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Abstract.
Background: Movement execution is impaired in patients with Parkinson’s disease. Evolving neurodegeneration leads to
altered connectivity between distinct regions of the brain and altered activity at interconnected areas. How connectivity
alterations influence complex movements like drawing spirals in Parkinson’s disease patients remains largely unexplored.
Objective: We investigated whether deteriorations in interregional connectivity relate to impaired execution of drawing.
Methods: Twenty-nine patients and 31 age-matched healthy control participants drew spirals with both hands on a digital
graphics tablet, and the regularity of drawing execution was evaluated by sample entropy. We recorded resting-state fMRI
and task-related EEG, and calculated the time-resolved partial directed coherence to estimate effective connectivity for both
imaging modalities to determine the extent and directionality of interregional interactions.
Results: Movement performance in Parkinson’s disease patients was characterized by increased sample entropy, correspond-
ing to enhanced irregularities in task execution. Effective connectivity between the motor cortices of both hemispheres,
derived from resting-state fMRI, was significantly reduced in Parkinson’s disease patients in comparison to controls. The
connectivity strength in the nondominant to dominant hemisphere direction in both modalities was inversely correlated with
irregularities during drawing, but not with the clinical state.
Conclusion: Our findings suggest that interhemispheric connections are affected both at rest and during drawing movements
by Parkinson’s disease. This provides novel evidence that disruptions of interhemispheric information exchange play a pivotal
role for impairments of complex movement execution in Parkinson’s disease patients.
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INTRODUCTION

Parkinson’s disease is a neurodegenerative dis-
order characterized by severe motor and nonmotor
symptoms [1, 2]. Apart from the cardinal motor
symptoms bradykinesia, rigidity, and tremor, com-
plex motor skills like handwriting and drawing are
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impaired [3, 4]. While handwriting requires a high
amount of cognitive, semantic, or lexical components
[5], drawing spirals is independent from language
skills [3]. Previous research revealed characteristics
of deficient drawing in Parkinson’s disease applying
linear measures: patients display increases in nor-
malized jerk, pen altitude variations, the number of
velocity and acceleration peaks, and enhanced veloc-
ity fluctuations [3, 6, 7]. First order crossing and
second order smoothness, indicating spatial irregu-
larities, as well as the degree of severity of spiral
drawings correlate with the motor section of the Uni-
fied Parkinson’s disease Rating Scale (UPDRSIII)
scores and are sensitive to disease severity [8]. Irregu-
larities in the temporal coordination of movement, on
the other hand, have less been studied. Furthermore,
drawing is governed by complex, dynamic, and non-
linear processes that occur across multiple temporal
and spatial scales [9, 10]. Extending traditional anal-
yses, nonlinear parameters might provide additional
insights into motor impairment. We aimed to examine
whether patients exhibit enhanced irregularities in the
temporal organization of drawing spirals. To this end,
we calculated sample entropy of velocity and accel-
eration, a nonlinear parameter that has been applied
to biological signals like EEG, EMG, center of pres-
sure during gait, or graphic movements in physiologic
and diseased conditions, including Parkinson’s dis-
ease [11–14]. Sample entropy examines time-series
for similar epochs to quantify their regularity [15].

Another aspect of Parkinson’s disease concerns
the asymmetrical distribution of motor impairment
between both sides of the body, which is most clearly
pronounced at disease onset but pertains almost
over the entire disease course [16, 17]. No equiv-
ocal pivotal hypotheses for asymmetric pathology
and motor impairment exist [18]. The coexistence
of bradykinesia and asymmetry markedly influence
functional impairment and could represent the basis
for the development of further symptoms like gait
and speech impairments, postural deficits, and axial
symptoms with lateral inclination [19, 20]. To see if
drawing skills are also asymmetrically impaired, our
second aim was to examine whether enhanced irreg-
ularities manifest differently within the more and less
affected sides of the body.

The neural mechanisms underlying deficits in
graphomotor tasks and asymmetrical impairment are
not understood. Several studies revealed regions and
networks that engage during graphic movements in
healthy participants with the aid of MRI-compatible
tablets during task-related functional MRI (fMRI)

[5, 21, 22]. While some regions specifically engage
during writing, others are associated with linguistic
processing, and particularly regions of the cortico-
basal ganglia network control nonspecific motor
execution [23]. Interregional communication in this
network, measured by functional or effective con-
nectivity, is impaired in Parkinson’s disease: during
task execution, for example, Wu et al. [4] showed
that consistent micrographia relates to decreased
activity and diminished functional connectivity in
the motor-circuit. Similarly, Nackaerts et al. [24]
found that letter size correlates with reduced effec-
tive connectivity in cortical networks in patients
concurrently affected by freezing of gait and micro-
graphia. As opposed to letter size, which measures
movement amplitude and relates to bradykinesia,
a potential relationship between connectivity and
movement irregularities in drawing as a distinct
dimension of impairment remains elusive. Further-
more, widespread alterations of connectivity in
Parkinson’s disease are also evident in the absence
of a specific task and correlate with disease severity
[25–27]. Luo et al. [28] demonstrated that alterations
further extend towards interhemispheric communi-
cation between bilateral M1 areas. Impairments in
network communication during rest could impede
flexible information processing in response to current
and prospective demands, as suggested by Bressler
and Kelso [29], or could be indicative of disturbed
processes in task-relevant pathways. Since it was
previously shown that resting state connectivity is rel-
evant for task activities and motor impairment [28,
30–32] an important and unresolved issue is how
altered interregional connectivity during rest, as an
indicator of disease state, disconnection, or patholog-
ical spread, relates to graphomotor performance. We
investigated whether impairments in drawing spirals
are associated to alterations in effective connectivity
within the cortico-basal ganglia network including
interhemispheric connections during rest. We cal-
culated the time-resolved partial directed coherence
(TPDC) of resting-state fMRI to identify regions that
demonstrate altered effective connectivity when com-
paring medicated Parkinson’s disease patients with
age-matched healthy participants [33]. Compared to
functional connectivity measures, effective connec-
tivity quantitatively reveals directions of interactions
between regions and thus identifies the direction and
strength of communication [34–36]. We correlated
the strength of resting-state TPDC between these
regions with the amount of irregularities in spiral
drawing. To investigate whether altered connectivity
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Table 1
Participant demographics and clinical information

