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Abstract—This research paper presents two tools, SieMonX
and PicNIC, that can help monitor and diagnose faults in black
box industrial networks. SieMonX is an agent-based network
monitoring and data generation tool, while PicNIC is an image-
based end-to-end network diagnosis tool that uses a convolutional
neural network to diagnose inaccessible networks through simple
delay measurements. These tools provide valuable insight into
network infrastructure and can aid operators in making informed
decisions. A look into both tools provides insight into the
functionalities and the implementation.

Index Terms—Machine learning Network Diagnosis, Industrial
Networks, Network Monitoring

I. INTRODUCTION

The Context: In recent years, the convergence of IT and
OT networks in industrial environments has become increas-
ingly prevalent. These complex networks involve multiple
stakeholders coexisting, making them difficult to monitor and
diagnose. Railway networks are a prime example of externally
operated networks, which require operators to have insight
into foreign networks to diagnose end-to-end connections.
However, equipment in these networks is often connected
through foreign networks, and there needs to be access to
internal network equipment or monitoring data, making it
challenging to pinpoint faults.

The Problem: The challenge of monitoring and diagnosing
faults in complex industrial networks has been a research
topic for many years. Operators often struggle to determine
whether a fault is due to broken equipment or an underlying
network. This lack of insight can lead to costly downtime and
decreased productivity. Dynamic Time Warping (DTW) [1]
and deep learning techniques, such as Convolutional Neural
Networks (CNNs) [2]-[5]. Moreover, Recurrent Neural Net-
works (RNNs) [6], [7] are commonly used in time series clas-
sification for detecting anomalies, predicting network traffic,
and identifying network events. Although these techniques
are widely researched, their use case in black box network
diagnosis, especially in industrial environments, is a hardly
considered topic. This paper presents two tools to address these
challenges: SieMonX and PicNIC.

Our Contribution: The contribution of this paper is to
provide a comprehensive overview of SieMonX and PicNIC
and their potential to address the challenges of monitoring
and diagnosing faults in complex industrial networks, as seen
in Fig. 1. SieMonX is an agent-based network monitoring
and data generation tool for developing data-driven machine
learning. It provides a framework for custom monitoring tools
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Fig. 1.
Blackbox Network.

Training and Inference Pipeline using SieMonX in an Industrial

or load generators and stores and documents data consistently,
making it easy to preprocess. This tool generates valuable
data for network analysis and provides a robust foundation
for machine learning models to detect faults in the network.
PicNIC is an image-based end-to-end network diagnosis tool
that uses simple delay-based measurements. This tool visually
represents time series data as images, allowing for more
straightforward interpretation of network behavior. It uses a
Convolutional Neural Network to classify images and detect
behavior in the black box network, such as high background
load, lossy transmits, and bandwidth restrictions.

II. SIEMONX

Motivation: To generate data for training of models or for
statistical analysis, often complex tasks or measurement cam-
paigns in testbeds have to be performed. A typical testbed will
have several nodes and a communication network in between.
Moreover, campaigns must be repeated using different setups
to cover a broad range of scenarios. In a non-trivial envi-
ronment, this can be a time-consuming and error-prone task.
Correct and complete documentation of test runs is a must and
again adds to the needed efforts. The Siemens Monitoring tool
for Experimentations (SieMonX) automizes test campaigns
quickly, allowing many test runs with different conditions and
storing data consistently. It can even add tags to the data, so
manual tagging is not needed in this case. A second problem
in those training environments is often that custom functions
are needed, which external tools cannot quickly provide. For
example, SieMonX includes a simple UDP-based end-to-end
monitoring tool that can - on demand - send a short packet
immediately followed by a long packet so the effects of a
network can be studied under the assumption that both short
and long packets receive the same effects. Thus, SieMonX
is also a framework for custom monitoring tools or load



generators. In this respect, it offers timer handling, a storage
service, and more.

State-of-the-Art: Typically, scripts are devolved and deployed
in the testbed. This, however requires some development effort
and is error prune. A better approach is to have agents on
each node and one controller. This can be achieved by several
automation tools (e.g., Ansible) or by monitoring tools (e.g.,
Nagios). However, these tools are built for other purposes, so
it is still needed to develop scripts or plugins, and limitations
may occur. Moreover, these tools do not address automatic tag-
ging or data consolidation, which requires additional scripting.
SieMonX, as a specialized tool, is easier to use and only needs
one straightforward high-level script to perform a campaign.
There is no need to change something on the nodes remotely.
Architecture: SieMonX has two components: a controller
and agents. The controller is the user interface and sends
commands to the agents, performing the needed actions.
The agents need a simple configuration, the controller’s IP
address, and a directory for storing data. Upon start, the agent
then registers at the controller. A researcher then can issue
commands using the console of the controller or can start
a simple script to initiate several commands in the testbed
at once. This script can add supplementary info to the data
from the test run, e.g., configuration data. Each measurement
campaign stores its data in an individual directory, together
with automatically produced metadata. Thus, preprocessing
can quickly identify the correct data set and the conditions
under which the data was produced.

III. P1cNIC

This section introduces PicNIC, a picture-based approach
to diagnosing black box industrial networks using machine
learning. Fig. 1 shows the complete pipeline from training
using SieMonX to inference in an industrial network.

Data Sources: Fig. 1 shows the two primary data sources for
PicNIC. SieMonX mainly provides training data for the neural
network, while the data from the real factory network is used
for inferencing and diagnosis. It is also possible to use labeled
factory data to train the model further to increase classification
accuracy.

Data Preprocessing: To use a convolutional neural network
for time series classification, the data is preprocessed and
converted into a visual representation. These representations
must be able to represent information in the time domain,
not to lose information about the incoming signal. Gramian
Angular Fields (GAFs), Markov Transition Fields (MTFs) [8],
and Recurrence Plots (RPs) [9] represent this information ac-
cordingly and can keep temporal correlations of the incoming
data.

The preprocessing step splits incoming time series data into
chunks of n items, as each transformed image has a dimension
of nzn pixels. Each chunk contains 100 delay measurements
to keep images small to decrease the training and inference
time and the model size. Small chunk sizes also decrease the
delay between recording the chunk’s first measurement and the

image’s classification. The preprocessor converts each chunk
into a GAF, MTF, and RP as input for the CNN.

As the CNN needs exactly one image for classification,
the last preprocessing step stitches the three separate images
into one final image. The final image has n pixels in width
and height with three channels, similar to an RGB picture. In
contrast to an RGB image, each channel represents either the
GAF, MTF, or RP, not the color value.

Training & Inferencing: Training and inference commence
similarly, with the picture format as an intermediate between
the data and the neural network. An InfluxDB buffers the
streamed data from SieMonX or the black box network. From
here, the preprocessing pipeline takes the images, transforms
them, and feeds the neural network for training or diagnosis.

Use Case & Results: An emulated industrial network inside
SieMonX with multiple agents delivers training data for no
error and high background load scenarios between two agents
to train PicNIC. The trained PicNIC model then classifies
measurements between two different agents connected at dif-
ferent endpoints in the emulated network. PicNIC manages to
classify high background load in the black box network with
an accuracy of above 90%.

IV. CONCLUSION & FUTURE WORK

PicNIC and SieMonX show the potential of black box
network diagnosis in industrial networks. We believe that
our work opens exciting possibilities to diagnose black box
networks for future emerging network layouts. Future work
could include a reinforcement learning approach to let PicNIC
auto-adapt to changing network behaviors and layouts, without
the need for manual retraining.
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