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Abstract: Background and Objectives: Obstructive sleep apnea (OSA) is a known risk factor for
chronic coronary syndrome (CCS). CCS and OSA are separately associated with significant changes
in heart rate variability (HRV). In this proof-of-concept study, we tested whether HRV values are
significantly different between OSA patients with concomitant severe CCS, and OSA patients without
known CCS. Material and Methods: The study comprised a retrospective assessment of the historical
and raw polysomnography (PSG) data of 32 patients who presented to a tertiary university hospital
with clinical complaints of OSA. A total of 16 patients (four females, mean age 62.94 ± 2.74 years,
mean body mass index (BMI) 31.93 ± 1.65 kg/m2) with OSA (median apnea-hypopnea index
(AHI) 39.1 (30.5–70.6)/h) and severe CCS were compared to 16 patients (four females, mean age
62.35 ± 2.06 years, mean BMI 32.19 ± 1.07 kg/m2) with OSA (median AHI 40 (30.6–44.5)/h) but
without severe CCS. The short–long-term HRV (in msec) was calculated based on the data of a
single-lead electrocardiogram (ECG) provided by one full-night PSG, using the standard deviation of
the NN, normal-to-normal intervals (SDNN) and the heart rate variability triangular index (HRVI)
methods, and compared between the two groups. Results: A significant reduction (p < 0.05) in both
SDNN and HRVI was found in the OSA group with CCS compared to the OSA group without CCS.
Conclusions: Severe CCS has a significant impact on short–long-term HRV in OSA patients. Further
studies in OSA patients with less-severe CCS may shed more light onto the involved mechanistic
processes. If confirmed in future larger studies, this physiologic metric has the potential to provide a
robust surrogate marker of severe CCS in OSA patients.

Keywords: obstructive sleep apnea; OSA; heart rate variability; HRV; chronic coronary syndrome;
CCS; surrogate marker

1. Introduction

Obstructive sleep apnea (OSA) is the most common type of sleep-disordered breathing.
This condition is characterized by recurrent episodes of partial or complete airway obstruc-
tion during sleep, leading to repetitive apneas or hypopneas, even though respiratory effort
is still present. The clinical signs and symptoms include sleep interruption, snoring, and
daytime sleepiness, which can lead to a significant impairment in quality of life. Moreover,
OSA is associated with an increased risk of cardiovascular morbidity and mortality [1], par-
ticularly an increased risk of coronary artery disease (CAD) and an increased risk of heart
failure [2,3]. The term “CAD” covers a wide spectrum, from asymptomatic individuals to
those suffering from acute coronary syndrome. CAD is considered a dynamic process with
prolonged stable phases, which is why the term “stable CAD” was used for a long time.
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Nevertheless, stable CAD may become unstable, leading to a sudden acute coronary event,
such as acute coronary syndrome. Therefore, the term “stable CAD” has, most recently,
been replaced by “chronic coronary syndrome” (CCS) [4].

The mechanisms for cardiovascular disease development in OSA are complex, and
include sympathetic nervous system overactivity, endothelial dysfunction, inflammation,
and oxidative stress [5]. In moderate-to-severe OSA, an overactivity of the sympathetic
nervous system is considered one of the main factors in the development of CCS [6]. CCS is
a major public health problem, accounting for the majority of deaths in the United States [7].
According to this trend, half of all healthy 40-year-old men will develop CCS in the future,
and one in three healthy 40-year-old women [8].

