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Abstract
Studies have shown that beta band activity is not tonically elevated but comprises exaggerated phasic bursts of varying 
durations and magnitudes, for Parkinson’s disease (PD) patients. Current methods for detecting beta bursts target a single 
frequency peak in beta band, potentially ignoring bursts in the wider beta band. In this study, we propose a new robust 
framework for beta burst identification across wide frequency ranges. Chronic local field potential at-rest recordings were 
obtained from seven PD patients implanted with Medtronic SenSight™ deep brain stimulation (DBS) electrodes. The pro-
posed method uses wavelet decomposition to compute the time–frequency spectrum and identifies bursts spanning multiple 
frequency bins by thresholding, offering an additional burst measure, ∆f, that captures the width of a burst in the frequency 
domain. Analysis included calculating burst duration, magnitude, and ∆f and evaluating the distribution and likelihood of 
bursts between the low beta (13–20 Hz) and high beta (21–35 Hz). Finally, the results of the analysis were correlated to motor 
impairment (MDS-UPDRS III) med off scores. We found that low beta bursts with longer durations and larger width in the 
frequency domain (∆f) were positively correlated, while high beta bursts with longer durations and larger ∆f were negatively 
correlated with motor impairment. The proposed method, finding clear differences between bursting behavior in high and 
low beta bands, has clearly demonstrated the importance of considering wide frequency bands for beta burst behavior with 
implications for closed-loop DBS paradigms.

Keywords Parkinson’s disease · Beta oscillations · Low beta · High beta · Closed-loop control

Introduction

Extracellular transmembrane current measures the electri-
cal activity driven by cellular activity and can thus provide 
insights into the local neuronal population and processing. 
One of the major sources of transmembrane currents is the 
collective synaptic activity in the neurons from the vicinity 
of the electrode [1–3]. The simultaneous and instantaneous 
firing of cortical neurons superimposed at the same location 

give rise to potentials, also known as local field potentials 
(LFP), which can be recorded using micro and macro elec-
trodes during deep brain stimulation surgeries [4–8] and due 
to recent developments, can also be chronically recorded by 
implantable pulse generators (IPG) [9, 10]. LFP recordings 
from basal ganglia nuclei have provided considerable insights 
about nodes of the motor circuits in patients with movement 
disorders such as Parkinson’s disease (PD). For example, the 
direct correlation between excessive neural synchrony in the 
beta band range (13–35 Hz) and motor impairment has been 
repeatedly observed in patients suffering from PD [11–16]. 
The attenuation in beta band power through dopaminergic 
medications or with deep brain stimulation therapy is associ-
ated with motor improvement [11, 17–24].

These findings encouraged several groups to leverage the 
exaggerated synchronization in the beta band as a biomarker 
to tailor stimulation parameters in a closed-loop delivery 
method [25–28] when power in beta exceeds a certain 
threshold; stimulation is ramped up progressively and then 
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ramped down as soon as the power in the beta band returns 
below the threshold [26, 28, 29]. However, recently, there 
has been a shift in the way beta band has been analyzed 
[30, 31]. Currently, beta band activity is not believed to be 
tonically elevated but comprise phasic bursts of varying 
durations and magnitudes. These bursts are exaggerated in 
magnitude and duration for patients with PD [30, 32]. Stud-
ies have further shown that dopaminergic therapies, such as 
levodopa, decrease burst duration and burst probability [30, 
32]. Critically, these studies target the highest power fre-
quency bin in the beta band for a given patient. While these 
studies have been successful in measuring disease severity, 
the effects of treatments, and adapting stimulation, they do 
not capture possible heterogeneity in frequency among the 
bursts and inherently ignore potentially useful information 
present in wider beta band activity.

