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Abstract
Descriptor-based microstructure characterization plays a crucial role in the
field of reversed material engineering for random heterogeneous media. With
the advent of differentiable microstructure characterization and reconstruction,
there has been a growing interest in the development of differentiable formula-
tions of descriptors. The search for effective descriptors becomes indispensable
to adequately characterize a wide range of microstructures. This work pro-
poses a novel approach to construct a descriptor by utilizing a wavelet-based
transformation called the scattering transformation on microstructure images.
The characterization and reconstruction capabilities of this newly developed
descriptor are compared to a benchmark descriptor based on spatial correla-
tion functions using various 2Dmicrostructure images. The comparative analysis
aims to evaluate the effectiveness and potential advantages of the proposed
wavelet-based descriptor.

1 INTRODUCTION

The generation and analysis of randomheterogeneous compositematerials is amuch demanded research topic and along-
side with it the field of microstructure characterization and reconstruction (MCR) emerged. These topics are central in
the development of process-structure-properties as well as in generating microstructural images or voxel data as a basis of
physical simulations. The combination of simulation results and microstructures in turn can lay the basis for data driven
material research, which is a core topic in linking artificial intelligence and material sciences.
A review of state of the artmethodology is given in [1–3], but a brief overview is given in the following, wherebymaterial-

specific and material-agnostic methods are distinguished. Material-specific methods are optimized for, but restricted
to, specific material classes. Examples comprise a concrete reconstruction algorithm [4], the sequential addition and
migration algorithm for fiber reinforced composites [5, 6] and various codes for metallic materials [7, 8].
In contrast, for arbitrary material different approaches exist, for example, combinations of spatial correlation functions

and principle component analysis [9] or using matching Wang tiles [10]. Another big class of random media reconstruc-
tion approaches are based on machine learning algorithms, which arose since a lot of research is available in the field
of image processing and image recognition using neural networks [27]. The range of used models goes from artificial-
or convolutional neural networks [11, 19], over generative adversarial networks [12] in combination with variational
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autoencoders [13], to diffusion models [14]. However, this work focuses on a descriptor based approach, since the lack
of decent training data is a well known problem.
The first major step in MCR was the Yeong–Torquato algorithm [15], where the microstructure is reconstructed by

iteratively adapting a random instance to closer match a desired structure. One major advantage of the result was its
simplicity in implementation and the possibility of incorporating more complex information about the morphology of the
microstructure. The general randomness of the underlying morphology is described by so called descriptors, which can
be either based on physical properties like volume fractions, or statistical properties like the lineal path function [16] or 𝑛-
point spatial correlation functions [17]. With translation-invariant descriptors the comparative analysis of microstructures
can be raised to another level, since one can check for morphological similarities and differences or even average and
interpolate betweenmicrostructures. Since descriptors capture the essentialmorphological properties they are often called
the microstructure characterization.
Since then much progress has been made in the development and formulation of descriptors, as well as in improving

optimization algorithms, as for example in [18], where the reconstructing algorithm is constructed as an differentiable
optimization problem. The inclusion of the gradient in the optimization problem reduces the number of needed iterations
significantly and therefore allows for a more accurate calculation of the descriptors while still reducing computational
time, see [28] for a comparative overview.
In the upcoming work, a overview of the general model is given, before a transfer-learning approach from [19] is shortly

reviewed, where essentially the local features of a pre trained convolutional neural network (CNN) are used to perform a
descriptor based reconstruction. Inspired by this approach, a descriptor for DMCR based on a coupled wavelet transform
of the microstructure is constructed and its reconstruction properties are investigated.

2 MODEL

Only the very essentials of the model are reviewed in this section, alongside some of its strengths. The differential
microstructure reconstruction algorithm introduced in [18] is used, that is, given a differentiable descriptor 𝐷𝑑𝑒𝑠 the
microstructure is reconstructed by

𝑎𝑟𝑔 min
𝑀∈

(𝐷𝑀 , 𝐷𝑑𝑒𝑠),

where = {0, 1}𝐼×𝐽 is the space of all 𝐼 × 𝐽 two-phase microstructure images, 𝐷𝑀 is the corresponding descriptor of𝑀
and  is a loss function, for example, the Euclidean distance.
Note that this algorithm can be extended to reconstruct 3D microstructure voxels from a 2D microstructure image, by

minimizing over every slice of the voxel in 𝑥, 𝑦 and 𝑧 direction. See [20] for further information.

