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Abstract 

Background  Microbiome analysis is becoming a standard component in many scientific studies, but also requires 
extensive quality control of the 16S rRNA gene sequencing data prior to analysis. In particular, when investigating 
low-biomass microbial environments such as human skin, contaminants distort the true microbiome sample compo‑
sition and need to be removed bioinformatically. We introduce MicrobIEM, a novel tool to bioinformatically remove 
contaminants using negative controls.

Results  We benchmarked MicrobIEM against five established decontamination approaches in four 16S rRNA ampli‑
con sequencing datasets: three serially diluted mock communities (108–103 cells, 0.4–80% contamination) with even 
or staggered taxon compositions and a skin microbiome dataset. Results depended strongly on user-selected algo‑
rithm parameters. Overall, sample-based algorithms separated mock and contaminant sequences best in the even 
mock, whereas control-based algorithms performed better in the two staggered mocks, particularly in low-biomass 
samples (≤ 106 cells). We show that a correct decontamination benchmarking requires realistic staggered mock com‑
munities and unbiased evaluation measures such as Youden’s index. In the skin dataset, the Decontam prevalence 
filter and MicrobIEM’s ratio filter effectively reduced common contaminants while keeping skin-associated genera.

Conclusions  MicrobIEM’s ratio filter for decontamination performs better or as good as established bioinformatic 
decontamination tools. In contrast to established tools, MicrobIEM additionally provides interactive plots and sup‑
ports selecting appropriate filtering parameters via a user-friendly graphical user interface. Therefore, MicrobIEM 
is the first quality control tool for microbiome experts without coding experience.

Keywords  Low-biomass microbiome, 16S rRNA gene sequencing, Bioinformatic decontamination, Negative control, 
Youden’s index, Decontam, SourceTracker
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Background
Next-generation sequencing of microbial communities 
has revealed strong associations between human health 
and the microbiome [1–4]. However, biologically relevant 
differences in the microbiome between study groups [5–
9] can be disguised by a range of biases [10–14].

One of these biases are contaminants, i.e., DNA 
sequences that are not truly present in the original 
microbial community [11, 15–19] and originate from 
external sources like extraction kits, lab consumables, 
or operators [16, 17]. Analyses of microbial mock com-
munities and environmental microbiome samples have 
shown that contaminations are particularly problematic 
for low-biomass microbiome samples, where contami-
nants can make up the majority of detected sequences 
[20]. Consequently, samples with low microbial biomass 
such as from skin or lung can be biased by contamina-
tion and require appropriate tracking and identification 
of contaminants for the correct interpretation of micro-
biome data [21, 22].

Even though contaminants can be reduced by good 
laboratory practice [16], bioinformatic approaches are 
necessary for contaminant removal in low-biomass sam-
ples. Established approaches for bioinformatic decon-
tamination can be broadly placed into three categories: 
blacklist-based approaches (i) remove contaminants 
based on established lists of common contaminants [23, 
24], independent of the sampled environment. Sample-
based decontamination approaches (ii) do not require 
negative controls for removing contaminants, but iden-
tify contaminants based on their relative abundance in 
the samples. This is implemented, for example, in the fre-
quency filter of the tool Decontam, where contaminants 
are identified based on the negative correlation between 
their relative abundance and total DNA per sample [25]. 
Control-based approaches (iii) require negative controls 
to be processed along with the samples. Typical controls 
comprise pipeline negative controls, which gather con-
taminants over the complete data generation pipeline, 
and PCR controls, which are added prior to the PCR 
amplification and can therefore only cover contaminants 
introduced from the PCR onwards [26]. Using these con-
trols, contamination removal can be as simple as remov-
ing every sequence from a dataset that appears in the 
negative controls, or using more complex algorithms like 
the Decontam prevalence filter or SourceTracker [25, 27].

In this manuscript, we introduce our novel control-
based decontamination tool MicrobIEM, which identi-
fies contaminants based on their relative abundance in 
negative controls compared to environmental samples 
and their consistent occurrence in negative controls. In 
contrast to other established decontamination tools, our 
algorithm can be used either script-based or through a 

graphical user interface with interactive plots to visualize 
taxa in negative controls. Thus, MicrobIEM addresses the 
growing need for microbiome quality control tools suit-
able for scientists without coding experience.

To benchmark the efficiency of these decontamination 
tools and their tool-specific filter parameters, mock com-
munities with known sequence composition can be used 
to discriminate between true sequences and contami-
nants. Previously, bioinformatic decontamination tools 
were benchmarked using a whole-cell, evenly composed 
mock community [20] in a dilution series to cover the 
expected biomass of the environmental microbiome sam-
ples under investigation. While this groundbreaking work 
of Karstens et al. has significantly advanced the field and 
has guided numerous microbiome researchers in recent 
years, additional aspects may need to be considered 
when benchmarking decontamination approaches. In 
particular, mock communities with an even taxon com-
position may not sufficiently represent natural complex 
microbiome communities [28–30], which may be better 
represented by a staggered mock composition. Addition-
ally, to quantify the decontamination success of each 
tool, the choice of an appropriate evaluation score for the 
benchmarking is crucial. Building upon knowledge from 
the field of machine learning, the more unbiased scores 
Youden’s index and Matthews correlation coefficient can 
supplement the traditionally used accuracy [31, 32].

In this paper, we benchmarked established decontami-
nation approaches and our novel tool MicrobIEM in an 
even mock community and two staggered mock com-
munities. We focused on Youden’s index as an evaluation 
score to identify effective bioinformatic decontamination 
approaches for amplicon sequencing data. Furthermore, 
we show the effect of these different decontamination 
tools on a low-biomass skin microbiome dataset.

Methods
Study design
An overview of the study design is shown in Fig. 1. We 
benchmarked six decontamination approaches and their 
parameters in three mock communities with different 
sample compositions, and in an environmental low-bio-
mass microbiome dataset. Each mock dataset was avail-
able as a dilution series, where we used samples ranging 
from high bacterial input (108 cells) to low bacterial input 
(103 cells) in the benchmarking to mimic different micro-
bial source environments. The chosen decontamination 
algorithms were either sample based (frequency filter, 
Decontam frequency filter) or control based (presence 
filter, Decontam prevalence filter, SourceTracker, and the 
ratio and span filter of our novel tool MicrobIEM). For 
each algorithm, we also tested tool-specific parameters 
for contaminant removal, which have to be selected by 
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the user. To evaluate the success of each decontamination 
approach, we compared common test assessment scores 
for each dilution of the mock communities. Additionally, 
the effect of the decontamination algorithms on the sam-
ple composition and number of taxa and reads was inves-
tigated in an environmental low-biomass dataset.

Datasets for benchmarking
The datasets consisting of three mock communities and 
one environmental low-biomass microbiome dataset are 
described below and an overview is provided in Addi-
tional file 1: Supplementary table 1.