In this study, we outline a new robust framework for beta 
burst identification and analysis of LFP recorded from PD 
patients using chronically implanted IPGs. Our proposed 
framework considers full band characterization instead of a 
single frequency bin or a beta peak frequency as outlined in 
previous beta burst localization methods. Using data from 
7 patients implanted with Medtronic SenSight™ DBS, we 
corroborate that the low beta band is pathological [33, 34]. 
We provide novel results for high beta band which negatively 
correlates with clinical severity and perchance does not con-
tribute to the hallmark symptoms of PD.

Methods

Subjects

In this proof-of-concept study, seven subjects (1 female) with 
advanced PD were investigated. The mean age at the time 
of surgery was 57.57 ± 1.13 years, and the average MDS-
UPDRS III score from Levodopa challenge test [35, 36] 
med off condition was 36.28 ± 1.09, and med on condition 
was 13.28 ± 0.75. Levodopa equivalent daily dose (LEDD) 

Pre-OP was 1296.2 ± 213.622, and one-year Post-OP was 
396.6 ± 92.425 (Table 1). Data presented as mean ± SEM. 
Patients underwent microelectrode recording (MER)–aided 
DBS implantation surgery. Microelectrodes were used to 
localize the subthalamic nucleus (STN) borders for lead place-
ment. The lead chosen was Medtronic Sensight™ B33005, 
implanted bilaterally in the STN and connected to Percept 
PC IPG. Medtronic Sensight™ is a new segmented lead from 
Medtronic which has the capability of bipolar LPF recording. 
All recordings were performed at minimum 3 months after 
implantation. Antiparkinsonian medications were withdrawn 
at minimum 12 h before the recordings, and the stimula-
tion was paused at least 30 min before the recordings began. 
The Institutional Review Board of the University Hospital 
of Wuerzburg (103/20) approved the study, and we received 
informed consent from all patients involved in the study 
according to the Declaration of Helsinki [37].

Data Acquisition

Recordings were collected in the resting state with patients 
seated with eyes open, except for subject 3 who was lying 
in a bed.

LFPs were recorded in stimulation off state with the 
Brainsense Survey ring modality, which can record six 
bipolar channels per hemisphere in two passes one after the 
other, i.e., both stim compatible pairs 0–3, 1–3, and 0–2 for 
the right and 8–11, 9–11, and 8–10 for the left hemisphere 
and immediately adjacent pairs 0–1, 1–2, and 2–3 for the 
right and 8–9, 9–10, and 10–11 for the left hemisphere. 
Here, 0 and 8 are the lowermost contacts, whereas 3 and 
11 are the uppermost contacts for the left and right hemi-
spheres, respectively.

The sampling rate was 250 Hz, and LFPs were recorded 
for 20.9 s which is the longest duration of sensing available 
in Brainsense Survey ring modality. All available contacts 
were used in all our analysis. For analysis of longer duration 
recordings in indefinite streaming modality, a supplemen-
tary figure (Supplementary 3) is provided.

Table 1  Patient demographics 
and clinical scores for subjects 
under investigation

UPDRS Unified Parkinson’s Disease Rating Scale, H&Y Hoehn and Yahr Scale, LEDD levodopa 
equivalent daily dose

Patient ID Sex Disease 
duration 
(years)

Age MDS UPDRS 
III med off

MDS UPDRS 
III med on

H&Y scale 
(pre-op)

LEDD (pre-
op, post-op at 
1 year)

1 M 9 59 30 8 2 1200, 325
2 M 13 63 47 22 2 1811.5, 805
3 M 6 52 27 6 2 1067, 420
4 M 16 44 32 13 2 860, 80
5 M 17 68 35 15 4 2050, 452.5
6 F 7 62 46 16 2 1635, 405
7 M 7 55 37 13 2 450, 100
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Signal Preprocessing

The recorded time-domain signals were analyzed offline 
using MATLAB scripts (v2022b, MathWorks) and the 
FieldTrip toolbox [38]. All time domain signals were high 
pass filtered at 1 Hz to remove low-frequency baseline drift 
from the signals.