The analysis of heart rate variability (HRV) from electrocardiography (ECG) signals
provides an opportunity to assess shifts in the autonomic nervous system in a noninvasive
and cost-effective manner. HRV reflects the adaptive capacity of the cardiovascular system
in response to various stressors; therefore, HRV is considered to be a very clinically relevant
parameter, from a wide variety of perspectives. HRV is characterized as the variability in the
beat-to-beat intervals of the heart, and is typically measured using RR intervals extracted
from an ECG signal. Each RR interval represents the time elapsed between successive R
peaks of the QRS complex on the ECG signal. Fluctuations in RR intervals are mediated via
sympathetic and vagal efferent activity, and can be affected by physiological, pathological,
physical, and psychological activity [3]. HRV values have been shown to be low in patients
with CCS, and low HRV has been shown to be an independent predictor of cardiovascular
mortality and sudden cardiac death [9–15]. Additionally, a recent meta-analysis found
that reduced HRV was associated with a 46% greater risk of cardiovascular events [16].
Thus, there is increasing evidence that HRV may indeed provide a surrogate marker of
underlying cardiovascular risk.

In OSA patients, the use of HRV analysis provides information on cardiac autonomic
control. HRV analyses in OSA patients show a shift in autonomic modulation toward the
predominance of sympathetic activity and attenuated parasympathetic activity. While the
severity of OSA is usually determined via the apnea–hypopnea index (AHI), additional
physiological metrics in combination with the AHI, such as the HRV, may help to further
refine the characterization and phenotyping of OSA disease states and OSA disease severity.
For instance, ultra-short-term HRV tends to increase with the increasing duration of the
respiratory events (apneas and hypopneas) during sleep [17]. In addition, the short-term
HRV response differs as a function of the desaturation severity and the respiratory event
rate in patients with suspected OSA [18]. Moreover, other authors found lower high-
frequency power in normalized units, and higher low-frequency power in normalized
units, in severe OSA patients, compared to individuals without OSA [19]. The same authors
have found that the standard deviation of normal RR intervals (SDNN), and the root mean
square of successive RR interval differences, were independently associated with OSA
severity [19]. Various existing applications of HRV in different aspects of OSA have already
been carried out, to examine the impaired neuro-cardiac modulation in OSA [20].

Based on these findings, the present study was intended to be a proof-of-concept
study to investigate whether HRV-related metrics were significantly different between
OSA patients with severe CCS, and OSA patients without CCS. We hypothesized that HRV
measurements in patients with severe CCS would differ significantly from those without
CCS, and that the short–long-term HRV metric might provide a surrogate marker for severe
CCS, specifically in patients with OSA.

2. Materials and Methods
2.1. Study Protocol

The clinical database of our sleep laboratory of a tertiary university medical center
was searched retrospectively, between January 2019 and April 2021, for patients with
clinical complaints of OSA undergoing first-time polysomnography (PSG) according to
the American Academy of Sleep Medicine’s (AASM, Inc., Darien, IL, USA) standard
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guidelines [21]. All patients enrolled in the study received first-time PSG to screen for
OSA, based on a history of snoring and/or witnessed apneas and/or daytime sleepiness;
in other words, the OSA screening was due to sleep disorder symptoms, and not due to a
routine health maintenance examination, or high-risk screening. Each PSG was conducted
overnight by a licensed technician, and interpreted by a board-certified sleep specialist.

The baseline evaluation of all patients included the assessment of demographic charac-
teristics, e.g., age, sex, and body mass index (BMI). An extended search included aspects that
may have a complementary confounding influence on sleep and, hence, on the PSG-based
HRV metric, e.g., daily alcohol consumption, or primary nighttime work (e.g., patients
working a night shift). In addition, the medical files of all the patients were reviewed, to
search for any cardiac history (e.g., a history of chronic coronary syndrome—CCS, a history
of atrial fibrillation or other cardiac arrhythmia, a history of myocardial infarction, a history
of percutaneous coronary intervention with stenting (PCI-S) or a history of coronary artery
bypass grafting (CABG), and a history of non-cardiac diseases (e.g., arterial hypertension,
diabetes mellitus, chronic obstructive pulmonary disease—COPD, or bronchial asthma).
All patients included in the study were aged 18 years or older. Patients with the presence
of a pacemaker or implantable cardiac defibrillator (ICD), as well as patients with >25%
central sleep apnea events, were excluded from the study.

