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Physiological responses to threat and stress stimuli entrain synchronized neural oscillations among cerebral networks. Network archi
tecture and adaptation may play a critical role in achieving optimal physiological responses, while alteration can lead to mental dys
function.

We reconstructed cortical and sub-cortical source time series from high-density electroencephalography, which were then fed into 
community architecture analysis. Dynamic alterations were evaluated in terms of flexibility, clustering coefficient and global and local 
efficiency, as parameters of community allegiance. Transcranial magnetic stimulation was applied over the dorsomedial prefrontal 
cortex during the time window relevant for physiological threat processing and effective connectivity was computed to test the caus
ality of network dynamics.

A theta band-driven community re-organization was evident in key anatomical regions conforming the central executive, salience 
network and default mode networks during instructed threat processing. Increased network flexibility entrained the physiological re
sponses to threat processing. The effective connectivity analysis showed that information flow differed between theta and alpha bands 
and were modulated by transcranial magnetic stimulation in salience and default mode networks during threat processing.

Theta oscillations drive dynamic community network re-organization during threat processing. Nodal community switches may 
modulate the directionality of information flow and determine physiological responses relevant to mental health.
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Abbreviations: AC = accumbens; AG = angular gyrus; AM = amygdala; CA = caudate; CC = cuneal cortex; CEN = central 
executive network; CGa = cingulate gyrus anterior division; CGp = cingulate gyrus posterior division; CO = central opercular 
cortex; CS = conditioned stimulus; DMN = default mode network; dmPFC = dorsomedial prefrontal cortex; EC = effective 
connectivity; EEG = electroencephalography; FMC = frontal medial cortex; fMRI = functional MRI; FO = frontal orbital cortex; 
FOC = frontal operculum cortex; FP = frontal pole; HG = Heschl’s gyrus; HI = hippocampal region; IC = insular cortex; ICC =  
intracalcarine cortex; IFGo = inferior frontal gyrus pars opercularis; IFGt = inferior frontal gyrus pars triangularis; ITGa = inferior 
temporal gyrus anterior division; ITGp = inferior temporal gyrus posterior division; ITGto = inferior temporal gyrus 
temporooccipital; L = left hemisphere; LG = lingual gyrus; LOi = lateral occipital inferior division; LOs = lateral occipital superior 
division; LPP = late positive potential; LV = lateral ventricle; MFG = middle frontal gyrus; MTGa = middle temporal gyrus 
anterior division; MTGp = middle temporal gyrus posterior division; MTGto = middle temporal gyrus temporooccipital; OFG =  
occipital fusiform gyrus; OP = occipital pole; PA = pallidum; PC = precuneus; PCG = paracingulate gyrus; PGa = parahippocampal 
gyrus anterior division; PGp = parahippocampal gyrus posterior division; PoC = post central gyrus; POC = parietal operculum 
cortex; PP = planum polare; PrC = precentral gyrus; PT = planum temporale; PU = putamen; R = right hemisphere; SC =  
subcallosal cortex; SFG = superior frontal gyrus; SMA = supplementary motor area; SMGa = supramarginal gyrus anterior 
division; SMGp = supramarginal gyrus posterior division; SN = salience network; SP = supracalcarine cortex; SPL = superior 
parietal lobule; STGa = superior temporal gyrus anterior division; STGp = superior temporal gyrus posterior division; TFCa =  
temporal fusiform cortex anterior division; TFCp = temporal fusiform cortex posterior division; TH = thalamus; TMS =  
transcranial magnetic stimulation; TOF = temporal occipital fusiform cortex; TP = temporal pole; TPDC = temporal partial 
directed coherence; US = unconditioned stimulus
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Introduction
Physiological responses to threat and stress necessitate highly 
adaptive and orchestrated balance between the functional in
tegration and segregation of distinct networks. Moreover, the 
appraisal of aversive events involves changes in cognitive 
states, particularly attention, together with behavioural and 
physiological responses.1 The rapid, temporary shifts on brain 
excitability upon stressors involve brain core components, in 
particular the dorsomedial prefrontal cortex (dmPFC), hippo
campus and amygdala (AM). These regions are thought to in
fluence primarily adaptive characteristic responses to threat, 
facilitating coping behaviour.2 Furthermore, regions involved 
in threat processing belong to established networks; for in
stance, the cingulo-opercular salience network (SN) mediates 
the detection and integration of behaviourally relevant cogni
tive, homeostatic or emotional stimuli;3 the frontoparietal 
central executive network (CEN) facilitates self-control as 
well as reinterpretation of threatening events and emotional 
information processing;4 and the medial prefrontal-parietal 
default mode network (DMN) enables automated, fast and 
accurate responses.5 Brain oscillations, key elements in the co
ordination of large-scale brain networks, drive physiological 
responses to affective stimuli and determine excitability 
states.6 Thus, addressing oscillatory activity within implicated 
brain networks, in terms of their in-phase synchronization, 
their states and relation to excitability regulation, could un
mask physiological processing dynamics. This would facilitate 
insights about the individual heterogeneity in adaptation to 
adverse situations, while abnormalities in network associa
tions could be causally linked to mental disorders.

Although fMRI has been a key tool in characterizing net
work dynamics during affective processing,4,7,8 brain oscilla
tions driving physiological responses occur in the millisecond 
range. Moreover, distinct neural processes possess a fre
quency specificity of their evoked responses that cannot be 
fully captured by fMRI.9 Therefore, electroencephalography 
(EEG) offers the ideal temporal scale to address oscillatory 
activity related to threat processing within particular net
works and, thus, may provide insight into the characteriza
tion of the spatiotemporal dynamics of brain networks.10,11

Previous evidence suggests that in rodents, oscillations at 
the theta range (4–8 Hz) support AM–prefrontal coordin
ation and drive physiological threat processing.12-15 In hu
man and non-human primates, the emergence of theta 
oscillations supports the synchronization of AM–prefrontal 
circuits that serve as mechanism for long-range communica
tion and information transfer during threat processing.15,16

In humans, prominent theta power during threat processing 
in prefrontal, frontal and midline channels has been shown, 
whereas decrease in alpha activity in parietal and occipital 
channels occurred.17-19 Additionally, oscillations in the al
pha range (8–12 Hz) are well-suited for evaluating the sus
tained anticipatory attention to threat,20,21 anticipation22

and facilitation of stimulus processing.23 Decreases in the 
attention-related alpha activity have shown to be paralleled 

by increased cortical excitability,24,25 which renders theta 
and alpha oscillations a potential target for experimental in
vestigations of sustained attentional engagement to threat 
processing involving neuromodulatory interference such as 
transcranial magnetic stimulation (TMS).11

In the current study, physiological responses to threat pro
cessing were evoked using a validated instructed fear para
digm,11,26-30 in which a conditioned stimulus (CS+) is 
paired with an aversive unconditioned stimulus (US). 
Recent studies indicate that threat responsiveness can be in
dexed by the presence of the P300, a positive deflection in ac
tivity appearing ∼300 ms after the presentation of an 
attended stimulus allocation and also associated stimulus 
processing, and the related longer-lasting late positive poten
tial (LPP) components, where the physiological responses to 
threat processing are depicted as prolonged increased cor
tical excitability at time intervals around 1000 ms after the 
stimuli presentation.11,31-33 Accordingly, we selected two 
time points for neuromodulation with TMS: first, before ini
tiation of threat processing and, second, at the physiological
ly relevant time window. In order to evaluate the causal 
network dynamics at the EEG temporal resolution, we use 
a non-linear state–space modelling approach, which uses a 
dual extended Kalman filtering in a method known as tem
poral partial directed coherence (TPDC).34-37 We hypothe
sized that looking into simultaneous EEG–TMS data, while 
modulating threat processing through dmPFC stimulation 
at distinct time intervals, could uncover local and global net
work changes at specific neural circuits, specifically CEN, SN 
and DMN. Network community re-organization at specific 
oscillations could further modulate the information flow, 
which we additionally evaluate by observing the directional
ity of information flow and evaluate if it is time-locked.

