
Articles
Machine learning aided classification of tremor in
multiple sclerosis
Abdulnasir Hossen,a,1 Abdul Rauf Anwar,b,1 Nabin Koirala,c Hao Ding,d Dmitry Budker,e Arne Wickenbrock,e Ulrich Heute,f

G€unther Deuschl,g Sergiu Groppa,d,1 and Muthuraman Muthuraman d,1*

aDepartment of Electrical & Computer Engineering, Sultan Qaboos University, Al-Khoud, 123 Muscat, Oman
bDepartment of Biomedical Engineering, University of Engineering & Technology, Lahore 54890, Pakistan
cHaskins Laboratories, Yale University, New Haven, CT 06511, USA
dDepartment of Neurology, Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal
Processing, University Medical Centre of Johannes Gutenberg University, 55131 Mainz, Germany
eHelmholtz-Institut Mainz, GSI Helmholtz Zentrum f€ur Schwerionenforschung, Johannes Gutenberg University, 55128 Mainz,
Germany
fInstitute of Digital Signal Processing and System Theory, Faculty of Engineering, University of Kiel, 24143 Kiel, Germany
gDepartment of Neurology, University of Kiel, 24105 Kiel, Germany
eBioMedicine 2022;82:
104152
Published online 11 July
2022
https://doi.org/10.1016/j.
ebiom.2022.104152
Summary
Background Tremors are frequent and disabling in people with multiple sclerosis (MS). Characteristic tremor fre-
quencies in MS have a broad distribution range (1�10 Hz), which confounds the diagnostic from other forms of
tremors. In this study, we propose a classification method for distinguishing MS tremors from other forms of cere-
bellar tremors.

Methods Electromyogram (EMG), accelerometer and clinical data were obtained from a total of 120 [40 MS, 41
essential tremor (ET) and 39 Parkinson’s disease (PD)] subjects. The proposed method - Soft Decision Wavelet
Decomposition (SDWD) - was used to compute power spectral densities and receiver operating characteristic (ROC)
analysis was performed for the automatic classification of the tremors. Association between the spectral features and
clinical features (FTM - Fahn-Tolosa-Marin scale, UPDRS - Unified Parkinson’s Disease Rating Scale), was assessed
using a support vector regression (SVR) model.

Findings Our developed analytical framework achieved an accuracy of up to 91.67% using accelerometer data and
up to 91.60% using EMG signals for the differentiation of MS tremors and the tremors from ET and PD. In addi-
tion, SVR further revealed strong significant correlations between the selected discriminators and the clinical scores.

Interpretation The proposed method, with high classification accuracy and strong correlations of these features to
clinical outcomes, has clearly demonstrated the potential to complement the existing tremor-diagnostic approach in
MS patients.
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Introduction
Multiple sclerosis (MS) is a debilitating neuro-inflam-
matory and degenerative disease of the central nervous
system with focal lesions to grey and white matter and
evolving cerebral networks dysfunction.1 Tremor, char-
acterized by the uncontrolled rhythmic movement of a
body part with varying frequency and amplitude, is a
common symptom affecting around half (47.5%) of the
MS patients.2,3 The most frequently observed tremor
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Research in context

Evidence before this study

Tremor is a common symptom affecting around half of
the Multiple Sclerosis (MS) patients. The most frequently
observed tremor types in MS are cerebellar tremors
which overlaps with other tremor types like Essential
tremor (ET) and Parkinsonian tremor (PT). Discrimination
between these tremor types which all have the basis in
dysfunction of the cerebellar system is a challenge not
only for diagnostic purpose but also for having insight
into the mechanisms of disability and neurobiological
underpinnings. Previously, varying symptoms including
measure of acquired ataxia, the degree of disability etc.
caused by the disease have been investigated to esti-
mate the scale of ailment. Several clinical and neuro-
physiological methods have been employed in the
assessment of MS tremor, eg. finger-to-nose task, spiral
drawing, handwriting and visual tracking or more com-
plex accelerometric and EMG techniques. However,
none of these measures of ataxia or the clinical assess-
ments have provided consensus in the clinical routine
or have enabled us in detangling different tremorgene-
sis or its underlying neural mechanism.