Two groups were formed: (1) all male and female patients with a CCS history were
assigned to the group “CCS”, namely “chronic coronary syndrome”; and (2) all male and
female patients without a cardiac history were assigned to the group “CON”, namely
“control”. After the evaluation of a total of 483 consecutive patients, 16 patients were
found eligible to form the CCS group. From the remaining 467 (=483 − 16) patients, we
found a respective group of OSA patients who were the best possible match, according to
the exclusion and inclusion criteria mentioned above. All patients assigned to the group
“CCS” were manually selected from the clinical database of all the appropriate first-time
PSGs in our sleep laboratory. Through this process, we ensured that all the patients had
a securely documented history of CCS. Here, we relied on previous in-house written
(diagnostic) documents or submitted external physician reports. To improve the quality
of our patient selection, we extended the period of data collection, as mentioned above.
As a result, the selected group is a very specific group, namely OSA patients with chronic
coronary syndrome. To form the CON group, we considered only the most eligible patients
with respect to the main clinically relevant endpoints; namely, age, sex, BMI, AHI, and
the above-mentioned non-cardiac diseases, as well as aspects disturbing sleep (alcohol
consumption, nighttime work); from the clinical database of our sleep laboratory, to avoid
significant differences between the two study groups. The comparison between the study
groups/participants is shown in Tables 1 and 2.

Table 1. Demographic characteristics and the severity of obstructive sleep apnea in the study groups.

CCS CON Between-Group
Comparison (p-Value)

Number of patients 16 16
Number of males (%) 12 (75) 12 (75)

Patient with daily
alcohol consumption (%) 2 (12.5) 2 (12.5)

Patient working shift
jobs overnight (%) 2 (12.5) 2 (12.5)

Age, in years ± SD 62.94 ± 2.74 62.35 ± 2.06 0.8650
BMI in kg/m2 ± SD 31.93 ± 1.65 32.19 ± 1.07 0.8966

AHI (n/h) (IQR) 39.1 (30.5–70.6) 40 (30.6–44.5) 0.5095
Abbreviations (in alphabetical order): AHI, apnea–hypopnea index; BMI, body mass index; CCS, patients with
chronic coronary syndrome; CON, patients without any cardiac history; IQR, interquartile range; SD, standard
deviation. Categorical variables are described as number and percentage (%), and continuous variables are
described as mean ± SD for normally distributed values, or median and IQR for non-normally distributed values.
The results were considered significant when the p-value was <0.05.
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Table 2. Major comorbidities in the two study groups.

CCS CON

C
ar

di
ac

hi
st

or
y CCS (n (%)) 16 (100) -

Atrial fibrillation (AF) (n (%)) 4 (25) -
Other (non-AF) cardiac

arrhythmias (n (%)) 2 (13) -

Myocardial infarction (n (%)) 9 (56) -
PCI-S (n (%)) 9 (56) -
CABG (n (%)) 2 (13) -

N
on

-c
ar

di
ac

hi
st

or
y

Arterial hypertension (n (%)) 9 (56) 11 (69)
Diabetes mellitus (n (%)) 3 (19) 4 (25)

COPD (n (%)) 1 (6) -
Bronchial asthma

(n (%)) 2 (13) 2 (13)

Abbreviations (in alphabetical order): CABG, a history of coronary artery bypass grafting; CCS, patients with
chronic coronary syndrome; CON, patients without a history of CCS; COPD, chronic obstructive pulmonary
disease; PCI-S, a history of percutaneous coronary intervention with stenting. Categorical variables are described
as number and percentage (%).