2.1 Software

The characterization and reconstruction of all microstructures in the numerical experiments is performed using the open
source software MCRpy.
As illustrated in Figure 1, the core function of MCRpy is the interplay between descriptors and microstructures, that is,

characterization and reconstruction. All other functions, such as optimizer, loss function and descriptor are implemented
as plug-ins to the core function. This makes the software easy to extend, since only the new plug-in has to be implemented
and can then be combinedwith all other parts of the software. This will be exploited to test a newwavelet-based descriptor.

2.2 MCR using correlation functions

In the past, reconstruction properties of many different descriptors have been investigated, see for example, [3] and the
references therein,where spatial correlation functions have shownpromising results and thereforewill act as a benchmark
for new descriptors. The reconstruction setting is taken as follows:
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F IGURE 1 Structural overview of MCRpy: microstructures can be characterized and reconstructed, whereas the preferred optimizer,
loss function and descriptor are provided as plug ins. The illustration was created by Paul Seibert et al. [21] and is used, without modifications
made by the author, under the Creative Commons BY license.

∙ Descriptor: differentiable formulation of spatial two correlation functions from [18].
∙ Optimizer: L-BFGS-B, a quasi-Newton method.
∙ Loss-function: mean squared error.

A comparative overview of the reconstruction properties for some example microstructures will be given in the latter part
of the work, alongside a comparison with a newly developed scattering descriptor.

2.3 MCR using local feature extraction

In [19], a reconstruction based on local features of a CNN is performed, that is, the microstructure is forward propagated
through a pre-trained CNN and then the vectorized feature maps of of each layer in the network are extracted. In this case
a trimmed VGG19-architecture as network and the ImageNet dataset as training data were used.
For the sake of simplicity, let’s consider the case where a given microstructure is reconstructed. Therefore let𝑀 ∈ ℝ𝐼×𝐽

denote the original microstructure. Passing 𝑀 through the CNN will activate in Layer 𝑖 the feature maps 𝐹𝑖 ∈ ℝ𝑁𝑖×𝐾𝑖 ,
where 𝑁𝑖 denotes the number of filters and 𝐾𝑖 the the size of the vectorized feature maps in layer 𝑖, see [19]. The Gram
matrix of layer 𝑖 for microstructure𝑀 is then defined by

𝐺𝑖
𝑘𝑙
= (𝐹𝑖

𝑘
)𝑇𝐹𝑖

𝑙
,

where 𝐹𝑖
𝑘
is the 𝑘-th row of 𝐹𝑖 . Taking a random initialization 𝑀̃ ∈ ℝ𝐼×𝐽 the Gram Matrices are defined analogously and

denoted by 𝐺̃𝑖 . The optimization is then performed by taking the sum of the layer-losses

𝐸𝑖 =
1

4𝑁2
𝑖
𝐾2
𝑖

∑

𝑗,𝑘

(
𝐺𝑖
𝑗𝑘
− 𝐺̃𝑖

𝑗𝑘

)
,

that is, a weighted sum of the element wise matrix difference. Due to the structure of the CNN, the gradient of the loss
function can be easily incorporated in the optimization, since it can be automatically computed by back propagation using
standard python packages, for example, Tensor Flow. This follows the same idea as the above introduced DMCR.
AlthoughLi et al. [19] obtained impressive results for the reconstruction of different samples, the choice ofweights in the

Grammatrices seems a bit arbitrary, since the ImageNet dataset contains no microstructure images, but pictures of every-
day life. Henceforth, in the forthcoming chapter, the identical methodology shall be employed, but with the utilization of
pre-defined wavelet kernels within the convolutional network.

3 SCATTERING DESCRIPTOR

The foundation of this part is a signal presentation called the Scattering Transformation, which is a widely used tool in
image processing and has been thoroughly investigated, see for example, [22, 23] and [24]. This representation is obtained
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(A) (B)

F IGURE 2 Examples of 64 × 64 pixel convolution kernels used in the scattering transformation.

