
Vol.:(0123456789)

SN Computer Science (2023) 4:778
https://doi.org/10.1007/s42979-023-02198-x

SN Computer Science

ORIGINAL RESEARCH

Discovering Rules for Rule‑Based Machine Learning with the Help
of Novelty Search

Michael Heider1 · Helena Stegherr1 · David Pätzel1 · Roman Sraj1 · Jonathan Wurth1 · Benedikt Volger1 ·
Jörg Hähner1

Received: 31 March 2023 / Accepted: 28 July 2023
© The Author(s) 2023

Abstract
Automated prediction systems based on machine learning (ML) are employed in practical applications with increasing
frequency and stakeholders demand explanations of their decisions. ML algorithms that learn accurate sets of rules, such
as learning classifier systems (LCSs), produce transparent and human-readable models by design. However, whether such
models can be effectively used, both for predictions and analyses, strongly relies on the optimal placement and selection of
rules (in ML this task is known as model selection). In this article, we broaden a previous analysis on a variety of techniques
to efficiently place good rules within the search space based on their local prediction errors as well as their generality. This
investigation is done within a specific pre-existing LCS, named SupRB, where the placement of rules and the selection of
good subsets of rules are strictly separated—in contrast to other LCSs where these tasks sometimes blend. We compare two
baselines, random search and (1, �)-evolution strategy (ES), with six novelty search variants: three novelty-/fitness weigh-
ing variants and for each of those two differing approaches on the usage of the archiving mechanism. We find that random
search is not sufficient and sensible criteria, i.e., error and generality, are indeed needed. However, we cannot confirm that
the more complicated-to-explain novelty search variants would provide better results than (1, �)-ES which allows a good
balance between low error and low complexity in the resulting models.

Keywords Rule set learning · Rule-based learning · Learning classifier systems · Evolutionary machine learning ·
Interpretable models · Explainable AI · Novelty search

Introduction

Autonomous decisions of agents are more common than
ever as automation in many socio-technical settings, such
as manufacturing, increases steadily. This advent of more
independent and intelligent technical systems holds great
potential in increasing safety and comfort of workers as well
as general productivity. However, the roll-out of such sys-
tems is often slowed down or blocked when stakeholders,
from operator to management level, do not trust that the
systems perform on-par or even better than their human part-
ners. Therefore, stakeholders expect the agents to provide

sensible explanations and insights into their decision making
processes [1].

For the machine learning components of these agents, this
implies that they have to offer strong interpretability, self-
explaining or transparency-by-design capabilities. The use
of learning classifier systems (LCSs) [2, 3] in these kinds of
scenario was introduced in [4]. There, the unique suitability
of LCSs is discussed, as this family of rule-based learning
algorithms features both powerful machine learning capa-
bilities applying to all commonly encountered settings as
well as inherently transparent models that resemble human
explanation processes due to their rule-like structure. Rules
in an LCS are of an if-then form, where the if (or condition)
constricts the section of the feature space this rule applies to
(matches) and the then contains a simpler, therefore, more
comprehensible, local model able to predict data points from
that feature space partition. Conditions are usually opti-
mized using evolutionary algorithms or similar stochastic
search heuristics. The model’s practical transparency (or

This article is part of the topical collection “Advances on
Computational Intelligence 2022” guest edited by Joaquim Filipe,
Kevin Warwick, Janusz Kacprzyk, Thomas Bäck, Bas van Stein,
Christian Wagner, Jonathan Garibaldi, H. K. Lam, Marie Cottrell
and Faiyaz Doctor.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02198-x&domain=pdf
http://orcid.org/0000-0003-3140-1993

 SN Computer Science (2023) 4:778 778 Page 2 of 15

SN Computer Science

explainability in a broader context) is primarily influenced
by the effective number of rules and their placement within
the feature space (the two tasks that constitute model selec-
tion in rule-based machine learning, cf. [3]). Therefore,
the—preferably near optimal—placement of rules should
be a primary concern when designing an LCS algorithm
with explainability requirements.

In this work, we further expand the supervised rule-based
learning system (SupRB) [5], a recently proposed LCS for
regression tasks, with different methods to discover new
rules that fit the data well and benchmark them against
each other on a variety of real-world datasets. This article
extends our previous work on this topic originally presented
at ECTA/IJCCI 2022 [6].

Learning Classifier Systems and Rule
Discovery

As previously introduced, LCSs are a family of—typically
evolutionary—rule-based learning systems with a long
research history [2, 3, 7]. Traditionally, they are categorized
into two approaches:

• Michigan-style systems, which feature strong online
learning capabilities and have evolved from reinforce-
ment learning (RL) to all major learning schemes. They
consist of a single population of rules on which the opti-
mizer operates directly.

• Pittsburgh-style systems, that typically perform offline
batch learning and primarily focus on supervised learn-
ing and feature a population of sets of rules, where the
optimizer operates on those sets rather than the rules
individually.

Note that there have been recent advances towards an
updated classification system in [3] where batch learning
versus online learning and single- versus multi-solution form
the basis of classification. In that system, SupRB is classified
as a multi-solution batch learning system.

Due to those very different outsets, their approaches to
rule discovery and improvement differ substantially. For
example, the most widespread Michigan-style system, the
XCS classifier system [8], features two mechanisms to deter-
mine new rules. The first is the covering mechanism: When-
ever the number of rules that match a new data point falls
below a predetermined threshold, new rules are generated
that match this data point. These rules are often randomly
made more general than to just match this point specifically
and, therefore, slightly differ when inserted into the popula-
tion of rules. The second is the evolutionary algorithm which
is invoked on matching rules that also propose the actually-
chosen action (e.g., when following an epsilon-greedy policy

in RL). It utilizes crossover and mutation mechanisms appro-
priate for the types of input data and evolves the population
in a steady-state manner.

For Pittsburgh-style systems, new rules can be directly
added to an individual of the population (a set of rules),
shared between individuals or be the product of a muta-
tion (and more rarely rule-level crossover) operator. As the
evolutionary algorithm of these systems operates on rule
sets rather than rules directly, the fitness signal that guides
evolution is not based on individual rule performance but
rather the performance of a given set of rules, which can
complicate rule discovery due to the added indirection.