The current conceptual framework finds fundament on re
cent advances in network science.38 Particularly, we address 
the whole-brain network dynamics of physiological threat 
processing by looking for network community characteristics, 
which describe functionally specialized sub-networks.39,40

Sub-networks are defined as communities of highly intercon
nected nodes that have very few connections to nodes in other 
groups. To capture the dynamics of information processing in 
these network communities, we combine advanced computa
tional algorithms, including regional assignment switching be
tween communities, combined with measures of clustering 
behaviour (to capture the capacity to form interconnected 
communities) and flexibility (mirroring the extent to which 
network regions change their community allegiance over 
time).41,42 The latter can effectively track and quantify the net
works’ ability to reconfigure according to task demands.43

Materials and methods
Study participants
The study included 45 healthy participants (22 females, 23 
males, mean age 28 ± 5.48 years). The study protocol was 
approved by the local ethics committee (Medical Faculty, 
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Johannes Gutenberg University Mainz), and informed writ
ten consent was taken from all participants before beginning 
the experiments. The data was acquired in two different ses
sions. In the first session, whole-brain magnetic resonance 
imaging (MRI) data was acquired with various relevant se
quences (acquisition parameters and complete experimental 
procedures are detailed in the Supplementary material). 
During the second session, participants performed either 
an instructed threat paradigm (from now on as 
‘Experiment 1’; N = 19, 11 females, 8 males, mean age 
27.4 ± 4.32 years) or an instructed threat paradigm with 
concurrent TMS (from now on as ‘Experiment 2’; N = 26, 
11 females, 15 males, mean age 28.6 ± 6.64 years).

‘Ethics approval and consent to participate’: The local eth
ics committee of the medical faculty of the Johannes 
Gutenberg University Mainz (Mainz, Germany) approved 
the study protocol, which is according to the Declaration 
of Helsinki; all participants provided written informed 
consent.

Experiment 1 (instructed threat 
paradigm)
This experiment was conducted with all participants sitting 
on a chair and following instructions in the screen. Pain 
threshold for each participant was obtained by sending out 
a painful electric stimulus in the dorsal part of left hand using 
a surface electrode connected to a DS7A electrical stimulator 
(Digitimer Inc.). Individual pain ratings on a scale from 0 (no 

pain) to 10 (very unpleasant) were recorded. An intensity re
presenting a pain level of 7 was used during the experiments.

The instructed threat task was administered using the 
Cogent toolbox (http://www.vislab.ucl.ac.uk/cogent_2000. 
php) in MATLAB R2006b (MathWorks Inc.). The task con
sisted of two visual stimuli (circle with and without threat 
stimuli and square without threat stimuli; Fig. 1A). A fix
ation cross was shown during the inter-trial interval (ITI) 
(Fig. 1B). Participants were instructed the screen appearance 
of a circle (CS+) is associated with a probability of 33% (ran
domized between 1 and 5 s) of receiving the electric shock 
(US) of level 7, while screen appearance of a square (CS−) is 
not associated with any threat. Visual stimuli were presented 
pseudo-randomly on screen for 5 s, and the ITI was jittered 
between 4 and 6 s. The paradigm consisted of 60 stimuli (36 
CS+, 24 CS−). The experiment was divided in three sessions, 
where each session lasted around 5 min with 3-min breaks in 
between sessions. After each session, the level of experienced 
threat was rated in a scale from 1 to 10 by each participant 
with a questionnaire. High-density EEG with 256 channels 
(Net Station 5.0, EGI, USA) was recorded at a sampling fre
quency of 250 Hz throughout the experiment.

Experiment 2 (instructed threat 
paradigm with concomitant dmPFC– 
TMS
To evaluate the involvement of the dmPFC in threat process
ing, in this experiment, another cohort of healthy participants 

Figure 1 The schematic representation of the instructed threat paradigm used in this study. (A) The two visual stimuli (symbols) 
which were used in the instructed threat paradigm and their corresponding explanation: when the circle was presented in screen (CS+), there was 
a 30% probability to be paired with a threat stimulus (electric shock; US), whereas the square had no stimulus pairing (CS+). (B) Example of the 
temporal scale of the stimuli presentation: each symbol was presented on the computer screen for 5 s followed by a fixation cross with an 
inter-trial interval (ITI) between 5 and 6 s (Experiment 1). A neuronavigated single-pulse TMS was applied to the right dorsomedial prefrontal 
cortex (dmPFC) after either 80  or 1000 ms (Experiment 2).
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undertook the same paradigm as in Experiment 1 together 
with the application of single TMS pulses over the right hemi
spheric dmPFC, after 1 s from stimulus onset. The location of 
the dmPFC for each individual was determined by registering 
the Montreal Neurological Institute coordinate for the 
dmPFC ([10 12 58])44 to the individual MRI of each partici
pant using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). At the 
stimulation site, the TMS coil was placed tangentially to the 
scalp surface and oriented in a medial to lateral position at a 
45° angle away from the midline with the handle pointing 
backwards. The location, position and orientation of the 
coil were kept unchanged throughout the experiment using 
a neuro-navigation system (Localite TMS navigator, 
Germany). TMS pulses were applied in biphasic pulse config
uration using a figure-8 coil connected to Magstim Rapid2

(Magstim, UK). The intensity of TMS pulses was set to 
110% of resting motor threshold. The resting motor threshold 
was calculated as the minimum stimulus intensity required eli
citing motor evoked potentials of amplitude 50 μV in 5 out of 
10 consecutive trials at rest.45 The paradigm consisted of 90 
stimuli (54 CS+, 36 CS−), and subjective threat ratings were 
acquired. Moreover, the experiment was repeated applying 
TMS at 80 ms as a control experiment for TMS modulation 
on the network dynamics. Before preprocessing, condition- 
specific (CS− and CS+) trials were extracted, and the CS+ 
trials in which electric shocks were delivered were removed 
from the data.

EEG data preprocessing
EEG data preprocessing was performed using MATLAB 
R2015a and FieldTrip toolbox46 in a condition-blind man
ner. Initially, EEG data was re-referenced to the common 
grand average reference of all EEG channels and epoched 
from −2.0 to 4.0 s (0—being the visual stimuli). These epoch 
trials were used only for the purpose of filtering; for all sub
sequent analyses, the time interval for the epochs used was 
−0.25 to 1.5 s. The preprocessing pipeline was adapted 
from the FieldTrip toolbox as explained in detail in.17 For 
Experiment 1, the EEG data was directly subjected to inde
pendent component analyses (FastICA)47 to remove the 
components representing the muscle artefacts, eye blinks, 
eye movements and line noise. For Experiment 2, firstly a 
period of −5 to 20 ms of TMS–EEG data (0 as TMS pulse) 
was removed for avoiding the ringing artefact. The pre- 
ringing and post-ringing epochs were subject to FastICA to 
remove the components representing the exponential decay 
artefact, residual muscle artefacts, eye blinks, eye move
ments, line noise and other muscle artefacts unrelated to 
TMS. For Experiment 1, 30 of 256 components (30 ± 4.6, 
mean ± SD) were rejected where 11 ± 2.68 were related to 
the eye artefacts, 5 ± 2.34 were related to line noise and 12  
± 1.24 were related to muscle artefacts. Similarly, for 
Experiment 2, 36 of 256 components (36 ± 2.3) were re
jected where 2 ± 0.74 were related to the exponential decay, 
4 ± 1.98 were related to line noise, 13 ± 1.16 were related to 
muscle artefacts and 13 ± 1.04 were related to the eye 

artefacts. The residual muscle artefacts were visually inspected, 
removed and interpolated with the cubic interpolation meth
od. A fourth-order Butterworth low-pass filter with a cut-off 
frequency of 125 Hz was applied to avoid aliasing, which 
was followed by a band pass filtered between 3 and 45 Hz. 
Reliability check for EEG signals was performed using the 
inter-trial phase coherence (ITPC; Supplementary Fig. 1). 
Individual heart rate was extracted from the EEG signals using 
the method as detailed in our previous study.11 Reconstruction 
of the brain source activity was based on the finite element 
modelling from individual MRI and beamformer. The detailed 
description is found in the supplementary material. Finally, the 
difference between CS− and CS+ conditions was computed 
and used in all subsequent analyses.

