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ABSTRACT

Introduction: Deep brain stimulation of the
subthalamic nucleus (STN-DBS) is an estab-
lished therapy for Parkinson’s disease (PD).
However, a more detailed characterization of
the targeted network and its grey matter (GM)

terminals that drive the clinical outcome is
needed. In this direction, the use of MRI after
DBS surgery is now possible due to recent
advances in hardware, opening a window for
the clarification of the association between the
affected tissue, including white matter fiber
pathways and modulated GM regions, and the
DBS-related clinical outcome. Therefore, we
present a computational framework for recon-
struction of targeted networks on postoperative
MRI.
Methods: We used a combination of preopera-
tive whole-brain T1-weighted (T1w) and diffu-
sion-weighted MRI data for morphometric
integrity assessment and postoperative T1w
MRI for electrode reconstruction and network
reconstruction in 15 idiopathic PD patients.
Within this framework, we made use of DBS
lead artifact intensity profiles on postoperative
MRI to determine DBS locations used as seeds
for probabilistic tractography to cortical and
subcortical targets within the motor circuitry.
Lastly, we evaluated the relationship between
brain microstructural characteristics of DBS-
targeted brain network terminals and postop-
erative clinical outcomes.
Results: The proposed framework showed
robust performance for identifying the DBS
electrode positions. Connectivity profiles
between the primary motor cortex (M1), sup-
plementary motor area (SMA), and DBS loca-
tions were strongly associated with the
stimulation intensity needed for the optimal
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clinical outcome. Local diffusion properties of
the modulated pathways were related to DBS
outcomes. STN-DBS motor symptom improve-
ment was highly associated with cortical thick-
ness in the middle frontal and superior frontal
cortices, but not with subcortical volumetry.
Conclusion: These data suggest that STN-DBS
outcomes largely rely on the modulatory inter-
ference from cortical areas, particularly M1 and
SMA, to DBS locations.

Keywords: Deep brain stimulation; Parkinson’s
disease; Probabilistic tractography; Cortical
thickness; Motor circuit

Key Summary Points

Despite advances in deep brain
stimulation (DBS) technology that
currently facilitate postoperative MRI
acquisition, it is still not widely used, and
its utility for studying widespread
modulatory effects of DBS remains to be
elucidated at the individual level.

We present a novel method to model DBS
locations on postoperative MRI.

The hyperdirect pathway likely underlies
the effects of DBS of the subthalamic
nucleus (STN-DBS) in Parkinson’s disease.

Optimal STN-DBS outcomes depend on
the connectivity and the morphometric
integrity of the modulated sensorimotor
circuits.

INTRODUCTION

Deep brain stimulation of the subthalamic
nucleus (STN-DBS) is an evidence-based and
highly effective therapeutic option for patients
with Parkinson’s disease (PD) with motor fluc-
tuations [1, 2]. The efficacy of DBS stimulation
for the improvement of major clinical motor
symptoms like tremor, rigidity, and bradykine-
sia is indisputable. Nevertheless, despite its wide

use and the clinical success of DBS [3, 4], its
mechanism at the stimulated site and the
anatomical structures influenced have not yet
been fully elucidated [5]. Such information is
however essential for modeling clinical
dynamics or managing stimulation-related side
effects. From the existing explanations about
DBS operation, the now prevailing theories
point to a stimulation-induced modulation of
the pathological brain circuitry [6, 7]. Therefore,
we hypothesize that DBS not only alters the
neural activity in the stimulated nuclei, but also
influences the fiber tracts entering, exiting, or
passing the stimulation site within the corti-
cobasal ganglia-thalamocortical motor circuits.
Among these circuits, the hyperdirect cortical
STN projections, shown in studies on primates
and recent studies on humans [8–10], presum-
ably mediate the effects of STN-DBS [11, 12]
through rapid movement inhibition [13]. This
is further supported by electrophysiological
reports of more prominent beta oscillatory
activity in the basal ganglia than in motor-tha-
lamic neurons, thus suggesting that the thala-
mus is more closely involved in tremor
production [14] and is related to non-motor
features in PD [15]. However, the exact charac-
terization of the relationship between anatom-
ical STN projections with stimulation
parameters and disease-relevant clinical out-
comes still remains elusive. Here, noninvasive
evaluation of connecting white matter (WM)
fiber tracts that are in direct contact with the
DBS leads, based on diffusion-weighted mag-
netic resonance imaging (DWI), is key to
advancing individualized DBS planning and
therapy [16]. In this direction, even though a
considerable amount of work has been con-
ducted regarding the identification of WM
pathways from DBS electrode locations and
DBS-modulated gray matter (GM) regions as
well as their relationship to clinical outcomes
[17–20], previous work has lacked a detailed
examination of the microstructural properties
of the reconstructed pathways and the integrity
of their connected GM terminals as derived
from available morphometric and diffusion
magnetic resonance imaging (MRI) metrics.