The Supervised Rule‑Based Learning System

The supervised rule-based learning system (SupRB) [5] is a
rule set learning algorithm/an LCS with alternating phases
of rule discovery and solution composition (additional
details in [9]). The two phases combined solve the standard
machine learning task of model selection (cf. [3]). Splitting
into those two phases—in contrast to solving the task with a
single optimizer or an optimizer and a post-hoc heuristic—
allows more precise control of the optimization process as
objectives are more directly related to the specific behavior
of the component under optimization. In contrast, in Pitts-
burgh-style systems, a model’s fitness that also controls
changes made to its rules follows the interaction of its rules
rather than their individual suitability, whereas, in Michi-
gan-style systems, rule fitness often depends on neighboring
rules (niching) and, due to their online learning nature, does
not necessarily relate to the full dataset. In the rule discovery
(RD) phase of SupRB, new rules are generated and locally
optimized to produce a diverse pool of maximally general
rules still exhibiting low errors. Subsequently, in the solution
composition (SC) phase, an optimizer attempts to choose a
well-performing subset from the pool of discovered rules.
Ideally, this subset is small (exhibiting low complexity) but
also produces a model (due to the mixing of rules in areas
of overlap) with accurate predictions. The obvious tradeoff
between those two objectives (similar to general versus accu-
rate rules during RD) leads to a need to balance these objec-
tives. The exact nature of the balance highly depends on the
use case at hand and the inherent requirements for expla-
nations and model readability (cf. [1]). Sometimes, more
complex models can be acceptable, whereas, in other cases,
e.g., when decisions need to be analyzed quickly, smaller
models with less overlap are to be preferred.

Alternating between phases (rather than having a very
long RD phase constructing a large pool followed by a single
SC phase—which is similar to the process of supervised
learning in Michigan-style systems followed by model
compaction) allows to guide the optimizers better into more

SN Computer Science (2023) 4:778 Page 3 of 15 778

SN Computer Science

interesting regions by giving them additional information
about the current model behavior. In SupRB, when discov-
ering new rules, the RD mechanism places new rules more
likely into regions where the last model candidate from the
SC process showed high prediction errors. This allows to fill
unmatched areas (or areas of ill-fit local models) in the over-
all model that might otherwise go unnoticed or just never
affected by pure randomness. Blindly fitting a multitude of
rules would become quite expensive as the whole dataset
needs to be matched and then batch-learned multiple times.
In addition, it is hard to determine beforehand how many
rules would be needed in the pool to later on find a satisfac-
tory subset that solves the learning task.

As its transparency is a central aspect, SupRB’s model is
kept as simple and interpretable as possible [5]:

1. Rules’ conditions use an interval-based matching: A rule
k applies for example x iff xi ∈ [lk,i, uk,i] ∀i with l being
the lower and u the upper bounds.

2. Rules’ local models fk(x) are linear. They are fit using
linear least squares with a l2-norm regularization (Ridge
Regression) on the subsample matched by the respective
rule.

3. When mixing multiple rules to make a prediction, a
rule’s experience (the number of examples matched
during training and, therefore, included in fitting the
submodel) and in-sample error are used in a weighted
sum.

For the SC phase optimizer, we use a genetic algorithm
(GA) for all experiments in this article, similar to [6] and
[9]. It operates directly on a bitstring, where each element
corresponds to whether a rule from the pool (if viewed as
a list rather than a set) is part of this specific solution to
the learning task or whether it is not. In previous work by
[10], other metaheuristic optimizers were tested to compose
solutions. They found that the choice of metaheuristic is—
given sufficient computational budget—largely dependent
on the learning task, although even there, differences were
very small, which makes the GA a fitting general choice. As
LCSs typically feature evolutionary computation methods,
utilizing a GA is also the more traditional option. Tourna-
ment selection is used to select parents (in groups of two).
An n-point crossover under a 90% probability recombines
those parents, with n being set as part of hyperparameter
tuning. The emerging children are then mutated using a
probabilistic bit-flip mutation. Together with the fittest
parents (elitism), these children form the new population.
In our experiments, we used a population size of 5 elitists
and 32 children. An individual’s (solution to the learning
task) fitness is determined based on its in-sample prediction
error and its complexity (number of rules present) follow-
ing [5]. Critically, this phase does not affect the position of

rules’ bounds, which is in stark contrast to most previously
proposed LCSs. Individuals can only be composed of rules
in the pool and those rules remain unchanged by the GA’s
operators. Therefore, a specific bitstring will always express
the same specific fitness during one training run, regardless
of when it is evaluated during the training process.

The main subject of this article is the RD phase’s opti-
mizer, extending the analysis conducted in [6] by investi-
gating additional algorithmic variants. In contrast to many
typical optimization problems, we do not want to find a
singular globally optimal rule but rather a set of localized
rules that perform well in their particular feature space parti-
tion. Thus, we are attempting to find an unknown number of
local optima without mapping the entire fitness landscape
(or even all local optima). The discovered rules should be a
diverse set to enable SC to compose a good overall model
from them, which would be difficult from a set of very simi-
lar rules that do only cover a small part of the input space.
However, as SC will select the subset of discovered rules
most appropriate to solve the learning task, even heavily
overlapping rules in the pool are not an issue. As described
above for SC, a variety of different optimizers can achieve
this. In the following, the different optimization approaches
for RD that will be compared in the remainder of this article
are presented. As we did previously [6], we build two base-
lines with a simple evolution strategy (cf. [5, 9]) and an even
less sophisticated random search that only exploits infor-
mation from the SC phase. We compare those with three
different variants of novelty search, for each of which we
test two substantially different ways of applying the archiv-
ing component (against which the novelty gets computed).
For all heuristics, we utilize the same approach for calculat-
ing rule fitness by combination of two objectives, utilizing
the in-sample error and the matched feature space volume,
respectively (cf. [5]).

Evolution Strategy

Some form of evolutionary algorithm is the traditional
choice for an LCS’s optimization processes. Therefore, the
first strategy employed for RD in SupRB, which was also
used for the experiments in [10] and [9], is an evolution
strategy (ES), specifically, a simplified (1, �)-ES [5].

The approach is summarized below and in Algorithm 1.
The ES’s initial individual is generated by selecting a ran-
dom example from the training data around which a rule
is placed, preferring those examples exhibiting a high in-
sample error in the intermediate global solution. This indi-
vidual serves both as the initial candidate for addition to the
pool and the parent of the next generation. From this parent,
we generate � children with a non-adaptive mutation opera-
tor, which moves the upper and lower bounds further out-
wards by adding random values sampled from a half-normal

 SN Computer Science (2023) 4:778 778 Page 4 of 15

SN Computer Science

distribution. The child individual with the highest fitness
becomes the parent for the next generation. If this individual
showed a better fitness than the current candidate, it also
becomes the new candidate. When for a fixed number of
generations no new candidate has been found, the evolution-
ary search terminates. This ES produces one rule at a time,
which allows it to be easily parallelized. One merit of this
approach is in the explainability of both the search procedure
and the resulting pool. In general, rules that have fitness
independent from other rules are easier to understand for
most non-experts (and even experts for more complex mod-
els). Whereas, in most current LCSs, the fitness assigned
to each rule is highly dependent on the other rules it is sur-
rounded by. Beyond these fitness-based considerations on
the understandability of our learning process, the ES itself
is also an easy to follow search method: expand the area
(or hypervolume) an individual matches, evaluate the new
individuals, choose the best new option and repeat.