LFP recordings from subjects 2, 5, and 6 were 
contaminated with ECG artifacts (example in Fig. 1a). 
These artifacts were removed using template identification 
using matched filtering and then performing a singular 
value decomposition on the identified template [39–41]. 
For a given hemisphere and channel(s), the time domain 
data is low passed at 15 Hz. The first few seconds of 
the low passed signal are used for visualization and 
localization of the beginning of QRS complexes of the 
ECG-contaminated signal. Once the beginning of the QRS 
complex is localized, we create epochs of 560 ms (based 
on 460 ms from the upper limit of QT interval and an 
added buffer of 100 ms [41]) from the original signal. 

These epochs are then used as delayed input templates in 
a matched filter configuration. The templates are flipped 
to obtain the FIR filter coefficients, and the entire time 
domain signal is filtered using the previously obtained 
coefficients. Then, from the resulting filtered signal 
output, the peaks (the peaks denote the greatest correlation 
between the input template and the original signal) and the 
location of the peaks are located with the constraint that 
the peaks are at least 0.5 s apart, i.e., 120 beats/second. 
For all the matched filter outputs, the output with the 
largest cumulative average peak is selected, and ECG-
corrupted LFP templates are extracted from the original 
signal based on the location of peaks located. Since the 
peaks denote the beginning of QRS, we obtain the ECG-
corrupted LFP templates from the original signals between 
time points − 0.2 s (for P wave) and + 0.46 s (for QRS) 
with the  0th point being the beginning of QRS.

Once the ECG-corrupted LFP templates are extracted, 
they are fed to the singular value decomposition (SVD) 
algorithm which decomposes them into eigenvectors that are 
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Fig. 1  Workflow for identifying wider beta-band bursts in an example 
recording from a single channel. a Example recording signal contain-
ing ECG artifacts. b Signal after preprocessing, including high pass 
filtering and ECG removal. c Wavelet transformation yielding time–
frequency decomposition. d Thresholding the signal at the 80th per-

centile yields individual bursts that span both time and frequency. 
Dark blue areas symbolize areas below the threshold. e Measurable 
quantities of the bursts. Burst duration (∆t): width (in milliseconds) 
of the bounded region. Δfrequency (∆f): the height of the bounded 
regions (in Hz). Burst power: maximum magnitude (in a.u.) of a burst
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subsequently visually inspected. Eigenvectors that closely 
resemble the QRS wave in the ECG are noted and are used 
to reconstruct artifacts. The reconstructed artifact is then 
subtracted from each ECG corrupted LFP template and is 
then copied back to their timestamps in the original signal. 
Usually, only the largest eigenvector and, in rare cases, the 
two largest eigenvectors are used to reconstruct the artifacts.

The time points of the ECG-corrupted LFP templates 
are also used for the respective contralateral hemisphere 
(if ECGs are visually found) to extract ECG-corrupted 
LFP templates from the contralateral hemisphere which 
are then used for singular value decomposition and subse-
quent inspection, reconstruction, and subtraction to obtain 
the ECG-free LFP template which can be replaced in the 
original time series (example in Fig. 1b).

Time–Frequency Decomposition

To calculate the time–frequency spectrum of a time domain 
signal, we applied a wavelet transform using the MATLAB 
Wavelet toolbox with Morlet wavelets (width = 10) between 
10 and 40 Hz and a frequency resolution of 1 Hz. A width of 
10 cycles was chosen as an optimal tradeoff between time and 
frequency resolution. The power of each frequency bin was 
smoothed using the Savitzky-Golay filter with span of 0.2 s.

Time–Frequency Burst Characterization

Our framework to characterize beta bursts generalizes the 
method developed by Tinkhauser et al. [32], where they 
use a single frequency bin and define beta bursts as regions 
in time that exceed a given amplitude threshold. Here, we 
instead define bursts as regions in the time–frequency spec-
trum that exceed a given 2-dimensional threshold.