Parkinson’s Healthy p
disease controls

N 29 31
Age (y) 62.45 (10.09)∗ 64.72 (7.51)∗ 0.329
Sex (male/female) 12/17 15/16 0.451
Handedness (right/left) 27/2 31/0 0.229
Disease duration (y) 8.19 (5.144)∗1

Hoeh & Yahr 2.66 (0.97)∗1

UPDRSIII (medication on) 14.22 (6.65)∗1

Levodopa equivalent daily dose (mg) 746 (444)∗1

Dominant hand = more affected hand? (yes/no) 19/10

N, number of participants; UPDRSIII, motor section of the revised Unified Parkinson’s Disease Rating
Scale; ∗Mean (standard deviation); 1Data only available for 27 PD patients.

during rest represents pathological mechanisms that
extend to task-related processing, we finally exam-
ined whether a similar relationship exists for effective
connectivity determined by EEG recorded during the
drawing task.

In sum, we investigated whether Parkinson’s dis-
ease patients show an increased amount of temporal
irregularities during spiral drawing. Furthermore,
we expected deteriorated communication between
regions among the cortico-basal ganglia network dur-
ing resting-state fMRI and hypothesized that a high
extent of deterioration is associated with reduced
drawing performance. To evaluate if this extends to
task-related processing, we additionally calculated
the effective connectivity of the EEG recorded during
spiral drawing.

MATERIALS AND METHODS

Participants and study protocol

Participants were recruited at the Department
of Neurology, University Medical Centre of the
Johannes Gutenberg University Mainz. In total, 32
Parkinson’s disease patients and 31 age-matched
healthy control subjects participated in our study. The
diagnosis of Parkinson’s disease was based on the
Movement Disorder Society Clinical Diagnostic Cri-
teria for Parkinson’s disease [37]. Demographics and
disease related information are presented in Table 1.
To evaluate graphomotor performance in a realistic
functional setting with high external validity and to
allow for comprehensive task execution, the Parkin-
son’s disease group was tested using their medication
according to their usual schedule. In a first session,
participants drew Archimedean spirals (Fig. 1), and
EEG brain activity was recorded concurrently. In a
second session, anatomical and resting-state func-

tional MRI were recorded. Due to co-existing action
tremor, three patients were excluded from our study,
leaving 29 patients and 31 controls for statistical anal-
yses.

Written informed consent was obtained from all
subjects before participating in this study that was
approved by the local Ethics Committee of the State
Medical Association of Rhineland-Palatinate and
has been conducted in accordance with the princi-
ples of good clinical practice of the Declaration of
Helsinki.

Graphomotor task

Spiral drawing
Archimedean spirals were drawn on predefined

templates (five loops, maximal radius = 7.5 cm, spac-
ing = 1.5 cm; Fig. 1A). Participants comfortably sat
in front of a table and used a wireless inking pen to
draw the spirals on a sheet of paper (DIN A4 format:
21.0 × 29.7 cm) which was affixed to the surface of
a digital tablet (Wacom Intuos Pro – Creative Pen
Tablet, size L, resolution = 5080 lpi, maximal sam-
ple rate 200 Hz, pressure sensitivity = 2048 levels,
Wacom Technology Corporation, Vancouver, WA).
This setup has the possibility of storing kinematic
time-series data for offline analyses. The experi-
menter (M.B.) instructed the participants before the
task to sit with their shoulders in parallel to the lower
side of the tablet and draw the spirals at their own
drawing speed, starting from the center outwards
without touching or crossing the boundaries of the
template and without resting the arm or hand on the
tablet. Subjects held the pen in the air and started
to draw when the experimenter gave a verbal “go”-
command. Five trials were performed for the right and
left hand, each. The spirals were to be drawn clock-
wise (right hand) or counter-clockwise (left hand) and
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Fig. 1. Example of a spiral drawn by a Parkinson’s disease patient and its kinematics. A) The blue line represents the drawn trace within the
boundaries of the template. B) Horizontal pen position, velocity, and acceleration plotted against time.

the experimenter demonstrated an example of task
execution before the first trial.

Spiral analysis
We recorded kinematic time-series data using

the free software Neuroglyphics (http://www.neuro
glyphics.org/). Positional X- and Y-signals were
exported to Matlab (The MathWorks, version
R2017a) for further processing. A fourth-order 10 Hz
low-pass Butterworth filter was applied to smooth
the signal and reduce artefacts [3]. Instantaneous
horizontal velocity and acceleration were calculated
using the kinematics toolbox (http://www.diedrich
senlab.org/toolboxes/toolbox kinematics.htm). The
velocity signals were filtered using a second-order
Gaussian Kernel filter, while acceleration signals
were filtered with a fourth-order Gaussian Kernel fil-
ter. Due to the constraint of not touching the tablet,
spiral-drawing was mainly performed by wrist and
forearm movements, while the fingers were fixated
to hold the pen. Since fine motor abnormalities may
be caused by a reduced capability to coordinate fin-
ger and wrist movements and by reduced control of
wrist flexion [6], and the wrist mainly contributes to
horizontal movements, we focused our analysis on
horizontal strokes. The analyses for vertical move-
ments can be seen in Supplementary Table 2.