Random Search

As an alternative to the strongly fitness-guided RD per-
formed by the ES, we introduce a form of random search
(RS). RS commonly serves as a baseline for testing the per-
formance of other optimization algorithms. Furthermore,
with the ulterior motive of finding diverse rules to add to
the pool, RS provides an interesting approach where the fit-
ness only plays a role in the selection of the final candidate
but not in the generation of new rules.

In SupRB, RS (cf. Algorithm 2), similarly to ES, ran-
domly selects a fixed number of data points with the proba-
bility of selection being weighted by their respective in-sam-
ple prediction errors in the last solution candidate (produced
by the previous SC phase). We then place random bounds
around those points based on half-normal distributions (to
ensure we always match the selected point). To balance the
computational cost between RD approaches, we produce

SN Computer Science (2023) 4:778 Page 5 of 15 778

SN Computer Science

substantially more rules initially than we would in an ES
generation but a number roughly similar to the total number
of children present in the ES. We then greedily select the
rule(s) with the highest fitness to become part of the pool.

Novelty Search

One of the central challenges of RD is that the optimizer’s
objective is to find multiple rules that partition the feature
space and, in their individually matched hypervolume, pre-
dict data points well. Contrastingly, optimizers operating on
many typical optimization problems are expected to find a
single global optimum (or at least a point very close to it).
The RD’s primary objective can somewhat be viewed as
the optimizer being tasked to map an unknown number of
deeper local optima within the search space. In other words:
with RD, we aim at finding a diverse set of well-performing
rules for all areas of the feature space.

In this section, we describe a new approach towards
discovering rules based on Lehman’s novelty search (NS)
[11]. In this evolutionary search method, the optimizer tries
to find individuals that exhibit new behavior previously
unknown within the population, rather than being guided
(or at least not being fully guided) by the typical fitness func-
tion. In SupRB, behavior of rules can be equated to what
subsample of the training data they match, as we want to
find a rule that predicts an area of the feature space currently
unmatched or only matched by rules with high errors in this
area. This makes NS a natural fit out of the field of quality-
diversity optimization techniques. An application of MAP-
elites [12], another common quality-diversity technique, is
much less straight-forward in our use case as we are unaware
where rules should be placed and what properties good rules
should have before training was performed. Likely, we even
want multiple rules with quite similar properties but located
differently.

For our adaptation, we base the NS on a (� , �)-ES with
elitism and follow the extensive experimental findings laid
out by [13]. In each iteration, we select a list of � parents out
of the current population. These parents are paired, undergo

a uniform crossover and a half-normal mutation (cf. Sec-
tion “Evolution Strategy”). The resulting children are then
fitted and the best performing � children are selected for the
next population. In addition, we select a number of high-
performing parents equal to the number of rules the NS is
expected to produce within one RD phase as part of the new
population (elitism). Performance of an individual can be
based on novelty alone or on a combination of fitness (as
used in the ES; cf. Section “Evolution Strategy”) and nov-
elty, e.g., a linear combination.

For the novelty of a rule, we compare its match set and
the match sets of the other rules. In this paper, we experi-
ment with two different approaches at the selection of those
other rules. Previously [6], we chose the rules in the pool
and those in the current NS population, where we would
compare with the other children for the selection or the par-
ents for elitism, respectively. In the remainder of this paper,
we refer to this as NS-P, with the P indicating that a compar-
ison of past populations is only based on rules in the pool. In
addition, we investigate another option called NS-G. In this
approach, we use a more traditional archiving technique and
compare with this archive and the current population (either
children or parents, as previously). Initially during each RD
phase, the entirety of the pool is copied into the archive.
Therefore, NS-G automatically encompasses all compari-
sons made in NS-P. In addition, in each generation, � (which
is subject to hyperparameter tuning) rules are selected from
the children and put into this archive, giving NS-G its name.
Thus, the archive grows with each generation and—in con-
trast to NS-P—NS-G is discouraged from exploring regions
it has already explored in this RD phase. Note that, after an
RD phase completes, the archive is reset to the then current

 SN Computer Science (2023) 4:778 778 Page 6 of 15

SN Computer Science

pool. This avoids a heavy computational load on one hand
but is also more in line with the idea of independent opti-
mization only based on the current solution to the problem.
Would we account for previous RD phases, we might hinder
the incorporation of information from this solution, as some
region might have been touched but that rule not added to
the pool as it was unimportant at the time but did become
beneficial to further explore now.

The novelty score assigned to a rule is the average Ham-
ming-distance between its match set and its k nearest neigh-
bors’ (most similar rules) from the respective comparison
set. A value typically encountered for k with other NS appli-
cations in literature—e.g., [14]—is 15, although we tune
between 10 and 20.

After a set number of iterations, we add a predefined num-
ber of rules from the current population to the pool and con-
clude this phase. Which rules get added can be randomized
or based on the highest novelty(-fitness combination).

In addition to the basic NS, we implemented and experi-
mented with two variants: minimal criteria novelty search
(MCNS) [11, 14] and Novelty Search with Local Competi-
tion (NSLC) [11]. For both variants, we also applied and
benchmarked the ‘generational’ and ‘pool-only’ options for
the novelty calculation.

MCNS imposes additional pressure on the search to
explore less vividly and focus more on rules that at least
fulfill some minimal requirement. In our experiments, we set
the minimal criterion to a minimum number (tuned between
5 and 15) of examples from the training data having to be
matched by the rule to become viable, although we did also
impose that at most one-fourth of the population should be
removed because they missed the minimal criterion to pre-
vent collapsing gene pools. We also use progressive minimal
criteria novelty search [15], itself based on MCNS, as an
option for combining fitness and novelty as the objective.
Here, all individuals that do exhibit a fitness worse than the
median fitness are removed automatically in each iteration
of the search. This approach is not tied to MCNS and can be
used in all three variants.

