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A B S T R A C T   

Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy 
spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) 
on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in 
JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional 
networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME 
patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic 
model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain 
algorithm to attribute brain regions with similar topological properties to modules during separate time windows 
before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through 
different states towards the ictal state by measuring characteristics of flexibility and controllability. We find 
antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and 
undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) 
= 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal 
module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice 
decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) 
within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we 
demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F 
(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and control-
lability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive 
performance in JME patients. Our results demonstrate that detection of network modules and quantification of 
their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability 
dynamics reflect the reorganization of de− /synchronized connections and the ability of evolving network 
modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based 
biomarkers and more targeted therapeutic neuromodulatory approaches in JME.   
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1. Introduction 

Juvenile myoclonic epilepsy (JME), the most common syndrome 
within the idiopathic generalized epilepsy (IGE) spectrum, is charac-
terized by occurrence primarily of myoclonic seizures and bilateral 
synchronous spike/polyspike-wave complexes (i.e. spike-and-wave dis-
charges or SWDs) on electroencephalography (EEG) (Beniczky et al., 
2012). Spike-and-wave discharges in JME have been postulated to arise 
from an abnormal oscillatory activity of neuronal populations within the 
cortico-subcortical networks (Assenza et al., 2020; Groppa et al., 2008). 
Particularly, dysfunction of thalamo-frontal circuits was proposed as a 
key mechanism in the generation of SWDs (O’Muircheartaigh et al., 
2012; Jiang et al., 2018; Groppa et al., 2012); however, other cortical 
regions from parietal, temporal, and occipital lobes were also shown to 
be involved (Caeyenberghs et al., 2015; Lee et al., 2017; Moeller et al., 
2013). At the same time, widespread cortical alterations have been 
observed in the time period preceding the SWD generation, mainly 
involving the regions belonging to the default-mode network and the 
sensory-motor network (Clemens et al., 2013; Benuzzi et al., 2012). In 
our recent work focusing on interictal discharges in patients with focal 
epilepsy, we demonstrated alpha and theta band-driven connectivity 
alterations before spike generation within the fronto-temporo-thalamic 
networks (Chiosa et al., 2017). Thus, network alterations occurring 
prior to the generation of epileptic discharges may offer valuable clues 
into the subsequent transition to a seizure state. 

Seizure state transition is characterized by a dynamic network 
reconfiguration across the involved brain regions known as network 
communities. Two network characteristics have been proposed to 
describe this network reconfiguration – flexibility (Khambhati et al., 
2015) and controllability (Scheid et al., 2021). Flexibility, i.e. frequency 
with which a functionally-defined region of interest changes its assigned 
community over time, was shown to decrease as the networks evolve 
from a pre-seizure to a seizure state in patients with neocortical epilepsy 
(Khambhati et al., 2015). Controllability, i.e. the ability of a network to 
be driven through a range of different states towards a specific state, was 
shown to increase beginning with the preictal and throughout the ictal 
states in patients with focal epilepsy (Scheid et al., 2021). So far, 
network communities and their dynamic properties, flexibility and 
controllability, during network state transitions have not been addressed 
in patients with JME and their elucidation may advance the elaboration 
of target, brain state-dependent neuromodulatory approaches. 

Aiming to identify network alterations occurring during seizure state 
transitions in JME patients, we test the following hypotheses: i) specific 
network communities are involved in generation and propagation of 
interictal and ictal SWDs across the cortico-subcortical networks, and ii) 
dynamic properties (i.e. flexibility and controllability) of network 
communities alter as they transit to interictal or ictal state. We test these 
hypotheses in JME patients by estimating the oscillatory brain activity 
on source level and quantifying dynamic alterations of network com-
munities before and during the occurrence of interictal/ictal SWDs, 
based on high-density EEG (hdEEG, 256 electrodes) recordings and 
magnetic resonance images (MRI). 

2. Materials and methods 

2.1. Study participants 

In a cohort of 3280 patients with epilepsy evaluated in the outpatient 
epilepsy department of the Tertiary University Center, Chisinau, Re-
public of Moldova, 207 patients with myoclonic seizures were identi-
fied, among which 40 patients met the criteria of JME and were included 
into the study. Definition of JME was based on the current International 
League Against Epilepsy classification (Scheffer et al., 2017) and 
consensus on diagnosis and management of JME (Trenité et al., 2013). 
Exclusion criteria were significant comorbidity, metabolic disorders, 
alcohol and substance abuse, and any other medical conditions known 

to significantly modify the background EEG activity. All patients had 
previously undergone standard EEG examination as part of their routine 
diagnostic work-up. For this study, hdEEG and high-resolution MRI were 
performed in all patients. Demographical and clinical data of patients 
are summarized in Table 1. The study protocol was approved by the 
local ethical committee and all participants gave written informed 
consent prior to the study inclusion. 

2.1.1. Neuropsychological assessment 
Neuropsychological assessment included the Montreal Cognitive 

Assessment (MoCA) scale, the Hamilton Anxiety (HAM-A) scale, and the 
Beck Depression Inventory (2nd edition, BDI-II). The MoCA (total score 
range 0–30) is a rapid screening tool aimed to evaluate different 
cognitive domains, including attention and concentration, executive 
functions, memory, language, visuoconstructional skills, conceptual 
thinking, calculations, and orientation (Nasreddine et al., 2005) HAM-A 
(total score range 0–56) consists of 14 items that measure the severity of 
anxiety (Hamilton, 1959). The BDI-II test (total score range 0–63) con-
sists of 21 items that assess presence and intensity of depression symp-
toms (Beck et al., 1996). 