An important aspect of the variance in indi-
vidual patient outcomes after STN-DBS is the
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variability in electrical stimulation parameters,
which are chosen based on empirical, clinical
observations regarding the exact DBS electrode
contact positions. Appropriate modeling of DBS
electrode contact locations is key for studying
the effects of STN-DBS mechanisms. The vol-
ume of tissue activated (VTA) is a popular
computational model for identifying the loca-
tion of neural activation during DBS stimula-
tion [6, 10, 21]. This method is limited and
biased by assumptions about WM fiber orien-
tation that influence axonal excitability [22].
These models may also rely on the quality of the
DWI data and the tract reconstruction algo-
rithm, and the limited predictability of active
DBS contact locations [23]. Hence, there is a
need for further methodological development
for improved modeling of DBS targeted sites
and effects.

In this study, we propose a novel method-
ological approach to integrate postoperative
MRI for determining the DBS contact locations
and analyze the WM pathways connecting the
modeled electrode locations to nodes of the
motor network in an individualized fashion
using diffusion tensor imaging (DTI) and prob-
abilistic tractography. We provide an example
for the ability to detect the DBS electrode tip
across different DBS systems. Further, we probe
the method performance retrospectively in a
cohort of PD patients. We evaluate the
microstructural characteristics of the WM con-
nections from the modeled stimulation sites to
cortical targets and basal ganglia within the
motor network, and test the relationship to the
clinical outcomes and stimulation parameters
of STN-DBS. The motivation for additionally
studying the structural integrity of subcortical
GM regions in our analysis was based on previ-
ous studies showing basal ganglia involvement,
particularly the caudate and putamen, as well as
the thalamus [24, 25], together with the exis-
tence of bilateral projections from the premotor
and motor cortex to basal ganglia structures. We
hypothesized (1) a relationship between DBS
electrode locations and specific motor-related
areas in the brain networks, and (2) that the
location of these network areas would correlate
with beneficial clinical outcomes. Additionally,
we evaluated whether the local WM tissue

microstructure of the active electrode contact or
the GM characteristics at connected areas were
associated with clinical outcomes after STN-
DBS.

METHODS

Fifteen patients with idiopathic PD without
dementia selected for DBS treatment (11 male,
mean age 63.3 ± 8.2, Hoehn and Yahr stage
(H&Y) 3.5 ± 0.8) were included in this study.
Detailed demographic and clinical data are
given in Table 1. Unified Parkinson’s Disease
Rating Scale part 3 (UPDRS-III) values in the
medication OFF and stimulation ON condition
were used to calculate the quotient to the pre-
operative UPDRS-III score in medication OFF.
This quotient (further referred to as qUPDRS)
was selected as the value for clinical outcome.
Further, UPDRS-III lateralized hemi-body scores
were computed by totaling the right and left
appendicular UPDRS-III items (22–26) individ-
ually [26].

This study was approved by the institutional
review board of the Medical Faculty of Sch-
leswig–Holstein University Hospital UKSH, Kiel,
Germany (approval number: AZ A 153/01). Each
participant gave written informed consent
before participation, and all the work described
has been carried out in accordance with the
principles expressed in the Declaration of
Helsinki.

Surgical Procedure and Stimulation
Parameters

The surgical procedure has been previously
described in detail [27, 28]. In brief, DBS elec-
trodes (model 3389 DBS, Medtronic) were
implanted bilaterally in the STN by stereotactic
MRI, concomitant with microelectrode record-
ing, ventriculography, or a combination of
these techniques. The Medtronic 3389 lead
consists of four cylindrical contacts, each
1.5 mm in height, separated by a 0.5 mm
cylindrical insulator. Postoperatively, the opti-
mal stimulation settings and antiparkinsonian
medication were progressively adjusted accord-
ing to the clinical response. The pulse setting
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was 60 ls in duration at 130 Hz, with voltage
adjusted to the individual patient. For our
analysis, we considered the stimulation param-
eters at a stable state at 3 months after implan-
tation. Clinicians who were blinded to the
hypothesis and goals of this study performed
the stimulation adjustment. We picked up the
stimulation intensity at the active electrode as
expressed in volts and considered it for further
analyses. The medical treatment was individu-
alized after DBS according to the clinical
indication.

MRI Data Acquisition

All patients underwent preoperative high-reso-
lution brain imaging using a 3 T MRI scanner
(Philips Achieva, Philips Medical Systems, Best,
Netherlands) with an eight-channel SENSE head
coil. Whole-brain T1-weighted structural ima-
ges were acquired using a standard magnetiza-
tion-prepared rapid gradient-echo (MPRAGE)
sequence (TR = 7.7 ms, TE = 3.6 ms, flip
angle = 8�, 160 contiguous sagittal slices with
1 mm isometric voxel, field of
view = 240 9 240 mm). DWI at 2 mm isometric
voxel resolution covering a field of view of

224 9 224 mm was obtained using 32 gradient
directions (b value 1000 s/mm2, TE = 59 ms,
TR = 11,855 ms, fat saturation ‘‘on,’’ 60 con-
tiguous slices).