The velocity signal, starting from the first sample
when the pen touched the tablet, was z-scored
and movement onset was defined when the signal
exceeded 0.5 standard deviations. To confirm the
correct onset, all trials were visually checked and
corrected, if necessary. Figure 1 shows a repre-
sentative trial of a Parkinson’s disease-patient. We
then calculated drawing duration, average velocity,

average acceleration and sample entropy of the
velocity and acceleration signals as indices of motor
performance. Sample entropy estimates the regu-
larity of a time-series and was calculated with the
Matlab function “SampEn” (Lee, 2020; https://de.
mathworks.com/matlabcentral/fileexchange/35784-
sample-entropy/). For a time-series with N data
points, sample entropy is the negative logarithm of
the conditional probability that two sequences with
the length of m data points, which are similar, remain
similar when extending the sequence by one addi-
tional sample. The tolerance for similarity is defined
as the maximum vector distance r. Lower values
of sample entropy correspond to higher regularity
within the time-series [15]. We chose the window
length m = 2 and tolerance r = 0.2∗SD [38, 39].

Because Parkinson’s disease can affect both hemi-
spheres of the body differently [17], we also
investigated whether the more severely affected hand
(as identified by clinical evaluation) would be more
severely affected in drawing performance. We calcu-
lated the difference of sample entropy for each patient
by subtracting the nondominant hand value from the
dominant hand value. While negative values indicate
that sample entropy is lower for the dominant hand,
positive values mean that it is increased. Values close
to zero indicate that the entropy is similar in both
tasks.

Magnetic resonance imaging

MRI data acquisition and pre-processing
We acquired anatomical and resting-state fMRI

recordings of all participants. Subjects were
instructed to keep their eyes closed, to not think

http://www.neuroglyphics.org/
http://www.neuroglyphics.org/
http://www.diedrichsenlab.org/toolboxes/toolbox_kinematics.htm
http://www.diedrichsenlab.org/toolboxes/toolbox_kinematics.htm
https://de.mathworks.com/matlabcentral/fileexchange/35784-sample-entropy/
https://de.mathworks.com/matlabcentral/fileexchange/35784-sample-entropy/
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of anything in particular, and to remain motionless
inside the MRI scanner. MRI data acquisition
was performed on a 3 Tesla scanner (Magnetom
Tim Trio, Siemens Healthcare, Erlangen, Ger-
many) with s 32-channel receive-only head coil.
Earplugs were used to attenuate scanner noise and
head motion was restricted with a foam pillow
and foam padding. High-resolution anatomical
images were acquired with 3D-MPRAGE sequence
(TR = 1900 ms, TE = 2.52 ms, flip angle = 9◦,
field of view (FOV) = 256 × 256 mm², 192 axial
slices, 1 mm thickness, bandwidth 170 Hz/pixel).
Blood-oxygen-level dependent (BOLD) data were
acquired using a gradient echo (GR)-EPI sequence
(TR = 3000 ms, TE = 30 ms, flip angle = 90◦, field of
view (FOV) = 192 × 192 mm², matrix size = 64 × 64,
spatial in-plane resolution: 3 mm, 49 slices with a
slice thickness of 2 mm and an inter-slice gap of
1 mm, readout bandwidth (BW) = 2232 Hz/pixel).
The scan duration was 10 min, resulting in a series
of 200 volumes.

Pre-processing of fMRI scans and time series
extraction were performed using statistical para-
metric mapping toolbox (SPM12; https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/) and REST
toolbox (V1.8 130615; http://www.restfmri.net
[40]). For each subject the first five images were
discarded to ensure that the fMRI signal was at
equilibrium and the remaining 195 images were
realigned to the first image, co-registered to the
high-resolution individual T1 image, segmented,
and spatially normalized to align all the subjects’
specific MR sequences into the standard Montreal
Neurological Institute (MNI) space. Root mean
squared (RMS) movement of three translation and
three rotation parameters was calculated to evaluate
head motion and no participant had movement
> 0.5 mm RMS [41]. We then applied a linear model
approach on a voxel-by-voxel basis to remove the
effects of the six movement parameters to control
for motion effects.

Effective connectivity analysis
For the effective connectivity analysis, we

extracted the averaged time-series of individual
intra-hemispheric primary motor cortex (M1), sup-
plementary motor area (SMA), caudate, putamen,
external part of the globus pallidus (GPe), internal
part of the globus pallidus (GPi), and subthala-
mic nucleus (STN) (Supplementary Figure 1). The
definition was based on the Human Motor Area
Template [42] and Basal Ganglia Human Area Tem-

plate [43], and these regions were chosen because
they are both part of the motor-basal ganglia net-
work and involved in the peripheral motor control
of graphic movements [23]. Time-series were fil-
tered using a fourth-order Butterworth filter with
a high-pass-frequency of 0.009 Hz and low-pass-
frequency of 0.08 Hz [44]. Based on these regions
we modelled a cortico-basal ganglia network where
effective connectivity between each pair of the seven
regions within each hemisphere was calculated using
TPDC. We additionally calculated effective connec-
tivity between homologue regions (for example left
and right M1). The TPDC provides a model for time-
frequency causality which allows to not only focus
on a particular frequency but also on its temporal
evolution [45]. It is based on dual-extended Kalman
filtering, which estimates instantaneous state- and
model- (i.e., the weights) parameters of an autore-
gressive system [35, 46]. Those coefficients are used
to calculate the partial directed coherence for every
time point, which estimates the causality between
time-series [33]. The mean region-to-region connec-
tivity during rest fMRI was estimated by taking the
TPDC amplitudes for frequencies between 0.009 Hz
and 0.08 Hz between all combinations of regions of
interest (ROIs) within each hemisphere, and addition-
ally their homologue regions.