NSLC introduces a localized fitness-based pressure on
the new generation. The idea is that, within a neighborhood
(based on their behavior and not their position in the search

space) of similar rules, the rules that exhibit high fitness
should be chosen. A rule’s novelty score gets increased by
a factor of b∕� , where b is the number of individuals within
the neighborhood specified by � that have a worse fitness
than the rule currently evaluated. We tune � in the same

SN Computer Science (2023) 4:778 Page 7 of 15 778

SN Computer Science

range as k, as this does also specify a neighborhood of rules
this rule is in competition with.

One disadvantage of NS-like approaches is that rule
selection is no longer solely based on independent metrics
(fitness) but rather on the independent fitness and the highly
dependent (on other rules) novelty score.

Evaluation

To examine the differences between the rule discovery meth-
ods and to find the most versatile strategy, we evaluated
those strategies within SupRB on several regression datasets.

Experiment Design

The experimental design of this article follows those of pre-
vious papers on SupRB [6, 9, 10]. SupRB is implemented1
in Python 3.9, adhering to scikit-learn [16] conventions. The
target is standardized and input features are transformed into
the range [−1, 1] . While these transformations are reversible,
they improve SupRB’s training process as they help prevent-
ing rules to be placed in regions where no sample could be
matched and remove the need to tune error coefficients in
fitness calculations, respectively. Based on our assumptions
about the number of rules needed, 32 cycles of alternating
rule discovery and solution composition are performed, gen-
erating four (or 8 in case of NS variants) rules in each cycle
for a total of 128 (256 for NS variants) rules. In addition, the
GA is configured to perform 32 iterations with a population
size of 32. To tune some of the more sensitive parameters,
we performed a hyperparameter search using a Tree-struc-
tured Parzen Estimator in the Optuna framework [17] that
optimizes average solution fitness on 4-fold cross-validation.
We tuned the optimizers on each dataset independently for a
fixed tuning budget of 360 core hours. The final evaluation,
for which we report results in Sect. 4.2, uses 8-split Monte
Carlo cross-validation, each with 25% of samples reserved
as a validation set. Each learning algorithm is evaluated with
8 different random seeds for each 8-split cross-validation,
resulting in a total of 64 runs.

As previously, we evaluate on four datasets part of the
UCI machine learning repository [18]. An overview of sam-
ple size and dimensionality is given in Table 1. The com-
bined cycle power plant (CCPP) [19, 20] dataset shows an
almost linear relation between features and targets and can
be acceptably accurately predicted using a single rule. Air-
foil self-noise (ASN) [21] and concrete strength (CS) [22]
are both highly non-linear and will likely need more rules to
predict the target sufficiently. The CS dataset has more input
features than ASN but is easier to predict overall. Energy
efficiency cooling (EEC) [23] is another rather linear data-
set, but has a much higher input features to samples ratio
compared to CCPP. It should similarly be possible to model
it using only few rules. Overall, these four datasets offer
a mix of complex and more linear problems for different
dimensionalities, therefore, enabling a more balanced testing
whether the different RD techniques are really advantageous
or just perform well on certain classes of problems.

Results

In the following, we abbreviate SupRB using X as RD
method simply by X.

Table 1 Overview of the regression datasets the eight rule discovery
approaches for SupRB are compared on

Name ndim nsample

Combined cycle power plant (CCPP) 4 9568
Airfoil self-noise (ASN) 5 1503
Concrete strength (CS) 8 1030
Energy efficiency cooling (EEC) 8 768

Table 2 Mean and standard deviation (over 64 runs, rounded to two
decimal places) of MSE achieved by the eight RD approaches on the
four datasets

Best entry in each row (if one exists) marked in bold

CCPP ASN CS EEC

ES 0.07 ± 0.0 0.16 ± 0.03 0.14 ± 0.04 0.03 ± 0.01

RS 0.07 ± 0.0 0.23 ± 0.03 0.17 ± 0.03 0.06 ± 0.02

NS-G 0.07 ± 0.0 0.21 ± 0.02 0.15 ± 0.04 0.04 ± 0.01

MCNS-G 0.07 ± 0.0 0.19 ± 0.02 0.14 ± 0.05 0.04 ± 0.01

NSLC-G 0.07 ± 0.0 0.21 ± 0.02 0.15 ± 0.04 0.04 ± 0.01

NS-P 0.07 ± 0.0 0.22 ± 0.02 0.13 ± 0.02 0.04 ± 0.01

MCNS-P 0.07 ± 0.0 0.23 ± 0.02 0.13 ± 0.02 0.04 ± 0.01

NSLC-P 0.07 ± 0.0 0.20 ± 0.02 0.12 ± 0.02 0.04 ± 0.01

Table 3 Mean and standard deviation like Table 2 but for model com-
plexity

Best entry in each row (if one exists) marked in bold

CCPP ASN CS EEC

ES 4.52 ± 1.48 31.78 ± 2.21 24.95 ± 2.45 12.94 ± 2.10

RS 12.86 ± 3.13 32.98 ± 3.11 29.56 ± 2.47 30.17 ± 3.78

NS-G 7.58 ± 1.54 50.69 ± 5.83 40.83 ± 4.56 17.67 ± 3.33

MCNS-G 6.45 ± 1.30 42.45 ± 3.71 39.09 ± 3.65 19.17 ± 2.48

NSLC-G 7.58 ± 1.54 50.69 ± 5.83 40.83 ± 4.56 17.67 ± 3.33

NS-P 5.84 ± 0.91 18.22 ± 2.91 23.50 ± 3.47 6.92 ± 1.70

MCNS-P 6.02 ± 1.39 18.81 ± 2.46 22.38 ± 3.02 6.22 ± 1.13

NSLC-P 6.94 ± 1.41 29.75 ± 3.84 33.83 ± 3.28 10.16 ± 1.941 Recent code at: https:// github. com/ heidm ic/ suprb.

https://github.com/heidmic/suprb

 SN Computer Science (2023) 4:778 778 Page 8 of 15

SN Computer Science

Tables 2 and 3 give the means and standard deviations
of model performances (measured using the standardized—
individually per dataset—mean squared error on test data
(MSE)) and model complexities (measured by the number of
rules in the final elitist) achieved by the eight RD approaches
when evaluated—as described in the previous section—on

the four real-world datasets. At a first glance, on all four
datasets, RS shows the worst performance in terms of mean
MSE and, with the exception of ASN and CS, the mod-
els it creates also have the highest model complexity. For
ASN and CS, the models are still substantially more com-
plex than the on average smallest models but about average

Fig. 1 Violin plots of the
(standardized) MSEs achieved
in the 64 runs performed by the
different RD methods on CCPP

Fig. 2 Violin plots of the
(standardized) MSEs achieved
in the 64 runs performed by the
different RD methods on ASN

SN Computer Science (2023) 4:778 Page 9 of 15 778

SN Computer Science

when compared to the other optimizers. The other optimiza-
tion approaches vary in their results between datasets, with
‘pool-only’ novelty search variants showing a tendency for
smaller models than their ‘generational’ counterparts.