On the first day after STN-DBS implantation,
a whole-brain T1-weighted structural image was
acquired using a standard MPRAGE sequence
(TR = 10.7 ms, TE = 1.96 ms, flip angle = 8�, 160
contiguous coronal slices with 2 mm isometric
voxel size, field of view = 256 9 256) on a 1.5 T
MRI scanner (Philips Achieva, Philips Medical
Systems, Best, Netherlands). Further low-reso-
lution fast fluid-attenuated inversion-recovery
(FLAIR), and DWI sequences were recorded to
exclude postoperative complications. All
patients tolerated the MRI scans without side
effects.

Determination of Contact Position
and Contact-Specific Masks

Figure 1 depicts example cases of three patients
implanted with electrodes from different com-
panies currently manufacturing DBS systems,
namely Medtronic DBS systems (Medtronic,
Dublin, Ireland), Boston Scientific (Boston Sci-
entific Corporation, Marlborough, MA, USA),

Table 1 Cohort characteristics

Parkinson’s disease patients (n = 15) No, – SD

Sex (male/female) 11/4

Age (years) 63.3 ± 8.2

Disease duration (years) 13.6 ± 6.5

Preoperative H&Y 3.8 ± 0.8

Postoperative H&Y 2.3 ± 0.6

Preoperative UPDRS III (Med OFF) 34.5 ± 8.4

Preoperative UPDRS III (Med ON) 17.4 ± 9.0

Postoperative UPDRS III (Stimulation ON Med OFF) 13.9 ± 6

Postoperative UPDRS III (Stimulation ON Med ON) 11.6 ± 5.7

Preoperative dose of levodopa (mg/day) 827 ± 397.0

Postoperative dose of levodopa (mg/day) 335 ± 202.6

Demographic characteristics and clinical parameters assessed before and after STN-DBS surgery
Med medication, UPDRS-III Unified Parkinson’s Disease Rating Scale, H&Y Hoehn and Yahr scale
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and St. Jude Medical (Abbott Laboratories,
Abbott Park, IL, USA). The contact positions of
the implanted electrodes were modeled using
an optimized lead position model, based on the
postoperative T1-intensity profile following a
two-step method. While the algorithm can
generally be applied to leads from different
vendors (as shown in Fig. 1), patients included
in our analysis were exclusively implanted with
Medtronic DBS electrodes.

Step 1. Delineation of contact positions: The
lead was mathematically modeled by a straight
line and the position was determined from a set
of manually placed 3D space points (markers on
the postoperative T1) along the electrode tra-
jectory. The electrode trajectory was determined
within the MRI signal intensity using all three
orthogonal views (sagittal, coronal, and trans-
verse). Markers were placed at the target points:
near the points of exit and DBS lead dip,

approximately linearly along the trajectory
artifact (Fig. 1 a–c, upper panels). Finally, a
three-dimensional least-square optimization
procedure was used to determine the exact
position of the trajectory, implemented in R
(https://www.R-project.org/). Based on this
optimized lead position, the intensity profile
along the lead trajectory was extracted from the
T1-weighted images (Fig. 1a–c, middle panel).
The electrode contact positions were then
determined at the center of the intensity dip
apparent in the extracted intensity profile
(Fig. 1a–c, lower panel).

Step 2. Active electrode contact stimulation vol-
ume modeling: The determined electrode contact
positions were used to create masks based on
spatial Gaussian weighting, centered at the
exact contact positions (according to the man-
ufacturer’s annotations for the implanted DBS
electrodes) and extended in two main

Fig. 1 Exemplary depiction of electrode positions and
trajectory calculations for three different DBS electrode
systems: a Medtronic 3389, b Boston Scientific Vercise,
and c St. Jude L6170. From top to bottom: Depiction of
the DBS lead artifact on postoperative T1 images. For each
DBS electrode, the intensity profile was calculated along
the lead artifact (upper row), and the electrode contact
mask was determined by positioning the four contacts

manually at the center of the intensity dip apparent in the
extracted intensity profile (middle row). The lower row is a
schematic representation of the DBS electrode leads
utilized, illustrating the four contacts at the distal end.
Of note, the data on Boston Scientific and St. Jude
localization is just illustrative and is not included in the
analyses of the current work
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directions: (i) along the lead dip (i.e., transverse
plane of the MRI), to model contact dimen-
sions, known from the manufacturer’s annota-
tions; and (ii) stimulation depth, covering the
orthogonal directions to the electrode implan-
tation (i.e., coronal and sagittal planes). See
Fig. 2 for a detailed depiction of the Gaussian
mask creation. The mask extension was restric-
ted to a Gaussian shape with two standard
deviations along the lead and two standard
deviations in stimulation depth, resulting in
isometric masks with 4.7 mm full width at half
maximum (FWHM), corresponding to a radius
of ca. 2.35 mm. These parameters were selected
considering existing literature reporting that
neural elements up to a distance of 2 mm from
the active contact might be excited by DBS
[29–31]. The generated Gaussian masks were
then used as seed masks in further probabilistic
tractography analysis.