2.2. MRI acquisition 

All participants were imaged at a 3 T MRI scanner (Siemens Mag-
netom Skyra) using a 32-channel head coil according to a predefined 
Epilepsy protocol (Chiosa et al., 2017; Chiosa et al., 2019), with the 
following imaging sequences: T1-weighted image (repetition time [TR] 
= 2000 ms, echo time [TE] = 9 ms, inversion time [TI] = 900 ms, slice 
thickness [ST] = 4 mm, flip angle [FA] = 9◦, field of view [FoV] = 256 ×
256 mm2, acquisition matrix = 256 × 256), T2-weighted images (TR =
3800 ms, TE = 117 ms, ST = 4 mm, FA = 149◦, FoV = 100 × 100 mm2, 
acquisition matrix = 384 × 384), and 3D fluid-attenuated inversion 
recovery (FLAIR) images (TR = 5.000 ms, TE = 388 ms, TI = 1.800 ms, 
ST = 0.9 mm, FA = 120◦, FoV = 100 × 100 mm2, acquisition matrix =
256 × 256). Particular attention was taken to center the subject in the 
head coil and to restrain head movements with cushions and adhesive 
medical tape. All patients reported no seizure during the scanning 
procedure. 

2.3. High-density EEG acquisition 

High-density EEG recordings were performed in the morning 
(08:00–10:00 AM) at rest and in an alert state for two hours in a dimly lit 

Table 1 
Demographical and clinical parameters of patients.   

JME patients (n = 40) 

Gender (female / male) 25 (62%) / 15 (38%) 
Age (years) 25.4 ± 7.6 years 
Handedness (right / left) 37 (92%) / 3 (8%) 
Age at epilepsy onset (years) 14.2 ± 7.1 years 
Disease duration (years) 10.4 ± 7.4 years 

Seizure semiology 
MS – 40 (100%), GTCS – 34 (85%), AS – 11 
(28%) 

Frequency of myoclonic seizures 
(seizures/month) 

2 [1–40] 

MoCA 25.1 ± 4.7 
HAM-A 9.9 ± 6.8 
BDI-II 8.7 ± 6.7 

Antiseizure medication 
VPA – 31 (78%), LTG – 19 (48%), CZP – 2 
(5%), CLB – 1 (3%) 

Data are presented as mean ± standard deviation, median [range] or absolute 
numbers (%). 
AS – absence seizure; BDI-II – Beck Depression Inventory (2nd edition); CLB – 
clobazam; CZP – clonazepam; GTCS – generalized tonic-clonic seizure; HAM-A – 
Hamilton Anxiety scale; LEV – levetiracetam; LTG – lamotrigine; MoCA – 
Montreal Cognitive Assessment scale; MS – myoclonic seizure; VPA – valproate. 
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and quiet room. The EEG electrodes were placed according to the in-
ternational 10/5 system and included in a special net with 20–25 mm 
interelectrode distance (HydroCel Geodesic Sensor Net 130, 256 elec-
trodes, MagstimEGI) and in reference to anatomical landmarks. The 
sampling rate of recordings was set to 1000 Hz and the electrodes’ 
impedance was kept below 50 kΩ. The acquired raw data recordings 
were filtered offline by using the tools integrated into the Net Station 5 
software package. The notch filter was set at 50 Hz to avoid line inter-
ference, and the low cutoff filter was set at 1 Hz (using a 4th order 
Butterworth filter) to remove slow drifts into the data. The high cutoff 
filter was set at 70 Hz (through a 4th order Butterworth filter) to remove 
the channels contaminated with high-frequency activities. Subse-
quently, the filtered data were used to visually identify and manually 
select the SWDs. 

Spike-and-wave discharges occurring without observable clinical 
seizures were considered as interictal discharges and SWDs followed by 
myoclonic jerks were considered as ictal discharges. Individual hdEEG 
recordings were visually checked by trained neurophysiologists (AV and 
VC) and a total of 643 primary generalized interictal SWDs in all patients 
and 80 ictal SWDs in 15 patients were identified. To avoid data 
contamination, SWDs only with artifact-free epochs 15 s before and 15 s 
after the discharges were manually selected. Following this step, the 
onset and offset of 340 interictal and 73 ictal SWDs were marked and 
included into subsequent analysis (individual numbers of SWDs as well 
as their duration in each patient are provided in Supplementary 

Table 1). 

2.4. EEG preprocessing 

Preprocessing of the hdEEG data and part of the spatial filter analysis 
were carried out in MATLAB2015a and FieldTrip toolbox (Oostenveld 
et al., 2011). The adopted preprocessing pipeline from the FieldTrip 
toolbox is explained elsewhere (Liu et al., 2011). As a first step, hdEEG 
data containing interictal SWDs were analyzed. For this, hdEEG data 
were re-referenced to the common grand average reference of all EEG 
channels and epoched into 20 s for each patient separately - 15 s before 
the interictal SWD (pre-SWD time window) and 5 s including the SWD 
(SWD time window) (Fig. 1). Subsequently, the pre-SWD time window 
was subdivided into three time windows: the time interval from 15 to 10 
s was defined as the pre-SWD-15 time window, the time interval from 10 
to 5 s as the pre-SWD-10 time window, and the time interval of 5 s just 
before the SWD was defined as the pre-SWD-5 time window. Eventually, 
before and during interictal SWDs, four time windows were analyzed: 
pre-SWD-15, pre-SWD-10, pre-SWD-5, and interictal SWD time win-
dows. As a second step, a similar approach was adopted to the epochs 
with ictal discharges, resulting in following time windows: pre-SWD-15, 
pre-SWD-10, pre-SWD-5, and ictal SWD time windows. The entire 20 s 
epochs were fed into independent component analysis (FastICA) to 
remove the components representing the exponential decay artifact, 
residual muscle artifacts, eye blinks, eye movements, line noise, and 