The time–frequency spectrum is a matrix describing the 
power at a given frequency (y-axis) and time (x-axis) (see 
Fig. 1c). The time–frequency matrix was subsequently bina-
rized using a power threshold to create a mask that describes 
regions of the spectrum that deviate in power, which we 
consider as beta bursts (Fig. 1d).

The threshold chosen for binarization was the 80th per-
centile of the power in each channel, meaning that 80 per-
cent of the data below the threshold will be discarded and we 
only consider the remaining 20 percent of the data above the 
threshold. The threshold was kept at the 80th percentile for 
all patients and across all channels. The choice of threshold 
is relatively arbitrary; however, Tinkhauser et al. [32] show 
that the choice of threshold did not greatly affect results.

The binarized mask is then used to filter the 
time–frequency spectrum, retaining only those regions 
that exceeded the chosen power threshold. Bursts straddle 
multiple frequency bins and stretch across time (Fig. 1c). 

To define a burst, we search for connected components 
in the binarized mask matrix (function bwconncomp 
MATLAB). Non-zero elements are connected if they are 
incident directly or diagonally. Finally, for each burst, 
we identify the bounding region (function regionprops, 
MATLAB).

Since beta band has been segregated into two different 
bands in previous studies, to characterize the behavior of 
beta bursts, we have used different sub-ranges within the 
beta band range, including the low beta band (13–20 Hz) 
and the high beta band (21–35 Hz) [42] as sub-ranges within 
the beta band range.

Metrics

For each burst and its bounding region, we calculate three 
different metrics:

(a) Burst duration (∆t): width (in milliseconds) of the 
bounded region. Indicates the duration of the burst, 
i.e., how long that burst was active

(b) Δfrequency (∆f): the height of the bounded regions (in 
Hz), indicating the maximum range of frequencies that 
were active for a given burst

(c) Burst power: maximum magnitude (in a.u.) of a burst. 
Scaled and measured in arbitrary units

Statistical Analysis

All statistical analyses were done using MATLAB v2022b 
and JASP v0.17.1. All data presented as mean ± standard 
error of the mean (SEM) unless otherwise stated.

Across Burst Metrics

Δt vs burst power, ∆f vs Δt, and ∆f vs burst power were cor-
related for each bipolar contact pair and patient separately 
for each hemisphere, using Fisher z-transformed Pearson 
correlation coefficient which measures linear relationship 
strength between two variables. P values for multiple com-
parisons were corrected using Benjamini-Hochberg (1995) 
procedure using a false discovery rate of 0.05.

Between Burst Metric and Clinical Score

To compute clinical correlation of ratio of Δt or Δf in differ-
ent intervals with MDS UPDRS III med off scores, we have 
used Fisher z-corrected Pearson correlation coefficient. We 
consider all available contact pairs within both hemispheres 
for all patients and find the average Fisher z-corrected cor-
relation coefficient across hemispheres.

Formulation of the ratio of bursts is as follows:
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For example, we have 20 bursts whose duration lies in the 
interval 0.1–0.2 s. The total number of bursts of any duration 
for that contact and hemisphere is 100. The ratio of Δt in this 
interval will be 20/100 = 0.2.

For Distribution of Burst Metrics

To compare the distributions of bursting for different Δt 
windows between conditions (i.e., between low and high 
beta), we performed a two-way repeated measures ANOVA 
with a 10 × 2 design, i.e., ten time windows and two condi-
tions, and for different Δf windows between conditions, we 
performed a two-way repeated measures ANOVA with a 
4 × 2 design, i.e., four Δf windows and two conditions. Nor-
mality checks were done using Shapiro–Wilk test where sig-
nificant results suggest deviation in normality. For the post 
hoc test of burst properties, we have used the Mann–Whitney 
U-test since some intervals showed significant results for 
deviation in normality.