MRI Processing

T1-weighted structural images were used to
extract measures of morphometric integrity,
including cortical thickness values and

subcortical volumes. The individual cortical
surfaces were reconstructed from the skull-
stripped and intensity-inhomogeneity-cor-
rected T1-weighted images using a semiauto-
matic pipeline implemented in FreeSurfer
(http://surfer.nmr.mgh.harvard.edu), as descri-
bed elsewhere [32]. Then, cortical thickness,
defined as the distance between the gray/white
and gray/CSF surface models, was calculated for
motor regions: precentral, postcentral, middle
frontal and superior frontal, and paracentral
cortices, as defined in the Desikan-Killiany atlas
[33]. Further, the FMRIB Software Library (FSL)
FIRST tool was used to obtain subcortical vol-
umes, as described previously [34]. As for corti-
cal regions, we focused our subcortical analysis
on regions of the motor system: thalamus,
caudate nucleus, putamen, and globus pallidus
externus (GPe) and internus (GPi).

Diffusion Imaging Processing

Diffusion imaging allows the study of brain
microstructural characteristics based on the
three-dimensional diffusion properties of water
within the brain. Diffusion metrics include axial

Fig. 2 Depiction of Gaussian masks. Exemplary illustra-
tion of the creation of the Gaussian masks at the distal end
of the DBS electrode lead at contact locations. According
to the MRI system coordinates, masks extended along the
lead dip (height; transverse) and to the orthogonal
directions (depth; sagittal and coronal) of a particular

contact, in this example contact 0. Mask intensity follows a
Gaussian distribution from the center of the contact to the
edges of the mask
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diffusivity (AD), radial diffusivity (RD), mean
diffusivity (MD), and fractional anisotropy (FA),
which were calculated using the FSL Diffusion
Toolbox (FDT) (http://www.fmrib.ox.ac.uk/fsl/)
[35]. Briefly, correction for eddy currents and
head motion was first performed, followed by
skull-stripping. Then, geometric distortions in
the diffusion data were corrected by applying a
non-rigid registration between the undistorted
T1-weighted anatomical image and the first
image (i.e., echo planar imaging [EPI] image
with no diffusion weighting or b0 image) [36],
and the transformation was finally applied to all
volumes of the DWI images. After preprocess-
ing, DTI was applied. Here, the six diffusion
non-collinear dimensions were reduced via
matrix diagonalization to its principal direc-
tion, resulting in three eigenvalues (k) at each
voxel. AD is the first eigenvalue and RD is the
mean of the second and third eigenvalues. MD
is the mean of the three eigenvalues and FA is a
nonlinear mapping of RD and AD. FA is a
summary measure of the microstructure
including myelin axonal loss and increased
extracellular space [37]. RD is a putative specific
marker of myelin and AD of axonal damage
[38]. MD reflects the membrane density and
fluid viscosity [39]. All diffusivity metric images
were aligned and affine-transformed into the
Montreal Neurological Institute (MNI) space.

Diffusion Probabilistic Tractography

Three-dimensional representations of WM
pathways, the so-called WM tractography, were
obtained by firstly estimating the distribution of
diffusion parameters with BEDPOSTX (Bayesian
Estimation of Diffusion Parameters obtained
using sampling techniques) [40], followed by a
multi-fiber model allowing for tracing of fibers
through regions of crossing or complexity
[40, 41] as implemented in FSL [42]. Proba-
bilistic tractography analysis is divided into
three main stages, namely seeding, propaga-
tion, and termination. Seeding consists of
defining the points from which the fiber bun-
dles will be drawn—in our study, the Gaussian
weighting masks of the contact positions. The
propagation process consisted of gradually

generating fibers by accounting for the uncer-
tainty of the estimation. This results in proba-
bility maps representing the likelihood of a
voxel forming part of a fiber and provides the
multiple possible fiber directions emanating
from the seed. Here, we drew 5000 streamline
samples from our seed voxels to form an esti-
mate of the probability distribution of connec-
tions from each seed voxel. The last step,
termination of the fiber tracking, aims at
avoiding propagating the fibers to voxels where
robustness of the diffusion tensor vector field is
not assured. This step was based on well-defined
termination criteria, including a minimum FA
threshold (0.2) and turning angle threshold
(80�). Spurious connections were discarded by
including only voxels through which at least
10% of all streamline samples had passed [43].
To allow bias-free definition of target termina-
tion regions, we built masks for cortical seeds
from anatomical coordinates known from a
meta-analysis for activation studies [44]. The
generated target masks were spheres with a
radius of 2 mm (and 3 mm for comparison)
centered at the primary motor cortex (M1: -37
-21 58), premotor dorsal (PMd: -30 -4 58),
and premotor ventral (PMv: -50 5 22; and
supplementary motor area [SMA]: -2 -7 55)
[44, 45]. Coordinates were transformed into
MNI space using GingerALE [46]. Target masks
of the globus pallidus (internus and externus)
were generated from the MNI probability atlas
by including the entire areas [47].