Evaluation of network dynamic 
re-organization
Based on the reconstructed source activity, individual 
weighted connectivity matrices were built for theta and al
pha bands separately, according to 90 regions defined in 
the Harvard–Oxford atlas.48,49 Connectivity matrix edges 
represent the theta (or alpha) power cross-correlation be
tween each region of interest (ROI) (j) to all other ROIs(i). 
Dynamic network topology was then characterized using 
metrics (see below) from the brain connectivity toolbox50,51

and the dynamic graph metrics toolbox.52

For each individual connectivity matrix, network commu
nities were firstly identified at baseline (−250 to 0 ms) using 
the modularity maximization based on Louvain algorithm.53

To test the robustness of the detected community associa
tions, we performed 5000 iterations. The final alliance of 
each ROI to a particular community was based on the max
imum number of times-by-iteration the region was assigned 
to a community.54,55 During this process, the resolution par
ameter (γ) was varied (1 to 2.5, in steps of 0.05) to identify a 
stable and topologically relevant distribution of ROIs in each 
module. Multilayer modularity maximization depends upon 
two free parameters, namely, the structural resolution par
ameter, γ, which determines the size of communities: smaller 
or larger values of γ result in correspondingly larger or smal
ler communities. In this study, we were interested in observ
ing large-scale network alterations during threat processing, 
hence the resolution parameter, γ = 1.65, was selected with 
larger anatomical modules [(i) frontal; (ii) sensorimotor; 
(iii) temporal; (iv) occipital; (v) basal ganglia and sub- 
cortical region; (vi) parietal regions] encompassing the well- 
established larger functional network. The other parameter, 
inter-subject coupling parameter, ω, which determines the 
consistency of communities across layers (in our case sub
jects) with smaller or larger values of ω emphasizes commu
nity organization that is either unique to individual subjects 
or shared by the entire cohort, respectively.56 Here, the coup
ling parameter (ω) was selected to yield stable six modules 
across subjects for the resolution parameter selected. For 
mathematical details about the coupling strength and its 
computation, please refer to Betzel et al.56 and Bassett 
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et al.57 The community assignment was then repeated for six 
time windows (T1–T6; each 250-ms length), covering the 
interval from 0 to 1500 ms after the visual stimulus.

Measures of community efficiency
We assessed four network metrics—flexibility, clustering co
efficient and global and local efficiency—characterizing the 
efficiency of information transfer in all time windows. 
Node flexibility coefficient reflecting the dynamic commu
nity composition51 was computed as the number of times 
the node changes module allegiance through an entire time 
window of 250 ms (divided into five static windows of 
50 ms), normalized by the total possible number of changes 
(using the Network Community Toolbox (http:// 
commdetect.weebly.com/).57 The nodal community flexibil
ity (f ) could be formulated as:

fi = 1 −
1

T − 1

􏽘T−1

q=1

δ(Qi,q, Qi,q+1) 

Here, Q is the output of the multilayer modularity maximiza
tion algorithm which detected the community affiliations of 
each node (ROI) at each window; i.e. the output is Q = N × T 
matrix where each element (n, t) is the community that node 
n belongs to, at time window t. Nodal flexibility is obtained 
as a number between 0 and 1 where 0 implies most rigidity 
and 1 implies the most flexibility in terms of community changes 
through time.58 The mean flexibility (F) for a subject is then cal
culated as the mean flexibility score across all nodes as:

F =
1
N

􏽘N

i=1

fi 

Further mathematical details could be found in 
supplementary materials from.57 Clustering coefficient (C) is 
a parameter of local organization,59 reflecting the number of 
connections between direct neighbouring nodes with sparsely 
interconnected regions represented as the abundance of con
nected triangles in a network, computed for a node i as:

Ci =
(Number of connected triangles including node i)

ki(ki − 1)/2 

where ki =
􏽐NROI

j=1
aij and aij is the degree of node i. Further 

mathematical details could be found in Rubinov and 
Sporns50 and Masuda, Sakaki, Ezaki and Watanabe.60

Global efficiency (GE), a measure for network integration re
flecting the efficiency of information transfer among all pairs 
of nodes, is defined as the inverse of the length of the shortest 
path in the node and computed as:

GE =
1
n

􏽘

i ∈N

􏽘

j∈N,j≠i

d−1
ij 

where d is the topological distance between node i and j, N is the 
set of all nodes in the network and n is the number of nodes.50

Please refer to Wang, Ghumare, Vandenberghe and Dupont61

and Latora and Marchiori62 for detail discussion on mathemat
ical formulation. The local efficiency is the average efficiency of 
sub-network containing the node and all its immediate neigh
bours. This primarily reflects how information is exchanged be
tween the neighbours and could measure the network’s fault 
tolerance.61,62 Even though, it provides an important informa
tion regarding the network information transfer efficiency, the 
value obtained for clustering coefficient in an undirected net
work is reasonably approximate to the local efficiency.63

Hence, to avoid redundancy, the local efficiency results are 
only presented in supplementary materials for interested readers.

For the 3 network parameters, 20 density intervals (range 
0.1–0.6) were estimated, over which the mean and standard 
deviation were computed. The computation of network mea
sures over a range of densities gives the possibility of compar
ing the network measures where individual networks are not 
fragmented.64

Investigating causal relationships 
between network nodes
Evaluation of causal relationships between network nodes 
(effective connectivity) was effectuated using the TPDC 
(see complete description in the Supplementary material). 
This type of non-linear time–frequency causality has been 
previously applied by our group in both EEG10,35 and func
tional MRI34,36 studies.

Summary of EEG data analyses
In summary, for the EEG data, after preprocessing, source re
construction was performed using beamformer, followed by 
power cross-correlation (as measure of connectivity) at the 
time windows of interest. The resulting connectivity matrices 
where then used to evaluate dynamic network topology (star
ing from community detection on baseline and then the vari
ation in community assignment in the following time 
windows). Network topology for each detected network was 
evaluated at 20 densities. Finally, we investigated causal rela
tionships between network nodes using the TPDC method.

Statistical analysis
Data normality was tested using a Shapiro–Wilk test, and 
sphericity was checked with Mauchly’s sphericity test. The 
behavioural (threat) ratings and the heart rate estimates 
were compared between the two stimuli (CS+ and CS−) 
using paired t-tests (at P < 0.01).

For each network community and study experiment, the 
network measures were independently tested using a two- 
way factorial ANOVA with within-subject factors condition 
and time. TPDC values between regions tested using a two- 
way factorial ANOVA with within-subject factors condition 
and time and post hoc were compared using paired t-tests. 
TPDC differences were independently tested at each 
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frequency, each community and each consecutive time win
dow pairs (e.g. baseline versus T1; T1 versus T2; T2 versus 
T3; T3 versus T4; T4 versus T5; T5 versus T6).

Pearson’s correlation coefficient was estimated between be
havioural ratings (CS+ and CS− difference) and the heart rate 
(CS+ and CS− difference). Finally, network parameters and the 
effective connectivity values at all pairs of time windows (base
line–T6) were separately correlated with the behavioural ratings 
and heart rate. Bonferroni correction (P < 0.05) was applied.