Even mock community
As an even mock community, we used the dataset of a 
previous decontamination benchmarking of Karstens 
et  al. [20]. The complete data preparation methods 
can be found in the original publication. Briefly, the 
Zymobiomics D6300 mock community (https://​www.​
zymor​esear​ch.​de/​colle​ctions/​zymob​iomics-​micro​bial-​
commu​nity-​stand​ards/​produ​cts/​zymob​iomics-​micro​
bial-​commu​nity-​stand​ard) consists of eight bacte-
rial and two fungal species in an even composition in 
terms of total DNA, with proportions of cell numbers 

per bacterial species ranging from 6 to 22%. Of this 
mock community, a serial threefold dilution was pre-
pared, from 1.5 × 109 to 2.3 × 105 input cells. Addition-
ally, one pipeline negative control is available. The V4 
region of the bacterial 16S rRNA gene was amplified 
and sequenced on an Illumina MiSeq® platform (Illu-
mina Inc.). Reads were denoised using DADA2 [33] and 
annotated using the Silva database [34]. Mock ASVs 
were defined based on ASVs present in the undiluted 
sample, with sequences classified as mock that matched 
the expected 16S reference sequences by Zymobiom-
ics exactly or with one nucleotide difference. All other 
ASVs in the undiluted sample differed substantially 
from any expected sequence, as described by Karstens 
et  al. [20] (https://​github.​com/​lakar​stens/​Contr​ollin​
gCont​amina​nts16S). All remaining non-mock ASVs 
present in the data were classified as contaminants. 
The final dataset consists of 1,675,028 reads (median 
172,915 reads per mock sample, 189,779 reads in the 
negative control) in 1414 ASVs, of which 9 ASVs were 
classified as mock and 1405 as contaminants. The ASV 
table and contaminant classification were taken as 
submitted by the original authors on Github [https://​
github.​com/​lakar​stens/​Contr​ollin​gCont​amina​nts16S].

Fig. 1  Overview of the decontamination benchmarking study design. Three mock datasets were used for decontamination benchmarking, 
one with an even, and two with a staggered community structure. Mock communities were available as dilution series covering a wide range 
of bacterial biomass per sample (108 to 5.55 × 103 bacterial cells). Two sample-based and five control-based decontamination algorithms were 
compared based on their classification performance into mock and contaminant reads, evaluated by Youden’s index and other evaluation 
scores. The same parameters and tools were also evaluated in a low-biomass environmental dataset from the skin. Additional information 
about the decontamination filters implemented in MicrobIEM can be found in Additional file 1: Supplementary Figure 1

https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-standard
https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-standard
https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-standard
https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-standard
https://github.com/lakarstens/ControllingContaminants16S
https://github.com/lakarstens/ControllingContaminants16S
https://github.com/lakarstens/ControllingContaminants16S
https://github.com/lakarstens/ControllingContaminants16S
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Staggered mock community A
To also test decontamination approaches in a more real-
istic, uneven community structure [28–30], we created 
a staggered mock community called “A”, consisting of 
15 strains that differ in their absolute cell counts by two 
orders of magnitude from 18 to 0.18% (Additional file 1: 
Supplementary table 2). From this staggered mock com-
munity, we prepared a serial tenfold dilution from 109 to 
102 cells in three technical replicates per dilution. Addi-
tionally, three pipeline negative controls and three PCR 
controls were processed.

Mock preparation  Aerobic and anaerobic bacteria of 
the mock community were cultivated with the appropri-
ate medium, temperature and oxygen supply at each of 
the following steps as summarized in Additional file  1: 
Supplementary Table  2. Pre-cultures were obtained by 
inoculating 3  mL of medium, which were then grown 
for 6  h. Next, 10 μL of the pre-culture was transferred 
to flasks (baffled flask if oxygen required for growth) 
containing either 100, 250 or 500  mL of the respective 
medium depending on their growth capacity. Overnight 
cultures were centrifuged for 10  min at 3000 × g and 
washed 3 times. Each culture was aliquoted into one part 
for storage at − 80 °C and one part for cell number deter-
mination. To ascertain the cell number, the optical den-
sity (OD) was measured and an OD600 of 1 was equated 
with 109 cells. Subsequently, a dilution series was pre-
pared, and 50 μL of the dilutions expecting 1, 10, 100, and 
1000 cells per plate was plated with a Drigalski spatula. 
Colony-forming units were counted to determine the cell 
number. Lastly, the required amount of the strains was 
mixed to obtain the desired cell number for each strain of 
the mock community with the composition as described 
in Additional file 1: Supplementary Table 2.

DNA extraction and sequencing  The microbial DNA of 
all samples and the three pipeline negative controls was 
extracted with the UCP Pathogen Kit (Qiagen) according 
to the manufacturer’s instructions in an elution volume 
of 80 μL. Cell lysis was performed in screw cap tubes 
containing the sample, 500  mg of 100  μm diameter zir-
conia-silica beads, 500 μL Stool Stabilizer (Stratec), and 
650 μL of ATL buffer containing 4.3 μL DX buffer, with a 
Precellys Evolution device (Bertin) shaking twice for 90 s 
with a 15-s break. The V1–V3 variable region of the 16S 
rRNA gene was amplified using the primers 27F-YM (5’-
AGA​GTT​TGATYMTGG​CTC​AG-3’) and 534R (5’-ATT​
ACC​GCG​GCT​GCTGG-3’) with the Q5 High-Fidelity 
PCR kit (New England Biolabs) with the following condi-
tions: 98 °C for 10 s, 59 °C for 20 s, 72 °C for 15 s for 25 
cycles. In a subsequent 8-cycles PCR reaction, barcodes 
for all samples and PCR controls were added. Indexed 

amplicons were purified using AMPure XP beads (Beck-
man Coulter) with a bead to DNA ratio of 0.7:1 (vol/vol), 
according to the manufacturer’s instructions. The puri-
fied amplicons were quantified with the fluorescent dye-
based Qubit® dsDNA HS Assay Kit (Invitrogen) and all 
samples were pooled equimolarly. Sequencing was car-
ried out on an Illumina MiSeq® platform (Illumina Inc.) 
using 2 × 300  bp paired-end reads at the Core Facility 
Microbiome at ZIEL, Institute for Food and Health, Fre-
ising, Germany.

Bioinformatic processing of samples  The sequences 
were denoised using DADA2 [33] with default param-
eters except truncLen = c(299,280), trimLeft = c(20,17), 
and maxEE = c(2,6) in the function filterAndTrim(), and 
annotated using RDP-based annotation formatted for 
DADA2 [35]. Sequences which differed at least 20% from 
the expected sequence length were removed as well as 
singletons. One sample was removed due to experimental 
failure (103 input cells, 11 reads), leading to a total of 23 
mock samples for decontamination analysis. Mock ASVs 
were defined as sequences matching a 362-bp-long sub-
section of the V1–V3 region of the expected sequences 
based on Sanger sequencing of individual mock taxa. 
Since Sanger sequencing produces only one read-out 
even in the case of different 16S copy variants per spe-
cies, we tolerated ambiguous base calls and additionally 
accepted ASVs differing by up to 4 bp (Levenshtein dis-
tance) from expected ASVs. The final dataset of the “stag-
gered mock A” consists of 361,651 reads (median 13,747 
reads per mock sample, median 1226 reads in the nega-
tive controls) in 293 ASVs, of which 52 ASVs were classi-
fied as mock and 241 as contaminants.