A further tractography analysis aimed at
generating voxel-based connectivity index
maps (reflecting the abovementioned probabil-
ity in connection of each voxel in the target
from the seed) and delimiting the cortical con-
nections from the contact positions to the
connections of the corticospinal tract (CST).
This tract also included the M1 mask but had a
conjunction mask of the ipsilateral cerebral
peduncle region and internal capsule [48]. This
information was fed into further statistical
analysis as connectivity values. To evaluate the
link between connectivity patterns from result-
ing individual probabilistic tractography maps
and DBS outcome, each voxel on the recon-
structed tract and subject was assigned a value
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on the corresponding FA, AD, RD, and MD
maps.

Statistical Analyses

The statistical analyses were performed under the
general linear model using SPSS software (version
16.0, SPSS Inc, Chicago, IL, USA) and MATLAB
R2018b (The MathWorks Inc. Natick, MA, USA).
Data from both hemispheres were pooled to
improve the statistical power of the analysis, and
one-sample t tests were used to test whether the
STN-DBS clinical outcome measurements (i.e.
qUPDRS) deviated from a zero mean.

For extracted connectivity values for the
probability maps, an analysis of variance
(ANOVA) was conducted to evaluate its associ-
ation with clinical outcomes, including con-
nectivity values to target region as within-
subject factor (six levels: GPe, GPi, SMA, M1,
PMd, PMv) and DBS stimulation intensity as
dependent variable. A second ANOVA was
modeled with the same within-subject factors
but qUPDRS as dependent variable. Post hoc
analyses were conducted, depicting specific
associations between the dependent variables
(DBS stimulation intensity or qUPDRS) and the
connectivity values to each target indepen-
dently (GPe, GPi, SMA, M1, PMd, PMv).

To analyze the association between diffusion
parameters and clinical outcomes, we ran two
independent ANOVAs, using either DBS stimu-
lation intensity or qUPDRS as dependent vari-
ables and the diffusion parameters of the
reconstructed CST (four levels: FA, MD, AD, and
RD) as within-subject factors.

To evaluate the association between cortical
thickness and clinical outcomes, an ANOVA
model was used. This included DBS stimulation
intensity as dependent variable and cortical
thickness (five levels: precentral, postcentral,
middle frontal, superior frontal gyrus, paracen-
tral lobule) as within-subject factors. A second
ANOVA was modeled for qUPDRS as dependent
variable.

For the subcortical volumetry, again ANO-
VAs were set to evaluate the association
between DBS clinical outcomes and subcortical
integrity. DBS stimulation intensity and

qUPDRS were used as continuous predictors.
Both ANOVAs included the subcortical volumes
(four levels: thalamus, caudate nucleus, puta-
men, and pallidum) as within-subject factors.

Correction for multiple comparisons was
performed across ANOVA models using the false
discovery rate (FDR), and the subsequent post
hoc analyses were adjusted for multiple com-
parisons using the Bonferroni test at a 95%
confidence level.

RESULTS

DTI Analysis and Diffusion Parameters

The analysis performed to assess the WM
microstructural changes using various diffusion
parameters including FA, MD, AD, RD, and the
probability of major (f1) and secondary (f2) fiber
direction showed no significant associations for
the effect of interest with respect to the stimu-
lation intensity.

Probabilistic Tractography

Probabilistic tractography was performed from
seed (Gaussian masks from the active electrode
contact) to target (cortical—M1, SMA, PMd,
PMv, and subcortical—GPe, GPi) regions to
assess the connectivity profile from the stimu-
lation site to various cortical and subcortical
regions. The ANOVA evidenced significant
associations between DBS intensity and con-
nectivity across seed regions (F(5, 140) = 2.35,
p\0.05). Specifically, DBS stimulation inten-
sity was negatively associated with the connec-
tivity of the SMA (r = - 0.43, F = 6.26,
p = 0.018, Fig. 3A) and M1 (r = - 0.46, F = 7.44,
p = 0.011, Fig. 3B). The ANOVA including
qUPDRS revealed significant associations with
regional connectivity (F(5, 140) = 8.81, p\0.05),
where associations between DBS stimulation
intensity appeared with SMA (r = - 0.37,
F = 3.58, p = 0.034) and M1 (r = - 0.36, F = 4.2,
p = 0.025). No associations with connectivity
indices from the cortical (PMd, PMv) or sub-
cortical (GPi or GPe) regions of interest were
found.
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Reconstructed WM pathways from the
Gaussian masks showed a clear connectivity
profile reaching cortical regions in the motor
and frontal regions (Fig. 4B). Within this tract,
an association was confirmed between qUPDRS
(F(3, 84) = 2.95, p\ 0.05) and the diffusion
parameters. In particular, worse DBS outcomes
were associated with higher AD (r = 0.44,
F = 6.71, p = 0.015) and RD (r = - 0.29,
F = 4.47, p = 0.04) values (Fig. 4C).