Fig. 1. The analyzed time windows. High-density EEG recordings were epoched into non-overlapping 5 s long time windows: three windows before the interictal or 
ictal SWDs (pre-SWD-15, pre-SWD-10, and pre-SWD-5 time windows) and one window during the SWDs (interictal or ictal SWD time window). Interictal SWDs 
denote discharges without ongoing seizures and ictal SWDs denote discharges during the myoclonic seizures. Spaces before the interictal and ictal SWD time windows 
indicate that the three pre-SWD time windows were analyzed separately before interictal and separately before ictal SWDs. For simplicity, electrodes in the figure are 
represented in the international 10–20 system montage. 
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other muscle artifacts. Selection of 20 s long epochs (15 s before and 5 s 
during SWDs) with subsequent subdivision into 5 s long time windows 
was based on empirical data indicating significant network dynamics 
peaking at 5 seconds (Chiosa et al., 2017; Tangwiriyasakul et al., 2018; 
Gupta et al., 2011) and accompanying vascular changes (Benuzzi et al., 
2012; Moeller et al., 2008) over the 10 s interval before the generation of 
interictal and ictal discharges. 

2.4.1. Reconstruction of brain activity 
To reconstruct the brain activity on source level, an established 

procedure was applied by estimating the lead-field matrix (LFM) with 
specified models for the brain, the finite-element method (FEM) (Wol-
ters et al., 2007). For forward modeling, surfaces of the compartments 
such as skin, skull, cerebrospinal fluid, and gray and white matter were 
extracted from individual T1-weighted MRI scans. The forward 
modeling and source analysis were performed in FieldTrip (Oostenveld 
et al., 2011). The LFM contains the information about the geometry and 
conductivity of the FEM model. The output of the beamformer at a voxel 
in the brain can be defined as a weighted sum of the output of all EEG 
channels. The weights determine the spatial filtering characteristics of 
the beamformer and are selected to increase the sensitivity to signals 
from a voxel and reduce the contributions of signals from (noise) sources 
at different locations. In order to visualize power at a given frequency 
range, a linear transformation was used based on a constrained opti-
mization problem, which acts as a spatial filter (Van Veen et al., 1997). 
The spatial filter assigned a specific value of power to each voxel. For a 
given source, the beamformer weights for a location of interest are 
determined by the data covariance matrix and the LFM. In this study, to 
extract the sources of the whole-brain activity, we adopted a data-driven 
approach that was previously implemented successfully (Gonzalez- 
Escamilla et al., 2023; Sabbagh et al., 2020; Dähne et al., 2014). A voxel 
size of 5 mm was used, resulting in 6676 voxels covering the entire 
brain. The created source model was spatially normalized to the MNI 
space and mapped to 111 brain regions of interest (ROIs), defined ac-
cording to the Harvard-Oxford atlas (96 cortical and 15 subcortical re-
gions) according to (Gollo et al., 2017). Once regional voxels were 
identified, their activity was extracted from the source space. Initially, a 
grand average power spectrum was estimated over the all regions from 
all subjects within EEG epochs with SWDs and epochs without SWDs. 
Following this analysis, significant differences in power between the 
epochs were attested only in beta (13–30 Hz) and gamma (31–50 Hz) 
frequency bands. We opted for an upper limit of 50 Hz within the gamma 
band, since epileptic discharges recorded from surface EEG mainly occur 
in the frequency range from 0.5 to 50 Hz (Zhang et al., 2019; Swami 
et al., 2019). Subsequently, for each frequency band, the activated 
voxels were selected by a within-subject surrogate analysis to define the 
significance level. The surrogate analysis was based on a 5 s windowing, 
which can identify the significant regions of activation for each indi-
vidual patient. The number of surrogates was adequate with boot-
strapping of a 1 s window within the 5 s period (Mader et al., 2013). 

2.5. Network analysis (community detection) 

Based on the reconstructed brain activity, individual weighted con-
nectivity matrices were obtained for beta and gamma power separately. 
Within the connectivity matrices, each link represented the correlation 
coefficient between beta or gamma power in a particular ROI (j) to each 
of the other ROIs (i). Previously, we have effectively implemented this 
approach on EEG data (Gonzalez-Escamilla et al., 2023). Other studies 
as well have successfully applied the source power co-modulation on 
EEG data for delineating the network information (Sabbagh et al., 2020; 
Dähne et al., 2014). After constructing the connectivity matrices, 
network dynamics were characterized by using a set of measures (see 
below) as implemented in the brain connectivity toolbox (Rubinov and 
Sporns, 2010) and the dynamics graph metrics toolbox (Sizemore and 
Bassett, 2018). 

Network communities (modules) were identified by applying the 
Louvain modularity algorithm (Blondel et al., 2008) in each individual 
subject’s connectivity matrix. To test the robustness of the detected 
community association at each time interval, we performed 5000 iter-
ations with the Louvain algorithm, where the assignment of each region 
to a particular community was based on the maximum number of times/ 
iterations a region was assigned to a community (Ritchey et al., 2014). 
During this process γ, which is the resolution parameter, varied from 1 to 
2.5 in steps of 0.05 to identify a stable γ value that can be used for further 
time windows. Given the individual variability of the identified modules 
in each time window, a group community structure for each time win-
dow was obtained across all subjects. 