For All Other Comparisons

For comparing burst probability between bands, we have 
used a two-sample t-test. For correlation between Sorensen-
Dice similarity (Sorensen-Dice index looks for similarity or 
diversity between two binarized sets by dividing twice the 
area of intersection between the sets and the sum of areas of 
the sets) scores between bands across hemispheres, we have 
used Pearson correlation.

Results

Δt, Burst Power, and Δf Are Strongly Correlated 
with Each Other 

Figure 2 shows the relation between different burst char-
acteristics in both low and high beta bands. Δt is strongly 
correlated with burst power (mean Fisher-transformed r 
value = 0.97 ± 0.059, all p values smaller than FDR corrected 
critical p = 0.011, in low beta band; mean Fisher-transformed 
r value = 1.11 ± 0.057, all p values smaller than FDR cor-
rected critical p = 9.048e-06, in high beta band) and with 
Δ f (mean Fisher-transformed r value = 0.88 ± 0.054, all p 
values smaller than FDR corrected critical p = 0.009, in low 

The ratio of Δt

=
No. bursts with duration that falls within a time interval

Total number of bursts

The ratio of Δf

=
No. bursts with Δf that falls within a frequency interval

Total number of bursts

beta band; mean Fisher-transformed r value = 0.88 ± 0.04, 
all p values smaller than FDR corrected critical p = 0.003 
in high beta band).

Burst power is strongly correlated with Δ f (mean Fisher-
transformed r value = 0.91 ± 0.072, all p values smaller than 
FDR corrected critical p = 0.016, in low beta band; mean 
Fisher-transformed r value = 0.93 ± 0.064, all p values smaller 
than FDR corrected critical p = 9.77e-04, in high beta band).

Clinical Correlations Are Reversed for High and Low 
Beta Band

Clinical correlations were performed between (i) the ratio 
of Δt and (ii) the ratio of Δ f vs the MDS UPDRS III scores 
in high and low beta bands to examine how bursting in each 
band relates to the severity of disease and motor scores.

In low beta band (13–20 Hz), longer Δt is positively cor-
related with motor scores (Fig. 3a), while in high beta band 
(21–35 Hz), longer Δt correlates negatively with motor 
scores (Fig. 3b).

The same relation is true for the correlation between 
MDS UPDRS III and Δ f, where largerΔ f and UPDRS III 
are positively correlated in the lower beta band (Fig. 3c) 
and negatively correlated in the higher beta band (Fig. 3d).

A separate supplementary Fig. (3) is provided for clini-
cal correlations between (i) the ratio of Δt and (ii) the ratio 
of Δ f vs the MDS UPDRS III scores in high and low beta 
bands for indefinite streaming mode of the IPG which 
allowed us to record for longer durations (> 1 min and in 
some cases > 2 min). Using indefinite streaming restricts, 
the number of available contacts to record signals from six 
(6) to three (3) (i.e., 0–3, 1–3, and 0–2 and 8–11, 9–11, and 
8–10 for right and left hemispheres respectively).

Significance of Burst Features in Low  
and High Beta Band

We calculated the burst probability in low and high beta 
bands (normalized by the width of the band, i.e., the 
maximum possible Δ f of the band, 8 Hz for low beta 
and 15 Hz for high beta) as shown in Fig. 4a. In low 
beta band, bursts have a significantly higher likelihood 
(mean = 0.2 ± 0.004) of occurring than bursts in the high 
beta band (mean = 0.17 ± 0.005), with p < 0.001.

We looked for the similarity between both hemispheres 
with regard to beta bursts, i.e., if bursts are bilaterally syn-
chronized between hemispheres in both bands, using the 
Sorensen-Dice index (Fig. 4b). We compute the dice index 
for all electrodes in both hemispheres for a patient between 
both bands, i.e., low left vs low right and high left vs high 
right for each patient. We then use Pearson’s correlation to 
find if there is a correlation between similarity of bursts in 
low and high beta bands and found that bursts in the low beta 
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(mean = 0.291 ± 0.017) look more similar than bursts in high 
beta band (mean = 0.203 ± 0.009) across hemispheres with 
Pearson’s r − 0.606 and p < 0.001.