EEG analysis

We recorded EEG data with a high-density 256
EEG-system during spiral drawing with a sampling
frequency of 1000 Hz and CZ as reference. We used
the fieldtrip Matlab toolbox for further processing
[47]. Based on the findings of fMRI resting-state
analysis (see results), we calculated the effective
connectivity between electrodes covering the left
and right M1 (c3, c4) during task execution. Data
were re-referenced to a linked mastoids montage,
resampled at 250 Hz, and filtered (sixth-order
Butterworth filter: 4 Hz high-pass, 90 Hz low-pass,
45–55 Hz band-stop). Average spectral power of
beta and gamma frequency bands was calculated
with the “ft freqanalysis”-function implemented in
fieldtrip (mtmfft, hanning window, window length:
1 s) and compared between the two groups to check
for potential artefact-related differences. There was
no significant difference between the two groups
(Supplementary Table 1). Given the relevance of
beta and gamma oscillations for Parkinson’s disease
[48–50], we calculated the average TPDC for
these frequency bands (beta: 13–30 Hz, gamma:

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.restfmri.net
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31–45 Hz). The order parameter for TPDC was
defined by the ARfit function (Tapio, 2020, https://
de.mathworks.com/matlabcentral/fileexchange/174-
arfit). Finally, we averaged over all trials of each
subject for the correlation analysis.

Statistical analysis

All statistical analyses were performed using IBM
SPSS Statistics, Version 22.0 (SPSS, Chicago, IL,
USA) and Matlab (Version R2017a). Means and stan-
dard deviations (SD) were calculated. Demographic
characteristics of Parkinson’s disease patients and
healthy controls were compared using Fisher’s exact
test for categorical data or independent t-tests.

To investigate graphomotor performance, the first
trial was removed from the analysis to prevent the
influence of the tasks’ novelty and the average of
the remaining four trials was calculated for each
individual. Normality was assessed visually and by
evaluating skewness and kurtosis for each parame-
ter and each group individually. In those cases in
which the assumption of normality was not met, data
were log-transformed [51]. This was the case for
drawing duration and sample entropy of velocity. We
then performed two-factorial mixed ANOVAs with
“Group” as between-subject factor (Parkinson’s dis-
ease (N = 29) vs healthy controls (N = 31)) and “Task”
as within-subject-factor (drawing with the domi-
nant vs nondominant hand). To investigate whether
hemispheric asymmetries in disease expression dif-
ferentially affect spiral drawing, we further calculated
the difference between dominant and nondominant
hand performance and performed independent t-tests
between the two subgroups of patients whose dom-
inant hand was more affected (N = 19), and patients
whose nondominant hand was more affected (N = 10)
by Parkinson’s disease.

To identify connections that significantly differed
in resting-state connectivity we performed indepen-
dent t-tests between the groups for each pair of
brain regions. False discovery rate (FDR)-correction
was applied to control for false positives. To study
whether handwriting performance could be associ-
ated with resting-state fMRI networks, we calculated
the Pearson correlation coefficients between the
TPDC values of connections that were identified
to significantly differ between Parkinson’s disease
patients and healthy controls and the entropy values
(log-transformed when appropriate). Additionally,
we performed Pearson correlation analyses between
the spiral parameters and the TPDC values of the

task EEG. As for the spiral analysis, we discarded
the first trial of the EEG recordings. All correla-
tions were performed separately for the PD and HC
group, and Fisher r to z transformation was applied to
compare the correlation coefficients between the two
groups. Finally, we correlated TPDC of fMRI, TPDC
of EEG, and entropy values with the UPDRSIII-scores
(MDS-UPDRS, [52]). We termed the hemisphere
contralateral to the dominant hand the dominant
hemisphere, and the hemisphere ipsilateral to the
dominant hand the nondominant hemisphere for all
correlations. To accommodate for the high number
of correlations, FDR-correction was applied for the
comparisons within each modality. The significance
threshold was set to p < 0.05 (two-tailed for ANOVAs
and t-tests; one-tailed for correlation analyses). Effect
sizes were calculated and interpreted as Cohen’s
d (small: ds = 0.2, medium: ds = 0.5, and large:
ds = 0.8) or partial eta squared (small: η2p>0.01,
medium: η2 p > 0.06, and large: η2 p > 0.14) accord-
ing to Cohen [53].

Data availability

The data that support the findings of this study
are available from the corresponding author, upon
reasonable request.

RESULTS

We included data of 29 PD patients and 31 age-
matched healthy control subjects. Demographics and
disease related information are presented in Table 1.
When evaluating the demographical variables, the
two groups did not significantly differ in sex (Fisher’s
exact test p = 0.451), handedness (Fisher’s exact test
p = 0.229), or age (t = 0.985, df = 58, p = 0.329).

Spiral drawing analysis

To evaluate graphomotor performance, we calcu-
lated the drawing duration, average velocity, average
acceleration, and the sample entropy of the horizontal
velocity and acceleration signals. Due to nonnor-
mality, drawing duration and sample entropy of the
velocity were log transformed (see Supplementary
Table 2 for nontransformed data). There were no
significant differences between Parkinson’s disease
patients and healthy controls for the log of drawing
duration, average velocity, and average acceleration
(all p > 0.05, Supplementary Table 2). Figure 2 shows
the results of the mixed ANOVAs for sample entropy.

https://de.mathworks.com/matlabcentral/fileexchange/174-arfit
https://de.mathworks.com/matlabcentral/fileexchange/174-arfit
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Fig. 2. Distribution of sample entropy values of motor perfor-
mance in patients (PD) and healthy controls (HC). A) Sample
entropy of horizontal velocity of 29 patients (pink) and 31 con-
trols (blue). Mixed ANOVAs revealed significant effects of task
and group. B) Sample Entropy of horizontal acceleration of the
same subjects. Mixed ANOVAs revealed significant effects of
task and group. DH, dominant hand; NDH, nondominant hand;
PD, Parkinson’s disease patients; HC, healthy controls. Error-bars
denote standard error of the mean; ∗p < 0.05; ∗∗p < 0.0001.

