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Abstract
Automated prediction systems based on machine learning (ML) are employed in practical applications with increasing 
frequency and stakeholders demand explanations of their decisions. ML algorithms that learn accurate sets of rules, such 
as learning classifier systems (LCSs), produce transparent and human-readable models by design. However, whether such 
models can be effectively used, both for predictions and analyses, strongly relies on the optimal placement and selection of 
rules (in ML this task is known as model selection). In this article, we broaden a previous analysis on a variety of techniques 
to efficiently place good rules within the search space based on their local prediction errors as well as their generality. This 
investigation is done within a specific pre-existing LCS, named SupRB, where the placement of rules and the selection of 
good subsets of rules are strictly separated—in contrast to other LCSs where these tasks sometimes blend. We compare two 
baselines, random search and (1, �)-evolution strategy (ES), with six novelty search variants: three novelty-/fitness weigh-
ing variants and for each of those two differing approaches on the usage of the archiving mechanism. We find that random 
search is not sufficient and sensible criteria, i.e., error and generality, are indeed needed. However, we cannot confirm that 
the more complicated-to-explain novelty search variants would provide better results than (1, �)-ES which allows a good 
balance between low error and low complexity in the resulting models.

Keywords Rule set learning · Rule-based learning · Learning classifier systems · Evolutionary machine learning · 
Interpretable models · Explainable AI · Novelty search

Introduction

Autonomous decisions of agents are more common than 
ever as automation in many socio-technical settings, such 
as manufacturing, increases steadily. This advent of more 
independent and intelligent technical systems holds great 
potential in increasing safety and comfort of workers as well 
as general productivity. However, the roll-out of such sys-
tems is often slowed down or blocked when stakeholders, 
from operator to management level, do not trust that the 
systems perform on-par or even better than their human part-
ners. Therefore, stakeholders expect the agents to provide 

sensible explanations and insights into their decision making 
processes [1].

For the machine learning components of these agents, this 
implies that they have to offer strong interpretability, self-
explaining or transparency-by-design capabilities. The use 
of learning classifier systems (LCSs) [2, 3] in these kinds of 
scenario was introduced in [4]. There, the unique suitability 
of LCSs is discussed, as this family of rule-based learning 
algorithms features both powerful machine learning capa-
bilities applying to all commonly encountered settings as 
well as inherently transparent models that resemble human 
explanation processes due to their rule-like structure. Rules 
in an LCS are of an if-then form, where the if (or condition) 
constricts the section of the feature space this rule applies to 
(matches) and the then contains a simpler, therefore, more 
comprehensible, local model able to predict data points from 
that feature space partition. Conditions are usually opti-
mized using evolutionary algorithms or similar stochastic 
search heuristics. The model’s practical transparency (or 
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explainability in a broader context) is primarily influenced 
by the effective number of rules and their placement within 
the feature space (the two tasks that constitute model selec-
tion in rule-based machine learning, cf. [3]). Therefore, 
the—preferably near optimal—placement of rules should 
be a primary concern when designing an LCS algorithm 
with explainability requirements.

In this work, we further expand the supervised rule-based 
learning system (SupRB) [5], a recently proposed LCS for 
regression tasks, with different methods to discover new 
rules that fit the data well and benchmark them against 
each other on a variety of real-world datasets. This article 
extends our previous work on this topic originally presented 
at ECTA/IJCCI 2022 [6].

Learning Classifier Systems and Rule 
Discovery

As previously introduced, LCSs are a family of—typically 
evolutionary—rule-based learning systems with a long 
research history [2, 3, 7]. Traditionally, they are categorized 
into two approaches:

• Michigan-style systems, which feature strong online 
learning capabilities and have evolved from reinforce-
ment learning (RL) to all major learning schemes. They 
consist of a single population of rules on which the opti-
mizer operates directly.

• Pittsburgh-style systems, that typically perform offline 
batch learning and primarily focus on supervised learn-
ing and feature a population of sets of rules, where the 
optimizer operates on those sets rather than the rules 
individually.

Note that there have been recent advances towards an 
updated classification system in [3] where batch learning 
versus online learning and single- versus multi-solution form 
the basis of classification. In that system, SupRB is classified 
as a multi-solution batch learning system.

Due to those very different outsets, their approaches to 
rule discovery and improvement differ substantially. For 
example, the most widespread Michigan-style system, the 
XCS classifier system [8], features two mechanisms to deter-
mine new rules. The first is the covering mechanism: When-
ever the number of rules that match a new data point falls 
below a predetermined threshold, new rules are generated 
that match this data point. These rules are often randomly 
made more general than to just match this point specifically 
and, therefore, slightly differ when inserted into the popula-
tion of rules. The second is the evolutionary algorithm which 
is invoked on matching rules that also propose the actually-
chosen action (e.g., when following an epsilon-greedy policy 

in RL). It utilizes crossover and mutation mechanisms appro-
priate for the types of input data and evolves the population 
in a steady-state manner.