Data availability
The raw data are available from the corresponding author 
upon reasonable request and ethics approval. The data gener
ated and essential to the conclusions of this study is included 
in the manuscript. The produced code for the time-resolved 
partial directed coherence (TPDC) can be found in https:// 
github.com/GGonEsc/TPDC. For the rest of analyses, we 
used open-source toolboxes, including FieldTrip (https:// 
www.fieldtriptoolbox.org/), the Brain Connectivity Toolbox 
(https://sites.google.com/site/bctnet/) and the Network 
Community Toolbox (http://commdetect.weebly.com/).

Results
Threat state physiological proxy 
assessment
In Experiment 1, participants showed higher behavioural 
threat ratings in the CS+ condition compared to that of those 

in CS− (P < 0.001; Fig. 2A). Heart rates also showed clear in
creases during CS+ compared to those during CS− (P <  
0.001; Fig. 2B). Experiment 1 (no TMS) effects were repli
cated in Experiment 2 (TMS) as increased threatened behav
iour (P < 0.001; Fig. 2A) and heart rates (P < 0.001; Fig. 2B) 
during CS+. Consistently, correlations between heart rate 
and threat ratings were attested in both experiments: 
Experiment 1 (r = 0.56; P = 0.002) and Experiment 2 (r =  
0.49; P = 0.005).

Network communities of the source 
signals
In respect to baseline, the community formation of brain re
gions varied significantly during processing of the threat. At 
baseline, six communities with anatomically delimited com
position, appeared in both theta and alpha frequency bands. 
Specifically, Community 1 comprised frontal regions, 
Community 2, sensorimotor; community 3, temporal; com
munity 4, occipital; community 5, basal ganglia and sub- 
cortical regions; and community 6, parietal regions. 
Community alliances were stable over the 5000 iterations, 
where the regions adhered to the exact same community in 
80 ± 6% of the iterations.

After visual stimuli, the same algorithm yielded nine com
munities for both theta and alpha frequency bands. The add
itional three communities consisted of nodes from 
Communities 1, 3, 5 and 6 of the baseline communities, in
cluding the brain regions belonging to CEN, SN and 
DMN. Table 1 shows corresponding brain regions of 

A B

Figure 2 Behavioural (threat) ratings and the heart rate estimates across experiments. The boxplots depict the mean and standard 
deviation for the conditioned stimulus (CS+) and the non-threating stimulus (CS−). For both experiments, paired t-tests were employed to 
compare behavioural ratings (A; P < 0.001) and heart rate [B; beats per minute (bpm); P < 0.001]. The dashed line indicates the statistical 
significance difference between the two stimuli.
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baseline communities indicating nodes that altered the com
munity alliance, and Fig. 3 visualizes the communities at the 
baseline and after the visual stimuli.

Topological characteristics 
of dynamic community alliance  
in the theta band
CEN, SN and DMN showed different dynamics in their flexi
bility, clustering and local efficiency, which were also specific 
for each frequency band (theta and alpha). Here, we focus on 
the most relevant results of the theta band. Alpha band re
sults and the results obtained from all densities appear in 
the supplementary material and figures.

For CEN (Fig. 4A), the theta band showed flexibility in
creases in both experiments [Fig. 4B; Experiment 1, factors 
condition (F1,18 = 15.42, P = 0.001) and time (F6,108 =  
7.65, P < 0.001); Experiment 2, factors condition (F1,25 =  
15.53, P < 0.001) and time (F6,150 = 8.96, P < 0.001)]. Post 
hoc analyses confirmed the increased flexibility in all time 
windows (all P < 0.001). This increase indicates the involve
ment of frontoparietal regions during threat processing and 
their adaptation to cognitive flexibility. In both experiments, 
we aimed at evaluating the sustained responses to threat, re
garded as increased cortical excitability at time intervals 
around 1000 ms. Accordingly, T5 (1000–1250 ms after 
stimuli presentation) showed even higher flexibility (P <  
0.001) with respect to T4 (750–1000 ms after stimuli presen
tation). In addition, the increase of network flexibility in the 
T5 shows a change in the physiological theta after 1 s, which 

is the indication that the sustained flexibility is necessary dur
ing threat processing.

CEN theta band clustering coefficient (Fig. 4C) showed in
creases in both experiments [Experiment 1, factors condition 
(F1,18 = 16.21, P < 0.001) and time (F6,108 = 9.47, P <  
0.001); Experiment 2, factors condition (F1,25 = 17.24, P <  
0.001) and time (F6,150 = 7.67, P < 0.001)]. Post hoc ana
lyses evidenced significant increases in all time intervals (all 
P < 0.001). In both experiments, T5 was higher than T4 
(P < 0.001). The increase in cognitive flexibility in these par
ticular time windows T1 and T5 go hand in hand with the 
increase in clustering coefficient due to high density of rela
tively short axons and the close proximity of nodes within 
each module.

The global efficiency (Fig. 4D) of the theta band in CEN 
was also increased [Experiment 1, factors condition 
(F1,18 = 10.26, P = 0.001) and time (F6,108 = 8.62, P <  
0.001); Experiment 2, factors condition (F1,25 = 9.28, P <  
0.001) and time (F6,150 = 7.79, P < 0.001)], where the post 
hoc analyses revealed the increases in all time windows (all 
P < 0.001). Post hoc analyses evidenced significant increases 
in all time intervals (all P < 0.001). In both experiments, T5 
was increased compared to T4 (P < 0.001). The efficiency in 
this network was increased at T1 compared to baseline, indi
cating the alertness of the brain to aversive stimuli.

The local efficiency (Fig. 4E) of the theta band in CEN was 
also increased [Experiment 1, factors condition (F1,18 =  
12.31, P = 0.001) and time (F6,108 = 9.46, P < 0.001); 
Experiment 2, factors condition (F1,25 = 14.20, P < 0.001) 
and time (F6,150 = 9.35, P < 0.001)], where the post hoc ana
lyses revealed the increases in all time windows (all P <  

Table 1 Brain regions (as defined in the Harvard–Oxford atlas) are listed based on the community alliance during the 
baseline window (−250 to 0 ms before visual stimuli presentation)

Community 1 Community 2 Community 3 Community 4 Community 5 Community 6

FP.L-R PrC.L-R TP.L-R LOs.L-R IC.L-R SPL.L-R
SFG.L-R PoC.L-R STGa.L-R LOi.L-R PGa.L-R SMGa.L-R
MFG.L-R SMA.L-R STGp.L-R ICC.L-R PGp.L-R SMGp.L-R
IFGt.L-R CO.L-R MTGa.L-R OFG.L-R LV.L-R AG.L-R
IFGo.L-R MTGp.L-R SP.L-R TH.L-R PCG.L-R
FMC.L-R MTGto.L-R OP.L-R CA.L-R CGa.L-R
SC.L-R ITGa.L-R PU.L-R CGp.L-R
FO.L-R ITGp.L-R PA.L-R PC.L-R
FOC.L-R ITGto.L-R HI.L-R CC.L-R

