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Abstract
We study structural properties and the harmonic analysis of discrete subgroups of the
Euclidean group. In particular, we 1. obtain an efficient description of their dual space,
2. develop Fourier analysis methods for periodic mappings on them, and 3. prove a
Schur-Zassenhaus type splitting result.
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1 Introduction

The main objective of the present contribution is a study of various aspects of discrete
subgroups of the Euclidean group E(d) concerning their representations, harmonic
analysis and splitting properties. Special cases of such groups are finite subgroups of
the rotation group O(d) and the crystallographic space groups.While these objects are
very well studied, cf. e. g. [8, 10, 12, 16] for classic references and [36, 40] for some
recent developments, the theory for general discrete groups of Euclidean isometries is
considerably less developed. In a sense that is made precise below, they interpolate and
combine aspects of finite rotation groups and space groups as they might be assumed
to embed into a subgroup of O(d1)⊕S for some d2-dimensional space group S, where
d1 + d2 = d. We will see that it is possible to identify a “translational part” of such a
group featuring some properties analogous to those of a d2-dimensional lattice. This
will allow us to 1. obtain an efficient description of the dual space of discrete subgroups
of E(d), 2. to develop Fourier analysis methods for periodic mappings on them, and
3. to prove a Schur-Zassenhaus type splitting result with respect to the translational
part.

It goes without saying that, besides of their intrinsic mathematical interest, Fourier
methods have applications in a wide variety of different applications. For non-abelian
groups, as in our case, a thorough understanding and manageable description of the
dual space is decisive. In particular, for crystallographic space groups band representa-
tions have been provided in [3, 41], efficient computation schemes for the fast Fourier
transform, wavelets with underlying crystal symmetry and, recently, the crystallo-
graphic phase retrieval problem have been addressed [5, 7, 18, 24, 25]. As a general
source for background material with an emphasis on applications in solid state physics
we mention [17]. We also refer to the recent contributions [30–32], where efficiency
of the Fourier transform in the general non-abelian setting is investigated from an
algorithmic perspective.

Our main motivation originates in a physical question on the stability of so-called
Objective Structures. These particle systems were introduced by James in [20] as a
far reaching generalization of lattice systems and have been deployed successfully to
describe a remarkable number of important structures ranging from biology (parts of
viruses) to nanoscience (carbon nanotubes).

In order to motivate and illustrate our investigations let us consider Z
d as the most

basic and classical example of a lattice system. Localized mappings u ∈ �1(Zd) (say)
can be conveniently analyzed in terms of their Fourier transform which in particular
induces a resolution into plane waves e2π i〈k,·〉, characterized by their wave vectors
k, with dominant contributions from small wave numbers |k|. So as to account for
lattice mappings with significant contributions from large wave numbers, a feasible
strategy is to investigate N -periodic functions u : Z

d → C, N ∈ N, for which
u(x + Nei ) = u(x) for all i ∈ {1, . . . , d} in the asymptotic regime N → ∞. Such a
function might alternatively be looked at as a function on Z

d
N and is described by its

discrete Fourier transform
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Fig. 1 Structure of a discrete
subgroup of E(d)

u
∧

(k) = N−d
∑

x∈Zd
N

u(x) e−2π i〈k,x〉,

k ∈ {0, 1
N , . . . , N−1

N }d , as

u(x) =
∑

k∈N−1Zd
N

u
∧

(k) e2π i〈k,x〉.

Here the wave vectors k are eventually dense in the unit cell [0, 1]d as the period N
becomes larger and larger. In this way one obtains Fourier descriptions for all periodic
functions which, upon truncating the maximal periodicity at finite N , lends itself to a
directly controllable approximation in numerical simulations.

By a simple coordinate change such an analysis applies to general lattice systems
AZ

d , A ∈ GL(d, R), which are easily seen to be the orbit of a single point under the
action of a discrete group of translations onR

d . These point sets are of paramount inter-
est in solid state physics where they might describe positions of atoms and molecules.
More generally, an Objective Structure can be defined as the orbit of a single point
under the action of a general discrete subgroup of the Euclidean group E(d) on R

d ,
cf. [20]. Those structures are thus characterized by the fact that any two points “see”
an identical environment of other points, modulo a rigid motion.

One of the aims of the present contribution is to develop an extension of the above
described Fourier analysis for discrete translation groups to general discrete groups
of Euclidean isometries. While in principle a Fourier transform is defined on the dual
space of such a group, an efficient description of these spaces appears to be missing.
Moreover, the incorporation of periodic mappings with significant “long wave-length”
contributions is non-trivial. In fact, due to a possible lack of periodicity, even the
definition of a quantity that can be interpreted as a wave-length is not obvious. Our
main goal is therefore, by exploiting the special structure of discrete subgroups of E(d),
to provide an efficient and extensive description of their dual spaces. In particular we
identify a finite union of convex “wave vector domains” for each such space, which
reflects the existence of an underlaying translational part of finite index.

We proceed to give a more detailed account of our results and a plan of the paper.
In Sect. 2 we first collect basic definitions and properties of the Euclidean group and
space groups and cite a characterization of discrete subgroups of the Euclidean group:
Up to conjugation in E(d) a discrete subgroup G of E(d) embeds into a subgroup of
O(d1)⊕S for a spacegroup S ⊂ E(d2), where d1+d2 = d, with surjective projection
π onto S, cf. Fig. 1.
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Whereas the spacegroup S has a rich translation group TS , this is in general not the
case for G. To overcome this problem, in Sect. 3 we fix a section T ⊂ G of TS , which,
however, will not be a group in general. We also set F = ker(π) ∩ G and analyze T
and F in some detail. A first remarkable fact then is that T N (set of N -fold products
of elements in T ) for suitable N ∈ N is a subgroup and even a normal divisor, see
Theorem 3.11, which is essential in our later considerations on periodic functions.

In Sect. 4 we obtain our main results on the structure of representations of G. We
consider the subgroup T F ofG, which corresponds to the set of preimages of TS under
π , and analyze in detail the representations of T F and the induced representations of
T F in G. In Theorem 4.16 we prove that the latter decompose into a finite disjoint
union

⊔
ρ∈R R

d2/Gρ of orbit spaces (or fundamental domains) of certain space groups

Gρ on R
d2 via

(Gρ · k, ρ) 
→ IndGT F (e−2π i〈k,·〉ρ),

for a suitable finite R ⊂ T̂ F . (More precisely, e−2π i〈k,·〉 acts on the translation vector
associated to an element of T F after projection onto TS .) This in particular allows
for an interpretation of

⊔
ρ∈R R

d2/Gρ as a set of “generalized wave vectors” given in

terms of a finite number of ρ’s and associated “classical” wave vectors k ∈ R
d2/Gρ

so that the “generalized plane wave”

e−2π i〈k,·〉ρ

induces a representation on G. A version for periodic representations is given in The-
orem 4.17 where the orbit spaces R

d2/Gρ are replaced by suitable rescalings of L∗
S ,

the dual lattice of translations in S. As a result of Theorem 4.16, we obtain that –
up to a negligible set – the whole dual space Ĝ is equal to the same set of induced
representations. More precisely, for each ρ ∈ R there is a zero-set Nρ ⊂ R

d2/Gρ

(with respect to the Lebesgue-measure) and a zero-set N ⊂ Ĝ (with respect to the
Plancherel-measure on Ĝ) such that the above mapping is bijective when restricted to

⊔

ρ∈R

(Rd2/Gρ) \ Nρ → Ĝ \ N ,

cf. Theorem 4.19. We remark that, as compared to general results in this direction
obtained with the Mackey machine (see in particular [22, 23, 28] and also cp. Theo-
rem A.5 below), we obtain an explicit labeling of representations with “wave vectors”
in a finite union of convex domains in R

d2 , which in turn are identified as fundamental
domains of associated space groups.

In the following, comparatively elementary Sect. 5 we introduce an inner product
space of functions that satisfy a suitable periodicity assumption. We then proceed to
develop a harmonic analysis on such objects by defining the Fourier transform for both
periodic and absolutely summable functions and formulating well-known theorems
like the Plancherel formula within our setting.
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In Sect. 6 we then address the question if G splits into a translational part (more
precisely, some T m �G) and a finite complement. In general this is not the case. How-
ever, our main structural splitting result Theorem 6.7 provides such representations
as semidirect products for quotient groups of G with respect to a series of eventually
sparse normal subgroups: If in addition n ∈ N is coprime to m and |S/TS |, then there
is a group H ≤ G/T nm such that

G/T nm = T m/T nm
� H,

where T m/T nm ∼= Z
d2
n . (Note that for space groups and m = 1 such a result is

mentioned in [4, 14].)
Finally, Sect.A in the appendix collects some well-known definitions and theorems

of harmonic analysis like the definition and basic properties of dual spaces and induced
representations.

We close this introductionwith an outlook to applications on the stability analysis of
particle systems. Assuming that particles at different sites interact, one is naturally led
to the question if an Objective Structure corresponds to a stable configuration. Similar
questions are by nowwell understood in lattice systems, see, e. g., [19]: At equilibrium
configurations the second order Taylor approximation of the configurational energy
is conveniently analyzed in Fourier space and formulae for stability constants under
rather generic interaction assumptions are available [11]. The results in the current
contribution will indeed allow for an analogous characterization of stability constants
for Objective Structures. This will be realized in the forthcoming contributions [37,
38], where we provide a characterization that even leads to a numerical algorithm for
testing the stability of a given structure and to novel applications to nanotubes.

Notation

We will use the following notation. For all groups G and subsets S1, S2 ⊂ G we
denote

S1S2 := {s1s2 | s1 ∈ S1, s2 ∈ S2} ⊂ G

the product of group subsets. For all S ⊂ G, n ∈ Z and g ∈ G we denote

Sn := {sn | s ∈ S} ⊂ G

and

gS := {gs | s ∈ S} ⊂ G.

For two groups G, H we write H < G if H is a proper subgroup of G and H �G if H
is a normal subgroup of G. For a subset S of a group G we write 〈S〉 for the subgroup
generated by S.

For representations (and equivalence classes thereof), which are tacitly understood
to be unitary and (in our setting without loss of generality) finite-dimensional, we
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use the symbol χ if they are one-dimensional and ρ otherwise. Their dimensions are
denoted dρ . The dual space of a group G is denoted Ĝ. If H � G, the action of g ∈ G
on (equivalence classes of) representations ρ of H is written as g ·ρ(h) := ρ(g−1hg)
for h ∈ H .

Moreover, for H � G and ρ ∈ Ĥ we denote by Gρ the stabilizer of ρ in G and by
G · ρ the orbit of ρ with respect to this action. Likewise, (G/H)ρ is the stabilizer of
ρ in G/H and (G/H) · ρ the orbit of ρ on Ĥ with respect to the induced action of
G/H on Ĥ .

Finally, let N be the set of all positive integers {1, 2, . . . }, Zn be the group Z/(nZ),
ei be the i th standard coordinate vector (0, . . . , 0, 1, . . . , 0) ∈ R

d and In ∈ R
n×n be

the identity matrix of size n.We use capital letters for matrices. For A = (ai j ) ∈ C
m×n

and B = (bi j ) ∈ C
p×q , their direct sum and their Kronecker product are

A ⊕ B :=
(
A 0
0 B

)

∈ C
(m+p)×(n+q), A ⊗ B :=

⎡

⎢
⎣

a11B · · · a1n B
...