Added value of this study

The clinical neurophysiology of tremor can be assessed
by obtaining various properties of the signals recorded
using accelerometric (ACC) and electromyographic
(EMG) techniques. Even though previous studies have
computed several different properties using various
algorithms - e.g. time-domain, frequency-domain, time-
frequency and nonlinear analysis, the challenges remain
for each of these methods. Here we utilize a technique -
Soft Decision Wavelet Decomposition (SDWD) which we
previously shown to effectively discriminate ET and PT,
for the classification of MS tremor using both ACC and
EMG signal. This proposed technique not only facilitates
a method for clinical diagnostic crucial for the timely
clinical intervention to slow the disease progression but
also provides an insight in the neurobiology of the MS
tremor and it’s distinction from PD and ET.

Implications of all the available evidence

This study further solidifies the evidence that the funda-
mental tremor frequency and their harmonics are dis-
tinct oscillatory activity rather than pure harmonic
frequencies due to waveform-characteristics. Moreover,
the method able to discriminate tremor only using
peripheral signals could further complement other diag-
nostic criteria for characterizing tremor in MS patients
presently used in the clinical routine.
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types in MS are intention (cerebellar) and postural trem-
ors, with most of the patients experiencing them to dif-
ferent extent within five years of diagnosis.4,5 The
common body parts affected are the upper and lower
extremities, head, trunk and vocal cords.6,7 MS tremor
is classically attributed to abundance of mostly brain
stem, cerebellum or cerebellar peduncles lesions, with
intensity of the tremor shown to be correlated with the
number of lesions or its functional connections.8�10

However, recent work further evidenced the inflamma-
tory damage to the cerebello-thalamic and cortico-tha-
lamic pathways, that might play an important role for
tremor generation.10,11 Specific frequency patterns have
been postulated for tremor symptoms, while its often
diverse and broadly ranges from 2.5 to 7.0 Hz predomi-
nantly for postural or intention tremor or even
higher.12,13

The other common type of tremor which has cerebel-
lar origins is essential tremor (ET).14 The action evoked
involuntary movement,15 being the distinguishing fea-
ture of this type of tremor, is exhibited during voluntary
movement of the muscle and the frequency ranges
from 4 to 8 Hz.16 ET is a pathological tremor and its
cause is reported to be degeneration of cerebellum.17

Similarly, parkinsonian tremor (PT), a characteristic of
rest tremor in Parkinson’s disease (PD), is another
highly prevalent tremor whose frequency ranges
between 4 and 6 Hz.18 The movement of index finger
and thumb together mimicking so-called pill-rolling
motion is a distinct characteristic of this tremor16 which
ensues when muscles are at rest and supported against
gravity.19 Moreover, previous studies have indicated the
cerebellar involvement in the tremorogenesis of PT as
well.20�22

The description of these tremor types itself notice-
ably depicts the difficulty a clinician is confronted with
in assessing MS tremor due to the variability and over-
lap with other tremor types. The measure of acquired
ataxia, the degree of disability, in particular the lack of
coordination in speech, walk, and balance caused by the
disease can be used to estimate the scale of ailment.23

However, these measures of ataxia are not enough for
identification of the tremor type as the overlapping fre-
quency range, etiology and the involved body parts
make it an difficult enervating clinical assessment to
undertake. Several clinical and neurophysiological
methods have been employed in the assessment of MS
tremor, simple neurological tasks like finger-to-nose
task, spiral drawing, handwriting and visual tracking or
more complex accelerometric and EMG techniques,
Stewart - Holmes maneuver and digitized spirals.24�27

Additionally, several tremor-rating scores are in use,
like Bain Score for Tremor Severity (BSTS), Tremor and
Coordination Scale (TACS), Fahn Tremor Rating Scale
(FTRS) and Multidimensional Assessment of Tremor
(MAT).24,28�30 However, despite all these methods and
tools, there is no unified rating score or consensus in
the clinical routine for quantifying the MS tremor.

The clinical neurophysiology of tremor can be
assessed by analyzing the signals recorded using Accel-
erometric (ACC) and Electromyographic (EMG)
www.thelancet.com Vol 82 Month August, 2022



Patients MS PD ET

Trial Data Number 20 19 21

Age: mean (range) 52.5 (35�84) yrs. 64.5 (40�90) yrs. 63.2 (27�94) yrs.