TFCa.L-R AM.L-R LG.L-R
TFCp.L-R AC.L-R POC.L-R
TOF.L-R
PP.L-R
HG.L-R
PT.L-R

L-R, left and right; FP, frontal pole; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFGt, inferior frontal gyrus pars triangularis; IFGo, inferior frontal gyrus pars opercularis; FMC, 
frontal medial cortex; SC, subcallosal cortex; FO, frontal orbital cortex; FOC, frontal operculum cortex; PrC, precentral gyrus; PoC, post central gyrus; SMA, supplementary motor 
area; CO, central opercular cortex; TP, temporal pole; STGa, superior temporal gyrus anterior division; STGp, superior temporal gyrus posterior division; MTGa, middle temporal 
gyrus anterior division; MTGp, middle temporal gyrus posterior division; MTGto, middle temporal gyrus temporooccipital; ITGa, inferior temporal gyrus anterior division; ITGp, 
inferior temporal gyrus posterior division; ITGto, inferior temporal gyrus temporooccipital; TFCa, temporal fusiform cortex anterior division; TFCp, temporal fusiform cortex 
posterior division; TOF, temporal occipital fusiform cortex; PP, planum polare; HG, Heschl’s gyrus; PT, planum temporale; LOs, lateral occipital superior division; LOi, lateral occipital 
inferior division; ICC, intracalcarine cortex; OFG, occipital fusiform gyrus; SP, supracalcarine cortex; OP, occipital pole; IC, insular cortex; PGa, parahippocampal gyrus anterior 
division; PGp, parahippocampal gyrus posterior division; LV, lateral ventricle; TH, thalamus; CA, caudate; PU, putamen; PA, pallidum; HI, hippocampal region; AM, amygdala; AC, 
accumbens; SPL, superior parietal lobule; SMGa, supramarginal gyrus anterior division; SMGp, supramarginal gyrus posterior division; AG, angular gyrus; PCG, paracingulate gyrus; CGa, 
cingulate gyrus anterior division; CGp, cingulate gyrus posterior division; PC, precuneus; CC, cuneal cortex; LG, lingual gyrus; POC, parietal operculum cortex.
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0.001). However, only in Experiment 2 (TMS), local effi
ciency was increased in T5 compared to T4 (P < 0.001). 
The increase in local information transfer during threat pro
cessing, reflected by the increase in clustering within mod
ules, could be either up- or downregulation of the network, 
based on distinct synchronized oscillations.

For SN (Fig. 5A), flexibility in the theta band (Fig. 5B) ap
peared increased in both experiments [Experiment 1, factors 
condition (F1,18 = 12.67, P = 0.002) and time (F6,108 = 4.24, 
P = 0.001); Experiment 2 (factors condition (F1,25 = 9.24, P  
= 0.006) and time (F6,150 = 5.87, P < 0.001)]. Post hoc ana
lyses attested these effects for T1–T6 compared to baseline 
(all P < 0.001). Concordantly, in both experiments, T5 
showed increased flexibility compared to that of T4 (P <  
0.001). This indicates that the connectivity between sub- 
cortical structures and cortical regions plays a significant 
role in cognitive flexibility during the processing of threat.

SN theta band clustering coefficient (Fig. 5C) showed sig
nificant increases in both experiments [Experiment 1, factors 
condition (F1,18 = 10.54, P = 0.005) and time (F6,108 = 3.64, 
P = 0.008); Experiment 2, factors condition (F1,25 = 8.46, P  
= 0.009) and time (F6,150 = 3.72, P = 0.008)]. Post hoc 

analyses confirmed the increased clustering in all T1–T6 
compared to baseline (all P < 0.01). Here, only in 
Experiment 2, T5 showed increased clustering compared to 
T4 (P < 0.001).

SN theta band global efficiency (Fig. 5D) was also in
creased in both experiments [Experiment 1, factors condi
tion (F1,18 = 7.41, P = 0.001) and time (F6,108 = 5.65, P <  
0.001); Experiment 2, factors condition (F1,25 = 5.31, P =  
0.004) and time (F6,150 = 6.27, P < 0.001)]. Post hoc ana
lyses revealed differences at all time windows with respect 
to baseline (all P < 0.01). Global efficiency increases were de
tected for the interval T5 compared to T4 in both experi
ments (P < 0.01). The results indicate that the global 
information transfer, largely restrained by the thalamus, in 
cortical regions increases during threat processing.

SN theta band local efficiency (Fig. 5E) was increased in 
both experiments [Experiment 1, factors condition (F1,18 =  
11.25, P = 0.003) and time (F6,108 = 4.78, P < 0.001); 
Experiment 2, factors condition (F1,25 = 11.45, P = 0.002) 
and time (F6,150 = 5.46, P < 0.001)]. Post hoc analyses re
vealed differences at all time windows with respect to base
line (all P < 0.01). Local efficiency increases were detected 

Figure 3 Network community alliance. All communities obtained at baseline and after visual stimulus as listed in Table 1. The communities 
forming after visual stimuli were the central executive network (CEN), salience network (SN) and default mode network (DMN), and thus the 
analyses were focused on these networks.

Network flexibility during threat                                                                                    BRAIN COMMUNICATIONS 2023: Page 9 of 20 | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/2/fcad035/7044702 by Augsburg U

niversity Library user on 30 N
ovem

ber 2023



A

B C

D E

Figure 4 Topological dynamic characteristics within the central executive network (CEN) in the theta frequency. (A) Depiction 
of the regions conforming the CEN during threat processing; the corresponding region list is given in Table 1, marked in red colour. (B) The 
network flexibility is shown starting from the baseline (B, −250 to 0 ms) window to all the following six time windows (T1–T6, every 250 ms) 
separately [Experiment 1, factors condition (F1,18 = 15.42, P = 0.001) and time (F6,108 = 7.65, P < 0.001); Experiment 2, factors condition (F1,25 =  
15.53, P < 0.001) and time (F6,150 = 8.96, P < 0.001)]. C, D and E depict the same as B but for clustering coefficient [Experiment 1, factors 
condition (F1,18 = 16.21, P < 0.001) and time (F6,108 = 9.47, P < 0.001); Experiment 2, factors condition (F1,25 = 17.24, P < 0.001) and time (F6,150 =  
7.67, P < 0.001)], global efficiency [Experiment 1, factors condition (F1,18 = 10.26, P = 0.001) and time (F6,108 = 8.62, P < 0.001); Experiment 2, 
factors condition (F1,25 = 9.28, P < 0.001) and time (F6,150 = 7.79, P < 0.001)] and local efficiency [Experiment 1, factors condition (F1,18 = 12.31, P  
= 0.001) and time (F6,108 = 9.46, P < 0.001); Experiment 2, factors condition (F1,25 = 14.20, P < 0.001) and time (F6,150 = 9.35, P < 0.001)], 
respectively. Density plots are presented with data points from ‘Experiment 1’ (without TMS) in blue and ‘Experiment 2’ (with TMS) in red 
obtained for each density and time window. For each experiment, the mean value across all data points is depicted with a larger circle, while the 
bars indicate the standard deviation. For each parameter and experiment, the points depict values at each network density for each participant and 
each of the 20 densities. The reported F and P values for significant differences between the time intervals were obtained from a two-way factorial 
ANOVA, and all the intervals were also compared to the baseline for both experiments.
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Figure 5 Topological dynamic characteristics within the salience network (SN) in the theta frequency. (A) Depiction of the 
regions conforming the SN; the corresponding region list is given in Table 1, marked in blue colour. (B) The network flexibility is shown starting 
from the baseline (B, −250 to 0 ms) window to all the following six time windows (T1–T6, every 250 ms) separately [Experiment 1, factors 
condition (F1,18 = 12.67, P = 0.002) and time (F6,108 = 4.24, P = 0.001); Experiment 2 (factors condition (F1,25 = 9.24, P = 0.006) and time (F6,150 =  
5.87, P < 0.001)]. Plots at C, D and E depicts the network flexibility starting from baseline to all six time windows for clustering coefficient, Global 
and local efficiency respectively. Clustering coefficient [Experiment 1, factors condition (F1,18 = 10.54, P = 0.005) and time (F6,108 = 3.64, P =  
0.008); Experiment 2, factors condition (F1,25 = 8.46, P = 0.009) and time (F6,150 = 3.72, P = 0.008)], global efficiency [Experiment 1, factors 
condition (F1,18 = 10.54, P = 0.005) and time (F6,108 = 3.64, P = 0.008); Experiment 2, factors condition (Experiment 1, factors condition (F1,18 =  
7.41, P = 0.001) and time (F6,108 = 5.65, P < 0.001); Experiment 2, factors condition (F1,25 = 5.31, P = 0.004) and time (F6,150 = 6.27, P < 0.001)] and 
local efficiency [Experiment 1, factors condition (F1,18 = 11.25, P = 0.003) and time (F6,108 = 4.78, P < 0.001); Experiment 2, factors condition (F1,25  

= 11.45, P = 0.002) and time (F6,150 = 5.46, P < 0.001)]. Density plots are presented with data points from ‘Experiment 1’ (without TMS) in blue 
and ‘Experiment 2’ (with TMS) in red obtained for each density and time windows. For each experiment, the mean value across all data points is 
depicted with a larger circle, while the bars indicate the standard deviation. For each parameter and experiment, the points depict values at each 
network density for each participant and each of the 20 densities. The reported F and P values for significant differences between the time intervals 
were obtained from a two-way factorial ANOVA, and all the intervals were also compared to the baseline for both experiments.
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for the interval T5 compared to T4 in both experiments 
(P < 0.01). The local information transfer could indicate 
the increase in connectivity in sub-cortical to cortical loop 
to maintain the cognitive flexibility across the network.