Repeated measure ANOVA (RM-ANOVA) shows signifi-
cant main effect interaction between condition (low and high 
beta) and Δt [F (df = 2.3) = 15.089, p < 0.001] and between 

a b

c d

e f

Fig. 2  Correlation between burst metrics for low (a, c, e) and high (b, 
d, f) beta bands separately. Strong correlations are observed across all 
metrics: Δt, burst power, and ∆f. Dashed black lines indicate a linear fit 
to each hemisphere of each patient individually. For simplicity, we only 
show the electrodes with the highest beta band power in their respec-
tive bands and hemispheres. Dashed red lines indicate a linear fit to all 
bursts across all hemispheres and patients together. Δt is strongly corre-
lated with burst power (mean Fisher-transformed r value = 0.97 ± 0.059, 
all p values smaller than FDR corrected critical p = 0.011, in low 
beta band; mean Fisher-transformed r value = 1.11 ± 0.057, all p val-

ues smaller than FDR corrected critical p = 9.048e-06, in high beta 
band) and with Δ f (mean Fisher-transformed r value = 0.88 ± 0.054, 
all p values smaller than FDR corrected critical p = 0.009, in low 
beta band; mean Fisher-transformed r value = 0.88 ± 0.04, all p val-
ues smaller than FDR corrected critical p = 0.003 in high beta band). 
Burst power is strongly correlated with Δ f (mean Fisher-transformed 
r value = 0.91 ± 0.072, all p values smaller than FDR corrected 
critical p = 0.016, in low beta band and mean Fisher-transformed r 
value = 0.93 ± 0.064, all p values smaller than FDR corrected critical 
p = 9.77e-04, in high beta band)
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condition (low and high beta) and Δ f [F (df = 1.794) = 4.072, 
p = 0.03]. RM-ANOVA for percentage number of bursts 
divided by power bins does not show a significant difference 
between conditions. A post hoc test (Mann–Whitney) of Δt 
between low and high beta shows that percentage amount of 
bursts in duration windows < 0.1 s [U(12) = 49, p < 0.001] 
and 0.1–0.2s [U(12) = 49, p = 0.002] are significantly 

higher in high beta, and amount of bursts in duration win-
dows 0.2–0.3 s [U(12) = 7, p = 0.026], 0.3–0.4 s [U(12) = 1, 
p = 0.001], 0.4–0.5  s [U(12) = 8, p = 0.04], 0.6–0.7  s 
[U(12) = 8, p = 0.04], and 0.7–0.8 s [U(12) = 1, p = 0.001] are 
significantly higher in low beta. Post hoc test of Δ f windows 
between low and high beta shows the percentage amount of 
Δ f windows 0–2 Hz [U(12) = 5, p < 0.01] to be significantly 
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higher in low beta and 4–6 Hz [U(12) = 47, p = 0.002] to be 
significantly higher in high beta (Fig. 5).

Discussion

This study presents a novel data-driven method of identifying, 
visualizing, measuring, and classifying beta bursts in chronic 
electrophysiological recordings from PD patients. We use this 
method to compare burst behavior in low and high beta bands 
and reveal their contrasting correlation with motor impairment 
scores. We further discuss the potential pathological and physi-
ological nature of high and low beta bands.

Wavelet‑Based Bracketing, Time–Frequency Beta 
Burst Detection

Existing tools for beta burst detection are restricted to a 
single frequency bin, limiting their ability to study patients 
with distributed beta peaks [31, 32]. Here, we introduce a 
data-driven method that detects bursts for a wide frequency 
band, inclusive of patients with single and distributed beta 
peaks. By studying beta bursts in both the time and fre-
quency domains, our method naturally offers an additional 
beta burst measure, namely, ∆f, that captures the width of a 
burst in the frequency domain. Our method can be viewed as 
a generalization of existing methods, and thus, where appro-
priate, our results are consistent with previously described 
beta detection techniques [31, 32].