Sex 10 M, 10 F 11 M, 8 F 12 M, 9 F

Test Data Number 20 20 20

Age: mean (range) 55.7 (43�79) yrs. 68.2 (52�85) yrs. 64.5 (32�86) yrs.

Sex 7 M, 13 F 12 M, 8 F 11 M, 9 F

Clinical Scores (Mean § SD) 3.54 § 1.62 (FTM) 5.86 § 2.76 (UPDRS- III) 9.42 § 3.56 (FTM)

Table 1: Demographic details and summary of clinical parameters of all patients used in the study. Here, M - Male, F - Female, yrs. - years,
MS - Multiple Sclerosis, PD - Parkinson’s’ disease and ET - Essential tremor, FTM - Fahn-Tolosa-Marin, UPDRS-III - Unified Parkinson’s
Disease Rating Scale, motor examination sub-score.
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techniques.31 This analysis can be executed using differ-
ent algorithms - namely time-domain,32 frequency-
domain,33 time-frequency34 and nonlinear analysis.35

The time-domain methods for identification of tremor
frequencies are particularly challenging in the case of
EMG signal, which is comprised of numerous frequen-
cies.36 A better approach is to transform the signal into
frequency domain by using the Fast Fourier Transform
(FFT) technique.37 However, a shortcoming of FFT-
based methods is the assumption that the signal is sta-
tionary, which normally is not the case for physiological
signals. In addition, they have limited time-frequency
resolution and cannot distinguish between involuntary
tremor and voluntary movements if their spectra over-
lap.38 The Soft Decision Wavelet Decomposition
(SDWD) method is an effective technique of wavelet
transformation to overcome these limitations in analy-
sing nonstationary signals obtained from neurological
tremors.39 This technique describes the signal as a com-
bination of different functions of transient elements.40

In our previous studies, we demonstrated that this
method is able to discriminate between PT and ET with
high classification accuracy of over 85% using both
ACC and EMG signals.41,42 Here, we propose this tech-
nique for the classification of MS tremor to Essential or
Parkinsonian tremor which would facilitate an earlier
diagnosis of MS, which is crucial for the timely clinical
intervention to slow the disease progression.43
Methods

Data acquisition
Electromyogram (EMG), accelerometer (ACC) and clini-
cal data were obtained from a total of 120 subjects
encompassing 40 relapsing-remitting MS patients
[mean (range) age: 52.5 (35�84) years], 41 ET patients
[mean (range) age: 63.2 (27�94) years] and 39 PD
patients [mean (range) age: 64.5 (40�90) years]. The
diagnoses were confirmed by an experienced neurolo-
gist on established clinical standards.44 The data were
recorded for the diagnostic purpose at the Department
www.thelancet.com Vol 82 Month August, 2022
of Neurology at University of Kiel, Germany. Further
demographic details along with their clinical scores are
shown in Table 1.

The data recording conditions were set to be uniform
for all three groups. During the acquisition, the patients
were asked to sit in an armchair with comfortable pos-
ture. The postural tremor was recorded from the more
affected side, while subjects extended their hands and
fingers in parallel with the resting forearm. The other
types of tremors also found in MS patients (intention
and rest tremor) were not evaluated in this study due to
their limited added diagnostic value. Tremor was
recorded for a period of 30 s in this posture where the
hand was held against gravity. An accelerometer weigh-
ing 2 g was attached to the dorsum of the affected hand
in the middle of the third metacarpal bone during the
recording. For EMG, two electrodes were used, placed
at flexor (EMG1) and extensor (EMG2) muscles, respec-
tively. It was ensured that the EMG electrodes were
placed closer to motor points of the ulnar part of the
hand. All data were recorded at a sampling rate of
800 Hz and all EMG data were band-pass filtered
between 50 and 350 Hz and full-wave rectified.41
Ethics
All patients gave written informed consent to be part of
this research and the study protocols were approved by
the local ethics committee of the University Hospital
Schleswig Holstein, Kiel, Germany (reference number:
A 143/13).
Data analysis
Data analysis was performed within the framework of
the Soft Decision Wavelet Decomposition (SDWD) tech-
nique to estimate the power spectral density (PSD) as
detailed in the previous studies.45,46 Briefly, at the first
step the signal is decomposed using a selected wavelet
filter into two (low- and high-pass) sub-bands. All possi-
ble branches of this decomposition (further 2m sub-
bands) were obtained by choosing a parameter ‘m’ (in
3
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this case 8) as per frequency resolution. A probability
measure was assigned to each branch in the first decom-
position (frequency sub-band) estimating how much
information (power) is contained in each sub-band in
relation to the total information (power). For each sub-
sequent stage of decomposition, the probability mea-
sure of the resulting sub-bands was made equal to the
product of the previous branch probabilities and the
conditional probability. These probabilities derived
from the estimator are interpreted as an approximate
measure of PSD of the signal. Different measures of
obtained PSD are used for the quantification between
different tremors as mentioned in previous studies.41,47