As expected, there was a significant main effect of
task on the log of entropy of velocity, demonstrat-
ing that the dominant hand displays significantly
lower amount of irregularities (F(1,58) = 25.154,
p < 0.0001, η2p = 0.302). Additionally, we found a
significant effect of group (velocity: F(1,58) = 6.2,
p = 0.016, η2p = 0.097), showing that PD patients
had higher log sample entropy values than healthy
controls. Concerning the sample entropy of acceler-
ation, there was also a significant main effect of task
(F(1,58) = 21.205, p < 0.0001, η2p = 0.268) and a sig-
nificant effect of group (F(1,58) = 4.877, p = 0.031,
η2p = 0.078).

We then investigated if there were differences
in asymmetries between patients whose domi-
nant hand is more affected and patients whose
dominant hand is less affected (Supplementary
Figure 2). The mean difference of sample entropy
was negative in both patient subgroups (difference
log sample entropy of velocity: –0.047 ± 0.077
and –0.057 ± 0.093; difference acceleration:
–0.453 ± 0.070 and –0.013 ± 0.060), indicating
that irregularities are enhanced in the nondominant
hand, irrespective of which hand was more affected
by the disease. For acceleration, patients whose
dominant hand was less affected had values closer
to zero. However, there was no statistical difference
between the patient subgroups (velocity: t = 0.317,
df = 27, p = 0.754; acceleration: t = –1.223, df = 27,
p = 0.232). Finally, we did not find any significant
correlations between the irregularity scores and the
UPDRSIII scores (all p > 0.5, uncorrected).

Fig. 3. Distribution, mean and standard error of the TPDC of
bilateral motor cortex areas. PD patients had reduced effective
connectivity between left to right and right to left M1. ∗p < 0.05
(corrected).

Effective connectivity of resting-state fMRI

Our next aim was to identify connections that
demonstrated altered effective connectivity when
comparing medicated Parkinson’s disease patients
with the healthy control-group. The TPDC anal-
ysis identified seven connections that significantly
differed between Parkinson’s disease patients and
healthy controls (Supplementary Table 3). However,
after FDR-correction only the reduced interhemi-
spheric connections from left M1 to right M1
(t = –3.4683, df = 58, p = 0.0487, corrected, 95%
CI = [–0.074 –0.020], Cohen’s ds = 0.895) and right
M1 to left M1 (t = –3.5135, df = 58, p = 0.0487,
corrected, 95% CI = [–0.059 –0.016], Cohen’s
ds = 0.915, Fig. 3) remained significant. None of
the connections were correlated with the UPDRSIII
scores (all p > 0.5, uncorrected).

The interrelation of resting fMRI effective
connectivity measurements and task performance

To examine the functional relevance of impaired
interhemispheric connectivity, we then investigated
the associations between the TPDC values of the
connections identified in the fMRI analysis and the
entropy of velocity (log) and acceleration (Fig. 4).
While there were no significant correlations in the
healthy control group, we found significant negative
correlations between the connectivity of the nondom-
inant to dominant M1 and the log of sample entropy of
the velocity signal of drawing both with the dominant
(r = –0.447, p = 0.03, corrected) and nondominant
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Fig. 4. Correlation coefficients of resting-state fMRI effective
connectivity between dominant and nondominant M1 and sam-
ple entropy. Significant inverse correlations were found between
the connectivity of nondominant to dominant M1 and the sample
entropy of the velocity signals during drawing with dominant as
well as nondominant hand in PD patients. There was also a trend for
the correlation between the connectivity of nondominant to domi-
nant M1 and the sample entropy of the nondominant acceleration.
Vel, velocity; acc, acceleration; d−→nd, connectivity from domi-
nant to nondominant M1; nd−→d, connectivity from nondominant
to dominant M1; DH, dominant hand; NDH, nondominant hand;
PD, Parkinson’s disease patients; HC, healthy controls; Color bar
represents the scale of correlation coefficient; ∗p < 0.05; #p < 0.1
(corrected).

hand (r = –0.513, p = 0.018, corrected) in Parkinson’s
disease patients. This means that patients with lower
interhemispheric connectivity concurrently had more
irregularities during drawing. The Fisher’s test for
comparing the correlations between the Parkinson’s
disease- and healthy control groups showed a trend
for different correlations between the groups (non-
dominant to dominant M1 with nondominant hand
entropy (Fig. 5, z = 1.631, p = 0.051)). However, there
was no significant difference between groups for
the correlations of nondominant to dominant M1
connectivity with dominant hand entropy (z = 1.105,
p = 0.135).

Correlation between task EEG effective
connectivity and task performance

To investigate whether a similar relationship exists
for task-related connectivity, we additionally exam-
ined the linear associations between the TPDC
values of electrodes covering the dominant and
nondominant M1 during both drawing tasks and
the irregularity scores. There were no significant
correlations in the healthy control group (Supple-
mentary Figure 3). For Parkinson’s disease patients,
the entropy of the acceleration during drawing with

Fig. 5. Scatterplot of the correlation between the effective con-
nectivity from nondominant to dominant M1 during resting-state
fMRI and the (log) entropy of the velocity during drawing with the
dominant hand. While there was a significant inverse correlation
in PD patients (pink; r = –0.447, p = 0.030, corrected), correlation
was not significant in healthy controls (blue). The dotted lines
denote the 95% confidence intervals of the correlation. ND−→D,
connectivity from nondominant to dominant M1; DH, dominant
hand; PD, Parkinson’s disease patients; HC, healthy controls).