. . .
...

am1B · · · amn B

⎤

⎥
⎦ ∈ C

mp×nq ,

respectively. TheHermitian adjoint of A is denoted AH . U(n) is the group of all unitary
matrices in C

n×n .

2 Discrete Groups of Euclidean Isometries

This preliminary section serves to collect some basics on the Euclidean group acting
on R

d and of its discrete subgroups. We also introduce some general notation.

The Euclidean Group

Let d ∈ N be the dimension. We denote the set of all Euclidean distance preserving
transformations of R

d into itself by the Euclidean group E(d). The elements of E(d)

are called Euclidean isometries. It is well-known that the Euclidean group E(d) can be
described concretely as the outer semidirect product of R

d and O(d), the orthogonal
group in dimension d:

E(d) = O(d) � R
d .

The group operation is given by

(A1, b1)(A2, b2) = (A1A2, b1 + A1b2)

for all (A1, b1), (A1, b2) ∈ E(d), and the inverse of (A, b) ∈ E(d) is

(A, b)−1 = (A−1,−A−1b).
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Moreover, we define the maps

L : E(d) → O(d), (A, b) 
→ A and

τ : E(d) → R
d , (A, b) 
→ b

and for all (A, b) ∈ E(d) we call L((A, b)) the linear component and τ((A, b)) the
translation component of (A, b). Thus,

g = (Id , τ (g))(L(g), 0)

for every g ∈ E(d). We call an Euclidean isometry (A, b) a translation if A = Id . All
translations form the group of translations Trans(d), which is the abelian subgroup of
E(d) given by

Trans(d) := {Id} � R
d .

We call a set of translations linearly independent if their translation components are
linearly independent. The natural group action of E(d) on R

d is given by

(A, b) · x := Ax + b for all (A, b) ∈ E(d) and x ∈ R
d .

In this contributionwe use a calligraphic font for subsets and particularly for subgroups
of E(d). For every group G < E(d) we denote the orbit of a point x ∈ R

d under the
action of the group G by

G · x := {g · x | g ∈ G}.

We endow E(d) with the subspace topology of the Euclidean space R
d×d × R

d such
that E(d) is a topological group. It is well-known that a subgroup G < E(d) is discrete
if and only if for every x ∈ R

d the orbit G · x is discrete, see, e. g., [13, Exercise I.1.4].
In particular, every finite subgroup of E(d) is discrete.

A discrete group G < E(d) is said to be decomposable if the group representation

G → GL(d + 1, C)

(A, b) 
→
(
A b
0 1

)

is decomposable, i. e., there is a decomposition of R
n+1 into the direct sum of two

proper subspaces invariant under {( A b
0 1 ) | (A, b) ∈ G}. If this is not the case, the discrete

group G is called indecomposable, see, e. g., [12, Appendix A.3]. An indecomposable
discrete group G < E(d) is also called a (d-dimensional) space group. Below we also
present a (well-known) characterization of the space groups and the decomposable
discrete subgroups of E(d), respectively, which does not use representations.

In the physically important case d = 3, all space groups and discrete decomposable
subgroups of E(3) are well-known and classified, see, e. g., [2] and [34], respectively.
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Space Groups

The following theorem is well-known, see, e. g., [12, Appendix A.3].

Theorem 2.1 Let d ∈ N be the dimension and G < E(d) a discrete subgroup. The
following are equivalent:

(i) G is a space group.
(ii) G contains d linearly independent translations.
(iii) The subgroup of translations of G is generated by d linearly independent

translations.

Also the following theorem is well-known.

Theorem 2.2 LetG be ad-dimensional space groupandT its subgroupof translations.
Then it holds:

(i) The group T is a normal subgroup of G and isomorphic to Z
d .

(ii) The point group L(G) of G is finite.
(iii) The map

G/T → L(G), (A, a)T 
→ A

is bijective and particularly, also G/T is finite.

Proof (i) This is clear by Theorem 2.1. (ii) See, e. g., [13, Theorem I.3.1]. (iii) It is
easy to see that the map is bijective and by (ii) the set G/T is finite.

Corollary 2.3 LetG bead-dimensional space groupandT its subgroupof translations.
Then for all N ∈ N the set T N is a normal subgroup of G and isomorphic to Z

d .

Proof This is clear by Theorem 2.2(i).

Discrete Subgroups of the Euclidean Group

We recall that two subgroups G1,G2 < E(d) are termed conjugate subgroups under
the group E(d) if there exists some g ∈ E(d) such that g−1G1g = G2. Note that every
such conjugation corresponds to a coordinate transformation in R

d .
Now we may state the following well-known characterization of the discrete

subgroups of E(d). For this purpose for all d1, d2 ∈ N we define the group
homomorphism

⊕: O(d1) × E(d2) → E(d1 + d2)

(A1, (A2, b2)) 
→ A1 ⊕ (A2, b2) :=
((

A1 0
0 A2

)

,

(
0
b2

))

.

Theorem 2.4 Let d ∈ N be the dimension and G < E(d) be discrete. Then there exist
d1, d2 ∈ N0 such that d = d1 + d2, a d2-dimensional space group S and a discrete
groupG′ < O(d1)⊕S such thatG is conjugate underE(d) toG′ andπ(G′) = S, where
π is the natural surjective homomorphism O(d1) ⊕ E(d2) → E(d2), A ⊕ g 
→ g.
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Proof Let d ∈ N be the dimension and G < E(d) be discrete. If G is a space group, the
assertion is trivial. If G is finite, then G is conjugate under E(d) to a finite subgroup of
O(d) � {0d} ∼= O(d), see, e. g., [34, Section 4.12]. If G is an infinite decomposable
discrete subgroup of E(d), the assertion is proven in [12, A.4 Theorem 2].

Remark 2.5 Here O(d1)⊕S is understood to be O(d) if d1 = d and to be S if d1 = 0.

3 Translational Sections

Our first aim will be to efficiently describe the discrete group G < E(d) in terms of
the range S and the kernel F of π |G . An important step will be to fix and analyze
a section T ⊂ G of the translation group TS of S. The main result in this section is
Theorem 3.11 which characterizes m ∈ N for which T m � G.

Definition 3.1 Let d ∈ N be the dimension. Let d1, d2 ∈ N0 be such that d = d1 +d2.
Let S be a d2-dimensional space group. Let G < O(d1) ⊕ S be discrete such that
π(G) = S, where π is the natural surjective homomorphism O(d1)⊕E(d2) → E(d2),
A ⊕ g 
→ g. Let F be the kernel of π |G and TS be the subgroup of translations of S.
Let T ⊂ G such that the map T → TS , g 
→ π(g) is bijective.

Remark 3.2 (i) By Theorem 2.4 for every discrete group G′ < E(d) there exists
some discrete group G as in Definition 3.1 such that G is conjugate to G′ under
E(d).

(ii) If d1 = 0, we have d2 = d, G = S, T = TS and F = {id}. If d1 = d, we have
d2 = 0, G is finite, G = F and T = {id}.

(iii) The quantities d, d1, d2, F , S and TS are uniquely defined by G. In general for
given G there is no canonical choice for T , see Example 3.4.

(iv) Let G be given. In general, for every choice of T the set T is not a subset of
Trans(d), see Example 3.3. Moreover, in general for every choice of T the set
T is not a group and the elements of T do not commute, see Example 3.5.

(v) Let G be given. One possible choice for T is the following. Let t1, . . . , td2 ∈ TS
be such that {t1, . . . , td2} generates TS . For all i ∈ {1, . . . , d2} let gi ∈ G such
that π(gi ) = ti . Upon this, we define

T = {gn11 . . . g
nd2
d2

| n1, . . . , nd2 ∈ Z}.

For the following examples for all angles α ∈ R we define the rotation matrix

R(α) :=
(
cos(α) − sin(α)

sin(α) cos(α)

)

∈ O(2).

Example 3.3 (Helical groups) Let d1 = 2, d2 = 1, α ∈ R be an angle, n ∈ N,

T =
〈
R(α) ⊕ (I1, 1)

〉
, F =

〈
R(2π/n) ⊕ (I1, 0)

〉
and P =

〈(
1 0
0 −1

)⊕ (−I1, 0)
〉
.
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Then T is isomorphic to Z, F is a cyclic group of order n, P is a group of order 2 and
FP a dihedral group of order 2n. Moreover, T , T F , T P and T FP are decomposable
discrete subgroups of E(3). If we have α ∈ R \ (2πQ), the groups T , T F , T P and
T FP are so-called helical groups, i. e. infinite discrete subgroups of the Euclidean
group E(3) which do not contain any translation except the identity.

Example 3.4 (The choice of T is not unique.) Let t = (I1, 1), F0 = {I2, R(π)},
S = TS = 〈t〉 and

G =
{
(R(nπ/2)F) ⊕ tn

∣
∣
∣ n ∈ Z, F ∈ F0

}
< E(3).

Then the choice R(π/2)⊕ t ∈ T as well as R(3π/2)⊕ t ∈ T is possible. In particular,
the choice of T is not unique.

Example 3.5 We present a discrete group G < E(8) such that for every choice of T
the set T is not a group and the elements of T do not commute.

Let α1, α2 ∈ R \ (2πQ) be angles, R1 = R(α1), R2 = R(α2), R3 = R(π/2),
S = ( 1 0

0 −1 ), t1 = (I2, e1) and t2 = (I2, e2). Then we have 〈R1〉 ∼= Z, 〈R2〉 ∼= Z, and
〈R3, S〉 < O(2) is a dihedral group. Let S = TS = {tn11 tn22 | n1, n2 ∈ Z},

G :=
{(

Rn1
1 ⊕ Rn2

2 ⊕ (Sn1Rn2+m
3 )
)

⊕ (tn11 tn22
)
∣
∣
∣
∣ n1, n2 ∈ Z,m ∈ {0, 2}

}

< E(8)

and π : G → S be the natural surjective homomorphism with kernel F = {id, (I4 ⊕
R2
3) ⊕ idE(2)}. Let T ⊂ G such that the map T → TS , g 
→ π(g) is bijective. Since

t1, t2 ∈ TS , there exist m1,m2 ∈ {0, 2} such that t ′1 := (R1 ⊕ I2 ⊕ (SRm1
3 )) ⊕ t1 ∈ T

and t ′2 := (I2 ⊕ R2 ⊕ R1+m2
3 ) ⊕ t2 ∈ T . We have t ′1t ′2 �= t ′2t ′1 since

t ′1t ′2(t ′1)−1(t ′2)−1 = (I4 ⊕ (SRm1
3 R1+m2

3 R−m1
3 SR−1−m2

3 )
)⊕ idE(2)

= (I4 ⊕ R2
3) ⊕ idE(2). (1)

Thus, the elements of T do not commute.
Now we suppose that T is a group. Since π−1(idE(2)) = F and by (1), we have

π−1(idE(2)) ⊂ T . This contradicts the claim that π |T is bijective. Thus, T is not a
group.

For the remainder of this section we fix the dimension d ∈ N, the discrete group
G < E(d) and the quantities d1, d2, T , F , S, TS as introduced by Definition 3.1. The
following lemma collects some elementary properties.

Lemma 3.6 (i) The group F is finite.
(ii) For all n ∈ N the set T nF is independent of the choice of T , and it holds

T nF � G.

In particular, it holds T F � G.
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(iii) The map G/T F → S/TS , gT F 
→ π(g)TS is a group isomorphism, where
π : G → S is the natural surjective homomorphism with kernelF . In particular,
G/T F is finite.