2.5.1. Network measures 
For each network community, two network measures were assessed – 

controllability and flexibility. 
Flexibility is defined as frequency with which a functionally-defined 

region of interest (node) changes its assigned community over time 
and normalized by the total number of changes that were possible 
(Bassett et al., 2011). For each network community, mean flexibility 
over all nodes of the respective community was calculated. 

Controllability of a network denotes the ability of a node to influence 
other nodes and is calculated as the average input energy from a set of 
control nodes required to reach all the possible states of the system (i.e., 
the entire magnitude of energy measured across all nodes) (Scheid et al., 
2021; Gu et al., 2015). For each network node, the input energy was 
calculated by computing the trace of the inverse of the controllability 
Gramian – Trace(Wk

− 1): Wk =
∑

τ=0
∞ Aτ Bk Bk

T ATτ, where input matrix Bk 
identifies the control points k in the brain, and A is the adjacency matrix 
(Scheid et al., 2021). 

To assess the topological architecture between the network com-
munities, we calculated the average clustering coefficient. The average 
clustering coefficient is a global measure of network segregation and 
reflects the clustered connections around individual nodes (Rubinov and 
Sporns, 2010). Here, the clustering coefficient was calculated by the 
algorithm as implemented in Onnela (Onnela et al., 2005). In case a 
node had only one edge or no edges, the clustering coefficient was set to 
zero. 

2.6. Statistical analysis 

Normal distribution of the data (demographic, clinical, network) was 
checked using the Shapiro-Wilk tests. Analysis on the dynamic changes 
of the network measures across the selected time windows was per-
formed separately for interictal and ictal SWDs. Before entering into the 
general linear model, network measures (flexibility, controllability, and 
clustering coefficient) were averaged across all of the selected individual 
time windows (separately for pre-SWD-15, pre-SWD-10, pre-SWD-5, and 
interictal/ictal SWD time windows) in each patient, thus resulting in one 
value of the network measure per patient, per time window, and per 
module. Afterwards, network measures (as dependent variables) were 
compared across the four time windows (as independent variable with 
four levels: pre-SWD-15, pre-SWD-10, pre-SWD-5, and interictal or ictal 
SWD time windows) by means of repeated measures analysis of 
covariance (ANCOVA) controlling for age, sex, disease duration, number 
of antiseizure medications, and number of interictal or ictal SWDs. At 
this stage, the ANCOVA models were followed by a Greenhouse–Geisser 
correction for lack of sphericity and post hoc tests with a Bonferroni 
correction to adjust for multiple comparisons. The association between 
clinical variables (disease duration, frequency of myoclonic seizures, 
MoCA, HAM-A, and BDI-II) and network measures (controllability, 
flexibility) was assessed by applying linear regression models control-
ling for age and gender. Additionally, support vector regressions were 
used to assess the accuracy of network parameters to predict clinical 
variables. P-values below 0.05 were considered statistically significant. 
Statistical analysis was conducted in MATLAB2015a (Mathworks, 
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Natick, Mass) and SPSS software (version 21.0; IBM, Armonk, NY, 
USA.). 

3. Results 

3.1. Subject characteristics 

The mean age of included subjects was 25.4 ± 7.6 years with a mean 
disease duration of 10.4 ± 7.4 years (Table 1). All subjects presented 
myoclonic seizures (100%) and majority of them generalized tonic- 
clonic seizure (85%), while a few had absence seizures (28%) as well. 

Valproate was the most commonly (31/40) administered antiseizure 
medication. Twenty-eight (70%) patients were on monotherapy and 12 
(30%) were receiving polytherapy (≥ 2 antiseizure medications). The 
MRI examination was unremarkable in all patients. The median number 
of recorded interictal discharges was 11 (1–65) with an average duration 
of 0.314 ± 0.377 s. The median number of ictal discharges was 1 (0–45) 
with an average duration of 1.240 ± 0.654 s (Supplementary Table 1). 

Fig. 2. Group representation of network communities in each time window. In the pre-SWD-15 and pre-SWD-10 time windows, six modules were identified in 
gamma and beta frequency bands (A). In the pre-SWD-5 time window, one additional module in gamma and two additional modules in beta frequency band were 
identified (B). In the interictal SWD time window, one additional module in gamma and two additional modules in beta frequency band were identified (C). In the 
ictal SWD time window, only one additional module, the basal ganglia module (without thalamus), was identified in both frequency bands (D). 
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3.2. Network community assignments of generalized discharges 

3.2.1. Network communities before and during interictal discharges 
In gamma and beta frequency bands, six modules were identified in 

the pre-SWD-15 time window - frontal module (comprising mainly 
lateral frontal lobe areas), sensory-motor module (comprising mainly 
precentral and postcentral cortices), lateral temporal module 
(comprising mainly lateral temporal lobe areas), occipital module 
(comprising mainly lateral occipital lobe and visual areas), limbic-basal 
ganglia module (comprising mainly insula and basal ganglia), and 
mesial fronto-parietal module (comprising mainly mesial frontal and 
lateral and medial parietal lobe areas) (Fig. 2A). The same six modules 
were as well observed in the pre-SWD-10 time window in both gamma 
and beta frequency bands (Fig. 2A). 