Fig. 6. Correlation coefficients of motor performance and task-
EEG effective connectivity in Parkinson’s disease (PD) patients.
Significant inverse correlations were found between the entropy
of acceleration during dominant hand drawing and the connec-
tivity of electrodes covering the nondominant to dominant M1.
vel, velocity; acc, acceleration; d−→nd, connectivity from domi-
nant to nondominant M1; nd−→d, connectivity from nondominant
to dominant M1; DH, dominant hand; NDH, nondominant hand;
Color bar represents the scale of correlation coefficient; ∗p < 0.05
(corrected).

the dominant hand was inversely correlated with the
connectivity from the nondominant to dominant M1
(Fig. 6, beta band: r = –0.461, p = 0.048, corrected;
gamma band: r = –0.488, p = 0.047, corrected).

The Fisher test comparing the correlations between
Parkinson’s disease patients and the healthy control
group showed a trend for differing correlations in
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Fig. 7. Scatterplot of the correlation between the sample entropy
of the acceleration during drawing with the nondominant hand
and the connectivity from electrodes covering the nondominant
to dominant M1 in the beta band during drawing with the domi-
nant hand. While there was a significant inverse correlation in PD
patients (pink, r = –0.461, p = 0.048, corrected), correlation was
not significant in healthy controls (blue). Z-test revealed a trend
difference between correlations (z = –1.462, p = 0.072). The dot-
ted lines denote the 95% confidence intervals of the correlation.
ND−→D, connectivity from sensors covering the nondominant to
dominant M1; NDH, nondominant hand; PD, Parkinson’s disease
patients; HC, healthy controls.

the beta band (Fig. 7, z = 1.462, p = 0.072) and in
the gamma band (z = 1.534, p = 0.062). Correlation
analyses between TPDC values of the EEG and the
UPDRSIII scores were not significant (all p > 0.5,
uncorrected).

DISCUSSION

The present work reveals reduced effective con-
nectivity in both directions of the bilateral M1 in
Parkinson’s disease patients compared to an age-
matched healthy control group. The connectivity in
the nondominant to dominant direction inversely cor-
related with the (log) entropy of the velocity signal
during a spiral drawing task in patients. Patients with
decreased interhemispheric connectivity exhibited
an increased amount of irregularities in their draw-
ings, highlighting the practical relevance of these
findings. Additionally, EEG recorded during spiral
drawing revealed a similar relationship between inter-
hemispheric connectivity of task-related activities
and irregularities, corroborating the importance of
connectivity particularly from the nondominant to
dominant hemisphere.

Irregularities during spiral drawing reveal
deficits in temporal organization of movement in
Parkinson’s disease

We observed elevated sample entropy in spi-
ral drawings in patients with Parkinson’s disease,
indicating an increased amount of irregular dynam-
ics of both velocity and acceleration. Contrary, in
healthy subjects, the temporal evolution of those
signals was more regular and predictable, poten-
tially corresponding to stable and robust movement
execution approaching optimal variability [54]. Sam-
ple entropy has previously been implemented to
describe complications in graphic movements in
patients with schizophrenia, illustrating its general
feasibility to characterize movement irregularities
[55]. Our results demonstrate the utility of nonlin-
ear parameters, advancing previous studies that report
an increased coefficient of variation during repeti-
tive movements [56, 57]. An increased amount of
irregularities might be associated with impaired con-
trol mechanisms (e.g., for the temporal organization
of movement) that are unable to properly command
regular movement patterns and fail to provide suf-
ficient order for stable performance [11]. Because
drawing involves the utilization of visual feedback
to guide the path, impaired transformation of visual
information could be another factor contributing to
enhanced irregularities [58]. Furthermore, dysfunc-
tions in smooth pursuit eye movements could cause
a delay in visual information and thereby play an
additional role [59].

Contrasting our results, Aghanavesi et al. [39]
studied the temporal irregularities of drawing spi-
rals on a smartphone and found a decreased temporal
irregularity score in Parkinson’s disease patients.
Nevertheless, caution must be taken when compar-
ing these results with the current findings, since the
temporal irregularity score calculation involved a
temporal normalization and was based on approx-
imate entropy, which is highly dependent on the
length of the recording and may lead to inconsis-
tent outcomes [11, 15]. Furthermore, differences in
sampling rate (fixed vs dynamic) or size and fric-
tion of the recording device, which could affect the
effectors used to draw the spirals, may impede a
direct comparison between the results. Other studies
have included entropy parameters of spiral drawings
as features for disease- or motor state-classification
with machine learning algorithms. For example,
López-de-Ipiña et al. [60] showed that this can
substantially improve the classification performance
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between essential tremor patients and healthy con-
trols. Memedi et al. [38] included approximate
entropy in a feature set to successfully classify spi-
rals drawn by bradykinetic or dyskinetic Parkinson’s
disease patients and distinguish between Parkinson’s
disease patients and healthy subjects. However, the
inclusion of nonlinear features (including sample
entropy) did not substantially influence the classifica-
tion between Parkinson’s disease and healthy controls
[13]. Given the heterogeneous results in machine
learning, the actual contribution of nonlinear param-
eters for the classification of healthy and diseased
populations remains controversial, especially when
a sufficient number of parameters, involving speed-,
acceleration-, and pressure-measures, are available
to provide accurate identification. Nonetheless, our
results demonstrate elevated sample entropy of spiral
drawings performed by Parkinson’s disease patients,
suggesting that this parameter is a useful addition to
traditional parameters when studying motor impair-
ments. As a nonlinear measure, sample entropy
describes movement characteristics that are not cap-
tured by linear variables, providing new insights into
manifestations of motor impairment that have not
been elucidated so far. Investigating such parameters
can further our comprehension of motor impairment
by revealing additional dimensions and the underly-
ing mechanisms. This is particularly necessary since
handwriting and drawing movements are complex,
dynamic, and nonlinear processes occurring across
multiple temporal and spatial scales [9, 10].

In contrast to earlier research on spiral drawing
in PD [3, 8], (log) duration, velocity, and acceler-
ation did not differ between the two groups. This
could relate to the task instructions of drawing the
spirals within the boundaries of the spiral template
with a self-selected speed. In combination with the
medication status, this could mask speed control
impairments that are particularly prominent during
fast movements and suggests that sample entropy
measures are specifically sensitive to irregularities,
even when impairments related to bradykinesia may
be managed by l-dopa replacement therapy relatively
well.