2.2. Calculation of Heart Rate Variability

Short–long-term HRV (in msec) was calculated using the raw data of a single-lead
electrocardiogram (ECG) recording, as provided for one full PSG night, according to
the American Academy of Sleep Medicine’s (AASM, Inc., Darien, IL, USA) standard
guidelines [21]. The calculation of HRV was performed as described in [22]. All the ECG
recordings were saved at a sampling frequency of 1 kHz (signal bandwidth 0.04–387 Hz)
and a resolution of 1 µV/bit. More specifically, the SDNN is the standard deviation of the
NN, normal-to-normal (RR) intervals. The estimation of the heart rate variability triangular
index is divided into three steps, as described via a representative example in Figure 1. The
first step is to define the RR intervals, as shown in the first plot for three heart beats. Once
the RR intervals are estimated, during the second step, the corresponding tachogram of
the RR intervals is computed, as shown in the second plot for this representative example.
In the third step, the distribution of the duration of the normal RR intervals is computed,
and the X representative bin is defined; additionally, the number of normal RR intervals,
respectively, in that bin (Y) is found, as shown in the third plot in Figure 1. At the end, the
HRV index was defined as the total number of NN intervals divided by the number of NN
intervals in the representative bin and, later, the findings were compared between the two
OSA patient groups [22].
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Figure 1. The first plot shows the raw electrocardiogram trace for 3 s, as a representative example. The
second plot shows the tachogram of the RR intervals for an example ECG trace part, encompassing a
time window of 1000 s. The third plot shows the distribution of the duration of the RR intervals, and
indicates the X defined as the representative bin. Y indicates the total number of normal RR intervals.
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2.3. Support Vector Machine Analyses

To investigate the significance of these short–long-term HRV metrics, we used a
support vector machine (SVM) algorithm to classify the two groups based on the two short–
long-term HRV metrics. In brief, SVM is a powerful tool for the non-linear classification
between two datasets, which looks for an optimal separating threshold between the two
datasets, by maximizing the margin between the classes’ closest points [23]. Here, we
used the polynomial function kernel for this projection, due to its good performance, as
previously discussed, and used the grid search (min = 1; max = 10) to find the few optimal
input parameters and gamma (0.25). The selection was checked via 10-fold cross-validation,
using 75% of the data for training, and 25% for testing. Hence, the classification accuracy
was estimated for the training, testing, and overall set of data after 10-fold cross-validation.

2.4. Ethical Statement

All patients had provided informed consent for the use of their data for research
purposes. The data were evaluated in a pseudonymized fashion. Due to this fact, and the
retrospective nature of the study, the local institutional review board (IRB) was consulted. A
separate approval was waived by the local IRB, because all retrospective study procedures
in this study were in accordance with local data protection and research practices regarding
humans. All procedures were in full accordance with the Declaration of Helsinki.

2.5. Statement about Statistics and Calculation

All the epidemiological/demographic, clinical, and PSG-based metric data (e.g., AHI)
were statistically analyzed using JMP 14 (SAS Institute, Cary, NC, USA) and Graph-
Pad Prism version 5.01 (GraphPad Software, Boston, MA, USA). Categorical variables
were described as number and percentage (%), and continuous variables were described
as mean ± standard deviation (SD) for normally distributed values, or median and in-
terquartile range (IQR) for non-normally distributed values. All statistical tests were
performed after the evaluation of the normality of distribution via the Shapiro–Wilk test
and Kolmogorov–Smirnov test. Comparisons between the groups were analyzed using
the t test for normally distributed values, and the Mann–Whitney test for non-normally
distributed values. The results were considered significant when the p-value was <0.05.