Bursts in Low and High Beta Behave Differently

Classically beta band has been segregated between low 
(13–20 Hz) and high beta band (21–35 Hz) [42]. Low beta has 
been shown to be modulated by both antiparkinsonian medica-
tions and electrical stimulation using DBS [13, 23, 42, 43], while 
high beta band is not attenuated by antiparkinsonian medications 
and electrical stimulation and is speculated to act as a preferential 
link between STN and cortex [44–46]. In our study, we found 
bursts with longer duration and larger ∆f in low beta (13–20 Hz) 
from the electrophysiology recordings to be positively correlated 
with UPDRS III scores, while bursts with longer durations and 
larger ∆f in high beta (21–35 Hz) are negatively correlated with 
UPDRS III scores. Tinkhauser et al. found that bursts of longer 
duration are positively correlated with UPDRS, which reflects 
our findings in low beta but contrast with our results in high beta 
suggesting that low beta could be pathological [32].

Distribution and Likelihood of Bursts Between Low 
and High Beta

In addition to burst duration Δt and burst magnitude, we 
can also use Δ f as a placeholder for synchrony [32, 47]. 

We speculate that smaller Δ f is a result of local synchrony 
(greater for low beta), whereas larger Δ f showcases wider 
synchrony (greater for high beta) in the nuclei. Bursts in low 
beta also have significantly greater likelihood of occurrence 
than in high beta. The greater likelihood of occurrence of 
bursts in low beta likely increases synchrony, duration, and 
power in a cluster, conceivably reinforcing each other, an 
observation that has been made in other studies [33]. We 
find that burst power is strongly correlated to the duration of 
the burst, yet the power of the bursts do not show significant 
differences between bands and therefore cannot be reliably 
used as a discriminant as evident in previous studies [30, 
48]. Studies have also shown greater bilateral synchroniza-
tion between hemispheres in subjects with PD in the beta 
peak frequency [32, 49], but we report that the coherence is 
a result of greater synchronization in low beta.

Low Beta Can Be Considered the Culprit

As explained by Brittain and Brown, Little and Brown, and 
Hanslmayr et al., excessive synchrony in a system leads to 
two outcomes [47, 50, 51]. First, an increase in excitatory 
post-synaptic potentials leads to an increase in temporal/
spatial summation in neurons and thus increases the chances 
of firing in downstream neurons. Efficient firing comes at 
the expense of decreased entropy, which in a spatially iso-
lated system can lead to efficient information flow among 
parallel channels. Second, an increase in synchrony in a 
spatially integrated system leads to decreased entropy and 
thus decreased information flow which in turn reduces the 
parallel processing capability of the system. As a result of 
long-held speculations of the presence of multiple function-
ally segregated bands within the basal ganglia–cortical loop 
which are responsible for different functions [52, 53], we 
hypothesize that high beta band is a result of the first out-
come of synchrony, i.e., increase of synchrony in a spatially 
isolated system, and low beta band a result of the second 
outcome of synchrony, i.e., increase of synchrony in a spa-
tially integrated system.

A decrease in high beta power as observed during move-
ment, high coherence between STN and motor cortex in high 
beta band, i.e., acts as a preferential link between STN and 
cortex, immutability to attenuation on intake of dopaminer-
gic medications and stimulation, and negative correlation 
of longer bursts with clinical severity scores, reinforces our 
belief that high beta band is a maintainer of status quo as 
described by Engel and Fries, i.e., oscillations are stronger 
when maintenance of status quo is necessitated or antici-
pated [44–46, 53–55]. However, low beta is modulated by 
intake of antiparkinsonian medications and by stimulation, 
does not decrease during movement, has phase-amplitude 
coupled within the subthalamic nucleus, and is positively 
correlated with longer bursts and is a pathological band, i.e., 
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oscillations in low beta limit the information coding capac-
ity of STN [13, 23, 42, 53, 55–57]. Evidence also points 
towards a reduction in high beta on levodopa administration, 
but this is possibly due to the nonlinear modulation of high 
beta by low beta, and any suppression of high beta is a result 
in the decrease of the nonlinear correlation found between 
the bands [42, 58, 59]. The justification for low beta is still 