We did not find a linear correlation between sam-
ple entropy and the UPDRSIII score. Depending on
visuomotor coordination, drawing involves at least
three functional domains. First, proper executive
functionality is needed to organize and coordinate
movement. Second, the transformation of visual
information is essential. Third, hand motor capabili-
ties must meet the demands of the movements [6, 58].

While the UPDRSIII mainly measures rigidity,
bradykinesia, tremor, and midline function [52], these
scores mainly reflect motor capabilities and correla-
tions may be absent or attenuated if sample entropy
quantifies relevant aspects of motor function that are
not measured [8, 58]. The lack of correlations there-
fore suggests that impairments in one of the other
domains play a more important role for an increased
amount of irregularities. This is further supported by
our findings that illustrate that drawing performance
can be similarly impaired in both hands, irrespective
of which hand is clinically more affected, while asym-
metries in motor impairment are often demonstrated
in the UPDRSIII [17].

Since sample entropy compares the similarity of
small windows within a time-series, it provides the
ability to quantify higher frequency temporal irreg-
ularities in the magnitude of milliseconds that are
not measured by the UPDRSIII but may impede
complex everyday movements nonetheless. While
the UPDRSIII serves as a great tool to examine the
over-all motor state, the analysis of spiral drawings
by sample entropy could improve our understand-
ing of the impact of disease, medication, or deep
brain stimulation on functional domains that are not
extensively captured by conventional motor exami-
nation. Additionally, measuring irregularities during
drawing extends the current possibilities of motor
performance evaluation by characterizing a task that
might be more closely related to challenges a patient
might encounter in real life situations. Lastly, study-
ing specific motor tasks provides the ability to study
brain processes involved in the control of complex
and realistic movements, and their relationship to the
above mentioned subdomains of motor control.

Taken together, temporal irregularities as observed
by drawing spirals relate to disturbances in motor
coordination that are not completely captured by the
UPDRSIII. Instead, they could relate to deficits in
central mechanisms involved in the temporal control
of movement or sensorimotor integration, as previ-
ously demonstrated in inter-limb movements [61] or
visuomotor tracking tasks [58].

Reduced interhemispheric effective connectivity
is associated with irregularities in spiral drawing

Relative to healthy age-matched subjects, patients
with Parkinson’s disease displayed reduced bi-
directional interhemispheric effective connectivity in
M1. Being a key structure of sensorimotor circuits,
its dysfunction has been considered to relate to motor
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disability in Parkinson’s disease, potentially resulting
from an impaired ability to integrate sensorimotor
information [28, 62]. In healthy awake subjects, the
brain is thought to maintain a metastable equilibrium
to accommodate flexible integration of information,
depending on current and prospectively emerging
demands [29]. The disruption of interhemispheric
interactions during rest could be indicative of a per-
turbation of such equilibrium, leading to deficient
interhemispheric cooperation, the reduced ability to
perform complicated tasks, and disturbances of sen-
sory processing or sensorimotor integration [28]. In
this context, it has been demonstrated that both M1
areas act together to perform unilateral motor tasks,
especially when task complexity increases [63–65].
Disrupted connectivity might interfere with dynamic
processes of interhemispheric inhibition and facili-
tation, eventually causing observable motor deficits.
Supporting this, resting-state fMRI studies on stroke
patients demonstrated that the initial loss of sen-
sorimotor function is accompanied by deterioration
of interhemispheric M1 functional connectivity, and
that the recovery of motor function is associated
with increases in functional connectivity [31, 32].
Our analyses reveal an inverse relationship between
the effective connectivity from the nondominant
to dominant M1 during rest fMRI and the log of
sample entropy of spiral drawing velocity in Parkin-
son’s disease patients. This shows that patients with
reduced effective connectivity concurrently featured
an increased amount of irregularities while healthy
subjects did not show such an association. Illustrating
that relatively reduced interhemispheric connectivity
in Parkinson’s disease patients relates to enhanced
irregularities during spiral drawing, our results cor-
roborate the importance of interhemispheric M1
communication and suggest similar physiological
mechanisms in Parkinson’s disease.

Surprisingly, irregularities during nondominant
hand drawing were inversely correlated with connec-
tivity from the nondominant to dominant hemisphere
as well, while one would initially expect the reverse
direction to be relevant. This suggests that impair-
ment in the temporal organization of intended
movement relates to reductions in interhemispheric
connectivity especially from the nondominant to
the dominant brain structures, indicating that dis-
ruptions within the physiologically predetermined
networks linked to handiness and motor development
that are eventually affected in Parkinson’s disease
compromise the ability to perform complex tasks.
Such relationship highlights the contribution of the

nondominant hemisphere for motor performance in
both dominant and nondominant hand drawing. This
is supported by earlier findings that showed that the
ipsilateral M1 contributes to motor performance in
complex tasks [63] and that rTMS-induced inhibition
of the ipsilateral M1 leads to an increased error rate
in motor timing [66]. Thus, effective connectivity in
the nondominant to dominant direction that inversely
correlates with sample entropy in both hands indi-
cates that a preserved amount of bilateral cooperation
could maintain performance levels. A potential rea-
son could be that each brain hemisphere processes
different but complementary motor control strategies
and that a low level of connectivity in the nondomi-
nant to dominant direction might depict impairments
that are particularly influential both during domi-
nant and nondominant hand drawing. Differential
contributions of the two hemispheres, for example,
have been demonstrated for action timing by Pflug
et al. [67]. Further, it has been hypothesized that
in right-handers, the left hemisphere is responsible
for open-loop control, whereas closed-loop mech-
anisms involved in the adaptation of movement to
unpredictable circumstances are rather located in
the right (nondominant) hemisphere [68]. Thus, the
integration of information from the nondominant
hemisphere could be crucial for prolonged move-
ments like spiral drawing, where feedback, e.g., about
the pens’ position, is constantly processed.

