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Abstract—Traffic monitoring can react to changing data rates
by adapting the fraction of inspected packets (sampling rate). In
this work, we investigate the resilience of a sampling rate agnostic
machine-learning DDoS detector against a packet sampling rate
adapting to changing data rates. We show with real-world data
that an adapting packet sampling rate worsens the DDoS attack
detection accuracy. To counter performance reduction, we employ
upsampling and multi-rate training, showing that the resilience
against a changing packet sampling rate improves.

Index Terms—DDoS detection, traffic monitoring, packet sam-
pling, supervised machine learning

I. INTRODUCTION

Supervised machine learning (ML) detectors rely on traffic
monitoring in two ways. First, they are trained offline with traf-
fic obtained from past monitoring. Second, they process traffic
data obtained from current monitoring during deployment. ML
detectors perform well if the characteristics of monitored data
are similar during training and deployment.

Traffic monitoring can become a bottleneck at high data
rates, e.g., 100+Gbit/s. To prevent the monitoring from becom-
ing the bottleneck during traffic bursts, as potentially caused
by volumetric Distributed Denial of Service (DDoS) attacks, it
can be throttled by limiting the fraction of inspected packets,
i.e., packet sampling [1], [2].

However, packet sampling can reduce the stress on the
monitoring infrastructure, but it skews observed traffic char-
acteristics, as not all packets are inspected, and traffic infor-
mation is lost. This leads to dissimilarities between training
and deployment traffic data and causes a decrease in the
performance of the ML-based detection.

One primary goal for attack detection considering monitor-
ing resource efficiency is not to lose detection accuracy when
packet sampling becomes necessary.

Contribution

We evaluate the impact of adaptive packet sampling rates
on a DDoS detector, i.e., HollywooDDoS [4], trained in a
supervisory manner. We show that HollywooDDoS, which is
sampling rate agnostic, cannot preserve high-quality detection
when monitoring is performed with sampling rates that have
not been covered during the offline training process. We
evaluate two countermeasures and show with real-world data
that they enable the use of HollywooDDoS with monitoring
applying adaptive packet sampling rates.

II. BACKGROUND AND APPROACH

HollywooDDoS is a DDoS detection approach representing
arriving network traffic as two-dimensional images classified
by a Convolutional Neural Network (CNN). Monitoring is
performed in two dimensions, the source and the destination
IP address space. A grid of source-to-destination IP subnet
pairs is created and arriving packets are counted per subnet
pair. All arriving packets account for image creation during
monitoring.

When applying packet sampling, fewer packets are in-
spected and counter values per subnet pair are potentially
smaller, breaking normalization during deployment and de-
creasing the detection accuracy. We counter this detection
accuracy decrease with two methods, namely upsampling and
multi-rate training.

Upsampling

We assume that the traffic distribution in the grid of subnet
pairs is still correctly captured if enough packets arrive but at a
lower traffic volume according to the sampling rate. Therefore,
to compensate for the non-inspected traffic, every counter
value in the grid of subnet pairs is multiplied with the inverse
sampling rate. This provides an estimated reconstruction of
the real traffic distribution without packet sampling, ensuring
that the normalization does not break.

Upsampling is performed during deployment. Therefore,
deployed ML models do not have to be retrained and can
be further utilized.

Multi-rate Training

In contrast to upsampling, multi-rate training is not per-
formed during deployment but changes the training process
by creating multiple training data sets according to different
sampling rates. Therefore, for every sampling rate potentially
occurring during deployment, an individual data set is created.
The ML model is trained on all data sets, leading to one model
that generalizes well across all sampling rates.

III. EVALUATION

Training data is composed of real-world attack traffic from
CAIDA [3] and benign traffic from MAWI [5]. All data sets are
balanced, i.e., they contain the same amount of benign samples
as attack samples. Following best practices in ML, we split the
dataset into training (70%) and test (30%) set, and present the
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Fig. 1. The accuracy, with and without countermeasures, for different packet sampling rates resulting from a model with training sampling rate 1.0

results from testing. Each experiment has been conducted 20
times. Each result represents the median accuracy of all runs.

Fig. 1 provides accuracy results for an ML model trained
with only one packet sampling rate (1.0) with countermeasures
(two figures at the right) and without countermeasures (left
figure). Tested sampling rates range from 1.0 to 100.

A. Impact without Countermeasures

From the left figure of Fig. 1, it is observable that the ML
model performs well on the test data with the same sampling
rate (1.0) as the training data, resulting in an accuracy of
100 percent. However, when the sampling rate decreases, the
accuracy also decreases. For the sampling rate 1

25 the accuracy
drops to 94 percent and for sampling rates smaller than 1

25
the accuracy drops to 50 percent, constituting a detection
as good as guessing. Therefore, if HollywooDDoS would be
deployed with adaptive sampling rates, only trained with data
obtained from the sampling rate 1.0, detection results would
not be reliable. To maintain high detection accuracy across
all packet sampling rates, one model per sampling rate needs
to be deployed. This is infeasible if sampling rates are not
discrete.

B. Upsampling

The center figure of Fig.1 presents results derived from
the same model as before, but the test data sets have been
changed using upsampling by scaling the input with the
inverse sampling rate before feeding them into the ML model.
Previous results without countermeasures are carried over from
the left figure to illustrate the improvement. It is observable
that the model, only trained on data obtained from monitoring
with a sampling rate 1.0, is now able to perfectly classify
images obtained from monitoring with all tested sampling
rates.

A significant advantage of upsampling is that one trained
ML model can be used for the classification of images at
multiple sampling rates. There is no need to change or swap
the trained model during deployment because image scaling
is performed as part of the monitoring.

C. Multi-rate Traning

The right figure of Fig.1 presents results applying the multi-
rate training. Multi-rate training interferes the training process

by training the ML model with data obtained from monitoring
with all tested sampling rates. The goal is to train one model
that generalizes well across all sampling rates, without the
need for swapping models or rescaling images when using
adaptive packet sampling.

Results show that HollywooDDoS trained with multiple
sampling rates can perfectly classify images obtained from
monitoring at all tested sampling rates, achieving an accuracy
of 100 percent. Although the model training is more complex
with multi-rate training than using upsampling, no adaptations
to the monitoring are required during deployment in exchange.

IV. CONCLUSION

We outlined that adaptive packet sampling reduces the
detection quality during deployment for the supervised ML-
based DDoS detection approach HollywooDDoS. We evalu-
ated two countermeasures, namely upsampling and multi-rate
training. Upsampling rescales monitoring data according to
the inverse packet sampling rate during deployment, while
multi-rate training covers all packet sampling rates during
the ML model training. We showed the effectiveness of
both countermeasures with real-world data from CAIDA and
MAWI achieving 100 percent accuracy across all sampling
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