏

k=0

〈αk|e−εH0e−εH1 |αk+1〉 + O
(
ε2)

=
∑

{|αk=1,...,M 〉}

M−1∏

k=0

e−ε〈αk |H0|αk〉〈αk|e−εH1 |αk+1〉 + O
(
ε2) ,

(6)

where ε ≡ β/M , each of the sets {|αk〉} is a complete set
for the Hilbert space, and |αM 〉 ≡ |α0〉.

For quantum spin systems, such as those considered in
our work, the states |αk〉, also known as slices, are usu-
ally chosen as eigenvectors of the z component of the
quantum spin-1/2 operators Si acting on each site i, i.e.,
|αk〉 ≡ |Sz

1k, . . . , Sz
Nsk〉, where Ns is the system size. The

union of the various sets {|αk〉} in Eq. (6) can be interpreted
as an extended configuration space, whose dimensionality
is increased by 1 with respect to the one of the original
quantum system, and whose MC sampling can be per-
formed via a conventional Metropolis algorithm due to
the relative simplicity of the calculation of the matrix ele-
ments in Eq. (6). In the following, we adopt the PIMC
technique to analyze the one-dimensional TFIM described
by the Hamiltonian in Eq. (1), which is mapped by the
procedure discussed above to a two-dimensional, classi-
cal, anisotropic Ising model. The configuration space of
the latter is then sampled via the use of conventional Wolff
cluster updates [46].

As discussed in the Introduction, our approach is based
on the analysis of generic features of the data structure
associated with classical representations of quantum parti-
tion functions [the definition of the data structure is shown
in Fig. 1(a)]. The PI represents one choice for such rep-
resentation. However, to demonstrate the flexibility of our
procedure, we analyze some of our models of interest using
an equivalent and related representation to the PI one:
namely, the stochastic series expansion (SSE) approach
(see, e.g., Ref. [47]).

In this method, the quantum partition function in Eq. (4)
is rewritten by expanding the exponential operator in
power series of H

Z =
∞∑

k=0

(−β)k

k!

∑

{|α〉}
〈α|H k|α〉

=
∞∑

k=0

(−β)k

k!

∑

{|αk〉}
〈α0|H |αk−1〉 × 〈αk−1|H |αk−2〉

× · · · × 〈α2|H |α1〉 × 〈α1|H |α0〉, (7)

where the definition and constraints on the {|αk〉} are the
same as in Eq. (6). As in the PI case, the ensemble of the
{|αk〉} can be interpreted as a higher-dimensional config-
uration space; a schematic representation of the latter as
obtained by applying the SSE (or PI) mapping is displayed
in Fig. 1(a).

As all the matrix elements in Eq. (7) are easily evaluated
(and positive definite in the case of the models consid-
ered here), the configuration space is now amenable to
the importance of MC sampling according to the parti-
tion function, which in the following is performed via
a combination of diagonal and off-diagonal directed-loop
updates [48].

The two mappings described above can be proven to be
identical in the limit M → ∞ [49]. On the one hand, if
one takes the SSE partition function in Eq. (7), chooses a
“cutoff” kmax = M for the expansion order, and adds (M −
k) matrix elements of the identity to each term of order k,
one obtains

ZSSE =
∑

{SM }

∑

{|αk〉}

βk(M − k)!
M !

〈α0|HiM |αM−1〉

× · · · × 〈α2|Hi2 |α1〉〈α1|Hi1 |α1〉, (8)

where {SM } identifies the ensemble of all sequences of
length M of operators Hi, the indices i = 0, 1 denotes
the identity or the Hamiltonian operator, respectively, and
the combinatorial factor M !/ [k!(M − k)!] has been intro-
duced to keep into account the equivalent ways to insert the
(M − k) identity operators in the M -sized operator string.

On the other hand, the partition function in Eq. (4) can
be rewritten, starting from Eq. (5), as

ZPI =
∑

{|αk〉}
〈α0|1 − εH |αM−1〉

× · · · × · · · × 〈α2|1 − εH |α1〉〈α1|1 − εH |α0〉
+ O (ε) . (9)

The terms can then be rearranged, using the notations
introduced in Eq. (8), as

ZPI =
∑

{SM }

∑

{|αk〉}
εk〈α0|HiM |αM−1〉

× · · · × · · · × 〈α2|Hi2 |α1〉〈α1|Hi1 |α0〉 + O (ε) .
(10)
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In the limit M → ∞, the prefactor βk(M − k)!/M ! in
Eq. (8) converges to βk/M k = εk, while the approxima-
tion error in Eq. (10) vanishes, implying the equivalence
of the expressions for Z obtained in the two formalisms.
In our calculations, with both the PI and SSE approach,
we increase the number of slices until finite-M effects are
negligible, ensuring the attainment of the limit mentioned
above, and therefore the equivalence of the PI and SSE
methods to analyze our problems of interest in the regimes
investigated in this study.

The data sets analyzed in our work are composed by
stochastically sampled elements of the extended configu-
ration spaces discussed above, written in terms of the the
set of slices {|αi〉}. More specifically, we consider sets of
either

(1) single-slice configurations �X = {|α0〉}, or
(2) configurations containing a subset of M ′ ≤ M

evenly spaced slices, i.e., �X = {|αk1〉, . . . , |αkM ′ 〉
}
,

where ki ≡ i × [
M/M ′], i = 0, . . . , M ′ − 1, and [x]

denotes the integral part of a real number x (see
Fig. 1).

As anticipated in the Introduction, the first data set also
corresponds to wave-function snapshots in experiments
with in situ imaging, while the second data set genuinely
displays path-integral features, incorporating effects from
imaginary-time correlations.

III. DATA-MINING QUANTUM DATA SETS

We investigate generic features of data sets aiming to
extract useful information about quantum criticality. More
specifically, we consider basic data-set features associated
with the statistics of distances between neighboring config-
urations: namely, the intrinsic dimension and the variance
of the distribution of neighboring distances. Below, we
describe in more detail the key quantities and discuss their
connections with physical properties of quantum phase
transitions.

A. Intrinsic dimension and TWO-NN estimators

A common way to deal with data sets is to consider
each data instance as a point in a space whose dimension
(the embedding dimension, Nc) is the number of features
needed to describe each sample. However, the existence
of correlations between data points usually leads to situa-
tions in which the points live, approximately, in a manifold
whose dimension, known as intrinsic dimension (ID) and
denoted by Id, is much lower than Nc. The basic intuition
behind the Id is illustrated in Fig. 1: although the synthetic
data set of (b) is embedded in a three-dimensional (3D)
space, its essential content can be described (almost with-
out loss of information) by a nonlinear manifold whose Id
is equal to 1. In simple cases like this, the Id corresponds

to the minimum number of variables needed to describe a
data set.