For the DMN (Fig. 6A), an increased flexibility in the theta 
band was observed [Fig. 6B; Experiment 1, factors condition 
(F1,18 = 22.67, P < 0.001) and time (F6,108 = 12.24, 
P < 0.001); Experiment 2, factors condition (F1,25 = 20.45, 
P < 0.001) and time (F6,150 = 14.87, P < 0.001)]. Post hoc 
analyses showed that higher flexibility occurred in all time 
windows after stimuli presentation in comparison to baseline 
(all P < 0.001). However, in both experiments, T5 (1000– 
1250 ms) showed a decrease in flexibility (P < 0.001) com
pared to that of T4 (750–1000 ms).

Also for DMN, clustering coefficient was also increased in 
the theta band (Fig. 6C) in both experiments [Experiment 1, 
factors condition (F1,18 = 38.74, P < 0.001) and time (F6,108  

= 19.57, P < 0.001); Experiment 2, factors condition (F1,25  

= 34.21, P < 0.001) and time (F6,150 = 17.24, P < 0.001)]. 
Post hoc analyses revealed significant differences between 
baseline and all T1–T6 windows (all P < 0.001).

DMN theta band global efficiency (Fig. 6D) was increased 
in both experiments [Experiment 1, factors condition (F1,18  

= 10.12, P < 0.001) and time (F6,108 = 6.98, P < 0.001); 
Experiment 2, factors condition (F1,25 = 8.46, P < 0.001) 
and time (F6,150 = 11.27, P < 0.001)]. Here, a decreased local 
efficiency was observed for T5 in comparison to T4 in both 
experiments (P < 0.001).

DMN theta band local efficiency (Fig. 6E) was increased in 
both experiments [Experiment 1, factors condition (F1,18 =  
42.28, P < 0.001) and time (F6,108 = 23.27, P < 0.001); 
Experiment 2, factors condition (F1,25 = 39.65, P < 0.001) 
and time (F6,150 = 19.38, P < 0.001)]. Here, decreased local 
efficiency was observed for T5 in comparison to that for 
T4 in both experiments (P < 0.001). Interestingly, in this 
modular network which is involved in a background physio
logical processing, the flexibility, global efficiency and the lo
cal information transfer followed the other two modules by 
an increase. However, the relatively longer physiological 
processing found in other modules (CEN and SN) was re
duced in this module indicating a more compensatory pro
cesses for maintaining the equilibrium.

The corresponding topology metrics of the SN and DMN 
in the alpha band are found in Supplementary Figs. 2 and 3. 
For all three networks, the mean value across participants in 
the theta band is depicted in Supplementary Figs. 4–6. No ef
fects in flexibility, clustering and local efficiency were found 
for the control experiment (single-pulse TMS at 80 ms) in all 
the three communities (Supplementary Fig. 7).

Information flow dynamics during 
threat processing
The effective connectivity analyses focused on the difference 
between the two conditions (CS+ and CS−) within the three 
threat-related communities. Here, only information flows 

that survived surrogate time reversal (P < 0.001) for theta 
and alpha bands are reported.

In CEN (Fig. 7), the theta band effective connectivity (EC) 
increased in both experiments [Experiment 1, factors condi
tion (F1,18 = 5.38, P = 0.0086) and time (F6,108 = 4.29, P =  
0.0074); Experiment 2, factors condition (F1,25 = 6.21, P =  
0.0063) and time (F6,150 = 5.74, P = 0.0081)]. The informa
tion flow of the baseline window was replicated in both ex
periments, was bi-directional and was restricted to 
parieto-frontal regions. At T1 (after stimuli appearance), 
all connectivity changed from bi-directional to uni- 
directional. At T5 (after TMS), fewer connections showed 
the increase in EC, but the connectivity was strengthened, 
specifically SPL to MFG and SPL to CGp.

For SN (Fig. 8), the theta band, EC significantly increased 
in both experiments [Experiment 1, factors condition (F1,18  

= 10.65, P < 0.001) and time (F6,108 = 3.68, P = 0.0096); 
Experiment 2, factors condition (F1,25 = 11.46, P < 0.001) 
and time (F6,150 = 3.24, P = 0.023)]. During baseline, only 
bi-directional connections were observed in both experi
ments, which were mostly intra-hemispheric. At T1, the con
nectivity was largely uni-directional with bilateral thalamus 
connectivity missing. At T5, connectivity was restricted to 
the right hemispheric regions, and EC was strengthened. 
Most notably, TMS modulation of the theta band (T5 in 
Experiment 2) caused the existing bi-directional EC 
(frontal-AM), frontal-thalamus and AM-insular cortex (IC) 
to be uni-directional. The alpha band EC at baseline was 
similar to that observed in theta band. We also found signifi
cant changes for both factors in the alpha band [Experiment 
1, factors condition (F1,18 = 10.47, P < 0.001) and time 
(F6,108 = 4.12, P = 0.0046); Experiment 2, factors condition 
(F1,25 = 9.52, P < 0.001) and time (F6,150 = 2.98, P =  
0.033)]. At T1, most of the connectivity turned uni- 
directional, but few remained bi-directional (IC–AM and bi
lateral thalamus). In Experiment 1, no change in connectivity 
was observed at T;, however, in Experiment 2, all except bi
lateral thalamus connectivity turned uni-directional.