(iv) For all n ∈ N the map TS → T nF/F , t 
→ ϕ(tn)F is a group isomorphism,
where ϕ : T n

S → T n is the canonical bijection. In particular, the group T F/F
is commutative.

(v) For all n ∈ Z \ {0} the map T → T n, t 
→ tn is bijective.

Proof. Let π : G → S be the natural surjective homomorphism with kernel F .

(i) Since G is discrete, the group F is discrete. Moreover, F is a subgroup of
O(d1) ⊕ {idE(d2)}. Thus, the group F is finite.

(ii) Let n ∈ N. The set T nF is the preimage of T n
S under π . Since T n

S is a normal
subgroup of S, the set T nF is a normal subgroup of G.

(iii) This is clear, since T F is the preimage of TS under π .
(iv) Let n ∈ N. Since TS is isomorphic to Z

d2 , the map ϕ1 : TS → T n
S , t 
→ tn is

a group isomorphism. Since F is the kernel of π and T nF the preimage of T n
S

under π , the map ϕ2 : T nF/F → T n
S , gF 
→ π(g) is an isomorphism. This

implies the assertion, i. e. the map ϕ−1
2 ◦ ϕ1 is an isomorphism.

(v) Let n ∈ Z \ {0}. The map ψ : T → T n , t 
→ tn is surjective. Since the map
TS → T n

S , t 
→ tn is injective, the map ψ is injective and thus, bijective.

If T is a group, it is naturally isomorphic to TS .
Lemma 3.7 Let m ∈ Z \ {0} such that T m is a group. Then, the map

TS → T m, t 
→ ϕ(t)m

is a group isomorphism, where ϕ : TS → T is the canonical bijection. In particular,
T m is isomorphic to Z

d2 .
Furthermore, for all n ∈ Z it holds

T nm � T m .

Proof Let m ∈ Z \ {0} such that T m is a group. Let π : T F → TS be the natural
surjective homomorphism with kernel F . Let ϕ be the inverse function of π |T , i. e.
ϕ : TS → T is the canonical bijection. The map

ψ1 : TS → T F/F , t 
→ ϕ(t)F

is an isomorphism. Since T F/F is isomorphic to Z
d2 and (T F/F)m = T mF/F ,

the map

ψ2 : T F/F → T mF/F , t 
→ tm

is an isomorphism. Since T m is a group, the map

ψ3 : T m → T mF/F , g 
→ gF
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is an isomorphism. The map

TS → T m, t 
→ ϕ(t)m

is equal to ψ−1
3 ◦ ψ2 ◦ ψ1 and thus, an isomorphism.

Let n ∈ Z. Since T m is isomorphic to Z
d2 , we have T mn = (T m)n � T m .

We proceed to show that, albeit T is not a group in general, the situation is much
better for special powers of T .

Definition 3.8 We define the set

M0 := {m ∈ N | T m is a normal subgroup of G}.

Thus, the quotient group G/T m is well-defined if and only if m ∈ M0.

Proposition 3.9 For all m ∈ M0 the group T m is a subgroup of the center of T F .

Proof Let m ∈ M0, t ∈ T and g ∈ T F . By Lemma 3.6(iv) there exists some f ∈ F
such that

gtm = tmg f .

Since m ∈ M0, it follows

f = g−1t−mgtm ∈ T m .

Since T m ∩ F = {id}, we have f = id , i. e. g and tm commute.

Lemma 3.10 The set M0 is not empty.

Proof. Since F is a normal subgroup of G, for all g ∈ G the map

ϕg : F → F , f 
→ g−1 f g

is a group automorphism. Let n be the order of the automorphism group of F . For all
g ∈ G it holds ϕn

g = id . Thus for all g ∈ G and f ∈ F we have

gn f = f gn, (2)

i. e. gn and f commute.
Now we show that for all g, h ∈ T F the elements gn|F | and h commute. Let

g, h ∈ T F . Since T F/F is commutative, there exists some f ∈ F such that

h−1gnh = gn f .

With (2) it follows

h−1gn|F |h = (h−1gnh)|F | = (gn f )|F | = gn|F | f |F | = gn|F |. (3)
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Now we show that T n|F |2 is a subgroup of T F . Let t, s ∈ T . We have to show that
tn|F |2s−n|F |2 ∈ T n|F |2 . Let r ∈ T and f ∈ F such that ts−1 = r f . Since T F/F is
commutative, there exists some e ∈ F such that tn|F |s−n|F | = rn|F |e. By (3) and (2)
we have

tn|F |2s−n|F |2 = (tn|F |s−n|F |)|F | = (rn|F |e)|F | = rn|F |2e|F | = rn|F |2 ∈ T n|F |2 .

Now we show that T n|F |2 is a normal subgroup of G. Let g ∈ G and t ∈ T . We have
to show that

g−1tn|F |2g ∈ T n|F |2 .

Since T nF is a normal subgroup of G, there exist some s ∈ T and f ∈ F such that

g−1tng = sn f .

By (2) we have

g−1tn|F |2g = (g−1tng)|F |2 = (sn f )|F |2 = sn|F |2 f |F |2 = sn|F |2 ∈ T n|F |2 .

The following Theorem is a key observation on the structural decomposition of G.
Not only do we have the existence of exponentsm ∈ N such that T m �G as guaranteed
by Lemma 3.10, but the set of such ‘good’ exponents will in fact be of the form m0N,
m0 ∈ N.

Theorem 3.11 There exists a unique m0 ∈ N such that M0 = m0N.

Proof. We define the set

M̃0 := {m ∈ Z | T m is a normal subgroup of G}.

First we show that M̃0 is a subgroup of the additive group of integers Z. It is clear that
0 ∈ M̃0. Let n1, n2 ∈ M̃0. We have to show that n1 − n2 ∈ M̃0. Let ϕ : TS → T be
the canonical bijection. By Proposition 3.9 and Lemma 3.7, for all t, s ∈ TS it holds

ϕ(t)n1−n2ϕ(s)−(n1−n2) = ϕ(t)n1ϕ(s)−n1ϕ(t)−n2ϕ(s)n2 = ϕ(ts−1)n1ϕ(ts−1)−n2

= ϕ(ts−1)n1−n2 ∈ T n1−n2 ,

and thus, T n1−n2 is a group. It remains to show that T n1−n2 is a normal subgroup of
G. Without loss of generality we assume that n1, n2 �= 0, i. e. n1n2 �= 0. Let g ∈ G
and t ∈ T . Since T n1 , T n2 � G, there exist some s1, s2 ∈ T such that gtn1g−1 = sn11
and gtn2g−1 = sn22 . Since sn1n21 = gtn1n2g−1 = sn1n22 and the map T → T n1n2 ,
r 
→ rn1n2 is bijective, it holds s1 = s2. Now we have

gtn1−n2g−1 = (gtn1g−1)(gtn2g−1)−1 = sn1−n2
1 ∈ T n1−n2 .
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ByLemma 3.10 and sinceM0 ⊂ M̃0, the group M̃0 is nontrivial. Since every nontrivial
subgroup of Z is equal to nZ for some n ∈ N, there exists a unique m0 ∈ N such that
M̃0 = m0Z. Now, we have

M0 = M̃0 ∩ N = m0N.

Remark 3.12 (i) The proof of Lemma 3.10 shows that m0 divides |F |2|Aut(F)|,
where m0 ∈ N is such that M0 = m0N and Aut(F) is the automorphism group of
F . In particular, we have an upper bound for m0.

(ii) The group G is virtually abelian since for all m ∈ M0 the index of the abelian
subgroup T m in G is md2 |F ||G/(T F)| and thus, finite.

Example 3.13 We give an example for whichm0 = 4, independent of the choice of T .
Let G be the group considered in Example 3.5. In terms of tn1,n2,m := (Rn1

1 ⊕ Rn2
2 ⊕

(Sn1Rn2+m
3 )
) ⊕ tn11 tn22 for n1, n2 ∈ Z,m ∈ {0, 2}, the choices for T are explicitly

given by

Tμ = {tn1,n2,μ(n1,n2) | n1, n2 ∈ Z},

where μ is any mapping μ : Z
2 → {0, 2}. Using SR3 = −R3S, R2

3 = −I2 and

S2 = R4
3 = I2 we see that t2n1,n2,m = (R2n1

1 ⊕ R2n2
2 ⊕ ((−1)(n1+1)n2 I2)

) ⊕ t2n11 t2n22
and so T 2

μ is still not a group. (Notice that t21,0,μ(1,0)t
2
0,1,μ(0,1) �= t21,1,μ(1,1).) However,

as t4n1,n2,m = (R4n1
1 ⊕ R4n2

2 ⊕ I2
)⊕ t4n11 t4n22 , we see that T 4

μ is a normal subgroup of
G. In view of Theorem 3.11 we have m0 = 4.

Example 3.14 In this example we show that in general M0 = m0N, T m0 and the index
of T m0 in G are dependent on the choice of T . Let G be the group considered in
Example 3.4. If we choose

T =
{
R(nπ/2) ⊕ tn

∣
∣
∣ n ∈ Z

}
,

then m0 = 1, T m0 = T and |G : T m0 | = 2. But if we choose

T =
{
(R(nπ/2)R(π)) ⊕ tn

∣
∣
∣ n ∈ Z

}
,

then m0 = 2, T m0 = {R(nπ) ⊕ t2n | n ∈ Z} and |G : T m0 | = 4.

4 Wave Vector Characterization of the Dual Space

We now study representations of T F and their induced representations on G. As all
groups encountered here are virtually abelian (cp. Remark 3.12(ii)), we may and will
restrict to finite-dimensional (unitary) representations in what follows, see e. g. [33].
The reader is referred to the last paragraph of Sect. 1 for notation and to Sect.A in the
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appendix for basic material on induced representations and the necessary background
on standard Mackey analysis, adapted to our set-up of discrete subgroups of E(d).

As T F = π−1(TS), where π : G → S is the natural surjective homomorphism,
we are led to first considering characters on T F by lifting those on TS (i. e., plane
waves) via π−1.

Definition 4.1 For all k ∈ R
d2 we define the one-dimensional representationχk ∈ T̂ F

by

χk(g) := exp(2π i〈k, τ (π(g))〉) for all g ∈ T F,

where π : T F → TS is the natural surjective homomorphism.

Since T F is a normal subgroup of G, G acts on T̂ F .

Lemma 4.2 For all g ∈ G and k, k′ ∈ R
d2 it holds

χkχk′ = χk+k′ and g · χk = χL(π(g))k,

where π : G → S is the natural surjective homomorphism.

Proof. Let g ∈ G, k, k′ ∈ R
d2 andπ : G → S be the natural surjective homomorphism.

For all h ∈ T F it holds

χk(h)χk′(h) = exp(2π i〈k, τ (π(h))〉) exp(2π i〈k′, τ (π(h))〉)
= exp(2π i〈k + k′, τ (π(h))〉)
= χk+k′(h)

and

(g · χk)(h) = χk(g
−1hg)

= exp(2π i〈k, τ (π(g−1hg))〉)
= exp(2π i〈k, L(π(g−1))τ (π(h))〉)
= exp(2π i〈L(π(g))k, τ (π(h))〉)
= χL(π(g))k(h).