Different approaches have been proposed to estimate the
Id; see Ref. [10] for an extensive discussion about this
topic. The technique used here, the TWO-NN [7], is based
on a class of methods that relies on the statistics of dis-
tances between NN elements in the data set. The basic idea
of such approaches is that nearest-neighborhood points can
be considered as uniformly drawn Id-dimensional hyper-
spheres [10,50]. This assumption allows one to establish
relations between the Id and the statistics of neighboring
distances. In particular, in the TWO-NN, for each point �X
in the data set [see Fig. 1(b)] one considers its distance
from its NN and next-nearest-neighbor (NNN) point r1( �X )

and r2( �X ), respectively. The set of distances r1 and r2 are
defined in terms of the Euclidean distance (see below).
Under the condition that the data set is locally uniform in
the range of next-nearest neighbors, it has been shown in
Ref. [7] that the formula for the distribution function of
μ = r2( �X )/r1( �X ) is

f (μ) = Idμ
−Id−1 (11)

or, in terms of the cumulative distribution P(μ),

Id = − ln [1 − P(μ)]
ln (μ)

. (12)

Due to the minimal extension of the neighborhood con-
sidered, the TWO-NN method is particularly suitable for
nonlinear manifolds, which is important when dealing with
physical data sets [25].

It is worth mentioning that the TWO-NN is designed for
configurations defined on a continuous support. However,
the generalization to configurations describing discrete
data sets, such as those considered in this work, is straight-
forward and does not display problems if a large enough
number of coordinates Nc is considered.

Before proceeding, let us define more precisely the
quantum data sets introduced at the end of the last section.
As described in Fig. 1, such data sets are defined by a set
of points �X i = (X i

1 , X i
2 , . . . , X i

Nc
), where the index i is the

label of the configurations sampled in the MC simulations
(i.e., i = 1, . . . , Nr), Nc is the number of coordinates (or
the embedding dimension, as mentioned above), and Nr
is the total number of points considered in the data sets.
The coordinates X i

j are defined in terms of the path inte-
gral (or stochastic series expansion) degrees of freedom,
as explained in Fig. 1(a) and in Sec. II B.

B. Scale dependence of the Id and the statistics of
neighboring distances

One key aspect is that the Id (computed via the TWO-
NN method) is a scale-dependent quantity. More specifi-
cally, the Id is measured on a range scale defined by the
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NN and NNN distances r1 and r2 [7]. For each point in the
phase diagram, the scale is determined by the total num-
ber of points in configuration space, Nr, since the latter
fixes the average values of r1 and r2. Indeed, the effect
of changing Nr is analogous to enlarging or shrinking the
data set in configuration space, which changes the value
of Id [see the pictorial example in Fig. 1(b)]. The Id also
reveals changes of scale associated with structural tran-
sitions in configuration space. For example, we mention
the structural transitions occurring in classical data sets in
proximity of thermal phase transitions [25].

The fundamental reason why the Id exhibits a singular
behavior in the vicinity of classical transitions is related
to changes of scale in configuration space [25], which
interestingly can be associated to significant changes in
the physical properties of the connectivity of neighbor-
ing points. For example, in the case of the classical Ising
transition the data structure related to Ising ferromag-
netic phases is characterized by configurations whose NN
and NNN have essentially equivalent physical properties
(e.g., magnetization): conversely, in the disordered phase
the physical properties of neighboring configurations are
entirely uncorrelated. A similar reasoning applies in the
case of a the classical BKT transition, where neighboring
points are characterized by configurations with the same
topological properties (i.e., winding number) in the ordered
phase.

The reasoning mentioned above serves as a guideline
for defining other quantities associated with the statis-
tics of neighboring distances. As we discuss below, such
quantities (going beyond the Id) reveal essential properties
of path-integral data sets. More specifically, we consider
the distribution function associated to the NN (NNN)
distances, and its variance �r1 (�r2):

�ri = 〈
r2

i

〉 − 〈ri〉2 , (13)

where 〈ri〉 = N−1
r

∑Nr
k=1 ri(

�X k), (with i = 1, 2); r1(
�X k) and

r2(
�X k) are the first and the second nearest-neighbor dis-

tances associated to the configuration �X k, respectively. At
least in the case where the data sets are homogeneous in
density, the �ri can detect changes of scale in config-
uration space, similarly to the Id. Furthermore, the �ri
reflects the global connectivity of neighboring points in
configuration space, which is a fundamental ingredient to
detect topological transitions [33]. We note that the �ri,
differently from Id, are also sensitive to inhomogeneity
in the sampling of the data set: therefore, in general we
expect Id to provide a more reliable description of universal
properties.

C. Distances and correlations

A crucial step to obtain both the Id and �ri is to con-
sider a proper metric. Here, we compute the distance

r( �X i, �X j ) between two configurations �X i and �X j accord-
ing to the well-known Euclidean metric, following which
the distance can be straightforwardly recast in the form

r( �X i, �X j ) =

√√√√√2Nc

⎛

⎝1 − 1
Nc

Nc∑

p=1

X i
pX j

p

⎞

⎠. (14)

This choice satisfies the basic requirements for a proper
metric: namely, it is non-negative, equal to zero only for
identical configurations, symmetric, and it respects the
triangular inequality.

It is worth mentioning that the Hamming distance is
also a proper metric, which could be used in place of
the Euclidean one leading to only a trivial change in the
intrinsic dimension for the data sets considered in our
work (i.e., binary variables): more specifically, I E

d = 2I H
d ,

where I E
d and I H

d are the intrinsic dimension computed with
the Euclidean and the Hamming metric, respectively. This
result can be understood if we (i) define the Euclidean
and Hamming distances between two configurations as
rE = 2

√
Ndiff and rH = Ndiff, where Ndiff is the number of

unequal coordinates of the configurations, and (ii) consider
that the ID is a function of ln(r2/r1) [see Eq. (12)].

An advantage of considering a standard metric (such as
the Euclidean distance) is that we can efficiently compute
the set of NN distances r1 and r2 with state-of-the-art unsu-
pervised NN search algorithms, leading to O [N log(N )]
scaling of the computational complexity [51]. However,
it is worth mentioning that r( �X i, �X j ) does not reflect
the underlying symmetries of the physical configurations
�X . For instance, here we consider systems with transla-
tion symmetry (in space and imaginary-time direction),
for which the distance between two configurations �X i

and �X j related by a given translation symmetry opera-
tion should be equal to zero. As a simple example, let us
consider �X i = (−1, −1, −1, 1) and �X j = (−1, 1, −1, −1):
despite these configurations being physically equivalent
by translational symmetry, we have r( �X i, �X j ) > 0. Nev-
ertheless, this drawback does not affect our results, given
that the probability of sampling two or more configura-
tions belonging to the same translational symmetry sector
is exponentially suppressed for large number of configura-
tional DOF (typically, we consider Nc > 100).