A data-driven regression model was implemented, without the explicit stating of a
functional form, indicating a nonparametric technique. The procedure was quite similar to
the one used by Malatantis-Ewert et al. [24]. The algorithm looks for an optimal separating
threshold between the two data sets by maximizing the margin between the classes’ closest
points. The points lying on the boundaries are called support vectors, and the middle of
the margin is the optimal separating threshold. In most cases, the linear separator is not
ideal; therefore, a projection into a higher-dimensional space is performed, where the data
points effectively become linearly interrelated. Here, we have used the RBF kernel for this
projection, due to its good performance, as discussed by Cortes and Vapnik (1995), and
based on the previous application of support vector machines in earlier studies [23,25,26].
We then used the grid search (min = 1; max = 10) to find the few optimal input regularization
parameters, namely C (the type of classification algorithm), which is the capacity constant.
The parameter C should be carefully chosen, because the larger the C, the more the error
is penalized (i.e., it leads to over-fitting), so we tested values in the range of 1–1000, and
chose a gamma of 0.25 for the RBF kernel function (which represents the data for cross-
validation). The selection was checked via 10-fold cross-validation, through 75% of the
data set being taken for training, and 10% for testing. A soft-margin classifier of the
calculated independent variables was used for every parameter, and spurious correlations
(correlations which could be due to artifacts) were weighted by a penalty constant, P. To
optimize the correlation coefficient, this was calculated for every regressor. To demonstrate
that no over-fitting is attested in our data for the SVM regression algorithm, we performed
cross-validation. The results from the SVM are reported here with 10-fold cross-validation.
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3. Results
3.1. Demographic Characteristics and Severity of Obstructive Sleep Apnea

A total of 12 male patients (75%) and 4 female patients (25%) were assigned to the
group CCS. The age distribution in this group was 43–78 (62.94 ± 2.74) years, and the
BMI was 31.93 ± 1.65 kg/m2. Two patients (12.5%) consumed alcohol daily, and two
patients (12.5%) performed shift work during the night. The AHI of this group was
39.1 (30.5–70.6)/h.

Accordingly, 12 male patients (75%) and 4 female patients (25%) were assigned to the
group CON. The age distribution in this group was 41–76 (62.35 ± 2.06) years, and the BMI
was 32.19 ± 1.07 kg/m2. Two patients (12.5%) consumed alcohol daily, and two patients
(12.5%) performed shift work during the night. The AHI of this group was 40 (30.6–44.5)/h.

The comparison of age, BMI, and AHI between the two groups revealed no significant
differences (p = 0.8650, p = 0.8966, p = 0.6923, respectively). Similarly, the number of patients
with daily alcohol consumption or nighttime employment was identical. All demographic
characteristics and the severity of OSA are shown in Table 1.

3.2. Medical History of the Study Groups

All patients in the CCS group had chronic coronary syndrome. In addition, patient
medical files revealed that 4 (25%), 2 (13%), 9 (56%), 9 (56%), and 2 (13%) patients, respec-
tively, had a history of atrial fibrillation (AF) or other (non-AF) cardiac arrhythmias, a
history of myocardial infarction, a history of PCI-S, or a history of CABG. Further, in this
group, arterial hypertension, diabetes mellitus, COPD, and bronchial asthma were present
in 9 (56%), 3 (19%), 1 (6%), and 2 (13%) patients, respectively.

In the CON group, there was no recorded history of cardiac disease. In this group,
arterial hypertension, diabetes mellitus, and bronchial asthma were present in 11 (69%),
4 (25%), and 2 (13%) patients, respectively. Detailed information about the diseases that
could be found within the patients’ medical files are listed in Table 2.

3.3. Comparison of Short–Long-Term Heart Rate Variability

The SDNN and the HRV index showed a clear significant decrease (p < 0.05) in the OSA
patients with CCS (“Patients”) compared to the OSA patients without CCS (“Controls”). In
addition, the SVM results validated the above significant results through the use of these
two parameters. The two groups can be classified with a median overall accuracy of 70%.
Even though Table 1 reflects no differences in the demographics of these two groups of
patients (OSA with and without CCS; in other words, “CCS” vs. “CON”), the two HRV
metrics appear to be very robust in distinguishing the two groups (see Figure 2).
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the standard deviation of normal RR intervals (SDNN) and heart rate variability (HRV) index method-
ology in OSA patients with (red points), and without (green points) chronic coronary syndrome
(CCS). The quite-significant decrease (p < 0.05) in the HRV metrics in the OSA patients with CCS,
compared to the OSA patients without CCS, can be appreciated. The support vector machine (SVM)
accuracy is shown for the training (TR, blue dots), testing (TE, red dots) and overall (OV, yellow dots)
data for each of the cross-validations separately. The asterisk (*) marks a statistical significance with
p < 0.05.