In gamma frequency band, in the pre-SWD-5 time window, one 
additional module (to those six modules identified in the preceding two 
time windows) was found – fronto-parietal module (comprising mainly 
lateral frontal and medial parietal lobe areas) (Fig. 2B). In the interictal 
SWD time window, one additional module (to those seven identified in 
the preceding three time windows) was attested – fronto-temporal 
module (comprising mainly inferior frontal and lateral temporal lobe 
areas) (Fig. 2C). Eventually, in gamma frequency band in the interictal 
SWD time window, eight modules were detected. 

In beta frequency band, in the pre-SWD-5 time window, two addi-
tional modules (to those six modules identified in the preceding pre- 
SWD-15 and pre-SWD-10 time windows) were found – fronto-parietal 
module and mesial fronto-parietal module (comprising mainly mesial 
frontal, sensory-motor, and lateral parietal lobe areas) (Fig. 2B). In the 
interictal SWD time window, two additional modules (to those eight 
identified in the preceding pre-SWD-15, pre-SWD-10 and pre-SWD-5 
time windows) were attested – fronto-temporal module and mesial 
temporo-thalamic module (comprising mainly hippocampus, amygdala, 
and thalamus) (Fig. 2C). Eventually, in beta frequency band in the 
interictal SWD time window, ten modules were detected. 

The list of regions of the detected modules from all time windows are 
presented in Supplementary Table 1. 

3.2.2. Network communities before and during ictal discharges 
In gamma and beta frequency bands, the same network modules as 

those detected before the interictal SWDs (i.e. during the pre-SWD-15, 
pre-SWD-10, and pre-SWD-5 time windows) were identified before the 
ictal SWDs. During the ictal SWD time window one additional module 
(to those seven modules in gamma band and eight in beta band from the 
preceding three time windows) was detected, the basal ganglia module, 
which comprised caudate, putamen, and pallidum (without thalamus) in 
both frequency bands (Fig. 2D). Eventually, in the ictal SWD time 
window, eight modules in gamma band and nine modules in beta band 
were identified. 

3.3. Dynamic properties of network communities 

3.3.1. Flexibility and controllability before and during interictal discharges 
In gamma and beta frequency bands, no significant differences (all p 

> 0.05) were attested in flexibility and controllability (all p > 0.05) 
measures within the six modules detected in the pre-SWD-10 time 
window as compared to the pre-SWD-15 time window (Suppl. Figs. 1 
and 2). 

In gamma frequency band, within the fronto-parietal module iden-
tified in the pre-SWD-5 time window, opposite dynamics with signifi-
cantly increasing flexibility (F(1, 39) = 25.3, p < 0.001) and decreasing 
controllability (F(1, 39) = 55.3, p < 0.001) were found when compared 
to the pre-SWD-15 and pre-SWD-10 time windows (Fig. 3A). Opposite 
dynamics of decreasing flexibility (F(1, 39) = 11.9, p < 0.001) and 
increasing controllability (F(1, 39) = 10.1, p < 0.001) were observed 
within the fronto-temporal module in the interictal SWD time window 
when compared to the preceding time windows (Fig. 3B). 

In beta frequency band, during the pre-SWD-5 time window signif-
icantly decreasing flexibility (F(1, 39) = 18.7, p < 0.001; F(1, 39) =
15.1, p < 0.001) and increasing controllability (F(1, 39) = 13.3, p <
0.001; F(1, 39) = 15.7, p < 0.001) were found within the fronto-parietal 
and mesial fronto-parietal modules when compared to pre-SWD-15 and 
pre-SWD-10 time windows (Fig. 4A). Similarly, in the interictal SWD 
time window decreasing flexibility (F(1, 39) = 9.2, p < 0.001; F(1, 39) =

Fig. 3. Flexibility and controllability in the pre-SWD-5 and interictal SWD time windows (gamma band). Increasing flexibility and decreasing controllability within 
the fronto-parietal module from the pre-SWD-5 time window (A) and opposite dynamics within the fronto-temporal module from the interictal SWD time window 
(B); corrected for multiple comparisons *p < 0.05, **p < 0.001. 
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22.5, p < 0.001) and increasing controllability (F(1, 39) = 14.7, p <
0.001; F(1, 39) = 8.8, p < 0.001) were found within the fronto-temporal 
and mesial temporo-thalamic modules, when compared to the preceding 
three time windows (Fig. 4B). 

3.3.2. Flexibility and controllability before and during ictal discharges 
In gamma and beta frequency bands, no significant differences (all p 

> 0.05) were attested in flexibility and controllability (all p > 0.05) 
parameters within the six modules detected in the pre-SWD-10 time 
window as compared to the pre-SWD-15 time window (Suppl. Figs. 1 
and 2). 

In gamma frequency band, network alterations of the basal ganglia 
module in the ictal SWD time window were marked by decreasing 
flexibility (F(1, 14) = 31.6, p < 0.001) and increasing controllability (F 
(1, 14) = 44.7, p < 0.001) as compared to the prior time windows 
(Fig. 5A). 

In beta frequency band, in the ictal SWD time window, again 

decreased flexibility (F(1, 14) = 23.5, p < 0.001) and increased 
controllability (F(1, 14) = 31.1, p < 0.001) were found within the basal 
ganglia module when compared to the prior time windows (Fig. 5B). 

3.4. Intermodular network topology 

3.4.1. Network topology before and during interictal discharges 
No significant differences in clustering coefficient were attested be-

tween the modules in the pre-SWD-15 and pre-SWD-10 time windows in 
gamma and beta frequency bands (Suppl. Fig. 3). 