One key aspect of the form of r( �X i, �X j ) displayed in
Eq. (14) is that it reveals the intimate relation between
generic data-set features and correlations described by the
terms X i

pX j
p . An interesting perspective is to try to con-

nect such data correlations with correlations between the
variables themselves, i.e., correlations of the type X i

pX i
r ,

where p and r are indices related to the coordinates of a
given configuration vector i. From now on, we call the later
physical correlations; for the quantum data sets considered
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here, the indices p and r may be separated by distances
in both space and/or imaginary time. Although it is hard
to establish this connection in general, one can verify that
it indeed holds in certain temperature regimes of classical
systems [25], which explains (at least qualitatively) why
the Id and quantities related to the statistics of neighboring
distances exhibit universal scaling behavior in the vicinity
of classical critical points. However, whether or not such
a connection holds for quantum systems, or if generic fea-
tures of the data sets are related to universal properties of
quantum critical points, cannot be immediately answered
based on the classical results. As we discuss now, quantum
data sets differ in a fundamental way from their classical
counterparts.

D. Differences between quantum and classical
partition-function data sets

The path integral of a D-dimensional partition function
can be mapped to a (highly anisotropic) classical partition
function in D + 1 dimensions. It is thus natural to wonder
whether one could just employ the same methods already
applied to study the latter in the context of the former.
The answer is negative for three main reasons—two of
conceptual and one of practical nature.

The first limitation is that analyzing PIs as classical data
sets will necessarily mix information contained in space
and imaginary-time correlations: this will make it hard
to identify precise connections between the data structure
itself and physical phenomena, as it will correspond to ana-
lyzing arbitrary space and time correlations. The reason
why identifying such connections would be challenging
is that physical information (such as critical exponents) is
typically referred to specific correlation functions in either
in space or in time: for instance, the correlation length
critical exponent ν is associated to equal-time correlators,
while certain anomalous critical exponents are related to
the decay of single-site Green functions in imaginary time.
This is in sharp contrast with the classical case, where
correlations are isotropic. Analyzing the full PI mani-
fold would unavoidably mix these two types of relevant
information.

The second limitation is that only a given part of the
PI manifold is experimentally accessible. This is, to the
best of our knowledge, a consequence of the fundamen-
tally quantum nature of the problem: once wave-function
snapshots are taken, these are necessarily in the form of
strong measurements.

The third limitation is of practical nature. Data mining
a manifold becomes impractical when the dimension of
the embedding data space increases. A priori, this does not
seem an issue, as the number of points necessary to char-
acterize the intrinsic dimension of a manifold is typically
related to the dimension of the manifold itself, and not to
that of the embedding space. A simple example of this fact

is the identification of a line in a D-dimensional space, for
which one just needs a number of points that scales with
the intrinsic dimension. However, in practical terms, one
still requires a larger number of samples to properly char-
acterize the manifold features, especially for the very large
values of the intrinsic dimensions we encounter below.

The three considerations above highlight the fact that
one cannot simply take the same approach demonstrated
with classical partition functions, and apply it to PI mani-
folds: in the best case, this would lead to a hard-to-decipher
and experimentally inaccessible picture, while in the
worst-case scenario the classically mutated approach will
be simply inapplicable. The quantum data sets described
above overcome these limitations at different levels, via
either focusing on a single slice, or capturing imaginary-
time properties in a selective manner.

There is an additional, genuinely quantum-mechanical
aspect that quantum data sets have to handle: namely,
the fact that quantum fields do not commute. Since the
definition of the data set requires specifying a given basis,
this will inevitably lead to new features in the presence
of non-Abelian symmetries, as the latter are character-
ized by noncommuting conserved quantities. In Sec. VI,
we address this specific aspect in the context of SU(2)
symmetries.

IV. SECOND-ORDER TRANSITIONS

We begin by considering the behavior of both the Id and
the NN distance distribution variance �r1 in the vicinity
of two paradigmatic examples of second-order quantum
phase transitions.

A. One-dimensional quantum Ising model

In this section we discuss the results of the application
of the observables introduced in Sec. III to the analysis
of the quantum critical behavior of the one-dimensional
TFIM (see Sec. II B). The required configuration data sets
are generated via PIMC simulations performed at inverse
temperature β = 512, where convergence in temperature
to the ground-state regime was observed for the order
parameter associated to the ferromagnetic transition [i.e.,
the squared magnetization m2

z = 4/L2(
∑L

i=1 Sz
i )

2]. All the
simulations considered in the following are performed with
M = 131 072 slices, of which M ′ = 512 are considered in
the configurations, which compose the analyzed data set.

In order to ensure a thorough enough sampling of the
L × M ′ DOF in each of the configurations, we sample
Nr = 32 768 configurations for each of our simulations,
which is more than or equal to twice the number of DOF
in any of the cases we analyze. These configurations are
sampled at regular intervals in MC time (i.e., the dis-
tance between them in number of updates is constant).
To avoid correlated sampling, for each of our simulations
we compute the autocorrelation time of one of the DOF
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(assuming a weak dependence of such a quantity on this
choice) and continue the simulation until it is possible to
extract Nr configurations such that the distance in simu-
lation time between them is larger than or equal to the
estimated autocorrelation time.

The first step in our analysis is the direct calculation of
the Id of the sampled configurations. The results for dif-
ferent system sizes are shown in Fig. 3(a) as a function
of the transverse field h. The most striking feature of the
behavior of the Id here is the presence of a minimum at
a size-dependent value of the field h∗(L) < hc, which for
larger sizes progressively moves towards the critical point.
We perform a linear fit of the position of this minimum in
the thermodynamic limit L → ∞ [see brown triangles in
Fig. 3(c)] obtaining an extrapolated value h∞ = 1.045(7).

In order to compare the accuracy of the Id estimate for
the transition point with that obtainable via conventional
FSS analysis, we compute the variance of the magnetiza-
tion distribution along the x axis

χx ≡ Lβ
(〈m2

x〉 − 〈|mx|〉2) , (15)

where mx ≡ (2/L)
∑L

i=1 Sx
i . This quantity can be calcu-

lated by exploiting the self-duality of the one-dimensional
TFIM under an axis rotation mapping the x axis into
the z axis. In particular, this property results in the iden-
tity between mx computed at a value h of the transverse
field and mz computed at h′ = 1/h, with the latter being
straightforward to obtain in the PIMC approach.
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I d
/L
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L = 28
L = 32
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χ
x
/β
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(a)

(b) (c)

FIG. 3. Quantum Ising model (intrinsic dimension). (a) Intrin-
sic dimension Id in units of the system size L as a function of h.
(b) Magnetization variance in the x direction as a function of the
transverse field h. (c) Extrapolation to the thermodynamic limit
of the position of the Id minima h∗(L) and of the susceptibility
peaks h∗

χ (L) as a function of 1/L; we obtain h∞ = 1.045(7) and
h∞

χ = 1.02(1), respectively. In all panels, the vertical dashed line
corresponds to the critical point h = hc.