Staggered mock community B
To validate our analyses in a second realistic mock com-
munity with an uneven community structure, we used a 
subset of the dataset published by Rauer & de Tomassi 
et  al. [36]. The complete experimental design and data 
preparation methods can be found in the corresponding 
manuscript. Briefly, this study compared eight extrac-
tion protocols in three mock communities. Here, we 
used only a subset of eight samples of the three-species 
spike-in mock community D6321 (https://​www.​zymor​
esear​ch.​de/​colle​ctions/​zymob​iomics-​micro​bial-​commu​
nity-​stand​ards/​produ​cts/​zymob​iomics-​spike-​in-​contr​ol-​
ii-​low-​micro​bial-​load), which were processed using the 
ZymoResearch extraction buffer. The undiluted samples 
with 1.1 × 105 bacterial input cells were 1:20 diluted to 
5.55 × 103 bacterial input cells, with each of the two dilu-
tions present in four replicates. These replicates under-
went different extraction kits and protocols, but shared 

https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-spike-in-control-ii-low-microbial-load
https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-spike-in-control-ii-low-microbial-load
https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-spike-in-control-ii-low-microbial-load
https://www.zymoresearch.de/collections/zymobiomics-microbial-community-standards/products/zymobiomics-spike-in-control-ii-low-microbial-load
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the same extraction buffer that was associated with low-
level contamination. Additionally, four pipeline negative 
controls (using the same extraction buffer) and two PCR 
controls were processed along with the samples. The V1–
V3 region of the 16S rRNA gene was sequenced using 
the Illumina MiSeq® platform (Illumina Inc.).  Mock 
ASVs were defined as sequences with Levenshtein dis-
tance ≤ 4 to any of the three reference 16S genes provided 
by ZymoResearch. We selected this subset of samples 
due to the presence of cross-contaminating mock ASVs 
in the negative controls, and refer to the dataset here as 
“staggered mock community B”. The staggered mock B 
had 195,279 reads (median 25,282 per mock sample, 
median 6616 reads in the pipeline negative controls). Of 
all 221 ASVs, 9 ASVs were classified as mock and 212 as 
contaminants.

Skin microbiome dataset
As a low-biomass environmental microbiome dataset, 
we chose a skin microbiome dataset published by Hül-
püsch et al. [37]. The skin is a low-biomass environment 
(103 to 107 bacteria [38, 39]) and is therefore representa-
tive for an environment susceptible to contaminants. Via 
qPCR, a bacterial colonization of 106 cells was deter-
mined as published by De Tomassi et  al. [40]. The lon-
gitudinal study investigated the skin microbiome of six 
healthy individuals and six atopic eczema (atopic derma-
titis, AD) patients over the course of 8 weeks. The study 
was approved by the ethics committee of the Technical 
University of  Munich (187/17S). Complete methods for 
data generation can be found in the original publica-
tion. Briefly, Illumina MiSeq® sequencing (Illumina 
Inc.)  of the V1–V3 16S rRNA gene was performed. In 
contrast to the previous publication, the sequences were 
now denoised using DADA2 [33] with default param-
eters except truncLen = c(299,280), trimLeft = c(20,17), 
and maxEE = c(2,6) in the function filterAndTrim(), 
and annotated using AnnotIEM [41]. In total, 209 sam-
ples and 12 pipeline negative controls were analyzed 
(sequencing depth of samples > 5000 reads). The skin 
microbiome dataset consists of 4,836,304 reads and 
21,541 ASVs.

Contaminant removal approaches for benchmarking
In the following section, we describe in detail the chosen 
decontamination tools used for the benchmarking. As 
the blacklist approach does not consider sample-specific 
environments, it is not recommended [20] and was not 
considered in this benchmarking.

Frequency filter
A frequency filter removes all sequences from a 
dataset, which do not reach a certain threshold of 

relative abundance in any sample. The rationale behind 
this method is that singletons and sequences with low 
relative abundance  often represent incorrect sequences 
like chimeras, so their removal from microbiome datasets 
decreases computational times and reduces differences 
between biological and technical replicates and is there-
fore advisable [42, 43]. There is no commonly accepted 
threshold, but values of 0.00005 (0.005%) [44] or 0.0025 
(0.25%) [45] have been recommended.

Presence filter
The presence filter removes every sequence which 
appears in any negative control [20] without considering 
its abundance or taxonomic annotation.

SourceTracker
SourceTracker is a Bayesian approach to model the 
sources and proportions of contaminants in microbi-
ome studies. It was published by Knights et  al. in 2011 
[27] and is available as an R script (version 1.0.1, https://​
github.​com/​dankn​ights/​sourc​etrac​ker). In contrast to 
other tools, SourceTracker classifies individual reads of 
a sequence, allowing a sequence to originate from differ-
ent sources. Source environments can be the “unknown” 
biological sample, or defined external sources (e.g., labo-
ratory bench, reagents). Thus, SourceTracker can use 
negative controls as a single external source environ-
ment, but works best with additional samples from the 
environment [27] or knowledge on the sampled commu-
nities [20]. SourceTracker has previously achieved great 
decontamination results when this additional knowl-
edge on the sampled communities or additional types of 
controls were incorporated [20]. However, as this data 
is often not available in clinical microbiome studies, we 
decided to benchmark only the most often encountered 
scenario in microbiome research, where prior knowledge 
on expected and contaminant taxa is not reliably avail-
able. We therefore only use the pipeline negative con-
trols as source environments per dataset here. The three 
parameters alpha1 (default 0.001), alpha2 (default 0.1), 
and beta (default 10) can be adapted to avoid overfitting 
of the data and increase the sensitivity of the algorithm.

Decontam
Decontam identifies contaminants by a sample-based 
and a control-based algorithm, which can be used indi-
vidually or combined. The method is available as an R 
package (version 1.8.0) and has been published by Davis 
et al. in 2018 [25].

Decontam frequency filter  The Decontam frequency fil-
ter is based on the hypothesis that the relative abundance 
of contaminating sequences is inversely correlated with 

https://github.com/danknights/sourcetracker
https://github.com/danknights/sourcetracker
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the total input material of a sample. Therefore, additional 
data on DNA concentration is required, such as meas-
ured via qPCR or fluorescence dye-based methods. The 
user-set threshold ranges from 0 to 1 (default 0.1) and can 
be increased to achieve a stricter contaminant removal.

Decontam prevalence filter  The Decontam prevalence 
filter is based on negative controls. For each sequence, 
the presence or absence in controls is compared to envi-
ronmental samples. Again, the threshold ranges from 0 to 
1 (default 0.1) and can be increased to achieve a stricter 
contaminant removal.

MicrobIEM
MicrobIEM is our novel tool implemented in the statis-
tical software package R [46], providing decontamina-
tion, quality control and basic analysis of microbiome 
(amplicon sequencing) samples. The decontamination 
core algorithm is implemented as a single R function, 
and as a complete tool with graphical user interface and 
basic analysis options for researchers without coding 
experience. The complete code and user documentation 
are provided in the Github repository (https://​github.​
com/​Luise​Rauer/​Micro​bIEM), and the tool can be used 
directly through a web browser without installation 
(https://​env-​med.​shiny​apps.​io/​micro​biem/).

Decontamination with MicrobIEM ratio filter and span 
filter  In MicrobIEM, contaminant removal is based on 
negative controls (Additional file  1: Supplementary Fig-
ure 1). As identifying contaminant features solely by their 
presence in negative controls is not recommended [20], 
we developed two new concepts: (1) the ratio of the mean 
relative abundance of a sequence in negative controls 
versus in environmental samples, since a “systematic” 
contaminant (i.e., not sporadic, originating from, e.g., lab 
consumables) should appear in rather high relative abun-
dance in the expectably empty negative controls (with 
contaminants defined as: (mean relative abundance of 
feature in control / mean relative abundance of feature in 
sample) > threshold), and (2) a span threshold measuring 
the proportion of negative control samples contaminated 
with this sequence, since “systematic” contaminants 
should not appear only sporadically in a small fraction 
of negative controls (with contaminants defined as (span 
in controls ≥ threshold)). Therefore, MicrobIEM’s span 
filter with a threshold of 1 (out of all available controls) 
is identical to the presence filter, while increasing the 
span threshold is intended to alleviate the effect of spo-
radic cross-contamination from samples into negative 
controls. The number of available thresholds for Micro-
bIEM’s span filter depends on the number of control 

samples per dataset. MicrobIEM’s two contamination 
filters can be applied independently for two types of con-
trols (e.g., PCR controls and pipeline controls as in our 
dataset). In our benchmarking, we only test MicrobIEM’s 
two filters on pipeline negative controls, since barely any 
reads were detected in the available PCR controls.