In our analysis of periodic representations below it will necessary to analyze rep-
resentations that are trivial on T n , n ∈ N. To this end, we recall that a set L ⊂ R

n is a
lattice if L is a subgroup of the additive group R

n which is isomorphic to the additive
group Z

n , and which spans the real vector space R
n . The dual lattice L∗ (also called

the reciprocal lattice) of a lattice L ⊂ R
n is the set

{x ∈ R
n | 〈x, y〉 ∈ Z for all y ∈ L}.

This is indeed a lattice as well, see, e. g., [29, Chapter 1].
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Definition 4.3 We define the lattice

LS := τ(TS) < R
d2

and denote its dual lattice by L∗
S .

Lemma 4.4 For all n ∈ N it holds

L∗
S/n = {k ∈ R

d2 | χk |T n = 1}.

Proof Let n ∈ N and π : T F → TS be the natural surjective homomorphism. First
we show that L∗

S/n ⊂ {k ∈ R
d2 | χk |T n = 1}. Let k ∈ L∗

S/n. For all t ∈ T it holds
τ(π(tn)) = nτ(π(t)) and thus,

χk(t
n) = exp(2π i〈k, τ (π(tn))〉) = exp(2π i〈nk, τ (π(t))〉) = 1.

Now we show that {k ∈ R
d2 | χk |T n = 1} ⊂ L∗

S/n. Let k ∈ R
d2 such that χk |T n = 1.

Let x ∈ LS . There exists some t ∈ T such that x = τ(π(t)). We have

〈nk, x〉 = 〈nk, τ (π(t))〉 = 〈k, τ (π(tn))〉 ∈ Z,

where we used that χk(tn) = 1 in the last step. Since x ∈ LS was arbitrary, we have
k ∈ L∗

S/n.

In view of G and the characters of T F acting on T̂ F we now proceed to introduce
the following equivalence relation. It will allow us to partition T̂ F in such a way that
in each equivalence class the elements are – modulo action of G – characterized by a
“lifted plane wave” χk .

Definition 4.5 We define the relation ∼ on T̂ F by

(ρ ∼ ρ′) :⇐⇒ (∃ g ∈ G ∃ k ∈ R
d2 : g · ρ = χkρ

′).

Remark 4.6 One can also define an equivalence relation ∼ on the set of all represen-
tations of T F by

(ρ ∼ ρ′) :⇐⇒ ([ρ] ∼ [ρ′]) for all representations ρ, ρ′ on T F .

Lemma 4.7 The relation ∼ on T̂ F is an equivalence relation.

Proof It is clear that ∼ is reflexive.
Now we show that ∼ is symmetric. Let ρ, ρ′ ∈ T̂ F such that ρ ∼ ρ′. There exist

some g ∈ G and k ∈ R
d2 such that g · ρ = χkρ

′. This implies

g−1 · ρ′ = (g−1 · χ−k)(g
−1 · (χkρ

′)) = χ−L(π(g−1))kρ,

where π : G → S is the natural surjective homomorphism.
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Now we show that ∼ is transitive. Let ρ, ρ′, ρ′′ ∈ T̂ F such that ρ ∼ ρ′ and
ρ′ ∼ ρ′′. There exist some g, g′ ∈ G and k, k′ ∈ R

d2 such that g · ρ = χkρ
′ and

g′ · ρ′ = χk′ρ′′. This implies

(g′g) · ρ = g′ · (χkρ
′) = χL(π(g′))k+k′ρ′′,

where π : G → S is the natural surjective homomorphism.

Definition 4.8 For all groupsH ≤ G and N ∈ M0 such that T N is a normal subgroup
of H, letHN denote the quotient group H/T N .

The following lemma gives an algorithm how we can determine a representation
set of T̂ F/∼.

Lemma 4.9 Let m ∈ N such that M0 = mN.

(i) Every representation set of {ρ ∈ T̂ F | ρ|T m = Idρ }/∼ is a representation set of

T̂ F/∼.
(ii) The map

̂(T F)m → {ρ ∈ T̂ F | ρ|T m = Idρ }, ρ 
→ ρ ◦ π

where π : T F → (T F)m is the natural surjective homomorphism, is bijective. In
particular, the set {ρ ∈ T̂ F | ρ|T m = Idρ } is finite.

(iii) Let K be a representation set of (L∗
S/m)/L∗

S and P be a representation set of

G/(T F). Then, for all ρ, ρ′ ∈ {ρ̃ ∈ T̂ F | ρ̃|T m = Idρ̃
} it holds

(ρ ∼ ρ′) ⇐⇒ (∃ g ∈ P ∃ k ∈ K : g · ρ = χkρ
′).

Proof Let m ∈ N such that M0 = mN.
(i) Let R be a representation set of {ρ ∈ T̂ F | ρ|T m = Idρ }/∼. We have to show

that for all ρ ∈ T̂ F there exists some ρ′ ∈ R such that ρ ∼ ρ′. Let ρ ∈ T̂ F .
By Proposition 3.9 the group T m is a subgroup of the center of T F and thus, by
Schur’s lemma for all t ∈ T m there exists some λ ∈ C such that |λ| = 1 and
ρ(t) = λIdρ . Hence, there exists some one-dimensional representation χ ∈ T̂ m such
that ρ|T m = χ Idρ .

There exists some k ∈ R
d2 such thatχ |T m = χk |T m : ByLemma3.7 the groupT m is

isomorphic to Z
d2 . Thus, there exist t1, . . . , td2 ∈ T m such that {t1, . . . , td2} generates

T m . For all j ∈ {1, . . . , d2} there exists some α j ∈ R such that exp(2π iα j ) = χ(t j ).
For all i ∈ {1, . . . , d2} let bi ∈ R

d2 such that

〈bi , τ (π(t j ))〉 = δi j for all j ∈ {1, . . . , d2},

where π : T F → TS is the natural surjective homomorphism. For k =∑d2
i=1 αi bi ∈

R
d2 it holds χ |T m = χk |T m .
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Thus, we have ρ|T m = χk |T m Idρ . Since χ−kρ ∈ T̂ F and (χ−kρ)|T m = Idρ , there
exists some ρ′ ∈ R such that χ−kρ ∼ ρ′. There exist some g ∈ G and l ∈ R

d2 such
that g · ρ′ = χl(χ−kρ). This implies ρ ∼ ρ′.

(ii) The first statement is clear from the general relation of the duals of a group and
a quotient of it. The second follows from Remark 3.12(ii).

(iii) Let ρ, ρ′ ∈ T̂ F such that ρ|T m = Idρ , ρ
′|T m = Idρ′ and ρ ∼ ρ′. There exist

some g ∈ G and k ∈ R
d2 such that g · ρ = χkρ

′. Let h ∈ P such that gT F = hT F .
It holds Idρ = (g · ρ)|T m = (χkρ

′)|T m = χk |T m Idρ′ . This implies χk |T m = 1 and
thus, k ∈ (L∗

S/m) by Lemma 4.4. Let l ∈ K such that l L∗
S = kL∗

S . We have

h · ρ = g · ρ = χkρ
′ = χlρ

′,

where we used that T F acts trivially on T̂ F in the first step and that χk−l = 1 since
k − l ∈ L∗

S in the last step.
The other direction of the assertion is trivial.

Corollary 4.10 The set T̂ F/∼ is finite.

Proof This is clear by Lemma 4.9.

As a final preparation, given ρ ∈ T̂ F , we need specify the domain of wave vectors
k for which χkρ is to be considered. To this end we begin with the following definition.

Definition 4.11 For all ρ ∈ T̂ F we define the set

Gρ :=
{
(L(π(g)), k)

∣
∣
∣ g ∈ G, k ∈ R

d2 : g · ρ = χkρ
}

⊂ E(d2),

where π : G → S is the natural surjective homomorphism.

Proposition 4.12 For all ρ ∈ T̂ F the set Gρ is a space group and it holds

L∗
S ≤ {k ∈ R

d2
∣
∣ (Id2 , k) ∈ Gρ

} ≤ L∗
S/m,

where m ∈ N is such that M0 = mN.

Proof Letρ ∈ T̂ F andm ∈ N such thatM0 = mN. Firstwe show thatGρ is a subgroup
of E(d2). Let g1, g2 ∈ Gρ . We have to show that g1g

−1
2 ∈ Gρ . Let π : G → S be the

natural surjective homomorphism. For all i ∈ {1, 2} let hi ∈ G and ki ∈ R
d2 such that

gi = (L(π(hi )), ki ) and hi · ρ = χki ρ. It holds

(h1h
−1
2 ) · ρ = h1 · (h−1

2 · ρ) = h1 · ((h−1
2 · χ−k2)ρ)

= ((h1h
−1
2 ) · χ−k2)(h1 · ρ) = χk1−L(π(h1h

−1
2 ))k2

ρ

and thus,

g1g
−1
2 = (L(π(h1h

−1
2 )), k1 − L(π(h1h

−1
2 ))k2) ∈ Gρ.
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Let

H := Gρ ∩ Trans(d2)

be the group of all translations of Gρ . It is clear that τ(H) = {k ∈ R
d2 | (Id2 , k) ∈ Gρ}.

Now we show that τ(H) ≤ L∗
S/m. Let k ∈ τ(H), i. e. (Id2 , k) ∈ Gρ . There exists

some g ∈ G such that g · ρ = χkρ and L(π(g)) = Id2 . The latter implies π(g) ∈ TS
and thus, g ∈ T F . Since T F acts trivially on T̂ F we thus have ρ = χkρ. Let ρ̃ be a
representative of ρ. There exists some T ∈ U(dρ) such that T H ρ̃(g)T = χk(g)ρ̃(g)
for all g ∈ T F . Moreover, by Proposition 3.9 the set T m is a subset of the center of
T F and hence, by Schur’s lemma ρ̃(g) is a scalar multiple of Idρ for all g ∈ T m .
Hence, we have χk(g) = 1 for all g ∈ T m and k ∈ L∗

S/m by Lemma 4.4.
Now we show that L∗

S ≤ τ(H). Let k ∈ L∗
S . By Lemma 4.4 we have χk |T = 1.

Since we also have χk |F = 1, we have χk = 1. Thus we have idG · ρ = χkρ and
(Id2 , k) ∈ H, i. e. k ∈ τ(H).

Now we show that Gρ is discrete. Since τ(H) is a subgroup of L∗
S/m, the groupH

is discrete. Since L(Gρ) is a subgroup of the finite group L(S), the index |Gρ : H| =
|L(Gρ)| is finite. Hence, the group Gρ is discrete (see, e. g., [34, Theorem 7.1]). Since
L∗
S is a subgroup of τ(H), the group Gρ contains d2 linearly independent translations.

By Theorem 2.1 the group Gρ is a space group.

Lemma 4.13 For all N ∈ M0 and ρ ∈ T̂ F such that ρ|T N = Idρ , the set L
∗
S/N is

invariant under Gρ , i. e. {g · k | g ∈ Gρ, k ∈ L∗
S/N } = L∗

S/N.

Proof Let N ∈ M0 and ρ ∈ T̂ F such that ρ|T N = Idρ . Let k ∈ L∗
S/N and g ∈

Gρ . We have to show that g · k ∈ L∗
S/N . Let π : G → S be the natural surjective

homomorphism. There exist some h ∈ G and l ∈ R
d2 such that g = (L(π(h)), l) and

h · ρ = χlρ. Since ρ|T N = Idρ = (h · ρ)|T N , we have χl |T N = 1. We have

χg·k = χL(π(h))k+l = (h · χk)χl

and thus, χg·k |T N = 1. By Lemma 4.4 we have g · k ∈ L∗
S/N .