For DMN (Fig. 9), the theta band EC increased significant
ly in both experiments [Experiment 1, factors condition 
(F1,18 = 12.79, P < 0.001) and time (F6,108 = 4.98, P =  
0.0016); Experiment 2, factors condition (F1,25 = 15.38, P  
< 0.001) and time (F6,150 = 5.46, P = 0.0023)]. The connect
ivity at baseline was only bi-directional for both intra and 
inter-hemispheric connections. At T1, the EC remained un
altered between ITGp–HI, bilateral FMC and PC but chan
ged to uni-directional for those between PC–ITGp, PC–AG 
and HI–FMC. At T5, in Experiment 1, all connections 
were restricted to the right hemisphere, and the connectivity 
was bi-directional; however, in Experiment 2, TMS theta 
modulation was evident in not only strengthening the con
nections but also changing the directionality to uni- 
directional. For alpha band EC, baseline connectivity was 
same as that in theta band and we also found significant in
crease in EC for both the factors [Experiment 1, factors con
dition (F1,18 = 7.45, P < 0.001) and time (F6,108 = 3.87, P =  
0.0039); Experiment 2, factors condition (F1,25 = 6.48, P <  
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Figure 6 Topological dynamic characteristics within the default mode network (DMN) in the theta frequency. In A, the 
representative figure with regions comprised in the DMN; the corresponding list is given in Table 1, marked in green colour. (B) The network 
flexibility is shown starting from the baseline (B, −250 to 0 ms) window to all the following six time windows (T1–T6, every 250 ms) separately 
[Experiment 1, factors condition (F1,18 = 22.67, P < 0.001) and time (F6,108 = 12.24, P < 0.001); Experiment 2, factors condition (F1,25 = 20.45, P <  
0.001) and time (F6,150 = 14.87, P < 0.001)]. Plots at C, D and E depicts the network flexibility starting from baseline to all six time windows for 
clustering coefficient, Global and local efficiency respectively. Clustering coefficient [Experiment 1, factors condition (F1,18 = 38.74, P < 0.001) and 
time (F6,108 = 19.57, P < 0.001); Experiment 2, factors condition (F1,25 = 34.21, P < 0.001) and time (F6,150 = 17.24, P < 0.001)], global efficiency 
[Experiment 1, factors condition (F1,18 = 10.12, P < 0.001) and time (F6,108 = 6.98, P < 0.001); Experiment 2, factors condition (F1,25 = 8.46, P <  
0.001) and time (F6,150 = 11.27, P < 0.001)] and local efficiency [Experiment 1, factors condition (F1,18 = 42.28, P < 0.001) and time (F6,108 = 23.27, 
P < 0.001); Experiment 2, factors condition (F1,25 = 39.65, P < 0.001) and time (F6,150 = 19.38, P < 0.001)]. Density plots are presented with data 
points from ‘Experiment 1’ (without TMS) in blue and ‘Experiment 2’ (with TMS) in red obtained for each density and time windows. For each 
experiment, the mean value across all data points is depicted with a larger circle, while the bars indicate the standard deviation. For each parameter 
and experiment, the points depict values at each network density for each participant and each of the 20 densities. The reported F and P values for 
significant differences between the time intervals were obtained from a two-way factorial ANOVA, and all the intervals were also compared to the 
baseline for both experiments.
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0.001) and time (F6,150 = 3.05, P = 0.029)]. At T1, the con
nectivity remained unaltered from baseline for both experi
ments. However, at T5, in Experiment 1, the connectivity 
strengthened for all connections, and for Experiment 2, in 
addition to the strengthening of the connectivity, the direc
tionality for connectivity between HI–FMC and PC–AG 
changed from bi-directional to uni-directional.

Correlations between 
electrophysiological and behavioural 
indicators of threat processing
In the theta band, we found a correlation between baseline– 
T1 (frontal ITPC; baseline referenced T1) and the heart rate 
in both experiments [Experiment 1 (r = 0.70; P = 0.014); 
Experiment 2 (r = 0.61; P = 0.012)]. For the network para
meters in the theta band of CS+, a correlation was also found 
for the baseline–T1 between flexibility and heart rate, for SN 
and DMN in both experiments [Experiment 1 (r = 0.68; P =  
0.003; r = 0.56; P = 0.005); Experiment 2 (r = 0.58; P =  
0.005; r = 0.61; P = 0.004)]. For effective connectivity 
(Table 2), a correlation between baseline connectivity and 
the threat ratings (difference CS+/CS−) was significant for 
SN; specifically, for left IC–left AM (r = 0.40; P = 0.006) 
and left IFGo–left TH (r = 0.37; P = 0.009).

In the alpha band, for both experiments correlations 
where found only with effective connectivity for the base
line–T1 (Table 3). The correlation results for theta band ef
fective connectivity at T5 with heart rate are listed in 
(Table 4).

Discussion
Taken together, our data revealed the key role of theta oscil
lations in the dynamics of network re-organization during 
physiological responses to aversive stimuli. We evidenced 
that physiological threat processing requires the transition 
between cognitive-free periods to associative learning, which 
relies on CEN, SN and DMN circuits. Within these network 
communities, we evidenced a time-dependent threat-induced 
network behaviour (increased flexibility and clustering in the 
SN), which can be causally modulated by application of 
TMS pulse over dMPFC, 1000 ms after CS+ presentation. 
We based the timing of the TMS pulses to dMPFC on the dy
namics of theta driven alterations, which return to baseline 
at 1000 ms, as shown by inter-trial coherence in the experi
ment without TMS. To confirm our analyses, a second TMS 
pulse over dMPFC was applied at a time period not relevant 
for threat processing. This pulse had no influence with the 
ongoing network behaviour and community restructuring.

Figure 7 Temporal information flow dynamics across the regions in the central executive network (CEN) within the theta 
band. The results from temporal partial directed coherence (TPDC) are shown over the template brain. The two rows represent Experiments 1 
and 2 for the theta frequency band. The red arrows indicate the information flow during the baseline window (B, −250 to 0 ms), and the blue lines 
indicate the difference in the information flow with the previous time window. The arrow thickness indicates the strength of the information flow 
when compared to the previous time window. Please refer to Table 1 legend for full forms of the abbreviations in the figure. CGp, cingulate gyrus 
posterior division; FO, frontal orbital cortex; MFG, middle frontal gyrus; SPL, superior parietal lobule.
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Dynamic community re-organization 
is required for threat processing
Concordant with previous results,65,66 we show that baseline 
activity (before CS+ occurrence) has a functional community 
composition. However, threat presentation causes the 
community composition to be reconfigured into three 

well-known networks: CEN, SN and DMN. Moreover, 
small-world architecture was evident in these three modules. 
The small-world network organization indicates that the 
brain could sustain higher communication efficiency across 
brain regions with lower energy consumption.59,67 The rela
tionship between small-world architecture in relation to 
threat response has only recently emerged suggesting that 

Figure 8 Temporal information flow dynamics across the regions in the salience network (SN) within theta and alpha bands. 
The results from temporal partial directed coherence (TPDC) are shown over the template brain. The first two rows represent Experiments 1 and 
2 for the theta frequency band whereas last two rows represent the same for alpha band. The red arrows indicate the information flow during the 
baseline window (B, −250 to 0 ms), and the blue lines indicate the difference in the information flow with the previous time window. The arrow 
thickness indicates the strength of the information flow when compared to the previous time window. The black box indicates the difference in 
information flow between Experiment 1 and Experiment 2. Please refer to Table 1 legend for full forms of the abbreviations in the figure. AM, 
amygdala; CGa, cingulate gyrus anterior division; IC, insular cortex; IFGo, inferior frontal gyrus pars opercularis; TH, thalamus.
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the interplay between synchrony of oscillations and the net
work architecture is a key factor to mediate and sustain effi
cient information transfer for a longer time periods.68

However, the state-dependent dynamics of the network, es
pecially its dependency to stimuli relevance, remained poorly 
understood. Thus, restructuring from resting- to task-related 
networks appears to be a primordial mechanism that 

mediates perception of relevant inputs and subsequent 
higher-order processing. The involvement of CEN, SN and 
DMN networks and their core components has been inde
pendently described for aversive processing,3,69-71 whereas 
recent studies have proposed that interactions between these 
networks facilitate cognitive control and aversive process
ing.70,72,73 Of notice, the DMN has positive contributions 

Figure 9 Temporal information flow dynamics across the regions in the default mode network (DMN) within theta and alpha 
bands. The results from temporal partial directed coherence (TPDC) are shown over the template brain. The first two rows represent 
Experiments 1 and 2 for the theta frequency band whereas the last two rows represent the same for alpha band. The red arrows indicate the 
information flow during the baseline window (B, −250 to 0 ms), and the blue lines indicate the difference in the information flow with the previous 
time window. The arrow thickness indicates the strength of the information flow when compared to the previous time window. The black box 
indicates the difference in information flow between Experiment 1 and Experiment 2. Please refer to Table 1 legend for full forms of the 
abbreviations in the figure. AG, angular gyrus; FMC, frontal medial cortex; HI, hippocampal; ITGp, inferior temporal gyrus posterior division; PC, 
precuneus.
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to the performance of externally directed, attention- 
demanding, goal-oriented, non-self-referential tasks that 
require cognitive flexibility to contribute to adaptive behav
ioural responses.5 Here, the network flexibility emerges as a 
state-dependent component of the threat processing, evi
denced by its increase in the three networks theta band. 
Network flexibility has been already shown to increase ac
cording to task demands when cognitive flexibility is re
quired,57,74 suggesting that dynamic reconfiguration of 
brain networks boosts efficient threat processing.