Additional quality control & data analysis options in 
MicrobIEM  The decontamination algorithm, additional 
quality control options, and basic statistical analyses are 
implemented in a Shiny-based tool with a graphical user 
interface and interactive plots created with plotly [47, 
48]. Thus, researchers without coding experience are able 
to inspect and explore microbiome data easily, fast, and 
interactively. An overview of the available filter steps and 
workflow is given in Additional file 1: Supplementary Fig-
ure  2. As input, a feature table with read counts (either 
ASV or operational taxonomic unit (OTU) table) and a 
metadata table with additional information per sample 
(e.g., gender, treatment) and a specification as “sample” 
or “NEG1”/“NEG2” (controls) is required. Quality con-
trol options in MicrobIEM (Additional file 1: Supplemen-
tary Figure 2B) include the removal of samples with a low 
number of total reads, as these samples often represent 
experimental failure due to technical problems in sam-
pling or amplification [49]. Additionally, features with 
a low maximum abundance over all samples (e.g., sin-
gletons or doubletons) or with a low relative abundance 
over all samples (equivalent to the frequency filter) can 
be removed as they often represent spurious sequencing 
errors or contaminations [45]. All quality control steps 
can be used independently or in combination. Thresholds 
for these steps are defined by the user, but their impact 
on the data can be assessed with the interactive plots 
offered in MicrobIEM.

After quality control, the final filtered feature table can 
be explored and visualized interactively with the most 
common analyses for microbiome research, namely alpha 
diversity, beta diversity, and the distribution of microbial 
taxa (taxonomic composition). Two-sided statistical tests 
(Kruskal–Wallis and Permutational Multivariate Analy-
sis of Variance, PERMANOVA) are provided for alpha 
and beta diversity analyses, respectively. More details 
on the statistical analysis in MicrobIEM are provided in 
the readme on Github (https://​github.​com/​Luise​Rauer/​
Micro​bIEM).

Example dataset  For an initial exploration of the 
functions of MicrobIEM, we provide an artificial exam-
ple dataset, consisting of a feature table (MicrobIEM_
test-data_featurefile.txt) and a metadata table (Micro-
bIEM_test-data_metafile.txt). The dataset contains 29 

https://github.com/LuiseRauer/MicrobIEM
https://github.com/LuiseRauer/MicrobIEM
https://env-med.shinyapps.io/microbiem/
https://github.com/LuiseRauer/MicrobIEM
https://github.com/LuiseRauer/MicrobIEM
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microbiome samples that can be investigated by age 
group, gender, BMI, and medication dosage. Addition-
ally, we provide 1 positive control, and 2 types of negative 
controls: 3 PCR controls (NEG1) and 2 pipeline controls 
(NEG2). The example datasets are deposited on Github 
(https://​github.​com/​Luise​Rauer/​Micro​bIEM/​tree/​main/​
Micro​bIEM/​test-​data) and on the Open Science Frame-
work platform (https://​osf.​io/​xvbef/).

Benchmarking evaluation measures
Diagnostic power in mock communities
To evaluate the effect of  different decontamination 
tools in mock community datasets, we compared a 
tool’s classification into mock or contaminant reads 
with the true classification, given by the expected 
sequences per mock. We evaluated accuracy, sensitiv-
ity, specificity, precision, Matthews correlation coeffi-
cient, and Youden’s index.

Here, sensitivity (also called recall) is the ability of 
each algorithm to correctly remove a contaminant ASV, 
and specificity is the ability of each algorithm to cor-
rectly keep an expected mock ASV in the dataset. Accu-
racy measures the proportion of correct classifications 
among all classifications and is a commonly used evalu-
ation index. However, it can give misleading results in 
case of class imbalance, i.e., when samples have very high 
or very low proportions of contaminants. Additionally, 
accuracy needs to be interpreted in relation to baseline 
accuracy, which corresponds to contaminant prevalence 
in our samples. The frequently recommended Matthews 
correlation coefficient (MCC) quantifies the correlation 
between the true classification and the tool’s classifica-
tion and gives fairer results by incorporating information 
on both correct and incorrect classifications. MCC is also 
affected by class imbalance and is thus not comparable 
between studies or samples with different proportions 
of contaminants. Youden’s index (also called bookmaker 
informedness) incorporates sensitivity and specificity. It 
is not affected by class imbalance and is therefore suit-
able for all levels of contaminant prevalence and compa-
rable between samples and datasets. Precision measures 
the proportion of correctly removed contaminant ASVs 
among all removed ASVs.

Sensitivity, specificity, accuracy, and precision range 
from 0 to 1, with 0.5 indicating a classification as good as 
random (0 in case of precision). Youden’s index and MCC 
range from − 1 to 1, with 0 indicating a classification as 
good as random, and negative values indicating a dete-
rioration compared to the original composition due to 
reversed labels. For all evaluation measures, 1 indicates a 
perfect classification.

Evaluation of the skin microbiome dataset
We evaluated the sample composition of the 10 most 
abundant genera before and after applying the decontam-
ination algorithms, as well as the reduction in reads and 
number of ASVs. Since the expected sequences are not 
known in the skin microbiome dataset, we instead evalu-
ated the removed and kept genera per decontamination 
tool and filter setting. Therefore, lists of typical contami-
nants and typical skin inhabitants were created at the 
genus level according to a literature search (Additional 
file 1: Supplementary Table 3, 4 and 5). Typical contami-
nants were defined based on ten papers dealing with con-
taminants (Additional file 1: Supplementary Table 3) [15, 
16, 18, 22, 23, 50–54]. To determine skin bacteria, seven 
papers were selected for the classification, representing 
a mix of skin microbiome-related original publications, 
reviews, sequencing studies, and cultivation studies 
(Additional file  1: Supplementary Table  4) [55–61]. The 
occurrences of each skin genus in the seven papers are 
summarized in Additional file 1: Supplementary Table 5.

Statistical analysis
Benchmarking analysis was performed in R 4.0.2 [46], 
and MicrobIEM analysis of the skin microbiome data-
set was performed in version 0.7 (https://​github.​com/​
Luise​Rauer/​Micro​bIEM). Analysis scripts are available 
on Github for benchmarking of the mock communi-
ties (https://​github.​com/​Luise​Rauer/​Decon​tamin​ation_​
bench​marki​ng) and at the Open Science Framework 
(OSF) platform for benchmarking of the skin microbi-
ome dataset (https://​osf.​io/​yn9sa/).

Results
Susceptibility of low‑biomass samples to contaminants
We investigated serial dilutions of three mock communi-
ties, one with an even composition (6–22% relative abun-
dance per strain), and two with a staggered composition 
(A: 0.18–18% relative abundance per strain, B: 3–84.3% 
relative abundance per strain) were used.