For the classification, the recorded data were divided
into training and testing sets with each subject ran-
domly assigned to a set. The principle being: obtaining
the desired features from the training set and checking
the performance in the testing set. The training set con-
sists of data from 20 MS, 21 ET and 19 PD patients,
while the testing set consists of the data from the
remaining 20 MS, 20 ET and 20 PD patients.

The SDWD algorithm was first applied to the ACC
data of all subjects in the training set using 8-band
decomposition to obtain 256 bands each covering
1.56 Hz (400/256). Among all the obtained bands, the
first 6 bands B1 (0�1.56 Hz) to B6 (7.81�9.37 Hz) were
of interest as the frequency ranges of all three tremor
types fall within these bands. The spectral features that
efficiently distinguish (discrimination factor) the MS
tremor from ET and PT were estimated for all subjects.
For this study, we included spectral measures of the
obtained PSD as the discrimination factor. To set the
best threshold on the discrimination factor under inves-
tigation, the threshold value was estimated analytically
by evaluating the Receiver Operating Characteristics
(ROC), selecting the optimal compromise between spec-
ificity and sensitivity. The obtained optimal threshold
was then used to discriminate the tremors among two
groups in the test data. The same procedure was
repeated for the data obtained from EMG1 and EMG2.
Finally, voting between the discrimination results of
accelerometer, EMG1 and EMG2 was applied. The vot-
ing method is based on the binary classification of sub-
jects to increase evaluation efficiency. For a particular
datapoint to be assigned to a group, it needs to be classi-
fied in that category two times or more. The voting crite-
rion employing different characteristics for sensitivity
and specificity of tremor was reported previously.48
Statistics
To validate the significance of these discriminators, we
further applied a support vector machine analysis
to predict the clinical scores used in the diagnostic
criteria for migraineurs. The Support Vector Regression
(SVR)49 was applied representing a machine�
learning�based multiple regression method that could
associate the observed and trained values and present
the regression coefficient for the accuracy of the predic-
tion. We used clinical features, Fahn-Tolosa-Marin
(FTM) scale50 in the case of ET and MS, and Unified
Parkinson’s Disease Rating Scale - Motor Examination
sub-score (UPDRS-III)51 for PD patients, as a dependent
variable and SDWD-based discriminators as indepen-
dent variables. The regression coefficient of 0.5 is con-
sidered a borderline significant result.
Statistical notes. Sample size of the study was deter-
mined by the availability of the data after quality control
that were recorded for the diagnostic purpose at the
Department of Neurology at University of Kiel, Ger-
many. The group determination and inclusion and
exclusion criteria was based on the clinical diagnosis
from neurologists (co-authors: GD, SG).
Role of funders
The funders had no role or influence in study design,
data collection, analyses, interpretation, or writing of the
manuscript. The corresponding author (M. Muthuraman)
had full access to all the data and the final responsibility
for the decision to submit for publication.
Results

Discrimination between MS and (ET or PD) using
accelerometer signal
Four different discriminators were determined for
quantifying the differences between MS tremor to ET or
PT using signals which were recorded using ACC. Out
of these four discriminators, the latter two are effectively
derived from the first two. The first two discriminators
were chosen based on the uninformed search criterion,
where all the possible combinations of adjacent bands
were tested for the classification of the training data and
the two best performing discriminators from this blind
search were selected for subsequent analysis.