Definition 4.14 Let H be a subgroup of E(n). Then the set of all orbits of R
n under

the action of H is written as R
n/H and is called the quotient of the action or orbit

space.

Remark 4.15 If a groupH < E(n) is discrete, then the quotient space R
n/H equipped

with the orbit space distance function

R
n/H × R

n/H → [0,∞), (x, y) 
→ dist(x, y)

is a metric space whose topology is equal to the quotient topology, see, e. g., [35,
§6.6].

We are finally in a position to state and prove our main results on the struc-
ture of IndGT F (̂T F). Note that the set R in the following theorems is finite due to
Corollary 4.10.
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Theorem 4.16 Let R be a representation set of T̂ F/∼. Then, the map

⊔

ρ∈R

R
d2/Gρ → IndGT F (̂T F),

(Gρ · k, ρ) 
→ IndGT F (χkρ),

where
⊔

is the disjoint union, is bijective.

Proof. Let R be a representation set of T̂ F/∼. We define the map

ϕ :
⊔

ρ∈R

R
d2/Gρ → Ind(̂T F), (Gρ · k, ρ) 
→ Ind(χkρ).

First we show that ϕ is well-defined. Let ρ ∈ R, k, k′ ∈ R
d2 and g ∈ Gρ such that

k′ = g · k. Let π : G → S be the natural surjective homomorphism. There exist some
h ∈ G and l ∈ R

d2 such that g = (L(π(h)), l) and h · ρ = χlρ. We have

h · (χkρ) = (h · χk)(h · ρ) = χL(π(h))k+lρ = χk′ρ

and thus, Ind(χkρ) = Ind(χk′ρ) by Proposition A.2.
Now we show that ϕ is injective. Let ρ, ρ′ ∈ R and k, k′ ∈ R

d2 such that
Ind(χkρ) = Ind(χk′ρ′). We have to show that ρ = ρ′ and Gρ · k = Gρ′ · k′. By
Proposition A.2 there exists some g ∈ G such that g · (χkρ) = χk′ρ′. This is equiva-
lent to g · ρ = χk′−L(π(g))kρ

′, which implies ρ ∼ ρ′ and thus, ρ = ρ′. This implies
that (L(π(g)), k′ − L(π(g))k) ∈ Gρ and thus,

Gρ · k = Gρ′ · ((L(π(g)), k′ − L(π(g))k) · k) = Gρ′ · k′.

Now we show that ϕ is surjective. Let ρ ∈ T̂ F . Let ρ′ ∈ R such that ρ ∼ ρ′. There
exist some g ∈ G and k ∈ R

d2 such that g · ρ = χkρ
′. By Proposition A.2 we have

ϕ((Gρ′ · k, ρ′)) = Ind(χkρ
′) = Ind(g · ρ) = Ind ρ.

There is also a version of this result for periodic representations.

Theorem 4.17 Let R be a representation set of {ρ ∈ T̂ F | ρ|T m = Idρ }/∼, where
m ∈ N is such that M0 = mN. Then the maps

(i)
⊔

ρ∈R

{k/N | k ∈ L∗
S , N ∈ M0}/Gρ → Ind({ρ ∈ T̂ F | ∃ N ∈ M0 : ρ|T N = Idρ })

(Gρ · (k/N ), ρ) 
→ Ind(χk/Nρ)

(ii)
⊔

ρ∈R

(L∗
S/N )/Gρ → Ind({ρ ∈ T̂ F | ρ|T N = Idρ })

(Gρ · k, ρ) 
→ Ind(χkρ),



Journal of Fourier Analysis and Applications            (2023) 29:70 Page 21 of 39    70 

where
⊔

is the disjoint union, Ind = IndGT F and N ∈ M0 in (ii) is arbitrary, are
bijective.

Proof Let m ∈ N such that M0 = mN and R be a representation set of {ρ ∈
T̂ F | ρ|T m = Idρ }/∼. By Lemma 4.9 the set R is a representation set of T̂ F/∼.

(i) We define the map

ψ :
⊔

ρ∈R

{k/N | k ∈ L∗
S , N ∈ M0}/Gρ → Ind({ρ ∈ T̂ F | ∃ N ∈ M0 : ρ|T N = Idρ })

(Gρ · (k/N ), ρ) 
→ Ind(χk/Nρ).

First we show that ψ is well-defined. Let ρ ∈ R, k ∈ L∗
S and N ∈ M0. Since

T N ⊂ T m and by Lemma 4.4, we have (χk/Nρ)|T N = Idρ . By Lemma 4.13 for all
N ∈ M0 we have (L∗

S/N )/Gρ ⊂ R
d2/Gρ and thus, by Theorem 4.16 the map ψ is

well-defined.
Since the map of Theorem 4.16 is injective, also ψ is injective.
It remains to show that ψ is surjective. Let ρ ∈ T̂ F and N ∈ M0 such that

ρ|T N = Idρ . There exists some ρ′ ∈ R such that ρ ∼ ρ′. There exist some g ∈ G
and k ∈ R

d2 such that g · ρ = χkρ
′. We have (g · ρ)|T N = Idρ = ρ′|T N and thus,

χk |T N = 1. By Lemma 4.4 we have k ∈ L∗
S/N and thus

ψ((Gρ′ · k, ρ′)) = Ind(χkρ
′) = Ind(g · ρ) = Ind ρ,

by Proposition A.2. (ii) The proof is analogous to the proof of (i).

As a direct consequence of the above theorems we obtain:

Corollary 4.18 Let R be as in Theorem 4.16. For every σ ∈ Ĝ there exists a ρ ∈ R
and a k ∈ R

d2 such that σ is a subrepresentation of IndGT F (χkρ). If moreover R is as
in Theorem 4.17 and ρ|T N = Idρ for an N ∈ M0, then k can be chosen in L∗

S/N.

Proof This is a direct consequence of Theorems 4.16 and 4.17 and Proposition A.3.

We finally address the natural question to what extent the induced representations
labeled by

⊔
ρ∈R R

d2/Gρ from Theorem 4.16 are irreducible and exhaust the total

dual space Ĝ. To this end, we equip the orbit space R
d2/H of a d2-dimensional space

groupHwith the pushforward under the action ofH of the d2-dimensional Lebesgue-
measure restricted to an associated fundamental domain. The dual space Ĝ of G shall
be endowed with the Plancherel measure μG , which is characterized in our setting
by
∑

g∈G | f (g)|2 = ∫Ĝ Tr
(
ρ( f )Hρ( f )

)
dμG for all f ∈ �1(G), where ρ( f ) =

∑
g∈G f (g)ρ(g) ∈ C

dρ×dρ , cf., e. g., [15]. Without loss of generality we restrict to
groups of infinite order as for |G| < ∞ one has d2 = 0, T = {id} and T F = G.

Theorem 4.19 Suppose G is of infinite order. Let R be a representation set of {ρ ∈
T̂ F | ρ|T m = Idρ }/∼, where m ∈ N is such that M0 = mN. There are a null-set
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N ⊂ Ĝ and null-sets Nρ ⊂ R
d2/Gρ for each ρ ∈ R such that the mapping

⊔

ρ∈R

(Rd2/Gρ) \ Nρ → Ĝ \ N

(Gρ · k, ρ) 
→ IndGT F (χkρ),

is bijective.

Remark 4.20 The proof shows that the Nρ can be chosen as Nρ = Gρ · K , where K is
the Lebesgue null-set

K =
{
k ∈ R

d2
∣
∣
∣ ∃A ∈ L(S) \ {Id2} : (A − Id2)k ∈ L∗

S/m
}
.

Also note that, by Theorem 4.16 and Corollary 4.18, for any σ ∈ N there is a ρ ∈ R
and a Gρ · k ∈ Nρ such that σ is a subrepresentation of IndGT F (χkρ).

Lemma 4.21 Let K be as in Remark 4.20. Suppose g ∈ G and k, k′ ∈ R
d2 are such

that L(π(g))k − k′ ∈ L∗
S/m, where m ∈ N is such that M0 = mN. Then we have

k ∈ K if and only if k′ ∈ K.

Proof Let g ∈ G and k, k′ ∈ R
d2 such that s ∈ L∗

S/m, where B = L(π(g)) and
s = Bk − k′. Assume k ∈ K , say (A − Id2)k ∈ L∗

S/m with A ∈ L(S) \ {Id2}.
Observe that also BABT ∈ L(S)\ {Id2} and that L∗

S/m is invariant under L(S), since
L(S) � {0d2} < Gχ0 and by Lemma 4.13 with ρ = χ0. We thus get

(BABT − Id2)k
′ = B(A − Id2)k − BABT s + s ∈ L∗

S/m,

i. e., k′ ∈ K . If, conversely, k′ ∈ K , then the same argument with g replaced by g−1

and s replaced by −BT s yields k ∈ K .

As a consequence of this we have the following lemma.

Lemma 4.22 The set K defined in Remark 4.20 is invariant under Gρ for any ρ ∈ T̂ F
with ρ|T m = Idρ , where m ∈ N is such that M0 = mN.

Proof Let k ∈ K and g ∈ Gρ , where ρ ∈ T̂ F with ρ|T m = Idρ . There exist some
h ∈ G and l ∈ R

d2 such that g = (L(π(h)), l) and h · ρ = χlρ. Since ρ|T m = Idρ =
(h ·ρ)|T m , we have χl |T m = 1 and so l ∈ L∗

S/m due to Lemma 4.4. Now Lemma 4.21
implies g · k = L(π(h))k + l ∈ K .

We now prove Theorem 4.19.

Proof. As in the proof of Theorem 4.17 we let m ∈ N such that M0 = mN and R be a
representation set of {ρ ∈ T̂ F | ρ|T m = Idρ }/∼ so that R is a also representation set

of T̂ F/∼ due to Lemma 4.9. Choose K as in Remark 4.20 and, for each ρ ∈ R, set
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Nρ = Gρ ·K . We then claim that the following implication holds true for any ρ ∈ T̂ F
with ρ|T m = Idρ , k ∈ R

d2 and g ∈ G\T F :

g · (χkρ) = χkρ �⇒ k ∈ K .

To see this fix such ρ, k and g with g · (χkρ) = χkρ. Since ρ|T m = Idρ we also have
g · χk |T m = χk |T m . Thus Lemmas 4.2 and 4.4 yield (L(π(g)) − Id2)k ∈ L∗

S/m and
hence k ∈ K .

Since the point group L(S) is finite and the lattice L∗
S is countable, the Lebesgue

measure of K ⊂ R
d2 is 0. As alsoGρ is countable for anyρ ∈ R, the sets Nρ ⊂ R

d2/Gρ

are null-sets as well.
By Theorem 4.16 for each ρ ∈ R and Gρ · k ∈ R

d2/Gρ there is a well-defined
representation IndGT F (χkρ). Combining Mackey’s irreducibility criterion stated in

Theorem A.4 and the above claim we see that IndGT F (χkρ) is irreducible for every
ρ ∈ R and Gρ · k ∈ (Rd2/Gρ)\Nρ . We thus obtain that the mapping in the assertion of
the theorem is well-defined and, upon choosing N ⊂ Ĝ suitably, also surjective. By
Theorem 4.16 it is injective as well since, as noted above, R is also a representation
set of T̂ F/∼.