The observable χx is reminiscent of the susceptibil-
ity for a classical Z2-symmetry-breaking phase transition.
Indeed, it also shares a similar finite-size behavior (see,
e.g., Ref. [48]), peaking at a size-dependent value h∗

χ (L) <

hc of the transverse field, which approaches the exact
critical point as the size increases [see Fig. 3(b)], a behav-
ior which, as discussed above, is also displayed by the
Id. A linear extrapolation of the finite-size peak posi-
tions as a function of the inverse size [see green squares
in Fig. 3(c)] returns an extrapolated value h∞

χ = 1.02(1).
The latter displays comparable accuracy to the Id estimate
obtained using the same system sizes, proving the substan-
tial equivalence in precision between FSS of the Id and
that of more conventional observables usually associated
to critical behavior.

In order to gather more insight about the behavior of
the configurations in the proximity of the critical point,
we compute the variance �r1 of the distribution of the
recorded distances between each configuration in the data
set and its NN; our results for this quantity for vari-
ous system sizes are shown in Fig. 4(a) as a function
of the transverse field. The variance �r1 displays a peak
at a size-dependent position hm(L), with the distribution
f (r1) correspondingly displaying significant broadening
when approaching the critical point [Fig. 4(b)]. The hm(L)

are not necessarily identical to the h∗(L), but display the
same behavior, gradually approaching the critical point for
increasing system size. Performing a linear fit as in the
case of the Id minimum position [see Fig. 4(c)], we obtain
the extrapolated value hm(∞) = 1.03(1). The variance of
the distribution for the distance of each configuration to
its NNN in the sampled data set (not shown) displays
an essentially identical behavior, and a fit performed in
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FIG. 4. Quantum Ising model (statistics of NN distances).
(a) Variance �r1 of the distribution function of the NN distances
f (r1) as a function of h. (b) f (r1) for L = 16 as a function of
h. (c) Extrapolation to the thermodynamic limit of the position
of the maxima hm(L) of �r1 (and �r2) as a function of 1/L;
we obtain hm

∞ = 1.03(1) [and hm
∞ = 1.04(1)]. In all panels, the

vertical dashed line corresponds to the critical point h = hc.
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the same fashion as above yields an extrapolated value
hm

∞ = 1.04(1) for the peak position in the thermodynamic
limit.

Remarkably, we observe that the singular features asso-
ciated with both the Id and �r1 (i.e., the minimum in
the former and the peak of the latter) shift with L from
the ordered phase towards the critical point, in the same
fashion as the finite-size peak of χx. These results sug-
gest a relation between these observables and the cor-
relations associated with Sx degrees of freedom, which
encompass both spatial and imaginary-time degrees of
freedom, and are therefore deeply connected to the quan-
tum nature of the problem. The relation between the latter
and the behavior of the data-mining-inspired quantities is
also immediately evident from a direct comparison with
the classical counterpart of the quantum problem inves-
tigated here, i.e., the paramagnetic-ferromagnetic transi-
tion in a two-dimensional (2D) Ising model, examined in
Ref. [25]. In this case, where quantum fluctuations are
absent, the shift of the singular feature of the Id behaves
like the one of the “diagonal” (i.e., classical) susceptibil-
ity χz ≡ Lβ

(〈m2
z 〉 − 〈|mz|〉2

)
(i.e., it occurs at finite sizes

within the paramagnetic phase, unlike in the quantum case,
converging to the critical point for L → ∞).

In order to understand the role of spatial and imaginary-
time degrees of freedom of the path-integral representation
in determining the behavior of Id-related features, such
as the variance peak of the NN distance distribution, we
compare the behavior of the latter observable computed
for different spatial and temporal partitions of the system.
Our results are displayed in Fig. 5(a)–(b) for L = 16 and
L = 32, respectively.

Regardless of the subset of degrees of freedom con-
sidered, in proximity of the critical point the observables
display the same qualitative characteristics as their coun-
terparts for the complete system, i.e., a peak for a size-
dependent value of the transverse field. However, the
details of such features, such as the height and position
of the peak, depend on the number of degrees of freedom
(sites × slices) considered: for instance, halving the num-
ber of degrees of freedom (either in space, by considering
a half-chain partition, or in imaginary time, by considering
only one slice every consecutive two) results in a roughly
halved peak height, and the features are likewise much
weaker in the case of single-slice calculations [but still
present, see Fig. 5(c)]. This behavior shows essentially the
same characteristics regardless of whether the “excised”
degrees of freedom are spatial or temporal, suggesting an
essentially equivalent role of the two in the calculation of
Id-related features.

Direct analysis of the features of Id-related observables
such as those displayed in, e.g., Fig. 4, points out that
the strength of the Id-related features (e.g., the height
of the NN variance distribution peak) does not increase
indefinitely with the addition of more degrees of freedom,

(a)

(b)

(c)

FIG. 5. Quantum Ising model (statistics of NN distances for
different system partitions). (a) Variance of the distribution func-
tion of the NN distances as a function of the transverse field for
the complete data set of L = 16 sites × M ′ = β = 512 slices
(green circles), a spatial half-partition with the first L/2 sites and
β slices (dark green triangles), a temporal half-partition of the
system with all L sites but where only one in every two of the
original M ′ slices is considered (red squares), and a data set com-
posed by a single slice for the complete system of L sites (purple
triangles). (b) Same as (a) for L = 32, with the addition of the
data set corresponding to a quarter-chain partition (i.e., the first
L/4 = 8 sites) and all slices. (c) Magnification of the curves for
the NN distance variance for single-slice data sets for L = 16, 32.
In all panels, the vertical dashed line corresponds to the critical
point h = hc.

but eventually reaches a size-independent saturation value
corresponding to a complete system once a high enough
number of temporal degrees of freedom is considered. It
is also evident that, even for equivalent and large enough
number of slices to reach the saturation threshold men-
tioned above, an L-sized partition of a larger system
displays different features with respect to a full system
of L sites (as can be seen comparing the results for the
8 × M ′ = 512 partition in Fig. 5 with those of the full
L = 8 system, and the same number of slices, in Fig. 4).

B. Two-dimensional dimerized models

We now consider the 2D dimerized Heisenberg bilayer
model in Eq. (2). This Hamiltonian describes an AFM-
paramagnetic transition belonging to the same universality
class of the three-dimensional O(3) Heisenberg model, see
Sec. II B.