In order to get a better overview, as well as include dis-
tributional information, we create violin plots to visualize
the MSE results. For CCPP (Fig. 1), it can be seen that the

distributions of MSE values achieved look very similar for
all optimizers, which is reinforced by identical values in the
rounded mean and standard deviations given in Table 2.
However, from a visual perspective, NSLC-P might be hav-
ing a very slight edge (consider the y axis scale). Here, RS
also seems to have a worse performance than the other opti-
mizers. In terms of model complexity (Table 3), RS is clearly

Fig. 3 Violin plots of the
(standardized) MSEs achieved
in the 64 runs performed by the
different RD methods on CS

Fig. 4 Violin plots of the
(standardized) MSEs achieved
in the 64 runs performed by the
different RD methods on EEC

 SN Computer Science (2023) 4:778 778 Page 10 of 15

SN Computer Science

Fig. 5 Box plot (with standard
1.5 IQR whiskers and outliers)
of the posterior distribution
obtained from the model by
Calvo et al. [25, 26] applied to
the MSE data. An RD method
having a probability value of
q % says that the probability of
that RD method performing the
best with respect to MSE is q %

0.05 0.10 0.15 0.20 0.25

Probability

ES

RS

NS-P

MCNS-P

NSLC-P

NS-G

MCNS-G

NSLC-G

R
D

 m
et

ho
d

Fig. 6 Box plot like Fig. 5 but
for the model complexity metric

0.0 0.1 0.2 0.3 0.4 0.5

Probability

ES

RS

NS-P

MCNS-P

NSLC-P

NS-G

MCNS-G

NSLC-G

R
D

 m
et

ho
d

Fig. 7 Density plot of the poste-
rior distribution obtained from
Corani and Benavoli’s Bayesian
correlated t-test [27] applied to
the difference in MSE between
NSLC-P and ES. Orange dashed
lines and numbers indicate the
99 % HPDI (i.e., 99 % of prob-
ability mass lies within these
bounds). HPDI bounds rounded
to two significant figures. An
earlier version of this figure was
part of [6]

−0.002 −0.001 0.000 0.001 0.002

0

50000

-0.0025-0.0025 CCPP

−0.04 −0.02 0.00 0.02 0.04

0

1000

0.04 0.041ASN

−0.02 −0.01 0.00 0.01 0.02

0

500

-0.022 -0.019 CS

−0.003 −0.002 −0.001 0.000 0.001 0.002 0.003

MSE(NSLC-P) - MSE(ES)

0

20000

D
en

sit
y

0.0032 0.0033EEC

SN Computer Science (2023) 4:778 Page 11 of 15 778

SN Computer Science

the worst approach, while ES substantially outperforms
the others on average. The violin plot for the ASN dataset
(Fig. 2) as well as means in Table 2 suggest that ES outper-
forms all other optimizers and that NSLC-P and MCNS-G
are at least slightly better than the others. However, with
respect to model complexity (Table 3), we observe that NS-P
and MCNS-P find models of a low complexity, while the
mean number of rules in the solutions found by NSLC-P,
ES and RS is higher by more than ten, with the ‘genera-
tional’ archive variants being more than twice as complex
than NS-P and MCNS-P. When regarding the CS dataset,
Table 2 and Fig. 3 hint towards NSLC-P being the best of the
considered methods, with all but RS performing similarly
to each other but slightly worse than NSLC-P. In terms of
model complexity (Table 3), ES, NS-P and MCNS-P are
similar and result in much less complex solutions than the
other optimizers. For the last dataset, EEC, ES is indicated
again as the best performing method (Fig. 4). The model
complexity, however, is slightly lower for NSLC-P and much
lower for NS-P and MCNS-P, with the ‘generational’ archive
variants being three times as complex as those two optimiz-
ers, while exhibiting almost identical errors.

Overall, the visual analysis combined with the rounded
statistics of mean and standard deviation is not capable of
providing us with a conclusive answer regarding which of
the RD methods should be preferred on tasks like the ones
considered. We thus investigate the gathered data more
closely using Bayesian data analysis.2

We start by applying the model proposed by Calvo et al.
[25, 26] to our data which, for each of the RD methods, pro-
vides us with the posterior distribution over the probability
of that RD method performing best. We apply this model
to both the MSE observations as well as the model com-
plexity observations and provide box plots (Figs. 5 and 6)
which show the most relevant distribution statistics. Both
figures show that the locations of the distributions over the
probabilities of performing the best (respective to a single

Fig. 8 Density plot like Fig. 7
but for the model complexity
metric and with the region of
practical equivalence (rope)
marked by green dotted lines
and a green area

−10 0 10

0.0

0.2

-2.0 6.8
CCPP

−40 −20 0 20 40

0.00

0.05

-22.0 18.0
ASN

−40 −20 0 20 40

0.00

0.05

-5.1 23.0
CS

−10 0 10

Model complexity(NSLC-P)
- Model complexity(ES)

0.0

0.1

D
en

sit
y

-9.9 4.3
EEC

−10 −5 0 5 10

0.0

0.2

-1.9 5.8
CCPP

−40 −20 0 20 40

0.00

0.05

-4.5 26.0
ASN

−50 0 50

0.00

0.05

-5.8 34.0
CS

−20 0 20

Model complexity(MCNS-G)
- Model complexity(ES)

0.0

0.1

D
en

sit
y

-1.7 14.0
EEC

(a) Comparing NSLC-P and ES. An earlier version
of this figure was part of [6].

(b) Comparing MCNS-G and ES.

2 We deliberately do not use null-hypothesis significance tests due to
their many flaws and possible pitfalls—cf. e.g. [24].

 SN Computer Science (2023) 4:778 778 Page 12 of 15

SN Computer Science

metric) are rather close to each other. Therefore, the figures
show that a very confident conclusive statement for a single
RD method cannot be made given the data available.