We proceed to show that N is a null-set with respect to the Plancherel measure on Ĝ.
First note that, as T m ∼= Z

d2 , the dual space of T m is T̂ m = {χk |T m | k ∈ R
d2}, which

by Lemma 4.4 can be identified with the flat torus R
d2/(L∗

S/m) whose Haar measure
is the pushforward under the action of L∗

S/m of the d2-dimensional Lebesgue-measure
restricted to a unit cell of L∗

S/m.
Let  be the μT m -conull set {χk |T m | k ∈ R

d2\K } ⊂ T̂ m . Note that  is G-
invariant: For g ∈ G and k ∈ R

d2 Lemma 4.2 gives g · χk |T m = χk′ |T m with k′ =
L(π(g))k and then Lemma 4.21 shows that k ∈ K if and only if k′ ∈ K . Trivially,
each χk |T m extends to χk on T F and g ·χk |T m = χk |T m for all g ∈ T F . Conversely,
if g ∈ G\T F and k ∈ R

d2\K , then the above claim yields g · χk |T m �= χk |T m . As a
consequence, Gχk |T m = T F and Gχk |T m

m = (T F)m whenever k ∈ R
d2 \ K . Invoking

Theorem A.5 we thus find that

⋃

G·k /∈K/G

{
IndGT F (χkρ)

∣
∣
∣ ρ ∈ T̂ F : ρ|T m = Idρ

}
,

is a μG-conull subset of Ĝ, where we also have used Lemma 4.9(ii) in order to pass

from representations in ̂(T F)m to representations in T̂ F that annihilate T m . To finish
the proof it now suffices to show that

⋃

G·k /∈K/G

{
IndGT F (χkρ)

∣
∣
∣ ρ ∈ T̂ F : ρ|T m = Idρ

}

⊂
⊔

ρ∈R

{
IndGT F (χkρ)

∣
∣Gρ · k ∈ (Rd2/Gρ) \ Nρ

}
.
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Let k ∈ R
d2\K and ρ ∈ T̂ F : ρ|T m = Idρ . Let ρ′ ∈ R such that ρ′ ∼ χkρ. There

exists some g ∈ G and k′ ∈ R
d2 such that g · (χkρ) = χk′ρ′. We have ρ|T m =

Idρ = ρ′|T m and thus we have χL(π(g))k |T m = χk′ |T m . So with Lemma 4.4 we get
L(π(g))k − k′ ∈ L∗

S/m and thus k′ ∈ R
d2 \ K due to Lemma 4.21. By Lemma 4.22

we then have Gρ · k′ /∈ Nρ . The claim now follows from

Ind(χkρ) = Ind(g · (χkρ)) = Ind(χk′ρ′).

5 Harmonic Analysis of Periodic Functions

In this section we develop methods from Fourier analysis for periodic mappings on
G. We begin by defining a suitable notion of periodicity.

Definition 5.1 Let S be a set and N ∈ M0. A function u : G → S is called T N -periodic
if

u(g) = u(gt) for all g ∈ G and t ∈ T N .

A function u : G → S is called periodic if there exists some N ∈ M0 such that u is
T N -periodic.

We equip C
m×n with the Frobenius inner product 〈 · , · 〉 defined by

〈A, B〉 :=
m∑

i=1

n∑

j=1

ai j bi j for all A, B ∈ C
m×n

and let ‖ · ‖ denote the induced norm. We define the set

L∞
per(G, C

m×n) := {u : G → C
m×n | u is periodic}.

Remark 5.2 If G is finite and S a set, then every function from G to S is periodic and
in particular, we have L∞

per(G, C
m×n) = {u : G → C

m×n}.
The following Lemma shows that the above definition of periodicity is independent

of the choice of T .

Lemma 5.3 Let S be a set. A function u : G → S is periodic if and only if there exists
some N ∈ N such that

u(g) = u(gh) for all g ∈ G and h ∈ GN .

Proof Let S be a set and u : G → S be T N -periodic for some N ∈ M0. By
Theorem 3.11 the function u is T |F |N -periodic. By Proposition 3.9 it holds

G|G/(T F)||F |N ⊂ (T F)|F |N ⊂ (T NF)|F | = T |F |NF |F | = T |F |N ⊂ T N
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and thus, we have

u(g) = u(gh) for all g ∈ G and h ∈ G|G/(T F)||F |N .

The other direction is trivial since by Theorem 3.11 for all N ∈ N there exists some
n ∈ N such that nN ∈ M0.

The following lemma characterizes the periodic functions on G with the aid of the
quotient groups G/T N .

Lemma 5.4 If N ∈ M0 and u : G → S is T N -periodic, then the function

GN → S, gT N 
→ u(g)

is well-defined. Moreover, we have

L∞
per(G, C

m×n) =
{
G → C

m×n, g 
→ u(gT N )

∣
∣
∣ N ∈ M0, u : GN → C

m×n
}
,

and this space is a vector space.

Proof This follows immediately from the definition of L∞
per(G, C

m×n). (Note that, if

ui ∈ L∞
per(G, C

m×n) is T Ni -periodic, Ni ∈ M0, i = 1, 2, then u1 + u2 is T N1N2 -
periodic.)

Definition 5.5 For all N ∈ M0 let CN be a representation set of G/T N .

Remark 5.6 Let G be infinite. There exists some m ∈ N such that M0 = mN and there
exist t1, . . . , td2 ∈ T m such that {t1, . . . , td2} generates T m . Let C be a representation
set of G/T m . Then for all N ∈ M0 a feasible choice for CN is

CN =
{
tn11 . . . t

nd2
d2

g
∣
∣
∣ n1, . . . , nd2 ∈ {0, . . . , N/m − 1}, g ∈ C

}
.

For this choice, for all x ∈ R
d and large N ∈ M0 the set CN · x is similar to a cube

which explains the nomenclature.

We equip the vector space L∞
per(G, C

m×n) with an inner product.

Definition 5.7 We define the inner product 〈 · , · 〉 on L∞
per(G, C

m×n) by

〈u, v〉 := 1

|CN |
∑

g∈CN

〈u(g), v(g)〉 if u and v are T N -periodic

for all u, v ∈ L∞
per(G, C

m×n). We denote the induced norm by ‖ · ‖2.
In order to define the Fourier transform we must choose a set of representatives for

the periodic elements of Ĝ.
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Definition 5.8 Let E be a representation set of {ρ ∈ Ĝ | ρ is periodic}.
Remark 5.9 For all N ∈ M0 a representation ρ of G is T N -periodic if and only if
ρ|T N = Idρ , i. e., if it is of the form ρ̄ ◦ πN for a representation ρ̄ of GN and πN

denoting the natural surjective homomorphism from G to GN . We thus obtain

{
ρ ∈ Ĝ

∣
∣ ρ is T N -periodic

} = {ρ ◦ πN
∣
∣ ρ ∈ ĜN

}

for all N ∈ M0 and

{
ρ ∈ Ĝ

∣
∣ ρ is periodic

} = {ρ ◦ πN
∣
∣ N ∈ M0, ρ ∈ ĜN

}
.

Definition 5.10 For all u ∈ L∞
per(G, C

m×n) and for all periodic representations ρ of G
we define

u
∧

(ρ) := 1

|CN |
∑

g∈CN

u(g) ⊗ ρ(g) ∈ C
(mdρ)×(ndρ),

where N ∈ M0 is such that u and ρ are T N -periodic and ⊗ denotes the Kronecker
product.

Proposition 5.11 (The Plancherel formula) The Fourier transformation

·∧: L∞
per(G, C

m×n) →
⊕

ρ∈E
C

(mdρ)×(ndρ), u 
→ (u
∧

(ρ))ρ∈E

is well-defined and bijective. Moreover, we have the Plancherel formula

〈u, v〉 =
∑

ρ∈E
dρ〈u∧(ρ), v

∧

(ρ)〉 for all u, v ∈ L∞
per(G, C

m×n).

Proof We show that the well-known Plancherel formula for finite groups, see, e. g.,
[39, Exercise 5.7], implies the Plancherel formula of the proposition. Let N ∈ M0 and
πN : G → GN be the natural surjective homomorphism. The map

f1 : {u : GN → C
m×n} → {u ∈ L∞

per(G, C
m×n) | u is T N -periodic}, u 
→ u ◦ πN

is bijective. Let EN = {ρ | ρ is a representation of GN , ρ ◦ πN ∈ E}. We have {ρ ◦
πN | ρ ∈ EN } = {ρ ∈ E | ρ is T N -periodic}. Thus the map

f2 :
⊕

ρ∈E, ρ is T N -periodic

C
(mdρ)×(ndρ) →

⊕

ρ∈EN

C
(mdρ)×(ndρ),

(Aρ)ρ∈E, ρ is T N -periodic 
→ (Aρ◦πN )ρ∈EN
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is bijective. By Remark 5.9 the set EN is a representation set of ĜN . For all u : GN →
C
m×n and ρ ∈ EN we define u

∧

(ρ) = 1
|GN |
∑

g∈GN
u(g) ⊗ ρ(g). By the Plancherel

formula for finite groups, the Fourier transformation

·∧: {u : GN → C
m×n} →

⊕

ρ∈EN

C
(mdρ)×(ndρ), u 
→ (u

∧

(ρ))ρ∈EN

is bijective and it holds 1
|GN |
∑

g∈GN
〈u(g), v(g)〉 = ∑ρ∈EN

dρ〈u∧(ρ), v
∧

(ρ)〉 for all

u, v : GN → C
m×n . The diagram

{u ∈ L∞
per(G, C

m×n) | u is T N -periodic} ⊕
ρ∈E, ρ is T N -periodic C

(mdρ)×(ndρ)

{u : GN → C
m×n} ⊕

ρ∈EN
C

(mdρ)×(ndρ)

·∧

f2f1

·∧

commutes, where the upper map is defined by u 
→ (u
∧

(ρ))ρ∈E, ρ is T N -periodic. Thus,
the map

·∧: {u ∈ L∞
per(G, C

m×n) | u isT N -periodic} →
⊕

ρ∈E, ρ is T N -periodic

C
(mdρ)×(ndρ) (4)

is bijective and we have

〈u, v〉 =
∑

ρ∈E, ρ is T N -periodic

dρ〈u∧(ρ), v
∧

(ρ)〉

for all T N -periodic functions u, v ∈ L∞
per(G, C

m×n).
Since N ∈ M0 was arbitrary, for all u ∈ L∞

per(G, C
m×n), for all N ∈ M0 such that

u is T N -periodic and n ∈ N it holds

∑

ρ∈E, ρ is T N -periodic

dρ‖u∧(ρ)‖2 = ‖u‖22 =
∑

ρ∈E, ρ is T nN -periodic

dρ‖u∧(ρ)‖2. (5)

By (5) for all u ∈ L∞
per(G, C

m×n) and N ∈ M0 such that u is T N -periodic, we have

{ρ ∈ E | u∧(ρ) �= 0} ⊂ {ρ ∈ E | ρ is T N -periodic}. (6)

By (5) and (6) the Fourier transformation ·∧: L∞
per(G, C

m×n) →
⊕

ρ∈E C
(mdρ)×(ndρ) is well-defined and we have

〈u, v〉 =
∑

ρ∈E
dρ〈u∧(ρ), v

∧

(ρ)〉
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for all u, v ∈ L∞
per(G, C

m×n). Moreover, since the map defined in (4) is injective

and L∞
per(G, C

m×n) = ⋃N∈M0
{u ∈ L∞

per(G, C
m×n) | u is T N -periodic}, the Fourier

transformation is injective. Analogously, the Fourier transformation is surjective.