1. Discriminator 1 (DF1) comprised of the summation
of the power in sub-bands B4, B5 and B6,
while it encompassed the frequency range of
4.68�9.37 Hz.

2. Discriminator 2 (DF2) comprised of the summa-
tion of the power in sub-bands B1 and B2, while it
covered the frequencies from 0 Hz to 3.12 Hz.

3. Discriminator 3 (DF3) is the difference of DF1 and
DF2.

4. Discriminator 4 (DF4) is the difference of (B4+B6)
and B2.

All discriminators were able to classify MS tremor
with an accuracy of more than 85%, with DF4 yielding
the best accuracy at 92%, followed by DF3 with 89%.
www.thelancet.com Vol 82 Month August, 2022



Discriminators Successful classification Total Efficiency

Trial data Test data

MS ET & PD MS ET & PD

ACC DF1 16/20 37/40 14/20 38/40 105/120 87.5%

DF2 16/20 37/40 16/20 36/40 105/120 87.5%

DF3 14/20 39/40 16/20 38/40 107/120 89.16%

DF4 19/20 38/40 16/20 37/40 110/120 91.67%

EMG1 DF3 17/20 34/40 13/20 38/40 102/120 85%

DF4 16/20 30/40 12/20 33/40 91/120 75.83%

EMG2 DF3 19/20 38/40 14/20 39/40 110/120 91.6%

DF4 16/20 36/40 13/20 36/40 101/120 84.16%

Table 2: Classification results using all discriminators with both accelerometer (ACC) and electromyograph (EMG) data. Here, MS -
Multiple Sclerosis, PD - Parkinson’s’ disease and ET - Essential tremor, DF - Discriminating factors. Please refer to supplementary Table 3
for positive and negative predictive value (PPV and NPV) for these classifications.
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Results of all four discriminators are detailed in Table 2
and the distributions of all these discriminators for
both, the trial and test sets are shown in Figure 1. Fur-
thermore, to statistically validate the performance of our
discriminators, we employed the ROC analysis and
results of this statistical analysis are highlighted in
Figure 2. All four discriminators achieved an area under
the curve (AUC) of more than 0.5 (mean: 0.877 §
0.018) with a significance of p < 0.05. Here, the DF4
achieved the highest AUC with 0.89 followed by DF3
with AUC of 0.875.
Discrimination between MS and (ET or PD) using EMG
signal
The two best discriminators from the accelerometer anal-
ysis DF3 and DF4 (see Table 2) were further used for the
classification of tremors using two EMG signals. For
EMG2 (extensor), the accuracy was higher than 84% for
both discriminators, with DF4 yielding up to 92% accu-
racy. The EMG1 (flexor) signal did not perform well with
discriminator DF3 (75% accuracy) in comparison to DF4
with accuracy of 85%. The distributions of the discrimina-
tor for both, trial and test data, are shown in Figure 1 and
results are illustrated in Table 2. The ROC analysis
employed on the discriminator to statistically validate the
performance revealed significant (p < 0.05) results for
both EMG signals and discriminators with AUC more
than 0.5 (mean: 0.8337). Among the two discriminators,
the DF3 performed the best with AUC of 0.8512 in com-
parison to DF4 with AUC of 0.8162 (Figure 2). The
results of the voting between DF3 and DF4 for both accel-
erometer and electromyography signals are given in
Table 3. We also did the voting between the DF3 and
DF4 whose results are also included in Table 3.
Support Vector Regression (SVR) analysis
For the SVR analysis, both training and test data were
used.52 We took discriminators DF3 and DF4 for both
www.thelancet.com Vol 82 Month August, 2022
the ACC data and the EMG data as the independent var-
iable, owing to their performance, while clinicals scores
were taken as the dependent variable. We observed a
significant correlation (r > 0.5) between the discrimina-
tors, when combinations of all discriminators were
taken as independent variables, and clinical scores for
all tremor types [PD: UPDRS - DF3acc: 0.72, UPDRS -
DF4acc: 0.73, UPDRS - DF3EMG: 0.71 UPDRS - DF4EMG:
0.74; ET: FTM - DF3acc: 0.72, FTM - DF4acc: 0.71, FTM -
DF3EMG: 0.73, FTM - DF4EMG: 0.73; MS: FTM - DF3acc:
0.75, FTM - DF4acc: 0.76, FTM - DF3EMG: 0.77, FTM -
DF4EMG: 0.75]. Furthermore, we also observed signifi-
cant positive correlation when individual discriminators
were taken as independent variable [PD: UPDRS -
DF3EMG: 0.55, ET: FTM - DF3acc: 0.56, MS: FTM -
DF3acc: 0.54]. The high values of correlation show the
strong positive relation of discriminators with clinical
features of the MS, ET and PD further corroborating
the effectiveness of our proposed method.
Discrimination between MS and ET (additional
analysis)
As the MS tremor is most easily confused clinically with
ET rather than with PT, we made an additional analysis
to observe if the classification still holds when compared
to only ET group without considering PT. We found the
same results as above with the two best discriminators
being DF3 and DF4 from the accelerometer analysis.
The classification accuracy for these discriminators,
even though were slightly reduced, were still above 80%
for accelerometers and above 77% for EMG. All the
results from the analysis are presented as Supplemen-
tary table 1 and 2.
Discussion
In the presented study, we propose and implement a
highly efficient method to distinguish MS tremors from
5