To shed further light on whether specific
connections within the CST, particularly to M1
and SMA, may influence the observed connec-
tivity, their overlap with DBS stimulation was
plotted (Fig. 5). Visually, the lower stimulation

intensities from DBS locations overlapped with
both CST tracts (M1 and SMA), thus confirming
the results between connectivity and voltage
(Fig. 3a and b).

Cortical and Subcortical Analysis

Cortical thickness and subcortical volumes were
further assessed to evaluate whether GM char-
acteristics of the network regions are related to
the DBS stimulation clinical outcomes. The fit-
ted models revealed an association between
qUPDRS and cortical thickness (F(4, 112) = 49.7,
p\0.01), in which the middle frontal cortex

Fig. 3 Involvement of SMA and M1. Regression analysis
between stimulation intensity at the active contact and the
connectivity indices for a SMA (r = 0.43, F = 6.26,
p = 0.018) and b M1 (r = 0.46, F = 7.44, p = 0.011),
respectively. c Comparison of connectivity indices across
target mask of two sizes centered at MNI coordinates from

a meta-analysis of activation studies (see ‘‘Methods’’ section
for detailed information), evidencing effects of size only in
M1 and SMA. d The mean number of reconstructed DTI
streamlines crossing each voxel of the Gaussian seed masks
and connecting to a cortical target region
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(r = 0.49, F = 8.92, p = 0.006, Fig. 6) and supe-
rior frontal cortex (r = 0.38, F = 4.80, p = 0.037)
were the only two significant variables. No fur-
ther associations between qUPDRS and cortical
thickness in the precentral, postcentral, or
paracentral cortical thickness were found (all
p[0.1 corrected for multiple comparisons).

Analyses on subcortical regions revealed no
associations between structural integrity and
stimulation intensity or qUPDRS after STN-DBS,
for either qUPDRS (F(3, 84) = 1.29, p[0.1) or
DBS stimulation intensity (F(3, 84) = 1.66,
p[0.1).

DISCUSSION

Using a novel method for modeling DBS leads
and contact locations according to the artifact

intensity spectrum on postoperative whole-
brain T1-weighted images, we show that the
postoperative outcome of STN-DBS is strongly
associated with individual connectivity patterns
derived from diffusion MRI probabilistic trac-
tography. Particularly, we show that structural
connectivity from active stimulation contacts
to M1 and SMA, among studied cortical and
subcortical regions, were the only regions
strongly associated with the modulatory effects
of STN-DBS. Considering cortical thickness as a
parameter of GM microstructural tissue integ-
rity [49, 50] and diffusion metrics of WM
microstructure, we provide further evidence
that the STN-DBS clinical outcome is strongly
associated with the individual tissue character-
istics and connectivity profiles extending from
the local characteristics at the stimulation site

Fig. 4 Connectivity analysis among cortical masks. a Max-
imum probabilistic map depicting the individual locations
of the binary Gaussian masks at the active electrode
contact location across participants, where the color scale
indicates none (10%, dark purple) or all patients (100%,
yellow) having overlapping contact masks at each voxel. In
green, the sensorimotor part of the STN as defined by
Accolla et al. [81] is used as anatomical reference.
b Reconstructed white matter pathways, as determined
by probabilistic tractography, connecting the seed masks
from DBS locations with the target cortical regions, while

going through the basal ganglia and the internal capsule to
the cortex. Warm color coding represents the number of
DBS electrodes (in each brain hemisphere) that have the
pathways crossing through. For example, dark orange areas
depict pathways that were targeted by few electrodes, while
brighter colors show that these voxels contain connections
that were identified by a higher number of electrodes.
c Regression plots depicting the association between
diffusion metrics (axial diffusivity—AD, and radial diffu-
sivity—RD) and qUPDRS-III
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or volumetric properties of the studied basal
ganglia structures.

WM Projections Between STN-DBS
Contact Locations and Motor Regions
Relate to Clinical Outcomes

The proposed method for active DBS electrode
contact modeling identifies the connectivity
profile for defining effective DBS implantation

and optimal outcome. We showed that con-
nectivity from the stimulation site to cortical
regions within the motor circuits is strongly
associated with optimal clinical effects for
motor symptoms and with the lowest stimula-
tion current for optimal outcome during STN-
DBS. This is in accord with the recently pro-
posed network mechanism of action, meaning a
global modulation of distributed brain networks
[5–7, 10]. From all included regions within the
motor circuits, only the connectivity to M1 and
SMA was shown to be related to lower DBS
intensities required for effective STN-DBS out-
comes. Concordant with our results, atrophy in
the SMA and premotor cortex has recently been
reported as a predictor of DBS outcomes in PD
[51]. SMA activation has been hypothesized to
take place through activation of fibers within
the hyperdirect pathway [18]. Abnormal con-
nectivity between the STN and M1 and modu-
lation of M1 excitability by STN-DBS have also
been proposed as an important fingerprint of
PD-related pathophysiological alterations
[52, 53]. Our results confirm the importance of
the SMA and M1 in the response to STN-DBS.