Remark 5.12 (i) The above proof also shows that for all u : G → C
m×n and N ∈ M0

such that u is T N -periodic, we have

{ρ ∈ E | u∧(ρ) �= 0} ⊂ {ρ ∈ E | ρ is T N -periodic}.

Moreover, for all N ∈ M0 the map

{
u : G → C

m×n
∣
∣ u is T N -periodic

}→
⊕

ρ∈E, ρ is T N -periodic

C
(mdρ)×(ndρ),

u 
→ (u∧(ρ)
)

is bijective.
(ii) It is easy to see that by the above proposition we have also a description of the

completion of L∞
per(G, C

m×n) with respect to the norm ‖ · ‖2. We have

L∞
per(G, Cm×n)

‖·‖2 =
{

u : G → C
m×n
∣
∣
∣
∣

∑

ρ∈E
dρ‖u∧(ρ)‖2 < ∞

}

and the map

L∞
per(G, Cm×n)

‖·‖2 →
{

a ∈
∏

ρ∈E
C

(mdρ)×(ndρ)

∣
∣
∣
∣

∑

ρ∈E
dρ‖a(ρ)‖2 < ∞

}

,

u 
→ (u
∧

(ρ))ρ∈E

is bijective.

Lemma 5.13 Let f ∈ L∞
per(G, C

m×n), g ∈ G and τg f denote the translated function
f ( · g). Then we have τg f ∈ L∞

per(G, C
m×n) and

τg f
∧

(ρ) = f
∧

(ρ)(In ⊗ ρ(g−1))

for all periodic representations ρ of G.

Proof Let f ∈ L∞
per(G, C

m×n), g ∈ G and ρ be a periodic representation. Let N ∈ M0

such that f and ρ are T N -periodic. The function τg f is T N -periodic and we have

τg f
∧

(ρ) = 1

|CN |
∑

h∈CN

τg f (h) ⊗ ρ(h)

= 1

|CN |
∑

h∈CN

f (hg) ⊗ ρ(h)
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= 1

|CN |
∑

h∈CN

f (h) ⊗ ρ(hg−1)

= 1

|CN |
∑

h∈CN

f (h) ⊗ (ρ(h)ρ(g−1))

=
( 1

|CN |
∑

h∈CN

f (h) ⊗ ρ(h)
)
(In ⊗ ρ(g−1))

= f
∧

(ρ)(In ⊗ ρ(g−1)),

where in the third step we made a substitution and used that CN and CN g are repre-
sentation sets of G/T N and that the function h 
→ f (h) ⊗ ρ(hg−1) is T N -periodic.

Definition 5.14 For all u ∈ L1(G, C
m×n) and all representations ρ of G we define

u
∧

(ρ) :=
∑

g∈G
u(g) ⊗ ρ(g).

Remark 5.15 If the groupG is finite, ρ is a representation ofG and u ∈ L1(G, C
m×n) =

L∞
per(G, C

m×n), then the Definitions 5.10 and 5.14 for u
∧

(ρ) differ by the multiplicative
constant |G|, but it will always be clear from the context which of the both definitions
is meant. If G is infinite, then L1(G, C

m×n) ∩ L∞
per(G, C

m×n) = {0} and thus, there is
no ambiguity.

Definition 5.16 For all u ∈ L1(G, C
l×m) and v ∈ L∞

per(G, C
m×n) we define the

convolution u ∗ v ∈ L∞
per(G, C

l×n) by

u ∗ v(g) :=
∑

h∈G
u(h)v(h−1g) for all g ∈ G.

Lemma 5.17 Let u ∈ L1(G, C
l×m), v ∈ L∞

per(G, C
m×n) and ρ be a periodic

representation of G. Then
(i) the convolution u ∗ v is T N -periodic if v is T N -periodic and
(ii) we have

u ∗ v
∧

(ρ) = u
∧

(ρ)v
∧

(ρ).

Proof Let u ∈ L1(G, C
l×m), v ∈ L∞

per(G, C
m×n) and ρ be a periodic representation

of G. Let N ∈ M0 such that v and ρ are T N -periodic. By Definition 5.16 it is clear
that u ∗ v is T N -periodic and thus we have u ∗ v ∈ L∞

per(G, C
m×n) as claimed in

Definition 5.16. We have

u ∗ v
∧

(ρ) = 1

|CN |
∑

g∈CN

u ∗ v(g) ⊗ ρ(g)



   70 Page 30 of 39 Journal of Fourier Analysis and Applications            (2023) 29:70 

= 1

|CN |
∑

g∈CN

∑

h∈G

(
u(h)v(h−1g)

)⊗ ρ(g)

= 1

|CN |
∑

g∈CN

∑

h∈G

(
u(h) ⊗ ρ(h)

)(
v(h−1g) ⊗ ρ(h−1g)

)

=
(∑

h∈G
u(h) ⊗ ρ(h)

)(
1

|CN |
∑

g∈CN

v(g) ⊗ ρ(g)

)

= u
∧

(ρ)v
∧

(ρ).

6 Quotient Groups as Semidirect Products

By Definition 3.8 for all m ∈ M0 the group T m is a normal subgroup of G, but in
general there does not exist any groupH < G such thatG = T m

�H, see Example 6.1.
In this sectionwe determine form ∈ M0 and appropriate N ∈ mN a groupH ≤ G/T N

such that

G/T N = T m/T N
� H, (7)

see Theorem 6.7. The proof is similar to the proof of the Schur-Zassenhaus theorem,
see, e. g., [1]. If G is a space group, for appropriate N ∈ N the existence of a groupH
such that

G/T N = T /T N
� H (8)

is mentioned in [4, p. 299] and in [14, p. 376].

Example 6.1 (Symmorphic and nonsymmorphic space groups) Let G be a space group
and T its subgroup of translations. If there exists a groupH < G such that G = T �H,
then G is said to be a symmorphic space group, see e. g., [34, Section 9.1]. Otherwise,
G is a nonsymmorphic space group.

Let d = 2, t1 = (I2, e1), t2 = (I2, e2), id = (I2, 0), p1 = (( 1 0
0 −1

)
, 0
)
and

p2 = (( 1 0
0 −1

)
, ( 0.50 )

)
. The space group

{
tp
∣
∣ t ∈ 〈t1, t2〉, p ∈ {id, p1}

}
< E(2)

is symmorphic and equal to T �H with T = 〈t1, t2〉 andH = 〈p1〉. The space group
{
tp
∣
∣ t ∈ 〈t1, t2〉, p ∈ {id, p2}

}
< E(2)

is nonsymmorphic, since it does not contain any element of order 2, but the order of
the quotient group of the space group by its subgroup of all translations is 2.

In the following definition we define P(n)

S such that (8) is true for the choice H =
{gT N | g ∈ P(N )

S }, see Corollary 6.9.
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Definition 6.2 Let τ̃ : L(S) → τ(S) be a map such that (P, τ̃ (P)) ∈ S for all P ∈
L(S). We define the map

τ̄ : L(S) × L(S) → τ(TS), (P, Q) 
→ τ̃ (P) + P τ̃ (Q) − τ̃ (PQ).

Furthermore, for all n ∈ N coprime to |L(S)| we define the set

P(n)

S :=
{(

P, τ̃ (P) − a(n)
∑

Q∈L(S)

τ̄ (P, Q)

) ∣
∣
∣
∣ P ∈ L(S)

}

⊂ S,

where a(n) = max
{
ã ∈ {0,−1, . . . } ∣∣ ∃ b ∈ Z such that ã|L(S)| + bn = 1

}
.

For all n ∈ N coprime to |L(S)| let P(n) ⊂ G be such that the map

P(n) → P(n)

S , g 
→ π(g)

is bijective, where π : G → S is the natural surjective homomorphism.

Remark 6.3 (i) For all P, Q ∈ L(S) it holds

(P, τ̃ (P))(Q, τ̃ (Q)) = (Id2 , τ̄ (P, Q))(PQ, τ̃ (PQ))

and thus, the map τ̄ is well-defined. Note that one could also use this equation as
an equivalent definition for τ̄ .

(ii) By Remark 6.3(i) it is clear that, for symmorphic space groups and in contrast to
non-symmorphic space groups, see Example 6.1, it is possible to choose τ̃ such
that τ̄ is equal to 0.

(iii) If n = 1, then a(n) = 0 and P(n)

S = {(P, τ̃ (P)) | P ∈ L(S)}.
We now consider the group T nFP(n). Our motivation for this is the following: In

general T is not a group and thus, in order to generalize (8) to (7), we replace T /T N

by T m/T N . Then (8) will be true for the choice H = T nFP(n), see Theorem 6.7

Lemma 6.4 For all n ∈ N coprime to |L(S)| and for all N ∈ (nN) ∩ M0 it holds

T nFP(n) ≤ G and T N � T nFP(n).

Proof Let n ∈ N be coprime to |L(S)|.
First, we prove that T n

SP
(n)

S is a subgroup of S. Let t, s ∈ T n
S and p, q ∈

P(n)

S . We have to show that tp(sq)−1 ∈ T n
SP

(n)

S . Clearly, it holds tp(sq)−1 =
tpq−1s−1(pq−1)−1 pq−1. Since T n

S � S, we have (pq−1)s−1(pq−1)−1 ∈ T n
S , and

hence, it suffices to show that pq−1 ∈ T n
SP

(n)

S . Let P = L(p), Q = L(q) and R =
PQ−1 ∈ L(S). Leta = max

{
ã ∈ {0,−1, . . . } ∣∣ ∃ b ∈ Z such that a|L(S)|+bn = 1

}

and b ∈ Z such that a|L(S)| + bn = 1. We compute

pq−1 =
(

P, τ̃ (P) − a
∑

S∈L(S)

τ̄ (P, S)

)(

Q−1,−Q−1τ̃ (Q) + a
∑

S∈L(S)

Q−1τ̄ (Q, S)

)
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=
(

R, τ̃ (P) − PQ−1τ̃ (Q) − a
∑

S∈L(S)

(τ̄ (P, S) − PQ−1τ̄ (Q, S))

)

=
(

R, τ̃ (R) − τ̄ (PQ−1, Q) − a
∑

S∈L(S)

(τ̄ (P, S) − PQ−1τ̄ (Q, S))

)

=
(

R, τ̃ (R) − (a|L(S)| + bn)τ̄ (PQ−1, Q) − a
∑

S∈L(S)

(τ̄ (P, S) − PQ−1τ̄ (Q, S))

)

=
(
Id2 , τ̄ (R, Q)

)−bn
(

R, τ̃ (R) − a
∑

S∈L(S)

(τ̄ (PQ−1, Q) + τ̄ (P, S) − PQ−1τ̄ (Q, S))

)

=
(
Id2 , τ̄ (R, Q)

)−bn
(

R, τ̃ (R) − a
∑

S∈L(S)

(τ̃ (PQ−1) − τ̃ (PS) + PQ−1τ̃ (QS))

)

.

We use that
∑

S∈L(S) τ̃ (S) =∑S∈L(S) τ̃ (T S) for all T ∈ L(S).

pq−1 =
(
Id2 , τ̄ (R, Q)

)−bn
(

R, τ̃ (R) − a
∑

S∈L(S)

(τ̃ (PQ−1) − τ̃ (PQ−1S) + PQ−1τ̃ (S))

)

=
(
Id2 , τ̄ (R, Q)

)−bn
(

R, τ̃ (R) − a
∑

S∈L(S)

τ̄ (R, S)

)

∈ T n
SP

(n)

S .