A frequency-dependent opposite dynamics of clustering coefficient 
between the modules was observed across the four time windows. Thus, 
in gamma frequency band, a higher clustering coefficient between the 
modules identified in the pre-SWD-5 (F(1, 39) = 4.6, p < 0.05) and 
interictal SWD (F(1, 39) = 9.2, p < 0.001) time windows was observed 
when compared to the preceding time windows (Fig. 6A and B). 

In beta frequency band, a lower clustering coefficient between the 

Fig. 4. Flexibility and controllability in the pre-SWD-5 and interictal SWD time windows (beta band). Decreasing flexibility and increasing controllability in fronto- 
parietal and mesial fronto-parietal modules in the pre-SWD-5 time window (A), and fronto-temporal and mesial temporo-thalamic modules in the interictal SWD time 
window (B); corrected for multiple comparisons *p < 0.05, **p < 0.001. 
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modules identified in the pre-SWD-5 (F(1, 39) = 2.5, p < 0.05) and 
interictal SWD (F(1, 39) = 6.9, p < 0.05) time windows was found when 
compared to the preceding time windows (Fig. 6A and B). 

3.4.2. Network topology before and during ictal discharges 
In gamma frequency band, a higher clustering coefficient between 

the modules detected in the ictal SWD time window (F(1, 14) = 58.8, p 
< 0.001) was observed when compared to the prior time windows 
(Fig. 7). 

In beta frequency band, a lower clustering coefficient between the 
modules detected in the ictal SWD time window (F(1, 14) = 15.6, p <

0.001) was found when compared to the preceding time windows, 
except for the interictal SWD time window (Fig. 7). 

3.5. Network dynamics relate to seizure frequency and cognitive status 

The frequency of myoclonic seizures was significantly associated 
with the flexibility (r = 0.25, p = 0.03; prediction accuracy 84%) and 
controllability (r = − 0.23, p = 0.03; prediction accuracy 83%) within 
the interictal fronto-temporal module in beta band. The MoCA test was 
significantly associated with the flexibility (r = − 0.28, p = 0.04; pre-
diction accuracy 81%) and controllability (r = 0.25, p = 0.03; prediction 

Fig. 5. Flexibility and controllability in the pre-SWD-5, interictal SWD, and ictal SWD time windows. Decreasing flexibility and increasing controllability within the 
basal ganglia module from the ictal SWD time window in gamma (A) and beta (B) frequency bands; corrected for multiple comparisons *p < 0.05, **p < 0.001. 

Fig. 6. Intermodular network topology in the pre-SWD-5 and interictal SWD time windows (gamma and beta bands). Clustering coefficient between the modules 
identified in the pre-SWD-5 (A) and interictal SWD (B) time windows as compared to the preceding time windows; corrected for multiple comparisons *p < 0.05, **p 
< 0.001. 
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accuracy 77%) of the same interictal fronto-temporal module. A sig-
nificant association between the HAM-A test and flexibility (r = 0.23, p 
= 0.03; prediction accuracy 84%) within the ictal basal ganglia module 
in gamma band was found. No statistically significant associations be-
tween other variables were attested. 

4. Discussion 

In this work, we investigated the organization and dynamic prop-
erties of network modules during the transition to interictal and ictal 
states in JME patients. We found several modules comprising specific 
cortical and subcortical regions depending on the analyzed time win-
dows of the hdEEG recordings. Particularly, regions of the frontal and 
parietal lobes were more frequently involved in the time windows pre-
ceding the occurrence of interictal and ictal discharges (i.e. pre-SWD-15, 
pre-SWD-10, and pre-SWD-5 time windows) and basal ganglia (caudate, 
putamen, pallidum) during the ictal discharges (i.e. ictal SWD time 
window). Dynamic transformations within the identified modules were 
characterized by concomitantly decreasing flexibility and increasing 
controllability as brain activity evolved towards interictal and ictal 
SWDs. 

One of the aims of the current study was to characterize the modular 
organization of brain networks, given its potential relevance for the 
generation and propagation of SWDs. Since physiological modular or-
ganization of brain networks contributes to an efficient integration of 
large-scale brain activities (Bertolero et al., 2018), it can been postulated 
that modular configuration of brain networks might also facilitate the 
emergence of SWDs in epileptic brains by enhancing the interregional 
synchronization. Indeed, according to the obtained results, patients with 
JME displayed clear modular structure of brain networks engaged in an 
aberrant oscillatory activity prior to and during SWD generation. In our 
JME population, cortical areas of the frontal (including mesial frontal), 
parietal (including precuneus), and temporal lobes along with the 
thalamus were the regions more commonly identified as parts of the 
network modules in the time windows preceding both interictal and ictal 
SWDs. The identified here brain network regions are concordant with 
the results of previous studies showing that sources of SWDs localize 
mainly to cortico(fronto)-thalamic network (Blumenfeld, 2005; Japar-
idze et al., 2016; En et al., 2002; Holmes et al., 2010). Also, multiple 
sources during the slow waves of the SWD complexes were localized to 
temporal, parietal, and occipital lobe regions (Moeller et al., 2008; En 
et al., 2002; Holmes et al., 2010). Mesial frontal and temporal lobe areas 
are considered as important drivers of SWDs (Holmes et al., 2010), while 
precuneal activation several seconds prior to SWDs may act as a gating 
mechanism for SWD generation (Vaudano et al., 2009; Lee et al., 2014). 
However, we found distinct modules during the occurrence of interictal 
and ictal SWDs – the fronto-temporal and mesial temporo-thalamic 
modules within the interictal SWD time window and basal ganglia 
module within the ictal SWD time window. Presence of the basal ganglia 
module within the ictal SWDs may suggest the propagation of epileptic 
activity towards the basal ganglia that translates into motor component 
of myoclonic seizures. 

