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Abstract—Model training with distributed Machine Learning
(ML) methods, such as the well-known asynchronous Parameter
Server (PS), is susceptible to network inhomogeneities, e.g. differ-
ences in link latency, computing resources, or data distribution.
We evaluate how the combination of data distribution and
high delay difference between workers affects asynchronous PS
training. We show that a better ground-truth representation at
the faster and more dominating worker increases model accuracy
and reduces computational efforts by about five times.

Index Terms—Distributed Machine Learning, Asynchronous
Parameter Server, Networks for ML

I. INTRODUCTION

Networked systems, such as IoT networks and future cel-
lular communication networks, are envisioned to utilize Ma-
chine Learning (ML) for complex task. Training these ML
models requires data that usually is collected on networked
machines. However, data transmission to, e.g., a data center
can heavily load the network and violate data privacy concerns.
With distributed ML methods, e.g., using a Parameter Server
(PS) [1], [2], the training can be distributed across multiple
decentralized machines (workers). These workers maintain an
instance of the model and process their local data to compute
update gradients that describe necessary changes to the model
parameters (bias, weights). Typically, the data set is distributed
across all workers in non-overlapping portions. After pro-
cessing a predefined number of data samples, the workers
exchange their update gradients with a centralized machine
(parameter server), which applies the update gradients of all
workers to the model. The updated model is then returned
to the contributing workers, which then continue generating
update gradients. The parameter server also stores the model
parameters.

Various PS implementations exist that primarily differ in
how and how many workers contribute to a model update. In
synchronous implementations, the parameter server aggregates
the update gradients from all workers simultaneously before
broadcasting, while the workers interrupt their processing until
receiving the updated model. In contrast, in asynchronous PS
implementations, the parameter server updates and returns the
updated model immediately after receiving an update gradient,
reducing the idle time of workers [3].

In practice, PS is exposed to varying link latencies or
computing capacities. Such network inhomogeneities lead
to long training times for synchronous PS and motivated
asynchronous PS [3]. For asynchronous PS, network inhomo-
geneities change the order of model updates, which impacts
the model development and makes the model development
susceptible to data distribution [4]. Several methods have been
described to mitigate these effects, e.g., back-up workers [5],
limiting worker staleness [6], or changes to the typically used
stochastic gradient descent (SGD) optimizer [7], [8]. Still, it
is unclear how data should be distributed when the delays
between worker and parameter server differ significantly.
We help understand how the combination of inhomogeneous
networks and data distribution affects model development for
asynchronous PS.

II. EXPERIMENT DESIGN

In our experiment, an asynchronous PS in an inhomoge-
neous network trains an artificial neural network on the NSL-
KDD data set [9] for different data distributions. The training
infrastructure comprises three virtual machines (Ubuntu 22.04)
on the same physical server with equal computing resources,
setting up a network with two workers, each connected
to a parameter server. We use Ray [10] to implement the
asynchronous PS. To model an inhomogeneous network that
causes changes in update order due to varying link latency or
computation capacity, we impose delays of 1 ms and 100 ms,
respectively, on the links from worker to parameter server
using the tc package. This gives us fine-grained control over
the transmission time from sending an update to receiving the
updated model.

NSL-KDD is typically used for training models detecting
intrusions in traffic data. Under supervised learning, a model
learns to classify traffic into five classes: Denial of Service
(DoS), User to Root (U2R), Remote to Local (R2L), Probing,
and Normal. Here, we train the model on three quarters of the
data set and evaluate the model’s accuracy on the remainder.
As the disproportionate impact of data distribution on model
development in inhomogeneous settings is our key hypothesis,
we distribute the data differently among the workers. For the
experiments, the fast worker (with lower added link delay)
accesses the DoS, R2L, and one-half of the Normal traffic
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data. The slow worker with a higher link delay accesses the
other half of the Normal traffic data. These distributions stay
fixed for all experiments; the distribution of U2R and Probing
data varies across experiments.

The model to train is a fully connected artificial neural
network with one hidden layer. It has 93 neurons in the input
layer, 21 neurons in the hidden layer, and five neurons, one
for every class as a one-hot-encoding, in the output layer.
The hidden layer uses ReLU activation; the output layer uses
logarithmic softmax activation.

III. DATA DISTRIBUTION EFFECTS ON MODEL QUALITY

In this section, we analyze the effects of data distribution
on model development for asynchronous PS training in an
inhomogeneous network. A uniform delay of 1 ms for the
fast link and 100 ms for the slower link is used to form
the inhomogeneous network. Throughout the experiment, we
vary the proportions of U2R and Probing data accessed by
each worker in increments of ten from zero to 100 percent.
The data portions across both workers always add up to 100
percent. For each data distribution, we train twenty times with
reshuffled data sets and with different model initializations.
Model accuracy is the key metric; we show it over both
number of training epochs as well as over data proportions.

Figure 1 shows that model accuracy increases the more
the dominant (faster) worker knows about the ground-truth
distribution. Hence, the reference independent identically dis-
tributed (IID) case achieves the highest accuracy, where data is
equally distributed among the workers, such that each worker’s
data portion represents the entire ground-truth distribution.
This is to be expected in such a vastly heterogeneous setup.
However, in real-world applications with constrained comput-
ing capacity, (quickly) reaching specific model quality levels
is of higher interest than the maximal accuracy. Given, e.g.,
the goal of 94% accuracy, even a little information about the
classes at the slower worker reduces the necessary epochs to
a third (cf. 0/100, 20/80 at 94% accuracy). The number of
epochs can be reduced up to five times if the faster worker
has more information about these classes.

IV. SUMMARY AND OUTLOOK

We have shown that for the well-known asynchronous PS
method in inhomogeneous networks, the distribution of the
training data among the workers affects the model accuracy,
in particular, its evolution over number of epochs. We found
that the better the training data at the dominating worker
represents the ground-truth data, the higher the achieved model
accuracy. Furthermore, better ground-truth representation at
the dominating worker can reduce by a factor of five the
computational effort needed to achieve a certain accuracy
level. We conclude that data transfers between workers before
training can improve the training; however, we still need to
take resource trade-offs for such transfers into account.

We hence plan to extend this study, short-term, to a quan-
titative characterization of the efforts for training and data
load arising from different data sets and models. Further,
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Fig. 1. Accuracy over epoch for different data distributions

we want to evaluate how susceptible different distributed ML
architectures (e.g., All-Reduce or Federated Learning) are to
data distribution among workers in inhomogeneous networks.
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