Figure 1. Discriminator distribution of trial and test data for all four discriminating factors (DF) using accelerometer data and two
best DFs from accelerometer (DF3 and DF4) using EMG data.
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Figure 2. ROC analysis of all four discriminating factors using Accelerometer and two best DFs from accelerometer (DF3 and DF4)
using EMG data.
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other cerebellar tremors (e.g., ET) based on decompos-
ing associated frequency spectra into sub-bands. We fur-
ther showed that the proposed analytical framework
performs similarly robustly for the discrimination with
the rest tremor in PD. The performance of discrimina-
tors (DF3 and DF4) using both EMG and accelerometer
data was found to be the best, yielding classification
accuracy of more than 90%. Moreover, we show that
these discriminators are strongly related to the clinical
measures of MS, ET and PD, highlighting the diagnos-
tic importance of the findings.

Tremor is a poorly understood movement disorder53

with a lack of specific and robust biomarkers for diagno-
sis which makes the subsequent care and cure very
challenging.54,55 Even though several recent studies
have indicated that the physiological sources of these
tremors are different,56�58 the overlapping frequencies
Discriminators Successful classification

MS ET & PD Total

ACC DF3 29/40 77/80 106/120

DF4 35/40 74/80 109/120

EMG1 DF3 30/40 72/80 102/120

DF4 28/40 63/80 91/120

EMG2 DF3 33/40 77/80 110/120

DF4 29/40 72/80 101/120

Voting DF3 34/40 79/80 113/120

DF4 31/40 77/80 108/120

Table 3: Classification results of DF3 and DF4, for both, trial and
test, data using accelerometer (ACC) and electromyograph
(EMG) signals and voting between them. MS - Multiple Sclerosis,
PD - Parkinson’s’ disease and ET - Essential tremor, DF -
Discriminating factors.
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and symptoms are some of the challenges for proper
diagnosis. Presently, magnetic resonance imaging
(MRI) based tools such as McDonald diagnostic are
available, exploiting the association between the clinical
symptoms, chemical composition of cerebrospinal fluid
(CSF), and visual stimulation to the brain for the diag-
nostic of multiple sclerosis.59 In addition, the multifocal
neuroanatomical changes and the varied symptoms
exhibited by this tremor, make a proper diagnosis even
more challenging.57 Our rationale for conducting this
research was to exploit the non-invasive and relatively
simple electrophysiological data obtained during clinical
routine to effectively characterize MS tremor.

Previously, it was shown that electrophysiological
methods like soft-decision wavelet-decomposition
(SDWD) can be helpful in quantifying different types of
tremors with overlapping frequency ranges.36 The
advantage of SDWD over conventional FFT-based tech-
niques is better discrimination efficiency, particularly
for the tremors where frequencies overlap.60 The dis-
crimination between the tremors in the case of PD and
ET might not be extremely challenging, as PD is charac-
terized by the rest tremor, while ET is more associated
with manifestation in the form of action tremor. More-
over, previously it was shown that classification sensitiv-
ities as high as 90% could be reached for ET and PD
tremor distinction.61 However, quantification between
ET/PT and MS tremor adds an additional layer of com-
plexity with the overlapping frequency band and symp-
toms.