Brain networks undergo dynamic transformations as brain activity 
evolves to interictal or ictal discharges (Khambhati et al., 2015). We 
found higher flexibility estimates of network modules within the time 
windows preceding interictal and ictal SWDs as compared to flexibility 
estimates during the occurrence of interictal and ictal SWDs. These 
findings point to the possible reduction in the module communication 
frequency with other modules prior to the SWDs, thereby facilitating the 
occurrence of upcoming interictal or ictal discharges. Accordingly, 
higher network flexibility, reflecting desynchronized connectivity, prior 
to seizure occurrence has been suggested to drive the network to a more 
predictable series of increasingly synchronized states during the seizure 
(Khambhati et al., 2015). Patients with focal neocortical epilepsy 
display similar decrease in network flexibility as the networks evolve 
from the pre-seizure to seizure state (Khambhati et al., 2015). Increased 
network flexibility prior to ictal discharges may facilitate seizure gen-
eration through a rapid reorganization of weak (desynchronized) con-
nections in the epileptic network. Thereby, during the ictal state, an 
even more decreased flexibility may reflect the redistribution of weak 
connectivity to a strong (synchronized) connectivity within the epileptic 
network. We found that the frequency of generalized myoclonic seizures 
was associated with flexibility within the fronto-temporal module of 
interictal SWDs but not within the basal ganglia module of ictal SWDs. 
The relation between the frequency of seizures (including myoclonic 
seizures) and interictal discharges (including generalized SWDs) was 
previously attested in generalized as well as in focal epilepsies (Ebus 
et al., 2012; Lv et al., 2013; Krendl et al., 2008; Janszky et al., 2005), 
suggesting that interictal events reflect a decreased seizure susceptibility 
and may lead to the occurrence of ictal activity and seizures (Janszky 
et al., 2005; Avoli, 2001). Possible explanations of this link might 
emerge from the evidence pointing that i) seizures increase the fre-
quency of interictal discharges and ii) the network of the interictal ac-
tivity is similar to the network of subsequent seizure activity (Janszky 
et al., 2005). As reported by recent studies, interictal discharges are 
bidirectional traveling waves echoing ictal discharges that traverse the 
same pathways as ictal discharges, suggesting a spatiotemporal simi-
larity between interictal and ictal discharges (Smith et al., 2022). Thus, 
the identified here correlation between the flexibility within the inter-
ictal fronto-temporal module and seizure frequency may indicate that 
the dynamic reorganization of modules during interictal SWDs is rele-
vant for upcoming precipitation of ictal SWDs and myoclonic seizures. 

Network controllability may be a useful measure to assess the dy-
namics of abnormal brain activity during the transition to interictal or 
ictal discharges as it offers valuable insights into the spatio-temporal 
properties of evolving epileptic activity (Scheid et al., 2021). Opposite 
to the dynamics of flexibility, we found an increase in the network 
controllability as moving from the pre-SWD to interictal and ictal SWD 
time windows. Increasing controllability within the detected network 
communities preceding and during SWDs may indicate the increased 
propensity of these network communities to reach the hard-to-reach 
neurophysiological states such as seizure states. Strightforward, this 
propensity of directing the activity towards hard-to-reach brain states 
was greatest during the occurrence of both interictal and ictal 

Fig. 7. Intermodular network topology in the ictal SWD time window (gamma and beta bands). Clustering coefficient between the modules identified in the ictal 
SWD time windows as compared to the preceding time windows; corrected for multiple comparisons **p < 0.001. 
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discharges. Similarly, patients with focal epilepsy display increase in 
network controllability beginning with preictal and throughout the ictal 
state (Scheid et al., 2021). Increasing controllability as reaching the ictal 
discharges, where synchrony also increases, suggests that it will become 
harder for controlling mechanisms to direct the brain activity into an 
energetically unfavorable state (Scheid et al., 2021). It is important to 
mention that the controlling mechanisms vary across the brain net-
works. We found that frontal and parietal regions were consistently 
detected as parts of network communities within the time windows 
preceding the SWDs. In line with existing data, regions with high 
controllability are usually enriched in fronto-parietal control networks 
(Gu et al., 2015). Thus, it is important not only to assess the dynamics of 
controllability during brain state transitions but also to map the regions 
responsible for executing the control mechanisms. Eventually, the pre-
sented findings indicate that strong dependency of network controlla-
bility during transitions to interictal and ictal discharges is a 
characteristic feature of evolving epileptic networks. 