In our study, the fact that participants are aware of the 
contingency between CS+ and US, i.e. they expect the threa
tening event,75 is of relevance since this likely involves the re
cruitment of additional resources (attentional and control) to 
those needed during classical Pavlovian threat condition
ing.11,71,76 Our results confirm this hypothesis by highlight
ing the presence of parallel mechanisms during threat 
processing, where the involved networks (DMN, SN and 
CEN) may simultaneously endure different aspects of high- 
order cognitive workflow in order to cope with the situation, 
for instance, attention, working memory, self-control and 
emotional regulation. In a recent fMRI study, negative emo
tional processing network showed tendency to form modular 
structure and small-world properties with increased local 
processing.68 Other studies have further highlighted segre
gated modules for different functional task (medial, visual, 
temporal, sub-cortical) and for DMN.65,66 The stress-related 
network encompassing salience and executive control net
work is reported either to be upregulated or downregulated 
depending upon the specific scenario.77 However, online in
teractions of these networks during stress have not been yet 
possible because of the limited temporal resolution of the 
MR imaging.

Information flow directionality is key 
for threat processing and its 
behavioural correlates
The present results further evidence causal network dynam
ics within the reconfigured networks during threat process
ing, which are accessible to neuromodulation with TMS. 
The temporal changes in information flow to threat process
ing turned predominantly uni-directional, which correspond 
to AM–hippocampus low-frequency oscillation dynamics.78

More specifically, during threat processing, CEN and SN 
connectivity turned into a dominantly uni-directional pat
tern, involving parieto-frontal regions together with the 
AM and hippocampus. The temporal changes associated to 
threat processing are predominantly mediated uni- 
directionally.79 Here, we showed that the connectivity in 
the DMN take a more parietal to frontal uni-directional 
route to regulate the threat processing, which is consistent 
with previous results using classical Pavlovian fear condi
tioning paradigms.80 In addition, we perturbed the network 
by applying TMS over the dmPFC, showing its ability to 
modulate the flexibility and the dynamical local information 
transfer in the network. Previous research have suggested the 
relation between the connectivity of the core areas belonging 
to the SN exists and drives the increase in physiological re
sponses during threat processing.81 Our data adds to these 
findings, demonstrating more uni-directional and stronger 
connectivity in the SN during response to threat processing 
and TMS perturbations and an increased information flow 
from the frontal to sensorimotor and thalamic regions. 
Similar heightened response of the executive control for pre
dictable threat stimuli has been previously demonstrated 

Table 3 The significant correlations identified in the 
three newly formed communities between the alpha 
band effective connectivity and heart rate in 
Experiments 1 and 2

Community Connection r P

Experiment 1
SN TH (left) to IFGo (left) −0.457 0.003
SN IC (right) to AM (right) −0.398 0.007
Experiment 2
SN IC (left) to AM (left) −0.464 0.005
SN TH (left) to IFGo (left) −0.376 0.008

SN, salience network; SOG, superior occipital gyrus; MOG, middle occipital gyrus; IOG, 
inferior occipital gyrus; PCG, posterior cingulate gyrus; ANG, angular gyrus; SMA, 
supplementary motor area; INS, insula; AMYG, amygdala; PUT, putamen; THA, 
thalamus.

Table 4 The significant correlations were found only in 
Experiment 2 between the three newly formed 
communities theta frequency band connectivity values 
and heart rate

Experiment 2

Community Connection r P

SN IFGo (right) to AM (right) 0.672 0.0002
DMN HI (right) to ITGp (right) 0.647 0.0003
DMN FMC (right) to HI(right) 0.587 0.0002
SN AM (right) to IC (right) 0.524 0.002

SN, salience network; DMN, default mode network; MFG, middle frontal gyrus; SMA, 
supplementary motor area; INS, insula; AMYG, amygdala; HIPP, hippocampus; STG, 
superior temporal gyrus; ORBmid, middle frontal gyrus, orbital part.

Table 2 Significant correlations identified in the three 
newly formed communities between the theta band 
effective connectivity and heart rate in Experiments 1 
and 2

Community Connection R P

Experiment 1
CEN SPL (left) to CGp (left) 0.624 0.0002
SN TH (right) to IC (right) 0.587 0.0003
Experiment 2
CEN SPL (left) to CGp (left) 0.684 0.0003
SN TH (right) to IC (right) 0.387 0.004

SN, salience network; CEN, central executive network; SPL, superior parietal lobule; 
CGp, cingulate gyrus posterior division; IC, insular cortex; TH, thalamus.
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using startle responses.76 The heightened local modulation in 
the fear network found in our study with increased bi- 
directional connections between the core regions triggered 
by TMS stimulation is supported by previous findings show
ing a large-scale network alterations82-84 and modulation of 
local and global cortical regions85,86 during TMS 
stimulation.

We test whether targeted modulation of a specific region 
through TMS can hamper network dynamics, as previously 
suggested82-84 for modulating re-organization and informa
tion flow among distant regions.85,86 In this case, we selected 
a region highly involved on threat processing, i.e. the 
mPFC.11,75 Behavioural responses have been shown to be 
good correlates of induced threat processing.75,87

Accordingly, significant increases for the CS+ in threat rat
ings and heart rate were observed in our experiments; how
ever, concordant with previous reports,88,89 neither of them 
was modulated by TMS. Nevertheless, behavioural variables 
correlated with connectivity in the communities. The corre
lations were replicated in the two experiments, demonstrat
ing that the changes in the analysed network dynamics at the 
relevant time window were induced by TMS.

Methodological limitations have largely constrained the 
quantification of neural dynamics of threat processing at 
high temporal resolution, harshening the delivery of perso
nalized non-invasive and detailed descriptions of this par
ticular behaviour in humans. The exact characterization of 
these neurobiological processes is, however, essential for 
identifying individuals at higher risk of affective or stress- 
related mental disorders. In so, a current limitation is that 
despite our results that evidenced that the interplay between 
synchrony of oscillations and network architecture is key in 
mediating efficient information transfer, an open question 
remains regarding long-term effects, as well as their particu
lar alterations in neuropsychiatric disorders. However, we 
provide compelling evidence of how brain networks re- 
organize during physiological threat processing by establish
ing a framework that can be easily translated into studies in
cluding patient populations. In fact, the involvement of the 
CEN, SN and DMN during the threat processing gains im
portance, since they are not only key for high-order cognitive 
functions but further have a central role in long-term neuro
psychiatric outcomes.70,90,91 Within these networks, CEN 
showed patterns of connectivity and information flow in 
the theta band that were not seen in alpha. As the role of the
ta and alpha oscillations during threat processing is increas
ingly recognized in humans,17,19,92 the connectivity 
alterations suggest that CEN plays a pivotal role in threat 
processing. A further limitation is that the selected time win
dows of 250 ms may to fully allow to elucidate the full dy
namics of brain oscillatory activity, particularly in the 
alpha range. However, these time windows are within the 
range of those used in the literature.93-95 Further, brain oscil
lations can vary across individuals, and this may be influ
enced by several factors, including sex, which was not 
evaluated in the current study. Finally, our experimental set
tings did not allow to test TMS-related changes in behaviour, 

and, thus, its relevance remains to be elusive. Therefore, we 
encourage further research on this topic specifically looking 
for sex effects and behavioural outcomes.

Overall, our findings evidence that threat processing is re
lated to changes in the brain’s modular architecture involv
ing the DMN, SN and CEN. Changes in network topology 
in these three networks are a prerequisite for threat process
ing and related to behavioural responses. TMS modulation 
of theta and alpha oscillations changed the dynamics of net
work flexibility CEN, SN and DMN and information flow in 
SN and DMN. These observations suggest that this dynam
ical network re-organization during threat processing serve 
as efficient mechanisms for coping.
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Supplementary material is available at Brain 
Communications online.
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