In all three mock community datasets, samples with 
lower-input material were characterized by higher pro-
portions of contaminants, as defined by sequences not 
matching the expected mock sequences (Fig.  2A, B). 
The even and the staggered dataset A contained simi-
lar proportions of contaminants per amount of input 
material, with less than 2% contaminants in samples 
with high-input material (108–109 cells) and more than 
50% contaminants in samples with low-input mate-
rial (< 106 cells). In samples with input material of less 
than 104 cells in the staggered mock community A 
(Fig.  2B), more than 96% of sequences were contami-
nants, similar to the negative controls. The staggered 

https://github.com/LuiseRauer/MicrobIEM/tree/main/MicrobIEM/test-data
https://github.com/LuiseRauer/MicrobIEM/tree/main/MicrobIEM/test-data
https://osf.io/xvbef/
https://github.com/LuiseRauer/MicrobIEM
https://github.com/LuiseRauer/MicrobIEM
https://github.com/LuiseRauer/Decontamination_benchmarking
https://github.com/LuiseRauer/Decontamination_benchmarking
https://osf.io/yn9sa/
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mock community B (Fig. 2C) was slightly less contami-
nated, with only 34.5% of contaminant reads (median) 
in samples with 5.55 × 103 input cells. Of note, the 
negative controls of all three mock datasets contained 
only minor proportions of expected mock taxa (< 5%), 
belonging to Escherichia/Shigella, Enterococcus, or 
Staphylococcus in the even mock, to Cutibacterium in 
the staggered mock A, and to Truepera and Imtechella 

in the staggered mock B. In the staggered mock A, two 
pipeline controls contained only contaminant taxa, 
while only one out of the three available pipeline con-
trols contained any mock sequences (1 ASV). In the 
staggered mock community B, we detected more cross-
contamination into negative controls, with mock taxa 
present in two out of four negative controls (1 and 2 
ASVs, respectively).

Fig. 2  Sample composition and level of contamination by dilution in the mock communities used for benchmarking. The proportion 
of contaminants increases with decreasing amount of bacterial input material, both in the even mock community (A) and in the two staggered 
mock communities A and B (B, C). The even mock community (A) contains species of 6–22% expected relative abundance, and comprises 
threefold serial dilutions from 1.5 × 109 to 2.3 × 105 bacterial input cells and one pipeline negative control (NEG). The staggered mock community 
A (B) contains species of 0.18–18% expected relative abundance, and comprises tenfold serial dilutions from 1 × 109 to 1 × 102 bacterial input 
cells and three pipeline negative controls (NEG). The staggered mock community B (C) contains species of 3–84.3% expected relative abundance, 
and comprises 20-fold serial dilutions from 1.1 × 105 to 5.55 × 103 bacterial input cells and four pipeline negative controls (NEG). Each bar in B shows 
the mean composition per triplicate (103: duplicate) per dilution, and each bar in C shows the mean composition over four replicates per dilution. 
Reads not matching expected sequences were defined as contaminants (see details in “Methods”). Dilutions highlighted in bold are selected 
for decontamination benchmarking
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Benchmarking of decontamination algorithms in mock 
communities
The effects of six different decontamination algorithms 
and their tool-specific parameters was analyzed on the 
even and the two staggered mock communities (Fig.  3). 
For benchmarking, we focused on samples with an input 
material between 105 and 108 cells input material for the 
even and the staggered mock A, and on both dilutions of 
the staggered mock B between 105 and 103 bacterial input 
cells, jointly covering 0.4 to 80% contamination. Higher 
input material samples of the even and staggered mock 
A contained similar proportions of contaminants as the 
108 samples, whereas samples with lower-input material 
of the staggered mock A contained > 96% contamination 
and were therefore neglected.

Even mock community
In the even mock community (Fig.  3A), the sample-
based decontamination algorithms (frequency filter and 
Decontam frequency filter) generally achieved the best 
decontamination classification in each dilution, indi-
cated by the highest Youden’s index. However, this criti-
cally depended on the chosen thresholds: While a strict 
frequency filter of 0.01 distinguished perfectly between 
contaminants and mock reads in some dilutions, the 
relaxed threshold of 0.0001 performed very poorly. For 
the Decontam frequency filter, stricter thresholds of 0.8 
or 0.6 achieved better classifications into mock and con-
taminant sequences, and the filter’s performance was 
reduced when decreasing the threshold to 0.2.

Comparing only the control-based decontamination 
algorithms, MicrobIEM’s ratio filter performed better or 
as good as the presence filter and the Decontam preva-
lence filter, depending on the amount of input mate-
rial. Stricter MicrobIEM ratio filters of 0.1 and 0.5 were 
slightly more effective than more moderate ratios of 
1 or 2. Since only one negative control was available in 
the even mock community, MicrobIEM’s span filter was 
identical to the presence filter. Similarly, the Decontam 
prevalence filter could hence not leverage its potential: a 
loose filter of 0.2 or 0.4 did not remove any contaminants, 

and the stricter thresholds of 0.6 and 0.8 removed all 
sequences present in the negative control, identical to the 
presence filter.

Staggered mock communities
In the staggered mock community A and B (Fig. 3B, C), 
all decontamination approaches could be benchmarked 
on triplicates and quadruplicates of samples and con-
trols. Overall, sample-based decontamination algorithms 
reached lower Youden’s scores than in the even mock 
communities, and were thus outperformed by control-
based methods, especially in low-biomass samples with 
higher proportions of contamination. While a strict fre-
quency filter of 0.01 still achieved a convincing result in 
samples with less contamination (108 input cells in stag-
gered mock A, 105 input cells in staggered mock B), its 
performance with other thresholds or in lower-input 
samples was reduced compared to the other decon-
tamination approaches. Generally, control-based tools 
reached similar Youden’s scores in the even and the stag-
gered mock communities. SourceTracker generally did 
not perform well in any of our mock communities; how-
ever, we did not benchmark all the functionalities of this 
powerful tool, which can be greatly improved by adding 
additional types of control samples not available in our 
design. Except for SourceTracker, the four other control-
based algorithms performed very similar in the staggered 
mock A, with MicrobIEM’s ratio filter achieving the best 
classification in samples with medium levels of contami-
nation (107 input cells), and Decontam prevalence filter 
reaching the highest Youden’s score in the lowest-input 
samples. In the staggered mock community B, MicrobI-
EM’s ratio filter and Decontam’s prevalence filter outper-
formed other control-based decontamination algorithms. 
Interestingly, while the chosen threshold in MicrobIEM’s 
ratio filter did not drastically affect the results, stricter 
Decontam prevalence thresholds of 0.6 or 0.8 generally 
achieved better results. MicrobIEM’s span filter achieved 
medium results in both staggered mock communities. 
Generally, its performance was similar or improved com-
pared to the presence filter in almost all dilutions, but 

(See figure on next page.)
Fig. 3  Benchmarking of decontamination algorithms in mock communities. In the even mock community (A), sample-based decontamination 
algorithms perform best (frequency filter, Decontam frequency filter); whereas in the staggered mock communities A and B (B, C), control-based 
decontamination algorithms perform better (Decontam prevalence filter, SourceTracker, presence filter, MicrobIEM span filter, MicrobIEM ratio filter). 
MicrobIEM’s span filter of “1 of all” is equivalent to the presence filter, and the number of available thresholds for MicrobIEM’s span filter depends 
on the number of negative controls per dataset (A: 1, B: 3, C: 4 pipeline negative controls). Each algorithm was evaluated by its ability to distinguish 
expected mock reads from contaminating reads (defined by reads not matching expected sequences), from high (108) to low-biomass samples 
(103 bacterial cells). The performance per algorithm was quantified by Youden’s index, ranging from 1 (perfect classification) over 0 (random 
classification) to − 1 (indicating reversed labels). Algorithms were run separately per dilution, except for the Decontam frequency filter in A 
and SourceTracker in all datasets. Values in B represent mean values over triplicates per dilution, and values in C represent mean values over four 
replicates per dilution. Freq. = frequency, prev. = prevalence



Page 10 of 20Hülpüsch et al. BMC Biology          (2023) 21:269 

Fig. 3  (See legend on previous page.)
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particularly in the staggered mock B, which was char-
acterized by increased cross-contamination into nega-
tive controls. A combination of MicrobIEM’s ratio and 
span filter did not notably improve the decontamination 
results in any of the staggered mocks and can therefore 
not be recommended (Additional file  1: Supplementary 
Figure 3).