According to the obtained results, both flexibility and controllability 
showed similar dynamic alterations within the time windows prior to 
and during the occurrence of interictal and ictal SWDs. These findings 
point to common underlying pathophysiological network mechanisms 
involved in the generation of interictal and ictal SWDs, both originating 
within the cortico-thalamic circuits engaged in a bidirectional crosstalk, 
with the cortex and thalamus taking turns in driving each other (Lütt-
johann and Pape, 2019). Interestingly, network alterations were attested 
only in gamma and beta frequency bands but not at lower (alpha, theta, 
delta) frequencies. The mechanistic underpinnings behind these obser-
vations are unclear, since existing evidence shows that coalescence of 
delta and theta frequencies in the cortex is favorable for the occurrence 
of SWDs (Sitnikova and van Luijtelaar, 2009). However, recent studies 
assign an important role to high frequency (13–60 Hz) oscillations in the 
synchronization of cortical and thalamic generators contributing to 
SWDs (Benedek et al., 2016). Increases in gamma and beta activity were 
accompanied by concomitant inhibition of alpha (4–8 Hz) activity, 
suggesting the predominance of inhibitory GABA-ergic mechanisms 
(Benedek et al., 2016). Hence, from our and other existing data, it might 
be assumed that gamma and beta oscillatory activity is relevant for the 
occurrence of interictal and ictal SWDs in IGE, including JME. 

To characterize the dynamics of network connectivity between the 
modules we measured the clustering coefficient. A frequency-dependent 
opposite dynamics with decreasing clustering in beta band and 
increasing clustering in gamma band was observed across the analyzed 
time windows. Decreasing clustering in beta band may suggest reduced 
connectivity between the detected network modules, perhaps, reflecting 
network decoupling while approaching to interictal and ictal SWDs. The 
decreased connectivity between the modules was supported by the 
decrease of flexibility (indicating weak connections) within the mod-
ules. A study using lower EEG density (64-channels) and less JME pa-
tients (n = 11) reported similar reduction in clustering during SWD 
occurrence compared to the pre-SWD time window in beta and theta 
bands (Lee et al., 2017). Moreover, the described here dynamics of 
clustering are not characteristic only to JME patients, since comparable 
dynamics of clustering is observed during the transition to ictal state also 
in focal epilepsy patients –decreased clustering (network decoupling) 
during interictal and seizure state and increased clustering (network 
coupling) during seizure onset and offset (Kramer and Cash, 2012). 
Thus, observed findings on clustering indicate dynamic reorganization 
of inter-modular network connections during brain state transitions 
from the pre-SWD to interictal and ictal states that occur concomitantly 
along with intra-modular reorganization. 

Some clinical implications emerge based on the obtained findings. 
Particularly, the observed network dynamics may potentially be useful 
to optimize the application of non-invasive neuromodulatory techniques 
and to advance the field of network-guided neuromodulation. Since the 
identified network modules comprise many cortical regions (mainly 
fronto-parietal and forno-temporal), a multifocal transcranial magnetic 

stimulation paradigm delivered over these areas (Leahu et al., 2021) 
may be more effective compared to previous unifocal paradigms 
focusing over the vertex region in IGE (Kimiskidis et al., 2014). This 
approach may be employed as an adjunctive seizure-preventive treat-
ment in patients with drug-resistant JME. Similarly, the addressed 
network measures may improve the delivery of vagus nerve stimulation 
in refractory cases of IGE (Workewych et al., 2020), including JME. 
Despite the similar network dynamics prior to interictal and ictal SWDs, 
quantification of flexibility and/or of controllability measures may serve 
as prognostic markers of treatment response in JME patients. Thus, by 
assessing these network parameters, inferences on individual thera-
peutic response and clinical outcomes may be made. Given the evidence 
on the impact of abnormal network flexibility and interictal discharges 
on cognitive status (Tailby et al., 2018; Faught et al., 2018) in epilepsy 
patients, the identified here association between flexibility of the 
interictal fronto-temporal network module and cognitive performance, 
prompts a more close neuropsychological observation of JME patients 
with frequent occurrence of interictal SWDs. 

This study does not go without limitations. First, in this study we did 
not estimate the specific localization of SWD sources, which is thor-
oughly reported in the literature (Moeller et al., 2008; En et al., 2002; 
Holmes et al., 2010) but rather employed a data-driven approach to 
extract the sources of whole-brain activity. Second, the obtained results 
describe the network communities and their properties evaluated at one 
time point and across all patients without providing characterization on 
intraindividual and interindividual variability of network alterations in 
JME patients. Given the stereotypical occurrence of SWDs in individual 
patients, a low intraindividual variablity across multiple SWDs can be 
assumed. Third, since in our study the community structure was 
extracted from EEG recordings, using data from other imaging, struc-
tural or functional, modalities may provide variations in the community 
structure. Future studies combining structural and functional data will 
offer complementary insights in characterizing the community structure 
and its dynamics in JME patients. Fourth, all patients were receiving 
antiseizure medications that might have potentially influenced the 
network measures. Therefore, variability of the received medication 
across patients was included as a confounding variable in the employed 
statistical models. Lastly, the utilized here approach assumes noise-free, 
linear network dynamics within each five seconds time window. 
Although the brain is not a linear system, linear approximations on a 
short timescale are able to capture broad dynamics in epilepsy while 
allowing for the application of controllability metrics. 

5. Conclusions 

By addressing the brain network abnormalities in patients with JME, 
we found a similar distribution pattern of network communities prior to 
the generation of both interictal and ictal SWDs as well as distinct 
pattern of communities during interictal and ictal SWDs. Dynamic al-
terations within the detected network communities were marked by 
decreased flexibility and increased controllability prior to and during 
both interictal SWDs and ictal SWDs in both gamma and beta frequency 
bands. These findings indicate that fluctuations in gamma and beta 
frequency could initiate a starting phenomenon in functional segrega-
tion which is further sustained by means of increased clustering. Timing 
and regional distribution of observed alterations in brain connectivity 
could support the elaboration of network-based biomarkers and more 
targeted neuromodulatory therapies in JME. 
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