Thus, we have T n
SP

(n)

S ≤ S.
Let π be the natural surjective homomorphism from G to S with kernel F . It holds

π−1(T n
SP

(n)

S ) = T nFP(n) and thus, T nFP(n) is a subgroup of G.
Now let N ∈ (nN) ∩ M0. Since n divides N , we have T N ⊂ T nFP(n). Since

N ∈ M0, we have T N � T nFP(n).

Recall Definition 4.8.

Remark 6.5 Let n ∈ N be coprime to |L(S)|. Let m ∈ M0, N = nm and
t1, . . . , td2 ∈ T n such that π({t1, . . . , td2}) generates T n

S , where π : T F → TS is
the natural surjective homomorphism. Then, the map

{0, . . . ,m − 1}d2 × F × P(n) → (T nFP(n))N , ((n1, . . . , nd2 ), f , p) 
→ tn11 . . . t
nd2
d2

f pT N

is bijective.

For Theorem 6.7 and its corollaries we need the groups GN , (T nF)N and (T m)N
for appropriate n,m, N ∈ N. These groups were already investigated in Sect. 3. The
following lemma characterizes the elements and orders of the groups which will be
needed for the proof of Theorem 6.7.

Lemma 6.6 Let t1, . . . , td2 ∈ T such that the set π({t1, . . . , td2}) generates TS , where
π : T F → TS is the natural surjective homomorphism. For all N ∈ M0 it holds

GN =
{
tn11 . . . t

nd2
d2

f pT N
∣
∣
∣ n1, . . . , nd2 ∈ {0, . . . , N − 1}, f ∈ F , p ∈ P(1)

}
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and particularly |GN | = Nd2 |F ||L(S)|.
For all n ∈ N and N ∈ (nN) ∩ M0 it holds

(T nF)N =
{
tnn11 . . . t

nnd2
d2

f T N
∣
∣
∣ n1, . . . , nd2 ∈ {0, . . . , (N/n) − 1}, f ∈ F

}

and particularly |(T nF)N | = (N/n)d2 |F |. Moreover, for all n ∈ N and N ∈ (nN) ∩
M0 it holds (T nF)N � GN .
For all m ∈ M0 and N ∈ mN it holds

(T m)N =
{
tmn1
1 . . . t

mnd2
d2

T N
∣
∣
∣ n1, . . . , nd2 ∈ {0, . . . , (N/m) − 1}

}
,

(T m)N is a subgroup of the center of (T F)N and particularly |(T m)N | = (N/m)d2 .

Proof Since P(1) is a representation set of G/T F , the map T × F × P(1) → G,
(t, f , p) 
→ t f p is bijective. The assertions are clear by Lemma 3.6, Theorem 3.11,
Lemma 3.7 and Proposition 3.9.

The following theorem characterizes the group GN for appropriate N ∈ N.

Theorem 6.7 Let m ∈ M0. Let n ∈ N be coprime to m and |L(S)|. Let N = nm.
Then, we have

GN = (T m)N � (T nFP(n))N

and (T m)N is isomorphic to Z
d2
n .

Proof. Let m ∈ M0. Let n ∈ N be coprime to m and |L(S)|. Let N = nm. By
Theorem 3.11 we have T m � G and T N � G, and by Lemma 3.7 we have T N � T m .
Hence, we have

(T m)N � GN . (9)

By Lemma 3.7 the group T m is isomorphic to Z
d2 and thus, (T m)N is isomorphic to

Z
d2
n . By Lemma 6.4 we have

(T nFP(n))N ≤ GN . (10)

For all N ∈ N and H ≤ S such that T N
S is a subgroup ofH, we denote

HN := H/T N
S .

Let π : GN → SN be the natural surjective homomorphism with kernel {gT N | g ∈
F}. We have

π((T m)N ∩ (T nFP(n))N ) ⊂ π((T m)N ) ∩ π((T nFP(n))N )
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= (T m
S )N ∩ (T n

SP
(n)

S )N

= (T m
S )N ∩ (T n

S )N

= {id}, (11)

where in the third step we used that for all p ∈ P(n)

S such that L(p) = Id2 we have
p ∈ T n

S and in the last step we used that the numbers nd2 and md2 are coprime,
|(T m

S )N | = nd2 , |(T n
S )N | = md2 and Lagrange’s theorem. By (11) and since π |(T m )N

is injective, we have

(T m)N ∩ (T nFP(n))N = {id}. (12)

We have

|GN | = |ker(π)||π(GN )| = |{gT N | g ∈ F}||SN | = |F ||L(S)|Nd2 , (13)

see Lemma 6.6, and

|(T nFP(n))N | = |ker(π |(T nFP (n))N
)||π((T nFP(n))N )|

= |F ||(T n
SP

(n)

S )N | = |F ||P(n)

S ||(T n
S )N | = |F ||L(S)|md2 , (14)

see Remark 6.5. By (13), (14) and since (T m)N is isomorphic to Z
d2
n , we have

|GN | = |(T m)N ||(T nFP(n))N |. (15)

By (9), (10), (12) and (15) we have

GN = (T m)N � (T nFP(n))N .

Corollary 6.8 Let m ∈ M0, ñ ∈ N, n = ñm|L(S)| + 1 and N = nm. Then we have

P(n)

S =
{(

P, τ̃ (P) + ñm
∑

Q∈L(S)

τ̄ (P, Q)

) ∣
∣
∣
∣ P ∈ L(S)

}

and

GN = (T m)N � (T nFP(n))N .

Proof Let m ∈ M0, ñ ∈ N, n = ñm|L(S)| + 1 and N = nm. In particular, n is
coprime to m and |L(S)|. We have

max
{
ã ∈ {0,−1, . . . } ∣∣ ∃ b ∈ Z such that ã|L(S)| + bn = 1

}

= max
{
ã ∈ {0,−1, . . . } ∣∣ ∃ b ∈ N such that (ã + bñm)|L(S)| + b = 1

}

= −ñm
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and hence,

P(n)

S =
{(

P, τ̃ (P) + ñm
∑

Q∈L(S)

τ̄ (P, Q)

) ∣
∣
∣
∣ P ∈ L(S)

}

.

By Theorem 6.7 we have GN = (T m)N � (T nFP(n))N .

Corollary 6.9 Suppose that G is a space group. Let N ∈ N be coprime to |L(G)|. Then
we have

GN = TN � {gT N | g ∈ P(N )}.

Proof Let G be a space group.We haveF = {id} and M0 = N. For all N ∈ N coprime
to |L(G)|, we have (T NP(N ))/T N = {gT N | g ∈ P(N )}. Thus, Theorem 6.7 implies
the assertion.

Corollary 6.10 Suppose that G is a space group. Let n ∈ N and N = n|L(G)| + 1.
Then it holds

P(N ) =
{(

P, τ̃ (P) + n
∑

Q∈L(G)

τ̄ (P, Q)

) ∣
∣
∣
∣ P ∈ L(G)

}

and

GN = TN � {gT N | g ∈ P(N )}.

Proof This is clear by Corollary 6.8 and Corollary 6.9.

Corollary 6.11 Suppose that G = T F . Let m ∈ M0 and n ∈ N be coprime. Let
N = nm. Then it holds

GN = (T m)N × (T nF)N .

Proof Suppose that G = T F . Let m ∈ M0 and n ∈ N be coprime. We have S = TS
and L(S) = {Id2}.Without loss of generalitywe assume that τ̃ = 0.Wehave τ̄ = 0 and
P(n)

S = {id}. Without loss of generality we assume thatP(n) = {id}. By Theorem 6.7,
Lemma 3.6(ii) and Proposition 3.9 we have GN = (T m)N × (T nF)N .
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A Induced Representations andMackey Analysis

With the aim to keep our presentation largely self-contained, we recall some topics on
induced representations and standardMackey analysis in a short appendix. Our setting
allows for a definition of induced representations as for finite groups, see, e. g., [39,
Section 8.2]. (For general locally compact groups the definition is more complicated,
see, e. g., [21, Chapter 2].) For notation we refer to the last paragraph of Sect. 1.

Definition A.1 Let H < E(d) be discrete and K be a subgroup of H such that the
index n = |H : K| is finite. Choose a complete set of representatives {h1, . . . , hn} of
the left cosets of K in H. Suppose ρ : K → U(dρ) is a representation of K. Let us
introduce a dot notation in this context by setting

ρ̇(g) :=
{

ρ(g) if g ∈ K
0dρ,dρ else

for all g ∈ H. The induced representation IndHK ρ : H → U(ndρ) is defined by

IndHK ρ(g) =
⎡

⎢
⎣

ρ̇(h−1
1 gh1) · · · ρ̇(h−1

1 ghn)
...

. . .
...

ρ̇(h−1
n gh1) · · · ρ̇(h−1

n ghn)

⎤

⎥
⎦ for all g ∈ H.

The induced representation of an equivalence class of representations is the equiva-
lence class of the induced representation of a representative. Moreover, let IndHK (K̂)

denote the set of all induced representations of K̂. We also write Ind instead of IndHK
if K and H are clear by context.

The following proposition is standard in Clifford theory.

Proposition A.2 Let H < E(d) be discrete and N be a normal subgroup of H such
that the index |H : N | is finite. Then the map

N̂ /H → IndHN (N̂ ), H · ρ 
→ IndHN ρ

is bijective, where N̂ /H = {H · ρ | ρ ∈ N̂ }.
Proof That this mapping is well-defined and surjective follows, e. g., from [21,
Proposition 2.39]. For its injectivity see, e. g., [9, Theorem 3.2(ii)].

We also record the following well-known results on the relation of irreducible and
induced representations adapted to our setting.

http://creativecommons.org/licenses/by/4.0/
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Proposition A.3 Let H < E(d) be discrete and K be a subgroup of H of finite index.
Then every irreducible representation ofH is a subrepresentation of a representation
which is induced by an irreducible representation of K.

Proof Let ρ be an irreducible representation of H. Choose σ ∈ K̂ such that σ is
a subrepresentation of ρ restricted to H. Then [27, Theorem 8.2] shows that ρ is a
subrepresentation of IndHK σ .

The following is Mackey’s irreducibility criterion, cp. [26], which we state in a
form that is directly implied by, e. g., [6, Theorem 1.1].

Theorem A.4 Let H < E(d) be discrete and N be a normal subgroup of H of finite
index. Let ρ be an irreducible representation ofN . Then IndHN ρ is irreducible if and
only if for every g ∈ H \ N the representations g · ρ and ρ are not isomorphic.

We finally state a version of the Mackey machine (cf. [28]) in a form proven in [22,
23] and adapted to our setting of discrete subgroups of E(d).

Theorem A.5 Let H < E(d) be discrete, N be a normal abelian subgroup of H of
finite index with respective Plancherel measures μH and μN and set P = H/N .
Suppose there is an H-invariant measurable μN -conull subset  ⊂ N̂ such that all
σ ∈  can be extended to a unitary representation σ̃ of Hσ . For σ ∈  and ρ ∈ Pσ

define the unitary representation σ × ρ of Hσ , acting on C
dσ dρ , by

(σ × ρ)(g) = σ̃ (g) ⊗ ρ(gN ) for all g ∈ Hσ .

Then the set

⋃

P ·σ∈/P

{
IndHHσ (σ × ρ)

∣
∣ ρ ∈ P̂σ

}

is a μH-conull subset of Ĥ.
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