Our simulations are performed using the SSE algorithm
at inverse temperature β = L, an appropriate value for
the investigation of the ground-state regime [28,47]. For
all the results discussed here, we consider data sets con-
taining Nr = 5 × 104 configurations. Furthermore, we con-
sider configurations containing (i) single or (ii) a set of
M ′ = β equally spaced slices. In order to ensure that the
configurations belonging to the data set are uncorrelated,
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FIG. 6. Heisenberg bilayer (intrinsic dimension). The graph
shows the intrinsic dimension Id/L as a function of g for dif-
ferent values of L. In (a) we consider data sets containing a
single slice, while in (b) we consider ones with β slices. For all
results displayed here β = L. In all panels, the vertical dashed
line corresponds to the critical point g = gc.

we computed the Id and �r1 of data sets generated by sam-
pling configuration separated by nAC (where AC denotes
autocorrelation) Monte Carlo steps, analyzing the depen-
dence of the obtained estimates on the value of the lat-
ter. Our analysis resulted in the observation that, while
our results depended strongly on the value of nAC for
small interconfiguration distance, the values of Id and �r1
stabilized for nAC � 10, as expected once the decorre-
lated regime is reached. All results obtained via the SSE

algorithm discussed here have been obtained following the
procedure outlined above with nAC ≥ 100, ensuring the
decorrelation of the analyzed configurations.

First, let us consider the behavior of the Id. As in the case
of the quantum Ising transition, the Id features a minimum
close to the critical point gc, which interestingly appears
both for (i) single-slice [see Fig. 6(a)] and (ii) β-slice data
sets [see Fig. 6(b)]. We note that the Id minimum posi-
tion slightly changes when more slices are considered in
the data set. In particular, for β-slice data sets and L = 16,
the minimum of the Id is located within 1% of the QMC
estimation of gc [43].

The analysis of the distribution of NN distances, f (r1),
provides further insight into the data structure emerging in
the vicinity of gc. The first striking observation is the non-
monotonic behavior of the variance of f (r1), �r1, for g <

gc, which displays a peak for g ≈ 0.5 (interestingly, this is
the same behavior observed for the AFM order parameter
[42,52]). This feature occurs for both the single- and β-
slice data sets, which indicates that it is independent of the
number of slices of the configurations; see Fig. 7(a1)–(b1).
It is worth mentioning that this behavior is qualitatively
different from the one observed for �r1 for the quan-
tum Ising transition: in particular, here the position of the
variance peak is (roughly) size independent, and does not
shift towards the critical point. This difference is related
to the underlying symmetries of these models—the SU(2)
of the Heisenberg bilayer and the Z2 of the quantum Ising
model—and the corresponding symmetry-broken phases.
Before explaining these results (see Sec. VI), which are
of genuine quantum-mechanical nature and pointing out
the sharp difference between quantum and classical data
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FIG. 7. Heisenberg bilayer (statistics of NN distances). (a1),(a2) Variance of the distribution function of the NN distances f (r1),
�r1, as a function of g for single- and β-slice data sets, respectively; for the β-slice data set, we consider �r1/L (see text). In (c), we
show an example of f (r1) for the β-slice data set and L = 10. In (a2),(b2) we present the enlargement of (a1),(b1), respectively, in
the region close to gc. Finally, we show the data collapse of the results in (a3),(b3). The value of ν is in agreement with the expected
3D Heisenberg universality class. For all results displayed here β = L. In all panels, the vertical dashed line corresponds to the critical
point g = gc.
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sets, let us discuss the behavior of �r1 in the vicinity
of gc.

Indeed, we observe that �r1 (�r1/L) is (almost) a
L-independent quantity close to gc when single-slice
(β-slice) data sets are considered. The transition is
then accurately identified by the crossing point of �r1
curves associated to different values of L, as illus-
trated in Fig. 7(a2–b2). In addition, Fig. 7(a3)–(b3) show
that our results are well described by the FSS ansatz
�r1 (�r1/L) = f [(g − gc)L1/ν], where ν is the critical
exponent associated to the divergence of the correlation
length, for single-slice (β-slice) data sets. Our results
are gc = 2.50(2) and ν = 0.71(2) [gc = 2.52(1) and ν =
0.68(2)] for single-slice (β-slice) data sets, differing of less
than 1% (5%) from accurate estimations of these quantities
based on FSS of physical observables [43].

Finally, it is worth mentioning that such a scaling behav-
ior in the vicinity of 2D quantum critical points is also
displayed by physical quantities including, e.g., the Binder
moment ratios and the (rescaled) spin stiffness Lρs [43].
Accurate estimations of critical points and exponents can
be obtained with the same strategy adopted here, i.e, the
detection of crossing points of results for different val-
ues of L. For example, one can determine the crossing
points gc(L) for results corresponding to system sizes L
and 2L, and then use FSS techniques to establish the
value of gc(L → ∞), which constitutes an estimate for
the critical point. An interesting observation is that the
gc(L) associated to β-slice data sets converge faster to
gc(L → ∞) than the results for single-slice data sets, see
Fig. 7(a2)–(b2). This is in line with what is observed in
conventional FSS of physical quantities: i.e., the gc(L)

associated with different observables exhibit different con-
vergence to the L → ∞ limit, as a consequence of sub-
leading corrections of scaling functions. In this case, the
crossing points associated with the spin stiffness exhibit the
most rapid convergence to the thermodynamic limit [43].
Interestingly, ρs is a nonequal-time quantity that depends
on the full space-time structure of the path integral, which
the β-slice data sets represent in the most faithful way.

To get further evidence for the conclusions described
in this section, we also consider the Heisenberg colum-
nar dimer model (see Appendix A). This Hamiltonian
also describes a AFM-paramagnetic transition belonging
to the same universality class of the three-dimensional
O(3) Heisenberg model. The results for the Id and �r1
are equivalent to the ones described above (see Fig. 13 in
Appendix A), emphasizing how generic features of data
structures are solely determined by the universal properties
of the underlying quantum critical point.

V. BKT TRANSITION

In this section we consider the BKT transition described
by the one-dimensional spin-1/2 XXZ model in Eq. (3).

Differently from the cases discussed above, BKT QCPs are
characterized by physical quantities associated to global
properties of the full path-integral configurations [3,44,45].
For instance, they are conventionally described by the spin
stiffness, which is related to fluctuations of a topologi-
cal property of path-integral configurations (namely, the
winding number). Nonlocal quantum-information quanti-
ties [53], and spectral properties [54,55] are also used to
pin down BKT QCPs.

The nature of BKT QCPs hints that successful unsu-
pervised learning of such transitions relies (i) on the one
hand, on defining a proper data set, that encompasses
BKT topological properties, and (ii) on the other hand,
on analyzing data-set features that can reveal such global
properties. Before discussing our results, let us mention
that for the classical 2D XY model the Id exhibits sig-
natures of the BKT phase transition [25]. Furthermore,
dimensional reduction methods based on diffusion maps
can detect the topological clustering structure of such clas-
sical data sets [33,41]. Diffusion maps have also been used
to reveal other topological properties (not related to BKT
transitions) [15,37,38].

Let us now discuss how one can detect a BKT QCP with
both the Id and �r1 by defining suitable path-integral data
sets. We employ the directed-loop SSE method to sam-
ple the path-integral configurations, following the same
protocol outlined in Sec. IV B.