The direct involvement of the M1 for the
effects of the STN-DBS has also been suggested
in rodent PD models [11, 12]. First, in animal
models, DBS-induced antidromic spikes in layer
V pyramidal cells triggered a dampened oscil-
lation of local field potentials in the cortex with
a resonant frequency around 120 Hz [12]. Sec-
ond, using optogenetics and solid-state optics,
direct activation of cortical afferents from M1
projecting to the STN region was explicitly
associated with therapeutic benefit [11]. Of

Fig. 5 Corticospinal tracts and DBS intensity. Represen-
tation of the sensorimotor corticospinal tracts (CST) in
relation to stimulation at electrode locations. The color
scale represents the mean applied stimulation intensity at
the effective electrode locations among all patients. The
CST part projecting to the SMA is represented in red, and
projections to M1 are shown in violet. The tracts were
constructed with either SMA or M1 masks as target
regions, while tracts were seeded from the cerebral
peduncle (CP) [82]. Tract masks are freely available at
http://lrnlab.org/

Fig. 6 Cortical thickness analysis. Regions of interest used
for cortical thickness association analyses (r = 0.49,
F = 8.92, p = 0.006) between the morphometric integrity

of the middle frontal cortex and the quotient of post- to
preoperative UPDRS scores (qUPDRS)
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note, direct stimulation of the pyramidal tract
would drive the activation of cranial or spinal
motor neurons, leading to muscle contractions
[54, 55], which were not observed in any of our
patients. Based on these studies, the current
results suggest that STN-DBS may modulate the
connections between M1 and STN and SMA and
STN via the hyperdirect pathway and func-
tionally related circuits, in a way that the cor-
ticobasal-ganglia-cortical loop is normalized
towards the level of healthy circuits. Therefore,
in patients with PD, STN-DBS might achieve
maximum clinical outcome improvement
through modulation of these pathways [10].

The association between correct DBS contact
implantation and beneficial outcomes may be
directly linked to the fact that DBS-programmed
electrical stimulation parameters restrain the
extent of the applied electrical field and thus, to
some extent, the type of neural elements that
are activated and inhibited [56]. This associa-
tion can currently be extended beyond the local
properties of the targeted region to include
specific fibers to be implicated in the improve-
ment of particular symptoms. For example,
when studying the relationship between elec-
trode connectivity, derived from diffusion MRI
data, and improvement in cardinal disease
symptoms, the connectivity from active DBS
electrode locations to M1 explained improve-
ment in tremor, connectivity to SMA explained
improvement in bradykinesia, and connectivity
to both the SMA and prefrontal regions
explained improvements in rigidity [10].

The duality of DBS as a research and clinical
tool with which we can investigate the physio-
logical underpinnings of brain dysfunction
associated with a pathological condition and
modulate brain circuitry as a therapeutic inter-
vention can be translated into clinical settings
to deliver individualized treatments and
diminish potential side effects. For example, the
neurologist could be informed about the con-
nectivity profile of STN-DBS contact locations
to adjust the parameters and maximize the
outcome effects.

WM Connectivity Microstructure and DBS
Outcomes

Measures of WM microstructure, particularly
AD and RD, and their alterations in localized
brain regions have previously shed light on
important processes of PD pathology [57–59],
due to their ability to depict even small varia-
tions in structural connectivity [60, 61]. The
finding that AD and RD are related to the
qUPDRS-III substantiated that both the integ-
rity of the axons and the level of myelination
within the targeted network influence the out-
come of STN-DBS. This strengthens our
hypothesis that the STN-DBS effect is relayed on
the network pathways from the active DBS
electrode contacts.

Cortical-Subcortical Morphometry
and STN-DBS Clinical Outcome

For our analyses we used the quotient of pre-
operative and postoperative scores as clinical
outcome of STN-DBS. This approach permits a
reduction in the inter-individual variations and
therefore an unbiased estimation of associations
with GM circuit integrity [51]. In the current
study, the clinical motor improvement after
STN-DBS correlated with cortical thickness val-
ues in the middle frontal and superior frontal
cortices but not in the precentral, postcentral,
or paracentral cortices, suggesting a topo-
graphic specificity of the STN-DBS effect. In this
sense, patients with atrophy in the frontal cor-
tices before surgery had a clinically inferior STN-
DBS outcome relative to those with preserved
cortical morphology. Previous studies have
suggested that subthalamic activity is modu-
lated by cortical activity in the frontal regions,
particularly in the alpha (7–13 Hz) and beta
(15–35 Hz) bands [62]. Moreover, in PD
patients, cortical atrophy in the frontal cortex
and the other regions used in the current study
is accelerated already in the early stages of dis-
ease [25], and is also associated with the clinical
status of motor symptoms [63], PD degenera-
tion [64, 65], disease progression [66], non-
motor symptoms such as cognitive impairment
[67], and DBS outcomes [51]. Concordantly, it
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was more recently shown that the clinical
effectiveness of STN-DBS is strongly associated
with the WM network connectivity profile of
the frontal, prefrontal, and cingulate cortices
[68]. Our data take these findings a step further,
into a new framework that stresses not only the
role of the microstructural integrity WM path-
ways but also the anatomical integrity of the
regions belonging to the motor network for
optimal improvement after STN-DBS.