The method of Soft Decision Wavelet Decomposition
is examined in the case of three types of tremors,
namely MS, ET and PT. Among four discriminators
applied, the highest classification accuracy was obtained
from discriminators D3 and D4. Owing to their mathe-
matical expression, discriminators D3 and D4 involve
7
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the difference of sub-bands, hence effectively resulting
in the discriminator encompassing a narrow frequency
band. We believe that it is due to the specific and
restricted frequency contents that discriminators DF3
and DF4 performed better than the other two discrimi-
nators. Furthermore, the ensemble discriminators com-
prised first-harmonic frequencies of the fundamental
tremor frequency, which could have improved the effi-
ciency of these discriminators. In the case of MS and
ET, the harmonics of the tremor frequency were
observed to be regular and at the multiples of the funda-
mental tremor frequency. Furthermore, in previous
studies.62,63 the harmonics of fundamental tremor fre-
quency were observed to be irregular in the case of PT.
This could be due to the fact that harmonic ratio in the
case of PT is low.64 The harmonics of the tremor fre-
quency have also been reported to have a potential as a
discriminator among different types of tremors.62 Con-
sidering the difference in the harmonics, the accelerom-
eter signal was very good in predicting the ET and MS
tremors, whereas the EMG signal performed better for
the prediction of PD tremor. This difference of perfor-
mance could be due to the fact that both techniques,
namely ACC and EMG measure, are different and per-
haps complementary for the movement characteris-
tics.65 Owing to recent technological advancements,
accelerometers have been found to be useful for numer-
ous applications in biomedical research. However, they
are not efficient in differentiating postures and are
prone to gravitational artifact.66 The use of the modulus
accelerometer signal as in our study is advocated to over-
come this limitation.67 The electromyography signal was
recorded using surface electrodes. The signal-to-noise
(SNR) ratio of the EMG signal can be improved by employ-
ing intramuscular electrodes, however it has proven to be
clinically impractical and challenging so far.68

SVR analysis between clinical features and discrimi-
nators revealed a strong and significant positive correla-
tion, indicating reliable association with clinical
diagnostic scores. The highest correlation was observed
for the clinical scores of MS patients. The significant
association of these discriminators thus clearly demon-
strates the paramount importance of using these along-
side the clinical measures for effective diagnosis of MS
tremor. However, one should use caution in interpret-
ing these associations as the clinical scores (UPDRS
and FTM scores) used here for the correlations are
focused on the severity of the diseases rather than differ-
ential diagnosis. The correlations observed for both ET
and PT further highlight the importance of the previous
findings45,46 and reveal their clinical significance.
Limitations
Some potential limitations are: i) our method is unable
to interactively learn and improve; ii) it can only be used
offline (not possible yet to process the data in real time);
iii) the result might be influenced by the selection of
training data as it should be ensured that dataset repre-
senting ‘true’ picture must be used as training to get
best accuracy; iv) necessity of more studies using the
SDWD method for the discrimination of tremor in dif-
ferent diseases and with larger sample size to compre-
hensively validate the efficacy of our technique; v) the
approach used in the study with the reduced dimension
of the parameters (only to four classifiers), might have
impact on the reduced accuracy. We utilized such
approach with its advantage of being able to provide
potential information in the underlying mechanism.
However, in future, we encourage that other machine
learning approaches without dimension reduction (e.g.,
whole frequency spectrum analysis using figure-based
machine learning by convolution neural network)
should be tested for improving the accuracy.
Conclusion
Only using the peripheral signals obtained from electro-
myography and accelerometers, we were able to differ-
entiate MS tremor with an accuracy of more than 90%
from other tremors like essential and Parkinsonian
tremor. The frequency discriminators were excellent
predictors of the clinical scores justifying the relevance
of the parameters. We further gathered evidence that
the fundamental tremor frequency and their harmonics
are distinct oscillatory activity rather than pure har-
monic frequencies due to waveform-characteristics.
These discriminators could complement the other diag-
nostic criteria presently used in the clinics.
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