In all three mock communities, better classification 
into mock and contaminants was achieved in samples 
with higher input material, and none of the algorithms 
performed very well in low-input samples, particularly in 
the staggered mock communities. However, MicrobIEM’s 
ratio filter and Decontam’s prevalence filter generally 
achieved relatively similar and consistently good results 
in the two staggered mock communities.

Results of other evaluation measures
As an overall trend, all tools achieved higher specific-
ity than sensitivity, independent of the amount of input 
cells and community structure (Additional file  1: Sup-
plementary Figure  4A, B, C). Almost every tool had a 
filter setting with perfect specificity across all dilutions, 
thus keeping all mock ASVs. However, the tools varied 
greatly in their ability to remove contaminants (sensitiv-
ity). Best sensitivity values were generally achieved with 
stricter filter settings, as indicated by darker color, for 
example with a frequency filter of 0.01, Decontam preva-
lence/frequency filter of 0.8, or MicrobIEM’s ratio filter 
of 0.1. Confirming the well-known trade-off between 
sensitivity and specificity, these stricter thresholds how-
ever decreased specificity. Exceptions to that, with both 
high sensitivity and high specificity, were achieved by the 
sample-based tools in the even mock, and by the control-
based tools Decontam prevalence and MicrobIEM ratio 
in the staggered mocks.

In general, the conservative behavior of classifying 
most features as mock reads leads to high accuracy val-
ues, even when a tool does not remove any contaminants. 
The case of all features being classified as mock reads can 
be measured by “baseline accuracy,” and corresponds to 
the contaminant prevalence per dilution. Supplementary 
Fig. 4 (Additional file 1) shows that the tools’ accuracy is 
identical or only slightly better than baseline accuracy in 
some cases. In contrast, Youden’s index and MCC deliver 
a more intuitive interpretation with good classification 
results indicated by values larger than 0, independent of 
the contaminant prevalence per dilution. The results of 
Youden’s index and MCC are very similar, except for a 
few cases, e.g., for the frequency filter of 0.01 in the stag-
gered mock community (Additional file  1: Supplemen-
tary Figure 4B), where MCC reacts to the class imbalance 
in high-biomass samples. Precision-recall curves with 

additional filter thresholds per algorithm and dilution are 
given in Additional file 1: Supplementary Figure 5.

Influence of decontamination algorithms in a low‑biomass 
microbiome dataset
To show the decontamination effects on environmental 
microbiome data, we selected a skin microbiome data-
set with approximately 106 input cells (determined by 
qPCR). We applied all decontamination algorithms with 
all thresholds on the skin dataset like in the mock data-
sets. Since in the skin dataset, the distinction between 
contaminant and skin inhabitant is impossible, we ana-
lyzed the effect on the decontamination tools on the 10 
most abundant genera. To evaluate the algorithm’s per-
formances, a literature search was performed to define 
expected skin inhabitants or typical contaminants (Addi-
tional file  1: Supplementary Table  3, 4 and 5). Due to a 
large overlap between these two lists, a clear distinction 
was not always possible. Based on the literature search, 
the unfiltered skin microbiome dataset as well as the neg-
ative controls contained a mix of typical skin inhabitants, 
and typical contaminants, but the largest proportion 
comprised genera that appeared both as contaminants 
and typical skin inhabitant (e.g., Corynebacterium, 
Propionibacterium, Staphylococcus) (Additional file  1: 
Supplementary Figure  6). Although these three gen-
era also appear as typical contaminants, their presence 
on the skin is well-documented by amplicon sequenc-
ing, metagenomics, and cultivation studies [55–61], and 
they were therefore considered as skin inhabitants in our 
skin microbiome dataset.

Generally, sample-based decontamination algorithms 
(frequency filter, Decontam frequency filter) only slightly 
altered the sample composition of the top 10 genera 
compared to the unfiltered skin microbiome dataset 
(Fig.  4, Additional file  1: Supplementary Figure  6, 7). In 
contrast, the control-based decontamination algorithms 
strongly reduced specific taxa of the 10 most abundant 
genera. Interestingly, the presence filter, the strict Micro-
bIEM span filter and SourceTracker lead to a similar sam-
ple composition after filter application, while also the 
Decontam prevalence filter and MicrobIEM ratio filter 
performed similarly.

The relative abundance of the typical skin inhabit-
ants Corynebacterium and Staphylococcus was not 
significantly altered by the majority of decontamina-
tion algorithms and thresholds, also in relation to the 
original relative abundance (Fig. 4A), even though these 
skin species appeared in the pipeline negative con-
trols. Contrarily, the presence filter and SourceTracker 
both strongly reduced the relative abundance of the 
typical major skin inhabitant Cutibacterium from the 
skin dataset independent of the threshold used, since 
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these reads occurred in low levels in the pipeline nega-
tive controls (Fig.  4, Additional file  1: Supplementary 
Figure  6). In contrast, Cutibacterium was kept by the 
Decontam prevalence filter and the MicrobIEM ratio 
filter. The strict MicrobIEM span filter performed like 

the presence filter, while less strict thresholds were sim-
ilar to the MicrobIEM ratio filter and Decontam.

All control-based decontamination algorithms (pres-
ence filter, Decontam prevalence, SourceTracker and 
MicrobIEM ratio  and span filter) reduced the relative 

Fig. 4  Effect of decontamination algorithms on major skin inhabitants and contaminants in a low-biomass skin microbiome dataset. 
The effect of six bioinformatic decontamination algorithms with tool-specific thresholds was evaluated on three typical skin inhabitants 
(Corynebacterium, Cutibacterium, and Staphylococcus) and three potential contaminants (Acinetobacter, Comamonas, Pseudomonas). While 
sample-based decontamination algorithms (frequency filter, Decontam frequency filter) had little effect on the relative abundance of the top 
10 genera of the low-biomass skin microbiome dataset, control-based decontamination algorithms (Decontam prevalence filter, SourceTracker, 
presence filter, MicrobIEM span filter, MicrobIEM ratio filter) specifically reduced Pseudomonas and Comamonas. MicrobIEM’s span filter of “1 
of all” is equivalent to the presence filter. Horizontal black lines indicate the relative abundance per genus before applying the bioinformatic 
decontamination approaches. Freq. = frequency, prev. = prevalence
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abundance of the potential contaminants Pseudomonas 
and Comamonas (Fig.  4B). In contrast, sample-based 
filters (frequency filter, Decontam frequency filter) were 
ineffective in reducing potential contaminants. None 
of the decontamination algorithms affected the relative 
abundance of the potential contaminant Acinetobacter.

Interestingly, the number of reduced reads strongly 
varied between the decontamination algorithms: While 
the frequency filter and MicrobIEM kept > 90% of reads, 
a larger number of reads were removed with other decon-
tamination tools (Additional file  1: Supplementary Fig-
ure 8A). Specifically, SourceTracker removed 97% of the 
reads, which can be explained by its default rarefaction 
depth of 1000 reads per sample. Similarly, the reduction 
of ASVs strongly depended on the chosen decontamina-
tion algorithm: the strict frequency filters and Source-
Tracker reduced the number of kept ASVs up to < 3% 
(3–93% frequency filter) or < 1% (1–28%) depending 
on the chosen thresholds. In contrast, the other decon-
tamination algorithms kept 75–99% of ASVs (Additional 
file 1: Supplementary Figure 8B).

MicrobIEM – workflow
Parameter selection in MicrobIEM
In contrast to other decontamination tools, MicrobIEM 
provides an interactive graphical user interface and 
allows the user to directly assess the effect of the cur-
rently chosen filter parameters on the dataset.