First, we consider the results associated with data sets
containing single-slice configurations. In this case, we
observe no particular feature in the behavior of either the
Id or �r1 close to �c = 1, see Fig. 8. Subsequently, we
consider data sets formed by β-slice data sets. A funda-
mental technical aspect is that we retrieve slices separated
by an interval of δτ ≈ Ns in the SSE “imaginary-time”
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FIG. 8. BKT transition—one-dimensional XXZ model.
Results for single-slice data sets. (a),(b) Id and �r1, respectively,
as a function of �. For all results shown here β = L.
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FIG. 9. BKT transition—one-dimensional XXZ model.
Results for the β-slice data sets. (a) Intrinsic dimension, Id/L,
as a function of � for different values of L. In (b) we consider
the finite-size scaling of the positions �∗(L) of the Id minima.
The (blue) lines are line fittings performed with different sets of
points, and the red horizontal line corresponds to the averaged
�c computed with such fittings. For all results displayed here
β = L.

direction. Remarkably, in this case we observe that both
the Id and �r1 exhibit singular features in the vicinity of
�c, see Figs. 9 and 10.

More specifically, the Id features minima at size-
dependent positions �∗(L) in the vicinity of �c. By
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FIG. 10. BKT transition—one-dimensional XXZ model.
Results for the β-slice data sets. (a) Variance of the distribution
function of the NN distances f (r1), �r1, as a function of � for
different values of L. In (b), we show an example of f (r1) for
L = 140 and different values of �. Finally, in (c), we present the
finite-size scaling of the positions �m(L) of the maxima of �r1.
For all results displayed here β = L.

performing a finite-size scaling of the minimum positions
we obtain an estimate for the critical �c, see Fig. 9(b).
Furthermore, we consider the data collapse of these results
according to the FSS ansatz Id = L1−ωf (ξ/L), where the
correlation length diverges as ξ ∼ exp (b/

√
� − �c) [see

Fig. 1(c)]. The value obtained for �c via this procedure is
in agreement with the exact one.

The statistics of NN distances r1 also reveal the BKT
quantum critical point. In particular, we note that the vari-
ance �r1 of the distribution f (r1) exhibits a peak at size-
dependent points �m(L) in the vicinity of �c. The �m(L)

shifts towards �c as L → ∞, and their scaling to the ther-
modynamic limit allows one to obtain an estimation of �c,
see Fig. 10(b).

We also present the data collapse of our results using
the FSS ansatz �r1 = L−α f̃ (ξ/L) (Fig. 2). The quality of
the collapse and the value obtained for �c provides further
numerical evidence that �r1 exhibits the universal scaling
behavior characteristic of BKT QCPs.

Before concluding this section, let us mention about the
influence of β on our results. In our numerical simulations,
we have found that as long as the value of β is large enough
to guarantee convergence to the ground state, the results
for single-slice data sets are not affected by the choice of
β. Oppositely, for the case of β-slice data sets, the values
of Id and �r1 does depend on β, because the dimension of
the embedding space changes with the latter; however, we
observe that all the features associated to the phase transi-
tion of both Id (i.e., the minimum) and �r1 (i.e., the peak)
do not change as β increases (again, as long as β is large
enough to guarantee convergence to the ground state).

A. Discussion of the results

Summing up the results presented so far, we observe
that both Id and �r1 exhibit singular features [56] in
the vicinity of both symmetry-breaking and BKT phase
transitions.

Although we focus on paradigmatic models, we now
present arguments supporting the idea that these results
are generic for the quantum data sets defined in Sec. II,
and thus also apply for similar QCPs as the ones consid-
ered here. In previous work, some of us presented heuristic
arguments to explain the relationship between the ID and
the physical correlation length in classical phase transi-
tions [25]. The basic idea lies in the hypothesis that the
neighboring distances [see Eq. (14)] r1 and r2 are related
to many-body correlations of the physical degrees of free-
dom of the system. This hypothesis can be straightfor-
wardly applied to the quantum case for the specific setting
in which the dynamical critical exponent satisfies z = 1.
In these cases, the intrinsic dimension is directly related
to arbitrary rank correlation functions—and thus, shall
display characteristic scaling behavior at the transition.
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It is important to note that these arguments imply that Id
and �r1 depend on correlations arising from both spatial
and imaginary-time degrees of freedom. Our results indeed
suggest that this is the case for β-slice data sets. For exam-
ple, we mention the scaling of Id and �r1 for the TFIM
shown in Figs. 3 and 4, which is analogous to physical
quantities encompassing space-time degrees of freedom.
Furthermore, in the case of BKT, we point out that single-
slice data sets (encompassing solely spatial degrees of
freedom) are insufficient to determine whether a transition
exists at all, a fact which agrees with the topological nature
of quantum BKT transitions.

VI. QUANTUM DATA SETS, SYMMETRIES, AND
SYMMETRY-BROKEN PHASES

So far we focused on the results emerging in the vicin-
ity of different QCPs. We now argue that some of the
data-set features analyzed here can also reveal fundamental
properties of symmetry-broken phases. In particular, let us
review the behavior of �r1 in the different ordered phases
encountered in this work: namely, (i) the Z2 ferromagnet
described by the quantum Ising model, (ii) the Luttinger
liquid and the Z2 antiferromagnet displayed in the 1D XXZ
model, and (iii) the SU(2) antiferromagnet described by the
Heisenberg bilayer.

Away from quantum critical points, we can summarize
our results as follows: apart from the SU(2) AFM case, �r1
is always an intensive (or weakly dependent on L) quan-
tity, in both ordered and disordered phases. To illustrate
this, in Fig. 11(b1)–(b2) we depict the scaling of the NN

(a) (b)

10 15 L
0

5

10

Δ
r 1

Bilayer
g = 0.0
g = 1.0
g = 1.5
g = 2.2
g = 2.3
g ≈ gc

g = 2.6
g = 4.0

100 200 L
0

4

8

XXZ model
Δ = 0.8
Δ = 1.0
Δ = 1.2
Δ = 1.4
Δ = 1.5
Δ = 1.6

10 15 L
0

80

160

Δ
r 1

100 200 L
0

4

8

(a1)

(a2) (b2)

(b1)

FIG. 11. Size dependence of NN distance variance. Variance
of the distribution function f (r1), �r1, as function of the sys-
tem size L. (a),(b) Our results for the 2D Heisenberg bilayer
and 1D XXZ models, respectively. In (a1),(b1) we consider data
sets generated by single-slice configurations, while in (a2),(b2)
we consider configurations containing β slices. For all results
displayed here β = L.

distance variance versus system size for the XXZ model.
In the case of single-slice data sets (upper panel), the vari-
ance does not grow with L. In the β-slice case, the variance
does not grow in the gapless phase, while in the AF phase it
grows until it reaches the correlation length, and then starts
decreasing (likely approaching a constant).

