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Abstract—Transmission Control Protocol (TCP)’s tendency to
fill up buffers in the network results in long standing queues.
Active Queue Management (AQM) tries to solve this issue but
typically requires manual tuning as the optimal parameters
depend on the Round-Trip Time (RTT) of the flow, which is
unknown to the AQM. In this paper, we use network simulation
and supervised learning to train a neural network to infer the
RTT of a TCP flow from its queuing behavior. We transfer our
model into a real-time network emulator and show that it is able
to estimate the RTT with an error of only a few milliseconds.

Index Terms—Active Queue Management, Machine Learning,
Dataset Generation, Supervised Learning, Network Emulation

I. INTRODUCTION

Transmission Control Protocol (TCP)’s tendency to fill up
the buffer in front of the bottleneck link often results in a
long standing queue also known as bufferbloat. Active Queue
Management (AQM) tries to solve this issue by prematurely
dropping or, if combined with Explicit Congestion Notification
(ECN), marking packets to signal congestion to the Congestion
Control (CC) algorithm at the sender. However, a common
problem of AQM algorithms is the necessity to tune their
parameters to the operating conditions. In [1], it was shown
that the optimal buffer size for a TCP flow that results in full
link utilization and minimal queuing delay depends on its base
Round-Trip Time (RTT) (without queuing), which is unknown
at the bottleneck link.

In this paper, we present a Machine Learning (ML) model
that infers the base RTT of a TCP flow from its queuing
behavior. Our approach is based on an efficient way to generate
training data using a high-level network simulation, which is
used to train a neural network using supervised learning. Fi-
nally, we transfer the model into a real-time network emulator
to evaluate its performance on real traffic.

II. RELATED WORK

In [2], the RTT of a TCP flow was estimated based on the
timestamps in the TCP header using ML. In [3], the size of
the buffer at the bottleneck link was adapted for a TCP flow
depending on its RTT and the used CC scheme to achieve
high throughput and low delay based on queue statistics using
Deep Reinforcement Learning (DRL).

III. SYSTEM MODEL

Our training data is generated by a network simulation im-
plemented using Python and SimPy!. The simulation models

Thttps://simpy.readthedocs.io (Accessed: 03.07.2023)
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Fig. 1. Illustration of the system model

a general communication network with a packet sender and a
receiver that are connected via a full-duplex connection. The
sender performs CC with a slow-start and a congestion avoid-
ance phase as in TCP. In each direction, a configurable delay
of half the base RTT is added to the packets. In the direction
from the sender to the receiver, there is a packet queue. Packets
are dequeued at a configurable time interval to simulate a link
with a fixed capacity. Whenever the queue exceeds the buffer
size or the queuing delay exceeds a controllable threshold,
packets are marked as in ECN. The marking of a packet is
signaled back from the receiver to the sender, which sees it
as a congestion signal and reduces the Congestion Window
(CWND) accordingly. The model is depicted in Figure 1.

At the queue, the link capacity, the link utilization, the
queuing delay and the queue length are measured every 10 ms.
To obtain the link capacity and the throughput, the number of
transmission opportunities and transmitted packets are counted
over the same interval. To get the queuing delay, it is calculated
as the queue length divided by the link capacity [4] instead of
timestamping each packet. As input for the estimator, a history
of the values at the last 200 time steps is used. Additionally, the
differentials Az; = x; — x;_1 are calculated for every value
and also included in the input. To make the trained model
robust against real-world imperfections, jitter is added to the
measuring interval as well as to the packet pacing at the sender.

The estimator neural network is created and trained using
Keras?. It has an input layer with 1600 neurons followed by
two fully connected hidden layers with 256 neurons each using
the Rectified Linear Unit (ReLU) activation function. Batch
normalization is applied at the input, while layer normalization
is performed after each hidden layer. Finally, the network
condenses to a single neuron with linear activation in the
output layer to estimate the base RTT.

Zhttps://keras.io (Accessed: 03.07.2023)
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Fig. 2. Error in the base RTT estimation over the training epochs

IV. TRAINING
A. Dataset Generation

Multiple simulations are executed in parallel using the Ray
framework® to create the dataset. Each training batch contains
the data from one step in each simulation, resulting in a
batch size of 128 with an equal number of simulations. The
simulations are executed in episodes of 30s. In the beginning,
each simulation is executed for a random time of up to the
length of the first episode where no samples are collected to
desynchronize the simulations. At the start of each episode,
a random base RTT between 1 and 60ms and a queuing
delay threshold between 0 and 100ms is chosen. During
the episode, the link capacity is resampled every 1 to 10s
to be between 100 and 2500 packets/s. Varying these three
parameters creates a diverse training dataset for different base
RTTs, link capacities and buffer sizes. The dataset contains
10000 batches and thus a total of 1280000 training samples.

B. Supervised Learning

The neural network is trained supervised using randomly
sampled training batches from the dataset. The queue statistics
are used as the input and the base RTT as the label. The Mean
Squared Error (MSE) is used as the loss function. The length
of each training epoch corresponds to the size of the dataset
and the network is trained for a total of 50 epochs using the
Adam optimizer with a learning rate of 1073,

The estimation error over the training epochs is shown in
Figure 2. It can be seen that the Mean Absolute Error (MAE)
starts at around 23 ms, but goes down quickly and reaches a
value of around 2ms at the end of the training.

V. EVALUATION

To evaluate the performance of the RTT estimator with a
real TCP flow, it is implemented as a module in the FlowEmu
network emulator [5]. The module acts as a packet queue and
uses the TensorFlow C++ Application Programming Interface

3https://www.ray.io (Accessed: 03.07.2023)
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Fig. 3. Estimated RTT over the configured base RTT in the emulator

(APD* to load the trained neural network. The output of the
neural network is filtered using an Exponentially Weighted
Moving Average (EWMA) with a weight of 0.1 for the
new sample. The emulated network corresponds to the one
described in Section III, but iPerf> with TCP New Reno is
used as the sender and the receiver. The buffer size is limited
to 80 packets and the link capacity is set to 2000 packets/s.

The estimated RTT over the configured base RTT is shown
in Figure 3. The plot shows the mean value over an experiment
duration of 60s, where the first 5s are omitted as warm-up
period. The bars mark the 5% and 95% percentiles, respec-
tively. It can be seen that the estimated RTT is close to the
configured base RTT with an error of only a few milliseconds.

VI. CONCLUSION

We trained a neural network on simulation data to estimate
the base RTT of a TCP flow at the bottleneck link and showed
its accuracy in a real-time network emulator. The estimated
RTT can be used in future work to tune the parameters of
classic AQM algorithms or as input for novel DRL approaches.
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