When considering model complexity (Fig. 6), there is an
about 75 %3 probability that one of NS-P and MCNS-P per-
forms the best. These two algorithms are about as likely to
build the smallest model (albeit, each at less than 40 % of
the total probability mass which means that the probability
of that candidate not being the best is above 60 %). However,
since the probability of each of these not performing the
best MSE-wise is 89 % or more, which is usually the more
important metric, we posit to not consider them competitive
enough to merit a closer analysis within the present work.
Similarly, the very poor performance on complexity discards
all the ‘generational’ archive variants, most notably, when
considering not only the locations of the posterior distribu-
tions according to the Calvo model but also the raw numbers
in Table 3. ES, the third most likely algorithm to produce the
smallest model, is far from being a clear candidate but might
at least be a better option, especially when accounting for
the absolute numbers where it did perform at least average
and even best on CCPP.

Looking at the MSEs, we find that, based on the existing
data, the Calvo model does not support an automated deci-
sion. Furthermore, the Calvo model suggests that—except
concerning RS—the optimizers do not considerably outrank
each other at all. There might be slight tendencies towards
NSLC-P, NS-G and MCNS-G, but even ES and the oth-
ers behind it are not much less likely. Given the insights
from the model complexities, which would discard NS-G
and MCNS-G, this warrants a closer comparison of ES and
NSLC-P.

We next consider the difference in performance between
ES (since it is both the originally used RD method as well
as the next-best runner up with respect to the probability
of being the best MSE-wise and a good candidate for low
model complexity) and NSLC-P (since it has the highest
probability of having the lowest MSE) by applying Corani

and Benavoli’s Bayesian correlated t-test [27]. The resulting
posteriors (given in Figs. 7 and 8a including 99 % high pos-
terior density intervals (HPDIs)) are the distribution of the
difference between the considered metric for ES and the con-
sidered metric for NSLC-P (practically, this equates to val-
ues below zero indicating ES having a higher (worse) met-
ric value than NSLC-P). The difference in MSEs between
NSLC-P and ES on the CCPP dataset is most certainly neg-
ligible in practice, which corroborates the earlier statement
that all optimizers but RS perform similarly on that dataset.
On the other hand, on ASN, ES outperforms NSLC-P by an
MSE of at least 0.04 with a probability of over 99 %4 (99 %
of probability mass lies between the dashed lines which are
both considerably right of the center). The probability of
ES being outperformed by NSLC-P on the CS dataset by
an MSE of 0.019–0.022 is 99 %. On the last of the four
datasets, EEC, we can, again, not really notice a significant
difference (i.e., the two should be considered to perform
equivalently with a probability of over 99 % if a difference
in MSE of 0.0033 could be considered not practically rel-
evant on this dataset). Recalling the information we have
about the datasets, namely that EEC and CCPP are more
linear (and, therefore, easier to solve) than the other two
datasets, this is not too surprising. What we learn here is
that, with the basic idea behind SupRB’s alternating phases
and information sharing, we can solve such problems equally
well, regardless of the specific optimizer employed. While
an important lesson, it does not advance our effort towards
a decision between ES and NSLC-P.

Things look differently when regarding the model com-
plexities produced by the two approaches (Fig. 8a). We find
that there is considerable probability mass on each side of
0 on all of the datasets, although the exact amount varies.
While computing the integral to the right (or left) of 0 is
possible, this would include differences which do not hold
practical relevance. Thus, we opted for defining a region of
practical equivalence (rope) centered around an equal com-
plexity. To accommodate for the high difference of result-
ing model complexity among the learning tasks (i.e., they
require different solution sizes), we define the rope to be
task-dependent. Choosing this based on the task alone is dif-
ficult, as it would require detailed domain knowledge about
the different processes that generated the data. Therefore, we
let the collected data inform our choice for each task’s rope:
We choose as the bounds of the rope the mean of the stand-
ard deviations of ES, NS-P, MCNS-P and NSLC-P (leaving
out RS, NS-G, MCNS-G and NSLC-G since the results with

Table 4 Probability (in percent, rounded to one decimal place) of ES
or NSLC-P performing better or worse than the other—or practically
equivalently—with respect to model complexity

ES worse Pract. equiv. NSLC worse

CCPP 1.3 23.5 75.1
ASN 45.6 28.4 26.0
CS 1.4 12.4 86.2
EEC 65.6 29.6 4.9

3 A typical minimal threshold for automated decision making is 80 %
(or usually even more) for a single algorithm [24].

4 To elaborate: this states that we would expect that in over 99 % of
future runs the difference of MSE between the two approaches was at
least 0.04.

SN Computer Science (2023) 4:778 Page 13 of 15 778

SN Computer Science

respect to solution complexity that these methods achieved
are not even remotely competitive). In Fig. 8, a green area
delimited by green dotted lines indicates the rope for each
task. Based on the Bayesian correlated t-test model and the
assumed ropes, we can now compute the probabilities for ES
and NSLC-P performing practically equivalently or worse
than the respective other. These can be found in Table 4.
Upon close inspection, we can determine that, for ASN, the
data is inconclusive. For CCPP and CS, the probabilities
that ES produces less complex solutions than NSLC-P are
75.1 % and 86.2 %, respectively. There is some evidence
hinting towards NSLC-P creating more compact solutions
for EEC, although, this is, again, not fully conclusive, as the
probability of it not being the case is 34.4 %.

We performed the same comparisons among ES, NS-P,
MCNS-P and MCNS-G, finding largely similar results.
Novelty search variants with a ‘pool-only’ archive outper-
form ES (or are outperformed by it) on the same datasets as
NSLC-P was. The resulting plotted distributions look almost
the same (with only variations in the scale). Therefore, these
additional comparisons did also not yield any new insights.
To illustrate why the Calvo model shown in Fig. 6 assigned
MCNS-G such a low probability and what this means in
practical terms when compared with ES, we show the dis-
tributions in Fig. 8b. ES clearly outperforms on complexity.
On the corresponding MSE distribution, we found that, other
than with ASN (were ES is better), none of the differences
was practically significant, despite MCNS-G being the sec-
ond most likely (admittedly, with a low probability) method
to produce the best model (cf. Fig. 5).

We conclude our analysis with a summary of the key
takeaways.

• On datasets like the ones we considered, NSLC-P has the
highest probability of being the best option MSE-wise.
However, the collected data is not at all conclusive with
respect to that (there remains an around 77 % chance of
NSLC-P not having the best MSE on such datasets).

• When considering model complexity alone, there is a
high probability of either of NS-P or MCNS-P being the
best—however, their MSEs are with a considerable prob-
ability not the best.

• The ‘generational’ archiving variants are contenders for
the most likely best average MSE of a model, however,
their model complexities fall considerably short of the
better or even average performing RD methods.