speculative as we do not know how information flow occurs 
in low beta and how a restrictive information coding scheme 
leads to the hallmark symptoms of PD. An alternative expla-
nation for the inverse relation between high beta and MDS 
UPDRS III medication off scores could be that low beta 
reflects the degree of circuit derangement, whereas high 
beta is a compensatory mechanism. To find experimental 

Fig. 5  Distribution of burst 
properties for high and low beta 
bands. a Percentage of bursts 
by time window. b Percentage 
of bursts in each Δ f window. c 
Percentage of bursts by power 
(windows increase in 10% incre-
ments, divided into equal power 
bins, 100% refers to the maxi-
mum power burst across all the 
bursts) *p < 0.05. Post hoc test 
(Mann–Whitney) of Δt between 
low and high beta shows that 
percentage amount of bursts 
in duration windows < 0.1 s 
[U(12) = 49, p < 0.001], 0.1–
0.2 s [U(12) = 49, p = 0.002] 
are significantly higher in high 
beta and amount of bursts in 
duration windows 0.2–0.3 s 
[U(12) = 7, p = 0.026], 0.3–0.4 s 
[U(12) = 1, p = 0.001], 0.4–0.5 s 
[U(12) = 8, p = 0.04], 0.6–0.7 s 
[U(12) = 8, p = 0.04], and 
0.7–0.8 s [U(12) = 1, p = 0.001] 
are significantly higher in low 
beta. Post hoc test of Δ f win-
dows between low and high beta 
shows the percentage amount of 
Δ f windows 0–2 Hz [U(12) = 5, 
p < 0.01] to be significantly 
higher in low beta and 4–6 Hz 
[U(12) = 47, p = 0.002] to be 
significantly higher in high beta. 
Power of the bursts do not show 
significant differences between 
bands
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evidence for the proposed roles of low and high beta, we 
would like to analyze information flow with simultaneous 
deep brain recordings and high-resolution EEG in the future.

Various studies have shown a shift from longer to shorter 
durations, larger to smaller mean magnitudes of bursts, and 
a decrease in bilateral symmetry following intake of dopa-
minergic medication [32, 60, 61]. We could also hypothesize 
a similar effect for Δ f, i.e., a shift from longer to shorter Δ f 
signifying a decrease in synchrony and possibly pointing a 
shift from pathological to physiological signaling. However, 
here, our recordings were restricted to medication off states 
and instead leave this to future studies.

Limitations

While our method can detect bursts across wide frequency 
bands, by thresholding, we are implicitly limited to the peak 
power in a band, limiting information from power values 
below the threshold and thus restricting the signal-to-noise 
ratio. Another limitation we faced is the sample size and the 
unavailability of medication on electrophysiology record-
ings which we hope to include in future longitudinal studies.

Conclusion

In summary, we present a novel data-driven method for 
broadband beta burst detection. Using the proposed method, 
we were able to separate the contributions of low and high 
beta band bursts and further able to introduce a novel burst 
metric Δ f. We found that longer burst durations and larger 
Δ f in low beta correlated positively with larger motor scores 
offering an alternative approach for optimizing DBS pro-
gramming. By identifying contacts with the longest duration 
or largest Δ f bursts, we can offer a potentially more robust 
alternative for open loop configuration than methods based 
on maximal beta peaks or fiber tract activation. Additionally, 
our wavelet-based approach has the potential to be used in a 
multi-input single-output closed-loop paradigm to optimize 
deep brain stimulation, where Δ f offers an additional input 
in comparison to existing beta burst detection methods.
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