4. Discussion
4.1. Key Findings

In this proof-of-concept study, a significant decrease in the standard deviation of NN
intervals (SDNN) and the heart rate variability triangular index (HRV index) was found
in the OSA patients with severe CCS, compared to the OSA patients without CCS. To our
knowledge, this is the first proof-of-concept study providing such evidence.

4.2. Comparison with Other Studies of Heart Rate Variability in Chronic Coronary
Syndrome Patients

Previously, data from a large prospective clinical study had shown that short-term (1-h)
HRV testing could be used for an enhanced risk assessment in low-to-intermediate-risk
individuals without known CCS. In that study, participants had undergone 1 h Holter
testing, with immediate HRV analysis, using the HeartTrends DyDx algorithm [27]. Low
HRV, assessed using the HeartTrends DyDx algorithm, was shown to be independently
associated with a 2-fold increased risk for the presence of myocardial ischemia in individu-
als without known CCS [27]. Nonetheless, no information on the presence of OSA in their
cohort was presented by these authors.

In another significant development in this field, Shi et al. [28] proposed a novel
entropy metric called Rényi distribution entropy (RdisEn) in the analysis of short-term
heart rate variability signals and the detection of CCS. In addition, compared to the sample
entropy or approximation entropy outputs, the RdisEn output was less affected by the
parameter choice, and it remained stable even in short-term HRV. By developing a combined
CCS detection scheme with RdisEn and wavelet packet decomposition, and applying k-
nearest neighbor and SVM classifiers to separate CCS patients from normal subjects, the
authors’ scheme automatically detected CCS with 97.5% accuracy, 100% sensitivity, and
95% specificity, providing an impressive detection performance. Nonetheless, no OSA
patients, or information on OSA, were included in this study.

In patients with CCS who have undergone CABG surgery, the baroreceptor sensitiv-
ity, obstructive and central apnea indices, desaturation index, and lowest O2 saturation
were not significantly different between the preoperative values, day 6, and day 30 after
surgery [29]. Based on these findings, one may argue that the underlying pathophysiologic
processes controlling HRV in OSA patients may be quite robust, and may not be influenced
by interventions (e.g., surgery) for concomitant OSA and CCS. If this hypothesis is true,
as suggested by the results from Al Hashmi et al. [29], then the results presented in our
present study may not be confounded by respective performed interventions to treat CCS.
This issue should, of course, be investigated in future studies.

4.3. Strengths and Limitations of This Study

This is one of the very few controlled studies investigating HRV in concomitant CCS
and OSA using very-well-matched patient cohorts. Despite an extensive literature search,
we failed to identify any similar study. The two patient groups were very well described
regarding clinical and PSG-related characteristics, and they were very successfully matched
regarding major epidemiologic confounders, namely sex, age, BMI, and even their degree
of OSA severity, based on the established AHI metric. In addition, comparable behavior
was found in terms of daily alcohol consumption, and a comparable number of patients
performing mainly shift work at night. Accordingly, both groups had comparable non-
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cardiac conditions, namely arterial hypertension, diabetes mellitus, COPD, or bronchial
asthma. This fact ensures the minimization of potentially confounding epidemiological
metrics. Nevertheless, we must acknowledge that our study population is rather small.
Another limitation is that the selection of patients from our clinical database was done
manually, against the background of the most suitable patients for this study. Therefore, a
potential selection bias cannot be excluded with certainty, and the selection may have also
influenced the results presented. To minimize this major limitation, future studies should
consider larger patient cohorts that are randomly selected, and automatically matched for
epidemiologic confounders.