• A closer comparison of ES with NSLC-P yielded:

– ES outperforms NSLC-P MSE-wise with very high
probability (> 99 %) by a presumably practically rel-
evant amount on ASN, whereas this is the other way
around on CS. However, on these two tasks, the data

are either not conclusive as to which method yields the
better model complexities (ASN) or the method with
the worse MSE performs better in that regard (CS).

– On the other two tasks, ES and NSLC-P perform
practically equivalently MSE-wise. There is some
light evidence for ES yielding better model com-
plexities on the less difficult of these (CCPP) and
for NSLC-P yielding better model complexities on
the more difficult one (EEC).

• Similar close examinations among ES and the ‘pool-
only’ novelty search variants did yield a very similar
picture, albeit with slightly different raw numbers.

• Comparing with the most likely to rank best ‘gen-
erational’ archiving variant MCNS-G, we find clearly
stronger complexities for the other RD methods and
inconclusiveness on MSE data. Although, ES likely out-
performs (MSE) practically significant on ASN, whereas
the differences on the other three tasks cannot be deemed
practically significant.

• Overall, we can say that, despite its simplicity when com-
pared to the other approaches, the (1, �)-ES performs not
worse when only considering practically relevant differ-
ences.

Conclusion

In this article, we extended a previous [6] investigation into
the use of different evolutionary optimizers performing the
task of rule discovery in the supervised rule-based learning
system (SupRB), a recently proposed learning classifier sys-
tem (LCS) for regression problems. This system’s key char-
acteristic is the separation of finding a diverse pool of rules
that fit the data well from their composition into a model that
is both accurate and uses a minimal number of rules—a key
advantage when employed in settings where model trans-
parency is important, such as typical explainable artificial
intelligence applications. By determining from intermediate
solutions which areas of the problem space were already
well covered, subsequent evolution can be guided towards
other areas to form new rules there and, therefore, improve
the overall diversity of the available rules.

The investigated methods were a (1, �)-evolution strategy
(ES), a random search (RS) and three Novelty Search (NS)
variants. For each of the three NS-based variants, we tested
two differing approaches at building the archive against
which the novelty is computed. The first was to only use the
pool of rules available to solution composition in SupRB as
the archive (denoted as *-P). In the second, we additionally
archived a number of well-performing rules in each genera-
tion of the search heuristic (denoted as *-G). In total, this
leads to a comparison of eight rule discovery approaches.

 SN Computer Science (2023) 4:778 778 Page 14 of 15

SN Computer Science

The NS-based variants all employed a (�, �)-ES, scored a
rule’s novelty on the basis of its match set and combined it
with traditional fitness. Besides a traditional NS, we inves-
tigated minimal criteria novelty search (MCNS) and novelty
search with local competition (NSLC).

After an evaluation of the eight methods on four real-
world regression problems, we found that performances are
close to equal in terms of prediction error, but—depend-
ing on the dataset—specific methods can be preferred, with
ES and NSLC-P being the most interesting candidates. On
the second important metric of complexity, these two meth-
ods perform about average but vastly outperform all of the
‘generational’ archive variants while obtaining competitive
or better error scores. These finding were confirmed by a
rigorous statistical analysis. Interestingly, we found that
ES and NSLC-P reciprocally outperform each other on the
considered learning tasks, i.e., where ES can be expected to
perform better on error than NSLC-P, it can also be expected
to yield larger solution sizes (a higher number of rules in the
model) and vice versa.

Overall, our recommendation based on the gathered data
is to employ either ES or NSLC-P, although, ES seems to
be the preferential candidate for cases where explainability
requirements of users consider model construction impor-
tant, due to its greater algorithmic simplicity and the fact
that rules are generated independently of the status of other
rules.

Funding Open Access funding enabled and organized by Projekt
DEAL. Partial financial support for this work was received from the
Bavarian Ministry of Economic Affairs, Regional Development and
Energy and the Deutsche Forschungsgemeinschaft (DFG).

Data availability Raw data used for this study is available at https://
archi ve. ics. uci. edu/. The code of SupRB is available at https:// github.
com/ heidm ic/ suprb while the code used to produce the experimental
results of SupRB is available at https:// github. com/ heidm ic/ suprb- exper
iment ation.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Heider M, Stegherr H, Nordsieck R, Hähner J. Learning clas-
sifier systems for self-explaining socio-technical-systems. arXiv
Accepted for Publication in the Journal of Artificial Life (2022).
https:// doi. org/ 10. 48550/ ARXIV. 2207. 02300.

 2. Urbanowicz RJ, Moore JH. Learning classifier systems: a com-
plete introduction, review, and roadmap. J Artif Evol Appl. 2009.

 3. Heider M, Pätzel D, Stegherr H, Hähner J. In: Eddaly M, Jarboui
B, Siarry P, editors. A metaheuristic perspective on learning clas-
sifier systems. Springer, Singapore, 2023. p. 73–98. https:// doi.
org/ 10. 1007/ 978- 981- 19- 3888-7_3.

 4. Heider M, Nordsieck R, Hähner J. Learning classifier systems for
self-explaining socio-technical-systems. In: Stein A, Tomforde S,
Botev J, Lewis P (eds) Proceedings of LIFELIKE 2021 Co-located
with 2021 Conference on Artificial Life (ALIFE 2021) (2021).
http:// ceur- ws. org/ Vol- 3007/.

 5. Heider M, Stegherr H, Wurth J, Sraj R, Hähner J. Separating
rule discovery and global solution composition in a learning
classifier system. In: Genetic and Evolutionary Computation
Conference Companion (GECCO ’22 Companion) 2022. https://
doi. org/ 10. 1145/ 35203 04. 35290 14.

 6. Heider M, Stegherr H, Pätzel D, Sraj R, Wurth J, Volger B,
Hähner J. Approaches for rule discovery in a learning classifier
system. In: Proceedings of the 14th International Joint Con-
ference on Computational Intelligence—ECTA, SciTePress,
Setúbal, Portugal; 2022. pp. 39–49. https:// doi. org/ 10. 5220/
00115 42000 003332. INSTICC.

 7. Urbanowicz RJ, Browne WN. Introduction to learning classifier
systems. 1st ed. Berlin, Heidelberg: Springer; 2017. https:// doi.
org/ 10. 1007/ 978-3- 662- 55007-6.