Opposite to this, in the SU(2) AFM phase �r1 is an
extensive quantity, i.e, �r1 ∼ L (or �r1/L ∼ L for β-slice
data sets). This behavior is depicted in Fig. 11(a1)–(a2).
Below we argue that this result is related to the non-
Abelian nature of the SU(2)-symmetry-broken AFM
phase, and reflects fundamental aspects of the quantum
data sets.

The latter considered here are labeled by the value of
commuting local observables (i.e., z components of spin-
1/2 degrees of freedom), while the full quantum state is
characterized by the expectation values of noncommuting
observables as well. An important aspect to consider is that
one cannot measure simultaneously more than one local
spin component (i.e., Sx

i , Sy
i , and Sz

i ) in quantum data sets.
In order to show how this quantum aspect affects the

results for �r1, we compare its scaling in the SU(2)
Heisenberg bilayer (see Fig. 7) with its classical counter-
part, i.e., the classical O(3) model. In the latter case, there
is no problem in retaining a fully invariant SU(2) descrip-
tion, and we can define data sets formed by either (a)
configurations �X = (�S1, . . . , �SNs), where �Si = (Sx

i , Sy
i , Sz

i ),
and (b) configurations defined just by the z components
of the spins [i.e., �X = (Sz

1, . . . , Sz
Ns

)], as in the quantum
case.

In Fig. 12 we consider the temperature dependence of
�r1 for the the classical O(3) model. While for the data
sets (a) �r1 exhibits a peak in the vicinity of the critical
temperature Tc, for the data sets (b) �r1 sharply increases
in the ordered phases (i.e., T < Tc). This reflects exactly
what happens in the quantum case: when the full SU(2)
symmetry is not resolved, the structure of the manifold
changes drastically in symmetry-broken phases, and the
variance of the distribution of distances increases exten-
sively with system size. Note that the overall scale of �r1
is also very different: while the data sets (a) are embedded
in a manifold that is 3 times as large (in terms of number
of dimensions) as the (b) ones, �r1 at L = 10 is an order
of magnitude smaller in the symmetry-broken phase.

A qualitative explanation of the effect of SU(2) symme-
try goes as follows: if a symmetry is not fully resolved, it is
not possible to identify apparently different states as repre-
sentatives of the same original state up to symmetric trans-
formations, leading to artificially generated nonlocal cor-
relations in the data sets, and to an enormously increased
variance of distances. This effect becomes particularly evi-
dent in the case of symmetry breaking: the reason here is
that clusters corresponding to different symmetry-broken
regions are well separated, something that is not expected
to happen in either critical or paramagnetic phases.
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FIG. 12. Classical Heisenberg model. (a),(b) Variance of the
distribution function of the NN distances f (r1), �r1, as a func-
tion of T. In (a) we consider data sets generated by all 3 spin
components (i.e., Sx,Sy , and Sz), while in (b) we consider only
the Sz component (see text). In both panels, the vertical dashed
line corresponds to the critical point, Tc ≈ 1.443 [57].

We can compare this picture with what happens when
an Abelian symmetry is broken. The results for �r1 within
the Ising FM phase (see Fig. 4) can also be compared with
its classical counterpart, i.e., the two-dimensional Ising
model (see Ref. [25]). In this case, the classical data sets
are defined exclusively in terms of Sz variables, and in the
FM phase �r1 exhibit analogous behavior to its quantum
counterpart.

As a sanity check for the argument above, we can con-
sider the critical point of the 1D Heisenberg model. Indeed,
this point does not exhibit the extensive �r1 observed in its
2D counterpart. This difference shows that the extensive
behavior of �r1 is indeed characteristic of the quantum
fluctuations of the SU(2)-symmetry-broken phase, and not
due the global symmetry of the system.

Our results thus directly indicate that the presence of
non-Abelian symmetries can alter in a rather drastic man-
ner the basic features of the PI manifold. This increased
complexity of the data structure may be the origin of
a recent set of observations in numerical studies using
neural-network ansatze as wave functions. There, it was
argued that neural-network optimization may suffer sig-
nificantly in the absence of a fully resolved symmetry.
Our results are consistent with that observation, in that
we provide evidence on why this happens: the underlying
embedding manifold has artificial correlations introduced
by the absence of symmetry resolution.

VII. CONCLUSIONS

We have shown how features of the raw data structure
of partition functions reveal universal properties of both

quantum phases and QCPs. The two key elements under-
lying our approach are (i) the introduction of a properly
defined “raw data structure,” which is based on a proper
treatment of space and imaginary-time degrees of free-
dom of path-integral (or equivalently, stochastic-series-
expansion) configurations generated by quantum Monte
Carlo simulations; and (ii) the investigation of generic fea-
tures of quantum data sets that are accessed without any
dimensional reduction of the data set: namely, the intrin-
sic dimension, Id, and the variance of the distribution of
distances of NN configurations, �r1.

Our first key result is that both the Id and �r1
exhibit universal scaling behavior in the vicinity of both
symmetry-breaking [i.e., related to the Z2 and the SU(2)

symmetries] and BKT QCPs. Data sets with a sin-
gle imaginary-time slice are already enough to reveal
symmetry-breaking QCPs at large enough system sizes.
For the BKT transition, however, one needs to con-
sider configurations containing a proper set of multiple
slices. These results are traced back to the fact that while
symmetry-breaking transitions are described by local order
parameters, BKT QCPs take place due to topological
changes of the full path-integral configurations, and are
associated with nonlocal correlations (encompassing both
space and imaginary-time degrees of freedom). In this
regard, our results elucidate the deep connection between
generic properties of data sets—associated with the statis-
tics of neighboring distances—and arbitrary-body corre-
lations related to universal properties of quantum phase
transitions. We note that Id is in general more reliable than
�r1, as the latter might be sensitive to inhomogeneities in
the data structure.

The second key observation is that the data struc-
ture of quantum partition functions simplifies (parametri-
cally) as one approaches QCPs. Analogous conclusions are
obtained for the conceptually simpler classical case [25].
This finding has clear implications related to the complex-
ity of (equilibrium) quantum states. While the intrinsic
dimension is not a rigorously defined measure of complex-
ity, it still provides a very informative, quantitative tool
to witness it: a higher-dimensional manifold will always
require a larger number of coordinates to be described.
Our results show that quantum criticality leads to a dras-
tic reduction in complexity in critical phases, that reflects
the fact that the PI is very constrained due to universal-
ity. This witness of complexity behaves in a manner that is
antipodal to entanglement, as the latter is typically growing
close to criticality. It would be interesting to understand
whether these two, apparently different, ways of address-
ing complexity can be directly compared: one possibility
in this direction would be to apply our method to the trans-
fer matrix corresponding to a fixed-bond-dimension tensor
network.