Similar to rest fMRI connectivity, nondominant to
dominant interactions between EEG sensors covering
M1 related to the sample entropy of acceleration, cor-
roborating the relevance of nondominant to dominant
connectivity. However, a negative linear relation-
ship in Parkinson’s disease patients was only evident
during dominant hand drawing. Since only patients
showed such associations, those who have relatively
elevated interhemispheric connectivity might be able
to alleviate impairments that are not occurring in
healthy subjects. Patients with reduced effective con-
nectivity, in contrast, might lack such ability, thereby
exhibiting amplified sample entropy.

Interestingly, connectivity in both beta and gamma
bands correlated inversely with sample entropy. This
is intriguing because beta oscillations seem to reflect
the maintenance of a current motor state, whereas
gamma oscillations correspond to rather prokinetic
processes, thereby contrasting the former activities
[69]. However, both frequency bands can be further
subdivided into distinct frequencies that correspond
to different functions. Apart from supporting the sta-
tus quo, higher frequencies of the beta band are
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potentially involved in attention, anticipation, senso-
rimotor integration, and updating motor predictions
[70], as well as error evaluation and monitoring [71].
Similarly, gamma oscillations can be segregated into
a finely tuned gamma band reflecting pro-kinetic and
dynamic processing, and broadband activities that
correspond to active motor control processes, feed-
back processing, or learning [72, 73]. Therefore, one
possible explanation could be that the communication
patterns from nondominant to dominant hemisphere
discovered here could span frequencies that cover
both beta and gamma oscillations. Further, drawing
spirals involves the complex interplay between rapid
activation and deactivation of agonist and antagonist
muscles, meaning that both pro-kinetic and stopping
processes could be pertinent.

Since most participants in our study were right-
handed, we cannot exclude that our findings
specifically relate to right-handed Parkinson’s disease
patients. Whether handedness affects patients differ-
ently remains unclear so far. Handedness appears
to affect patients in a way that both left and right
handers more often experience the onset of symp-
toms on their dominant side (∼60%) [74]. Notably,
most of our participants were also more severely
affected on their dominant body hemisphere (19 vs
10). In a recent study it was suggested that genetic
variants that influence the handedness phenotype
by contributing to the lateralization of brain orga-
nization could also influence the predisposition to
develop neurological disease like Parkinson’s dis-
ease [75]. Whether handedness affects Parkinson’s
disease, or more specifically the temporal organiza-
tion of movement, differently should be addressed in
future studies.

Our results suggest that irregularities in spiral
drawing result from impaired motor control mech-
anisms. However, we cannot fully exclude potential
contributions from ocular movement dysfunction that
was demonstrated in PD [59] and could delay the
transformation of visual information. To disentan-
gle between dysfunctions in executive control, in the
generation of visual information, or in visual transfor-
mation, future studies should incorporate open loop
movements that rely on visual information to a lesser
degree (e.g., drawing spirals as fast as possible with-
out providing a template), clinical assessments and
questionnaires that measure dexterity (e.g., the Pur-
due Pegboard or the Dexterity Questionnaire 24),
and combine these with eye tracking devices. Fur-
thermore, manipulating the medication status could
provide additional information on the mechanisms

causing enhanced irregularities. Lastly, due to its
nonnormal distribution, the sample entropy of veloc-
ity was log transformed [51], which added a layer
of complexity to understanding and interpreting the
data. Thus, the current interpretation based on this
metric should be taken cautiously.

CONCLUSION

This study evidences that patients with Parkinson’s
disease display an increased amount of temporal
irregularities in the execution of a spiral-drawing task,
as measured by sample entropy. In addition, the recip-
rocal effective connectivity between left and right M1
during resting-state fMRI is reduced. Connectivity
specifically in the nondominant to dominant direction
is linearly inverse correlated with the extent of irreg-
ularities. Similar associations with task-based EEG
further highlight the functional relevance of nondom-
inant to dominant M1 interactions. We demonstrate
that nonlinear parameters of a spiral drawing task like
sample entropy have the potential to unravel altered
characteristics of graphomotor control in Parkin-
son’s disease patients that are not considered by
the UPDRSIII. As a complex task that relates to
challenges patients might experience in their daily
routines, this affords to a) study pathological mech-
anisms that are not related to UPDRS, b) investigate
therapeutic effects, c) investigate brain mechanisms
that cause such impairment, and d) potentially aid in
the differential diagnosis. While relatively elevated
effective connectivity might facilitate stable and reg-
ular movement control, a disrupted interhemispheric
pathway may render responsible for disease related
impairments of the temporal organization of move-
ment. Studying malfunctions of interhemispheric
connectivity is crucial to further our understanding
of motor physiology and impairment in Parkinson’s
disease.
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Südmeyer M (2012) Motor-cortical oscillations in early
stages of Parkinson’s disease. J Physiol 590, 3203-3212.

[51] Stevens JP (2012) Applied multivariate statistics for the
social sciences, Routledge.

[52] Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S,
Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel
R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang
AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow
CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle
N (2008) Movement Disorder Society-sponsored revision
of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS): Scale presentation and clinimetric testing results.
Mov Disord 23, 2129-2170.

[53] Cohen J (1988) Statistical power analysis for the behavioral
sciences. Lawrence Erlbaum Associates.

[54] Stergiou N, Decker LM (2011) Human movement vari-
ability, nonlinear dynamics, and pathology: Is there a
connection? Hum Mov Sci 30, 869-888.
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Becker W, Kassubek J (2012) Eye movement impairments
in Parkinson’s disease: Possible role of extradopaminergic
mechanisms. BMC Neurol 12, 5.
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