The effect of quality control choices on the data can 
be explored for each filtering parameter with the inter-
active figures provided in MicrobIEM (Fig.  5, Addi-
tional file  1: Supplementary Figure  9). Thus, users can 
monitor the reduction of reads per filter step (Additional 
file  1: Supplementary Figure  9A), visualize the number 
of reads and features per sample (Additional file 1: Sup-
plementary Figure  9B), the ratio and span for contami-
nation filtering (Fig.  5, Additional file  1: Supplementary 
Figure  9C) or track the loss of features over the whole 
quality control process (Additional file 1: Supplementary 
Figure 9D). Given the heterogeneity of microbiome data, 
the parameters chosen will depend on sample sequenc-
ing depth, available negative controls, and the amount 
of input material. Users can directly assess the impact of 
each filter step and decide on parameters based on the 

interactive graphics, showing useful information on, e.g., 
the abundance and taxonomic assignment of removed 
features. The available quality control steps in Micro-
bIEM can be either used or skipped (partially or alto-
gether) to proceed directly to microbiome data analysis.

Analysis with MicrobIEM
In addition to quality control, MicrobIEM allows basic 
microbiome analysis without any knowledge in cod-
ing, based on the provided metadata with, e.g., gender, 
health status, or treatment group. For all basic analysis, 
samples or groups can be conveniently in- or excluded 
dynamically without restarting the analysis. The user can 
explore differences in alpha diversity measures (Richness, 
Shannon, Inverse Simpson, Simpson, and Evenness), 
in beta diversity (principal coordinate analysis (PCoA), 
non-metric multidimensional scaling (nMDS)), and the 
sample composition on different taxonomic levels. As 
an example for the interactive data analysis options in 
MicrobIEM, the skin microbiome dataset is used. Alpha 
diversity between health status is stratified by time point 
(Fig.  6A). Figure  6B shows an example of beta diversity 
analysis, detecting differences in global microbiome com-
position between two study groups (healthy and AD), 
and Fig. 6C demonstrates an analysis of the microbiome 
composition per patient.

Discussion
We benchmarked five established bioinformatic decon-
tamination algorithms and the two filtering approaches 
of our novel tool MicrobIEM in three mock communi-
ties with differing biomass and structure. Additionally, 
we evaluated their effects on an environmental low-bio-
mass dataset. While sample-based approaches achieved 
good results in an even mock community, control-based 
approaches performed better in the staggered mock com-
munities. The Decontam prevalence filter and our novel 
MicrobIEM ratio filter specifically reduced contaminat-
ing reads while keeping expected reads, both in the stag-
gered mock communities and in the low-biomass skin 
microbiome dataset. In contrast to other decontamina-
tion tools, MicrobIEM offers visual support for choosing 
an appropriate filtering threshold and basic microbiome 

(See figure on next page.)
Fig. 5  Screenshots of interactive graphical support for contamination removal with MicrobIEM. The interactive graphical user interface 
of MicrobIEM supports the user by displaying which features are removed (in orange, A) or kept (in blue, B) with the current filter threshold 
indicated as a vertical black line. In this example, filtering is based on the pipeline negative control NEG2. Each datapoint represents one feature 
(ASV or OTU) present in the selected control type (NEG2), and bubble area indicates the mean relative abundance per feature in the samples. 
Interactive hover texts (orange box in A, blue box in B) provide further information per feature, such as ID, taxonomy and mean relative abundance 
over samples
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Fig. 5  (See legend on previous page.)
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analysis with an interactive graphical user interface suit-
able for non-bioinformaticians.

In particular, when working with low-biomass sam-
ples, contaminants are a major pitfall in microbiome 
research [16]. Our sequencing data of dilution series of 

even and staggered mock communities confirmed that 
lower biomass samples are characterized by increas-
ing proportions of contaminants, while the concrete 
extent of contamination varied between datasets. Simi-
larly, the 10 most abundant taxa in our low-biomass skin 

Fig. 6  Screenshots of interactive graphical outputs from MicrobIEM’s basic microbiome analysis options. The interactive graphical user 
interface of MicrobIEM facilitates basic microbiome analysis. Implemented are alpha diversity analysis (A), beta diversity analysis (B), and analysis 
of the taxonomic composition (C) based on metadata and an easy and dynamic sample selection within the tool. As an example, differences 
in microbiome alpha diversity at week 0 and week 8 (A) and in global microbiome structure (B) are shown by lesional (LS) versus non-lesional (NL) 
skin, while C displays the sample composition per patient on genus level at a selected timepoint (week 8). Dots in A and B indicate individual 
samples. Boxes in A denote the median and interquartile range (IQR, distance between 25 and 75th percentile), and whiskers represent values 
up to 1.5 times the IQR. Ellipses in B denote 95% confidence intervals around cluster centroids based on a multivariate t-distribution. Bars in C show 
the microbiome composition of the ten most abundant genera at one timepoint per patient, while remaining genera are summarized as “Others”
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microbiome dataset also contained genera known as 
contaminants and not native to human skin (Additional 
file 1: Supplementary Table 3, 4 and 5). Concludingly, the 
impact of contaminants increases with decreasing bio-
mass: whereas contaminants do not play a major role in 
high-biomass samples such as stool, low-biomass envi-
ronments such as the skin, lung [62], or duodenum [63] 
require bioinformatic decontamination to draw valid bio-
logical conclusions.

To evaluate different bioinformatic decontamination 
algorithms, we used mock communities with known 
sequence composition. Moreover, we compared the influ-
ence of the microbiome structure on the success of the 
tools by using an even and two staggered mock commu-
nities. While a previous pioneer benchmarking of decon-
tamination approaches provided invaluable insights to 
the microbiome research community [20], these analyses 
were only performed using an even mock community. 
Indeed, we observed remarkable differences in the algo-
rithm’s performances between the community structures 
of the three mocks, in line with previous research inves-
tigating sequencing data of even and staggered mock 
communities [64]. Since environmental microbiomes 
are typically composed of both major and minor species 
[28–30], we consider our two staggered mock commu-
nities to be more representative of natural microbiome 
samples. Therefore, also our benchmarking results on the 
staggered mock communities are likely more representa-
tive of handling contaminants in environmental micro-
biome samples. Moreover, our results strongly promote 
the need for using staggered, realistic mock communities 
for any type of benchmarking of methods in the field of 
microbiome research.

In addition to using a representative data basis for 
benchmarking, we compared several evaluation meas-
ures for the success of the decontamination tools. 
Accuracy is frequently evaluated in binary classifica-
tion problems with only two possible outcomes (such as 
“mock” and “contaminant”), both in microbiome research 
[20] and science in general [31]. However, accuracy fails 
for imbalanced classifications [31]: If no contaminants 
are removed, accuracy is identical to the proportion 
of contaminant reads in the data, which is considered 
as baseline accuracy. Consequently, high accuracy can 
be achieved even though a decontamination tool did 
not remove any contaminants. The frequently recom-
mended MCC has a more intuitive interpretation, but 
still lacks comparability between studies and samples by 
incorporating class imbalance. Therefore, we focused on 
Youden’s index to evaluate the performance of the decon-
tamination algorithms, since it considers sensitivity and 
specificity equally, without the internal flaws described 
for accuracy and MCC.

Taken together, a fair and realistic benchmarking 
requires representative data and an unbiased evaluation 
methodology, which is why we suggest using staggered 
mock communities and Youden’s index to benchmark 
bioinformatic decontamination approaches.

The three main approaches for bioinformatic contami-
nant removal are (i) based on a contaminant blacklist, (ii) 
sample-based, and (iii) control-based.