 8. Wilson SW. Classifier fitness based on accuracy. Evol Comput.
1995;3(2):149–75.

 9. Heider M, Stegherr H, Wurth J, Sraj R, Hähner J. Investigating
the impact of independent rule finesses in a learning classi-
fier system. In: Mernik M, Eftimov T, Črepinšek M, editors.
Bioinspired optimization methods and their applications. Cham:
Springer; 2022. p. 142–56.

 10. Wurth J, Heider M, Stegherr H, Sraj R, Hähner J. Compar-
ing different metaheuristics for model selection in a supervised
learning classifier system. In: Genetic and Evolutionary Compu-
tation Conference Companion (GECCO ’22 Companion) 2022.
https:// doi. org/ 10. 1145/ 35203 04. 35290 15.

 11. Lehman J. Evolution through the search for novelty. PhD thesis,
University of Central Florida; 2012.

 12. Mouret J, Clune J. Illuminating search spaces by mapping elites.
CoRR; 2015. arXiv: 1504. 04909.

 13. Gomes J, Mariano P, Christensen AL. Devising effective novelty
search algorithms: a comprehensive empirical study. In: Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation. GECCO ’15, Association for Computing
Machinery, New York, NY, USA; 2015. p. 943–950. https:// doi.
org/ 10. 1145/ 27394 80. 27547 36.

 14. Lehman J, Stanley KO. Revising the evolutionary computation
abstraction: minimal criteria novelty search. In: Proceedings
of the 12th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’10, Association for Computing Machin-
ery, New York, NY, USA; 2010. p. 103–110. https:// doi. org/ 10.
1145/ 18304 83. 18305 03.

 15. Gomes J, Urbano P, Christensen AL. Progressive minimal cri-
teria novelty search. In: Pavón J, Duque-Méndez ND, Fuentes-
Fernández R, editors. Advances in artificial intelligence—
IBERAMIA 2012. Berlin Heidelberg, Heidelberg: Springer;
2012. p. 281–90.

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://github.com/heidmic/suprb
https://github.com/heidmic/suprb
https://github.com/heidmic/suprb-experimentation
https://github.com/heidmic/suprb-experimentation
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2207.02300
https://doi.org/10.1007/978-981-19-3888-7_3
https://doi.org/10.1007/978-981-19-3888-7_3
http://ceur-ws.org/Vol-3007/
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.5220/0011542000003332
https://doi.org/10.5220/0011542000003332
https://doi.org/10.1007/978-3-662-55007-6
https://doi.org/10.1007/978-3-662-55007-6
https://doi.org/10.1145/3520304.3529015
http://arxiv.org/abs/1504.04909
https://doi.org/10.1145/2739480.2754736
https://doi.org/10.1145/2739480.2754736
https://doi.org/10.1145/1830483.1830503
https://doi.org/10.1145/1830483.1830503

SN Computer Science (2023) 4:778 Page 15 of 15 778

SN Computer Science

 16. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
É. Scikit-learn: machine learning in Python. J Mach Learn Res.
2011;12:2825–30.

 17. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-
generation hyperparameter optimization framework. In: Pro-
ceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. KDD ’19, Association for
Computing Machinery, New York, NY, USA; 2019. 10/gf7mzz.

 18. Dua D, Graff C. UCI machine learning repository. University of
California, Irvine, School of Information and Computer Sciences;
2017.

 19. Kaya H, Tüfekci P. Local and global learning methods for predict-
ing power of a combined gas & steam turbine. In: Proceedings of
the International Conference on Emerging Trends in Computer
and Electronics Engineering ICETCEE; 2012.

 20. Tüfekci P. Prediction of full load electrical power output of a base
load operated combined cycle power plant using machine learning
methods. Int J Electr Power Energy Syst. 2014;60:126–40. 10/
gn9s2h.

 21. Brooks T, Pope D, Marcolini M. Airfoil self-noise and prediction.
Technical Report RP-1218, NASA; 1989.

 22. Yeh I-C. Modeling of strength of high-performance concrete using
artificial neural networks. Cement Concr Res. 1998;28(12):1797–
808. 0/dxm5c2.

 23. Tsanas A, Xifara A. Accurate quantitative estimation of energy
performance of residential buildings using statistical machine
learning tools. Energy Build. 2012;49:560–7. 10/gg5vzx.

 24. Benavoli A, Corani G, Demšar J, Zaffalon M. Time for a change:
a tutorial for comparing multiple classifiers through Bayesian
analysis. J Mach Learn Res. 2017;18(1):2653–88.

 25. Calvo B, Ceberio J, Lozano JA. Bayesian inference for algorithm
ranking analysis. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion. GECCO ’18, Associa-
tion for Computing Machinery, New York, NY, USA; 2018. p.
324–325. https:// doi. org/ 10. 1145/ 32056 51. 32056 58.

 26. Calvo B, Shir OM, Ceberio J, Doerr C, Wang H, Bäck T, Lozano
JA. Bayesian performance analysis for black-box optimization
benchmarking. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. GECCO ’19, Association
for Computing Machinery, New York, NY, USA; 2019. p. 1789–
1797. https:// doi. org/ 10. 1145/ 33196 19. 33268 88.

 27. Corani G, Benavoli A. A Bayesian approach for compar-
ing cross-validated algorithms on multiple data sets. Mach
Learn. 2015;100(2):285–304. https:// doi. org/ 10. 1007/
s10994- 015- 5486-z.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Michael Heider1 · Helena Stegherr1 · David Pätzel1 · Roman Sraj1 · Jonathan Wurth1 · Benedikt Volger1 ·
Jörg Hähner1

 * Michael Heider
 michael.heider@uni-a.de

 Helena Stegherr
 helena.stegherr@uni-a.de

 David Pätzel
 david.paetzel@uni-a.de

 Roman Sraj
 roman.sraj@uni-a.de

 Jonathan Wurth
 jonathan.wurth@uni-a.de

 Benedikt Volger
 benedikt.volger@uni-a.de

 Jörg Hähner
 joerg.haehner@uni-a.de

1 Organic Computing Group, Universität Augsburg, Am
Technologiezentrum 8, Augsburg 86159, Germany

https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3319619.3326888
https://doi.org/10.1007/s10994-015-5486-z
https://doi.org/10.1007/s10994-015-5486-z
http://orcid.org/0000-0003-3140-1993

	Discovering Rules for Rule-Based Machine Learning with the Help of Novelty Search
	Abstract
	Introduction
	Learning Classifier Systems and Rule Discovery
	The Supervised Rule-Based Learning System
	Evolution Strategy
	Random Search
	Novelty Search

	Evaluation
	Experiment Design
	Results

	Conclusion
	References