Therefore, this complementary data on dis-
ease-relevant subcortical regions rounds out our
proposed framework, allowing for more in-
depth hypothesis testing. The lack of associa-
tions between subcortical structures and the
clinical outcome or stimulation parameters can
be explained by the fact that the distribution of
regional atrophy predominantly involves dis-
tributed brain regions at once, and individual
evaluation of each region may reflect relatively
narrow inter-subject variability, since all the
included patients were at similar disease stages
(indicated by the H&Y scores), with similar
disease duration and motor symptoms before
STN-DBS therapy. These results uncover a
highly specific relationship between STN-DBS
effects and the structural integrity of regions
within the motor circuit and directly connected
to the stimulation sites.

Study Limitations

This study does have some limitations. First,
although we provide an example for the elec-
trode detection on postoperative MRI for dif-
ferent DBS systems, the analyses were
performed using DBS electrodes from a single
vendor. Whereas validation of detection per-
formance with electrodes from different ven-
dors with increased sample sizes would be
desirable, the effects and possible bias of com-
bining patients with different DBS systems still
needs further clarification, while usage of mul-
ticentric data to increase the sample size could
add a confounding effect related to differences
in surgical procedures that cannot be easily
accounted for. Also, relatedly, for segmented
leads, allowing for directional stimulation,
identification of the rotation along the

insertion axis would need to be taken into
account. Even when work has been conducted
in this direction [69–71], no current perfect
(automatic) algorithm for this aim exists, which
is partly due to the symmetry of the observed
artifact and the suboptimal selection of the
artifact center on the postsurgical images. A
further limitation is related to MRI acquisitions,
which intrinsically restrict the discrimination of
subcortical brain structures and precise delimi-
tation of electrode boundaries at current com-
mon magnetic fields (1.5 and 3 Tesla). While
delimitation of smaller brain structures is cur-
rently enabled by the use of brain atlases, DBS
technology still needs further improvement
before being able to introduce ultra-high-field
MRI sequences for detailed electrode localiza-
tion. This is not only for patient safety during
the acquisition of postoperative MRI, but also to
avoid signal distortions that may appear in MR
images due to the material used for constructing
DBS electrodes. Moreover, there are some effects
that may have remained hidden due to the
modest sample size, including the link between
cortical integrity and WM connectivity to the
STN.

A further possible shortcoming of our study
if the fact that targets for tractography were
defined as spheres, which are relatively small
compared with the size of the cortical areas of
interest. The primary motivation in using this
approach was to provide a bias-free definition of
target termination regions—i.e., different par-
cellation schemes deliver different organization
and anatomical delimitations, with a direct
impact on connectivity measurements [72].
Secondly, by controlling the size across the
brain regions, we avoid the bias wherein larger
regions get a larger number of terminating
streamlines [72, 73], thus increasing the com-
parability of the connectivity index across
regions while facilitating its interpretability.

It should be noted that different algorithms
already exist for electrode localization and
reconstruction, as well as for the modeling of
the stimulation volumes (see e.g. [6, 74–77]).
Unfortunately, a direct comparison among
software is not straightforward due to differ-
ences in the algorithms implemented and the
manual refinements often required. A
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distinctive feature of the framework presented
herein is the ability to work directly with post-
operative MRI data for electrode localization,
which circumvents the effects of interpolation
during image preprocessing as in other
pipelines.

Of note, the present results go beyond the
utilization of a novel framework for evaluating
DBS outcomes and its imaging underpinnings,
to largely validate recent reported findings in
predicting DBS outcomes from imaging features
[6, 10, 25, 51, 78, 79], recently reviewed in
Gonzalez-Escamilla et al. [80]. This is of high
relevance in the face of the current replication
crisis affecting many scientific studies.

CONCLUSIONS

Altogether, our data suggest that modeling of
DBS electrode contacts based on postoperative
MRI acquisitions could be used as a tool to
investigate DBS effects. The current analyses
revealed that the clinical effects of STN-DBS in
PD distinctively relate to the connectivity pro-
file from the stimulation location within the
STN to M1 and SMA regions, and the morpho-
metric integrity of these connected regions.
Structural MRI and DTI pattern studies are of
high importance for refining STN-DBS targeting
and potentially improving the network modu-
lation achieved, with clinical implications. The
developed framework can be applied to refine
DBS targeting and improve the analyses of tar-
geted neuromodulation of specific networks
through modeling of the systemic effects
achieved at an individualized MRI-driven level.
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