Our third key observation is that the raw data structure
of quantum partition functions is quantitatively affected
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by the spontaneous breaking of non-Abelian symmetries.
In particular, we observe that the �r1 of data sets associ-
ated to the SU(2) AFM phase exhibits dramatic differences
compared to the Abelian cases considered here. Indeed, in
the former case �r1 is an extensive quantity (i.e., �r1 ∼
L), while in the latter �r1 is almost independent of the
system size (or even decreases with L). The explanation
for this result is compatible with a key aspect of the quan-
tum nature of the problem: namely, the SU(2) non-Abelian
symmetry cannot be fully resolved by data sets defined in
terms of local spin measurements.

Let us conclude this paper by mentioning some perspec-
tives for our work, by highlighting potential applications
of the intrinsic dimension to other quantum-mechanical
objects.

One possible application concerns experiments. The first
type of data set analyzed here (i.e., single-slice data sets)
can be directly extracted via in situ imagining, at a simi-
lar cost to conventional correlation functions [16–23,58].
For example, one can consider the Id (or �r1) to witness
complexity in a manner that is considerably less expensive
to analyze than entanglement-related approaches, to detect
phase transitions characterized by symmetry breaking, or
even to reveal the presence of SU(2) symmetry breaking
from raw experimental data. We note that the number of
realizations we typically consider here are in the order of
104/105 configurations. While optical lattice experiments
might face challenges in dealing with such statistics, other
synthetic matter platforms such as Rydberg atoms in opti-
cal tweezers and trapped ions have already achieved these
regimes thanks to, in large part, sub-Hz repetition rates.
Solid-state platforms are also capable of generating such
large statistics.

Another possible future direction is to apply our
approach to systems that suffer from the sign problem,
to understand whether the latter reflects intrinsically onto
the dimensionality of the data set [59,60], or rather influ-
ences other geometrical properties (e.g., curvature). For
instance, one may start by performing simulations in
regimes where the sign problem is particularly mild (for
instance, at high temperature), and track the complex-
ity of the data structure as sampling becomes increas-
ingly difficult. Another approach would be to extend the
present method to determinantal QMC based on auxil-
iary fields [34,61,62] or to adapt it to meron-type cluster
techniques [63], in order to allow comparisons between
different algorithms. Note that similar ideas might also
be applied to other quantum-mechanical objects, such as
complex-valued Wigner functions.

Finally, let us mention possible connections of our
work to recent efforts to define new classes of variational
artificial-neural-network (ANN) quantum states. Physical
data sets typically lay in a manifold whose Id is lower than
the actual number of coordinates, as we extensively illus-
trate here. We believe that understanding the topography

of such complex manifolds is the key to provide a data-
based comprehension of ANN quantum states’ complexity.
In this sense, the Id can provide an elementary tool for
exploring the influence of the input data structure on learn-
ing ANN quantum states [64]. Unlike conventional varia-
tional approaches (e.g., based on tensor-network ansatze),
where entanglement parametrizes complexity, ANN quan-
tum states still lack a measure of the latter. The intrinsic
dimension should be able, e.g., to give information about
the number of ANN parameters (or layers) necessary to
describe a given quantum state: for the particular case
of autoencoders, we note that the intrinsic dimension is
known to provide rigorous bounds on the functioning of
the network depending on the dimension of its “bottle-
neck” layer. In this context, our analysis clearly shows that
the dimensionality of the space could lead to a consider-
able simplification of the data structure: this clearly points
to the fact that ANN (and, more specifically, autoencoders)
could be particularly well suited to capture quantum criti-
cality. Furthermore, within our framework, the importance
of non-Abelian symmetries in shaping the data structure is
particularly clear: not resolving such symmetries leads to a
parametrically enhanced connectivity, that will likely affect
the representative power of finite-depth ANN [65]. Going
beyond these simple observations, our analysis may stimu-
late the investigation of whether other features of the path-
integral manifold, such as curvature or topology, are more
challenging for ANN representations, and whether those
could be of use to understand the relationship between
ANN and tensor networks (see, e.g., Refs. [66–68]), both
in the case of pure states, and in the case of mixed states.
Similar considerations could be extended to ANN inspired
by quantum field theory [69].
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APPENDIX A: 2D SECOND-ORDER TRANSITION:
HEISENBERG COLUMNAR DIMER MODEL

We now provide further evidence for the conclusions
drawn in Secs. IV B and VI. An important aspect that
we investigate is if our results are, indeed, solely deter-
mined by universal properties of the underlying QCP
or if particular features of the system (e.g., the lattice
geometry) can affect them. For example, for the bilayer
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FIG. 13. Heisenberg columnar dimer model. (a) Id (rescaled with the system size) as a function of the coupling ratio g. (b) Rescaled
variance of the NN distance distribution function, plotted as a function of g. (c) NN distance distribution functions for selected values
of g. (d) Magnification of the curve-crossing region of (b). For all data shown here, we considered β-slice configurations, with β = L.
In all panels, the vertical dashed line corresponds to the critical point g = gc.

geometry, one could argue that in the regime of almost
decoupled layers (i.e., g � 1), uncorrelated DOF, in prin-
ciple, may influence the behavior of data-based quantities.
To address this issue, we consider a model describing
an AFM-paramagnetic transition, but with a different lat-
tice geometry than the bilayer: namely, the single-layer
Heisenberg columnar dimer model [70,71]

H = J
∑

〈i,j 〉
Si · Sj + Jg

∑

〈i,j 〉′
Si · Sj , (A1)

where J and Jg are exchange couplings constants defined
on two set of bonds on a square lattice 〈i, j 〉 and 〈i, j 〉′,
respectively, following the notation of Ref. [71]. In our
simulations we set J = 1. The ground-state properties
of this model are equivalent to the bilayer Heisenberg
model, i.e., it displays an SU(2)-symmetry-broken antifer-
romagnetic phase and an SU(2)-disordered phase for weak
and strong values of g, respectively. QMC simulations
show that the AFM-paramagnetic quantum phase transi-
tion takes place at gc = 1.9096(2) [71], and belongs to
the same universality class of the three-dimensional O(3)

Heisenberg model.
Our simulations are performed at inverse temperature

β = L, and we consider β-slice data sets containing Nr =
5 × 104 configurations.

In Fig. 13 we show the Id and the �r1 as a function of
g for different system sizes L. Overall, our results con-
firm the conclusions drawn in Sec. IV B for the bilayer
Heisenberg model. Indeed, in the vicinity of the QCP (i)
the Id features a local minimum, and (ii) �r1/L exhibits an
(almost) L-independent behavior; the transition can then
be identified (for sufficiently large system sizes) by the
crossing point of �r1/L curves for different values of L.
These results highlight how universal properties of the

underlying QCP solely determine generic features of data
structures. Moreover, we observe that inside the SU(2)-
symmetry-broken antiferromagnetic phase, �r1/L exhibits
an extensive behavior, confirming the important role of
(broken) non-Abelian symmetries.
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