F IGURE 3 Computational Structure of the Scattering Transformation. 𝜓 denotes the wavelet kernel and 𝜙 the gaussian kernel. In this
example three different wavelets are used for the convolution, which gives 3𝑖 nodes for layer 𝑖. The illustration was created by Varun Khemani
et al. [25] and is used, without modifications made by the author, under the Creative Commons BY license.

by propagating the signal, in this case the microstructure image, through wavelet transformations with nonlinear modu-
lus and averaging operators. This leads to a computational structure that is identical with one of a convolutional neural
network, see Figure 3.
The main difference is that the convolution kernels are not learned by using training data and back propagation but are

all predefined rotated and dilated Morlet wavelets [26] and the averaging kernel is taken as a Gaussian, see Figure 2 for a
visualization. Depending on the number of dilations 𝐽 and the number of rotations 𝐿, 𝐽𝐿 wavelet kernels are computed
and used in every layer, which leads to a number of (𝐽𝐿)𝑖 nodes for the 𝑖-th layer. Fortunately, one can show that most
information of the signal is captured in the first three layers [23], so the exponential growth of the convolutions is not an
issue for the computational feasibility.
In this work, the parameters were chosen as 𝐽 = 2, 𝐿 = 8 and a network depth of three. Extracting the scattering coef-

ficients, that is, the averaged output of every node in the network, see Figure 3, the scattering descriptor  is defined
by

𝑘𝑙 = (𝑆𝑖
𝑘
)𝑇𝑆𝑖

𝑙
,

where 𝑆𝑖
𝑗
denotes the scattering coefficients corresponding to the 𝑗-th node of layer 𝑖 in the scattering network. Again, the

differentiability is a natural property of the scattering descriptor by it’s construction via a convolution network.
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F IGURE 4 Comparative overview of the reconstruction properties using a spatial correlation function as descriptor and a scattering
descriptor. The figure reads as follows: (A)–(D) are original microstructure samples of pixel size 64 × 64 taken from [19], (E)–(H) are
reconstructions using a spatial correlation function and (I)–(L) are reconstructions using the above introduced scattering descriptor.

Reconstructions using the scattering descriptor and spatial correlation functions as descriptors are summarized in
Figure 4. The same reconstruction setting as in Section 2.2 was used, that is, L-BFGS-B as optimizer and mean squared
error as loss function. The samples of alloy, sandstone and ceramics are reconstructed perfectly with the spatial correlation
descriptor, that is, translated versions of the original sample are produced. The fingerprint-like structure of the copolymer
is not captured by the spatial correlation functions at all, which can be seen in the inaccurate reconstruction. For this type
of structure the scattering descriptor shows promising results, which displays its huge potential. Furthermore, except for
the alloy, the other samples show satisfactory reconstruction results.

4 CONCLUSION AND OUTLOOK

In this work the essentials of differentiable microstructure characterization and reconstruction are reviewed, as well as
properties of commonly used descriptors, such as spatial correlation functions and Gram matrices.
Inspired by the Grammatrix approach, a new descriptor, which is based on the scattering transformation, is formulated.

The scattering transformation in turn is a coupled wavelet transformationwhich captures local features of the input signal
by iteratively applying a wavelet transform, a complex modulus and an averaging.
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F IGURE 5 Copolymer sample with pixel size 256 × 256 (left), reconstruction using spatial correlation functions (middle) and
reconstruction using the scattering descriptor (right).

The reconstruction results show that the scattering descriptor is able to capture the morphology and characteristics
of most tested microstructures, namely three out of four. The reconstruction of the copolymer, which could not be fully
captured by spatial correlation functions, is particularly well using the scattering descriptor. This could be due to the fact,
that the convolution with wavelets captures the many edges of the structure well. This can be seen even more clearly,
when taking microstructure images of size 256 × 256 pixels into account. Figure 5 gives an overview of a 256 × 256 pixel
copolymer reconstructed by correlation functions and the scattering descriptor.
It should be noted, that this is only a first idea on how to use the scattering transformation in MCR and does not

capture the full potential. The exact scattering transformation defined in [24], that is, the limit of the discrete transform
presented here, has some very interesting properties, one example being its stability to the action of small diffeomor-
phisms. Technically speaking, a diffeomorphisms is a deformation of the underlying structure. This stability could prove
beneficial in the context of MCR and will be investigated in future work. In this work, the reconstruction properties
of the scattering descriptor are only assessed by the eyeball-norm. Of course, this should be extended to the simula-
tion and comparison of effective values of the corresponding microstructure. Overall, this work gives a new possibility
to characterize microstructures, which shows promising potential and is a valuable extension to the existing set of
microstructure descriptors.
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