It should be, once again, stressed that the present study was intended as a preliminary
proof-of-principle study. Therefore, the study population is rather small. Nonetheless,
the results appear to be quite robust, even with this rather small sample size. A sensitive
majority of widely used medications may affect sleep individually. The theory cannot be
excluded that medication used on a regular basis by the patients, especially in the OSA
patient group with cardiac history (e.g., beta-blockers), may have confounded the HRV
measurements and, hence, the results. Further studies should specifically consider this
aspect. Possible additional confounding factors on the HRV measurements may also have
been the various interventions (e.g., PCI, CABG) for the treatment of severe CCS that had
been performed before the PSG measurements in our studied severe CCS patient cohort.
It should be noted that the OSA patients in our cohort without known or symptomatic
CCS had not previously undergone coronary angiography or other composite coronary
artery diagnostics; therefore, we cannot exclude with certainty the concomitant presence
of subclinical (although, in any case, non-symptomatic) CCS in this cohort of patients in
our study.

4.4. Perspective and Clinical Significance

These results from a single center can only be considered preliminary, and should be
further validated. However, one potential application of the results presented is to augment
the general screening for changes in HRV during diagnostic PSG in the sleep laboratory.
Even if the exact source of HRV changes after PSG cannot be identified, extended screening
for the presence of CCS might be useful if the risk profile is appropriate. This approach
may help to reduce the risk of cardiovascular morbidity and mortality due to CCS. Thus,
HRV analysis can aid in enhancing preventive care strategies, and improving public health.

Heart rate variability analysis using electrocardiography (ECG) signals is a physio-
logical metric that has been established to assess changes in autonomic nervous system
activity at large. It is non-invasive, and rather cost-effective [3]. Variability in RR intervals
is modulated and effected simultaneously by both sympathetic and vagal efferent activity,
and can be affected by apneas and hypopneas during sleep. When sympathetic activity
is upregulated, and parasympathetic activity is downregulated, as is the case in OSA,
the heart rhythm tends to converge toward the intrinsic heart rate physiological attractor
(namely, around 100 heart beats/min), culminating in a reduced HRV [30]. In addition,
an increase in the value of the SDNN as a surrogate marker of global autonomic function
has been previously reported to be associated with better cardiovascular outcomes [31].
Especially regarding CCS, a low HRV has been independently associated with a significant
2-fold-increased likelihood for myocardial ischemia in patients without OSA [27].

On the basis of our preliminary results, we suggest that further studies should be
performed with much larger, and also well-matched cohorts of patients with OSA, but
without CCS, and patients with concomitant OSA and CCS. Further, other studies of
our proposed HRV metrics in OSA patients with less severe CCS (e.g., no history of PCI,
or no history of myocardial infarction) should be performed to shed more light on the
pathophysiological mechanisms involved. If these physiological HRV metrics are confirmed
in future studies with substantially more participants, then they have the potential to
provide robust surrogate markers for severe CCS in OSA patients.
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In addition, it should be also further tested whether the observed differences in HRV
metrics in OSA patients are CCS-specific (and not heart-disease-associated, in general). To
this end, further investigations in OSA patients with other cardiovascular concomitant
diseases should be performed and HRV metrics should be compared among the various
comorbid OSA–cardiac-disease cohorts.

Another major issue involves the possible differential effects of gender on HRV metrics
in OSA patients, given that there is accumulating evidence that gender has a significant
impact on the pathophysiology of OSA [32,33].

We suggest that such HRV metrics can also be used in conjunction with more tradi-
tional/established cardiovascular risk factors to identify individuals without known CCS
who have an increased likelihood of the presence of myocardial ischemia [27]. In addition,
the influence of the various pharmacological and interventional or surgical procedures on
such HRV metrics in OSA patients with CCS should be the topic of future investigations.

5. Conclusions

We present preliminary evidence from a controlled study, with well-matched cohorts,
that HRV metrics can differentiate between OSA patients with comorbid severe CCS, and
OSA patients without concomitant CCS.
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