Removing all sequences based on a contaminant black-
list (i) is error-prone as the sampled environment is not 
considered. Taking our mock communities as an exam-
ple, expected genera like Pseudomonas and Enterococ-
cus would have been removed with the blacklist-based 
approach. This problem becomes even more drastic in 
our skin microbiome dataset: Staphylococcus, Cutibac-
terium, and other main skin genera would have been 
removed even though they are also expected genera on 
the skin. Hence, the blacklist approach was not further 
investigated in this benchmarking study. This large over-
lap between skin genera and contaminants can be par-
tially explained by operator-sample transfer, which often 
leads to the detection of skin inhabitants as contaminants 
in other samples [23]. The overlap between skin and con-
taminating genera, as well as the absence of the known 
sample composition, challenged the evaluation of decon-
tamination algorithms in our skin dataset. However, the 
investigation of air or surface microbiomes might be 
affected by similar problems. Taken together, our results 
support previous conclusions [20] that the blacklist 
approach has to be carried out with caution and knowl-
edge about the target environment.

Sample-based decontamination approaches (ii) include 
the most commonly used frequency filter. This filter 
reduced spurious taxa and increased reproducibility in 
one study [45]. Indeed, features with low relative abun-
dance  often represent incorrect sequences that should 
be removed to keep only true sequences in the micro-
biome dataset. However, minor species can also have 
an important role in microbial communities. The fre-
quency filter is not specifically addressing contaminants 
and can only remove low-abundant features, which can 
be errors or true and potentially important sequences, 
as in our staggered mock community. Furthermore, the 
frequency filter assumes that contaminants are only pre-
sent in low relative abundance [20], which is not the case 
in environmental low-biomass samples. As shown in our 
strongly diluted mock samples, contaminants appear in 
high relative abundance and cannot be removed with this 
approach, which may lead to false biological conclusions. 
Therefore, it is not surprising that sample-based decon-
tamination was effective in the even mock community 
and in samples with high-input material (as reported 
previously [20, 45]), where all mock taxa are expected 
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in higher relative abundance than the threshold for con-
tamination removal. In line with that, sample-based 
decontamination tools performed poorly in lower-input 
samples of the staggered mock communities. Similarly, 
the frequency filter did not remove observed typical con-
taminants from the top ten genera of the skin dataset.

Similar problems were observed for the Decontam fre-
quency filter, which only successfully worked in the even 
mock community. Of note, the algorithm’s assumption 
of small proportions of contaminants per sample is not 
fulfilled in our low-biomass data [25], and the approach 
does not address the problem of artificial negative cor-
relations between input material and feature relative 
abundance due to the compositional nature of microbi-
ome data [65]. Moreover, the algorithm requires addi-
tional information on the total amount of input material, 
which may not always be available by default and has to 
be measured retrospectively as in our skin microbiome 
dataset. While different methods for quantifying DNA 
may affect the efficiency of the Decontam frequency fil-
ter, we did not find differences in decontamination per-
formance between quantification methods (see Supp. 
Table 1), but only between mock community structure.

Taken together, we observed that the sample compo-
sition and biomass influence the success of the sample-
based decontamination algorithms. Novel extensions of 
the frequency filter are, e.g., PERFect, which ranks a tax-
on’s importance and contribution to total covariance and 
offers data-driven significance thresholds, achieving good 
results in mock and environmental datasets [66].

Control-based decontamination algorithms (ii) were 
able to reduce contaminants in all mock communities 
but outperformed the sample-based measures only in the 
more realistic, staggered mock communities. However, 
these control-based decontamination algorithms are only 
as good as the available controls. Therefore, it is advisable 
to include several replicates of controls to track system-
atic contaminants, and to cover the whole experimen-
tal pipeline. PCR controls can only cover contaminants 
introduced from the amplification step on, and usually 
contain very low number of reads, which may originate 
from cross-contamination [67]. Therefore, suitable con-
trols are pipeline negative controls, which are processed 
along with the samples and accumulate contaminants 
from each step in the workflow. These negative controls 
can be used to compare the amount of background bac-
terial DNA to that of a low-biomass environment (e.g., 
via qPCR), as was done in the controversial case of the 
placental microbiome [22, 68, 69], or to correct microbi-
ome data for background contamination.

Nonetheless, removing all sequences appearing in the 
negative control, as done by the presence filter, is not 
advisable due to the possibility of high false-positive 

detection of contaminants due to the aforementioned 
cross-contamination between samples and barcode 
errors from the sequencing process [20, 70]. In our 
benchmarking, the presence filter achieved surprisingly 
good results, which can be explained by the rare presence 
of mock taxa in the negative controls of all mock datasets. 
However, in the skin dataset, we could clearly show that 
the presence filter strongly reduced the relative abun-
dance of Cutibacterium, a well-documented skin inhabit-
ant present here in the negative controls, potentially due 
to cross-contamination. Although we did not specifically 
address cross-contamination in our benchmarking, aver-
aging over replicates in our staggered mock communities 
might compensate the bias of sporadic cross-contamina-
tion. Improvements of the simple presence filter aim to 
alleviate the problem of cross-contamination in negative 
controls, such as implemented in the Decontam preva-
lence filter, SourceTracker [20, 25, 27], and the ratio and 
span filter of our novel tool MicrobIEM. SourceTracker 
performed poorly in our datasets, but achieves excellent 
results when additional samples of the lab environment 
or contaminant profiles are available, to the cost of hav-
ing very long runtimes [20]. These additional samples 
were not available in our study design, but might have 
significantly improved SourceTracker’s decontamina-
tion performance. In the case of cross-contamination 
of mock taxa into negative controls, as in our staggered 
mock B, MicrobIEM’s span filter indeed performed bet-
ter than the presence filter. Interestingly, the combina-
tion of MicrobIEM’s ratio and span filter did not improve 
the individual filters’ performance. Taken together, the 
Decontam prevalence filter and the MicrobIEM ratio 
filter achieved similarly convincing decontamination 
results across the two staggered mocks and the skin data-
set, but results depended on the chosen threshold.

Our data showed that the ideal thresholds depend on 
the biomass and structure of a sample, and significantly 
impact the success of each decontamination algorithm 
as shown in our benchmarking. Despite the substan-
tial impact of the chosen filtering parameters, none of 
the established tools support the user to identify a suit-
able parameter for the dataset. An ideal solution would 
be an automated, data-driven selection of parameters for 
all available decontamination algorithms, which is not 
yet available. MicrobIEM offers the unique advantage 
of interactive plots to help users with parameter selec-
tion and to evaluate the impact of the current settings on 
the final dataset. In contrast to Decontam and Source-
Tracker, which demand some experience in coding from 
their users, MicrobIEM is available both as a standalone 
R function for users with coding skills, and as a com-
plete tool with graphical user interface with short runt-
ime. No additional information such as quantification 
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data is required to start the microbiome analysis with 
MicrobIEM.

Conclusions
With this study, we confirmed that low-biomass micro-
biome samples are susceptible to contamination, which 
strongly affect the sample composition. Computational 
elimination of contaminants is an essential step to improve 
the quality of low-biomass next-generation microbiome 
sequencing data. With an improved framework for bench-
marking of decontamination tools, we found that their 
performance strongly depends on the biomass and struc-
ture of the samples, as well as on the chosen tool-specific 
parameters. Decontam prevalence filter and our novel 
control-based decontamination tool MicrobIEM, par-
ticularly its ratio filter, successfully reduced contaminants 
in staggered, low-biomass samples. MicrobIEM uniquely 
offers a graphical user interface to help with parameter 
choice and is thus a suitable decontamination tool, also for 
experts without coding experience.
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