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Abstract—Low-earth-orbit (LEO) satellites can be used for
cost-effective Earth observation missions. Onboard processing
using machine learning (ML) approaches is often proposed to
reduce the amount of data transmitted back to Earth. However,
the combination of LEO satellites and ML brings unique
communication challenges, as requirements – and therefore ML
models – often change throughout the lifetime of a satellite
mission. In this paper, we propose a novel communication
protocol that deals with model updates efficiently by providing
incremental updates with low communication overhead.

I. INTRODUCTION

Small, low-Earth-orbit (LEO) satellites allow us to de-
ploy satellite missions more quickly and cost effectively.
In particular, the CubeSat standard became popular due to
the availability of off-the-shelf components [1]. Often, the
amount of data acquired by the LEO satellites is too large to
transmit everything to Earth [2] during their short, unreliable
communication windows. To intelligently filter the most
relevant information, machine learning have gained rising
attention in the satellite community. But their deployment
raises new communication issues in the upstream direction:
how can machine learning models be updated efficiently?

We propose a novel communication protocol, which allows
for efficient incremental model updates. Due to its large
number of parameters, the updated model’s transmission
likely requires use of multiple communication windows. Yet,
the new model must be used as soon as possible in order to
benefit from the updated accuracy or adapt to new classifi-
cation tasks quickly. Therefore, our communication protocol
prioritizes the most important model weights in transmission.
We use a space-efficient data structure to convey priority
classes to the satellite with low communication overhead.
Once its most important weights are received, they can be
used to construct an approximation of the updated model. The
approximation is then used immediately, and it is improved
incrementally until all updated model weights are available.

Evaluation results show that our approach considerably
outperforms the baseline and performs similar to an ideal
update protocol while incurring significantly less overhead.

Next, we introduce our approach in Section II and evaluate
it in Section III. Section IV concludes the paper.
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II. EFFICIENT INCREMENTAL WEIGHT TRANSMISSION

Recall that a machine learning model mainly consists of
a description of its structure and a number of weights that
describe how these neurons fire. We consider the model
structure to be known in advance, as standard structures are
often used for common tasks. Therefore, each model update
can be considered as transmitting a list of new model weights.

We design our protocol such that the newly updated model
can be approximated quickly using all weights received up to
a certain point in time with the remainder of the weights all
set to zero. Two questions arise in this context: (1) What is the
right order of model weights. (2) How can we communicate
the prioritized order of model weights efficiently?

A. Weight order representation

Our approach depends on prioritizing key parameters. To
determine importance, we draw on ideas from model pruning,
where less crucial neural network components are removed.
Various criteria, like the magnitude criterion [3], L1 and L2
norms [4], and gradient magnitude [5] have been used to
measure importance. In our work, we utilize the absolute
magnitude criterion, ranking parameters by their absolute
value, and deeming those with lower values less important.

Next, we design a compact representation of the model
weights’ order, using a lossy permutation compression ap-
proach. To this end, we adopt sorting subsequences, a
straightforward yet shown to be optimal compression scheme
[6]. Rather than encoding the exact priority order for each
model weight, we subdivide the list of weights into k groups
of decreasing priority. This approximate grouping reduces the
size of additional communication overhead to n log(k) bits.

B. Transmission protocol

Figure 1 shows our approach for a simplified model with
six weights. As we assume the model structure to be known,
we can represent a model by a flattened array of weights W .

Next, we perform a number of initialization steps on the
ground station before transmission starts. We calculate a
permutation P that prioritizes each model weight by its
absolute value (Step 2). Then, we divide the array P into
k groups of length m. First, the vector Q that maps each
weight index to its priority group is transmitted to the satellite
(Step 3), followed by all weights of the priority group 0.
Within the priority group, the weight with the smallest index
i is transmitted first, followed by the second-smallest, and so
forth (Steps 4, . . . , n). Therefore, the order within the group
does not need to be communicated to the satellite but can
be inferred from the index structure Q. When all weights
of priority group 0 have been received, the process continues
with priority group 1, and so forth until all weights have been
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Fig. 1. Overview of the proposed communication scheme for an example model with six weights where k = 2 and m = 3.
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Fig. 2. Accuracy improvements depending on percentage of available model
weights for MNIST trained on LeNet5.

received. In the example, the weights are transmitted in the
order w3, w4, w5 (group 0) followed by w0, w1, w2 (group 1).

At the satellite, the updated model is used immediately
by setting all unknown model weights to 0 as indicated by
the dashed white boxes in Figure 1. Whenever more weights
have been received, the model is incrementally updated on
the satellite until the fully updated model is available.

III. EVALUATION

To evaluate our approach, we use the LeNet5 [7] model
trained on the MNIST [8] dataset. We compare our approach
against a baseline and an optimal approach. The baseline
is the naı̈ve approach that puts all parameters into a single
priority group, which achieves no prioritization. The optimal
approach assumes that the weights are transmitted in the
optimal order, i. e., according to their absolute value, highest
first. In this case, the position of each weight in the model’s
structure needs to be communicated to reconstruct the model
on the satellite. To isolate our mechanism’s influence on ac-
curacy, we evaluate it independent of communication effects,
simply assuming that weights are available in a certain order.

Figure 2 shows our evaluation results. The x-axis shows
the percentage of weights transmitted so far. All other weights
are assumed to be 0. The y-axis shows the corresponding

classification accuracy of the incrementally updated model.
We compare different numbers of priority groups to assess
how quickly they achieve good accuracies. It becomes clear
that putting all parameters into one priority group does not
allow for partial updates, since all parameters are required
to achieve a meaningful accuracy level. It also can be seen
that our approach allows to find a good tradeoff between the
achieved accuracy and the amount of additional data that has
to be transmitted. In addition, the results show that even the
optimal parameter order gets outperformed, which indicates
that the order of weights chosen (by absolute value) is not
the only influence factor for model accuracy. In summary, the
proposed approach considerably improves the accuracy when
compared to the baseline and even the optimal approach.

IV. CONCLUSION

Performing efficient, incremental updates of machine learn-
ing models on satellites is a problem that has often been
neglected. However, it is imperative to enable widespread use
of LEO satellites despite changing classification requirements
during satellite operation and short contact times with base
stations. We have proposed a simple but effective mechanism
to perform incremental model updates based on prioritizing
weights into groups. Using this group-based ordering, we
achieve significantly faster improvements in classification
accuracy while keeping communication overhead to convey
the prioritization order low.
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