For Pittsburgh-style systems, new rules can be directly 
added to an individual of the population (a set of rules), 
shared between individuals or be the product of a muta-
tion (and more rarely rule-level crossover) operator. As the 
evolutionary algorithm of these systems operates on rule 
sets rather than rules directly, the fitness signal that guides 
evolution is not based on individual rule performance but 
rather the performance of a given set of rules, which can 
complicate rule discovery due to the added indirection.

The Supervised Rule‑Based Learning System

The supervised rule-based learning system (SupRB) [5] is a 
rule set learning algorithm/an LCS with alternating phases 
of rule discovery and solution composition (additional 
details in [9]). The two phases combined solve the standard 
machine learning task of model selection (cf. [3]). Splitting 
into those two phases—in contrast to solving the task with a 
single optimizer or an optimizer and a post-hoc heuristic—
allows more precise control of the optimization process as 
objectives are more directly related to the specific behavior 
of the component under optimization. In contrast, in Pitts-
burgh-style systems, a model’s fitness that also controls 
changes made to its rules follows the interaction of its rules 
rather than their individual suitability, whereas, in Michi-
gan-style systems, rule fitness often depends on neighboring 
rules (niching) and, due to their online learning nature, does 
not necessarily relate to the full dataset. In the rule discovery 
(RD) phase of SupRB, new rules are generated and locally 
optimized to produce a diverse pool of maximally general 
rules still exhibiting low errors. Subsequently, in the solution 
composition (SC) phase, an optimizer attempts to choose a 
well-performing subset from the pool of discovered rules. 
Ideally, this subset is small (exhibiting low complexity) but 
also produces a model (due to the mixing of rules in areas 
of overlap) with accurate predictions. The obvious tradeoff 
between those two objectives (similar to general versus accu-
rate rules during RD) leads to a need to balance these objec-
tives. The exact nature of the balance highly depends on the 
use case at hand and the inherent requirements for expla-
nations and model readability (cf. [1]). Sometimes, more 
complex models can be acceptable, whereas, in other cases, 
e.g., when decisions need to be analyzed quickly, smaller 
models with less overlap are to be preferred.

Alternating between phases (rather than having a very 
long RD phase constructing a large pool followed by a single 
SC phase—which is similar to the process of supervised 
learning in Michigan-style systems followed by model 
compaction) allows to guide the optimizers better into more 
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interesting regions by giving them additional information 
about the current model behavior. In SupRB, when discov-
ering new rules, the RD mechanism places new rules more 
likely into regions where the last model candidate from the 
SC process showed high prediction errors. This allows to fill 
unmatched areas (or areas of ill-fit local models) in the over-
all model that might otherwise go unnoticed or just never 
affected by pure randomness. Blindly fitting a multitude of 
rules would become quite expensive as the whole dataset 
needs to be matched and then batch-learned multiple times. 
In addition, it is hard to determine beforehand how many 
rules would be needed in the pool to later on find a satisfac-
tory subset that solves the learning task.

As its transparency is a central aspect, SupRB’s model is 
kept as simple and interpretable as possible [5]: 

1. Rules’ conditions use an interval-based matching: A rule 
k applies for example x iff xi ∈ [lk,i, uk,i] ∀i with l being 
the lower and u the upper bounds.

2. Rules’ local models fk(x) are linear. They are fit using 
linear least squares with a l2-norm regularization (Ridge 
Regression) on the subsample matched by the respective 
rule.

3. When mixing multiple rules to make a prediction, a 
rule’s experience (the number of examples matched 
during training and, therefore, included in fitting the 
submodel) and in-sample error are used in a weighted 
sum.

For the SC phase optimizer, we use a genetic algorithm 
(GA) for all experiments in this article, similar to [6] and 
[9]. It operates directly on a bitstring, where each element 
corresponds to whether a rule from the pool (if viewed as 
a list rather than a set) is part of this specific solution to 
the learning task or whether it is not. In previous work by 
[10], other metaheuristic optimizers were tested to compose 
solutions. They found that the choice of metaheuristic is—
given sufficient computational budget—largely dependent 
on the learning task, although even there, differences were 
very small, which makes the GA a fitting general choice. As 
LCSs typically feature evolutionary computation methods, 
utilizing a GA is also the more traditional option. Tourna-
ment selection is used to select parents (in groups of two). 
An n-point crossover under a 90% probability recombines 
those parents, with n being set as part of hyperparameter 
tuning. The emerging children are then mutated using a 
probabilistic bit-flip mutation. Together with the fittest 
parents (elitism), these children form the new population. 
In our experiments, we used a population size of 5 elitists 
and 32 children. An individual’s (solution to the learning 
task) fitness is determined based on its in-sample prediction 
error and its complexity (number of rules present) follow-
ing [5]. Critically, this phase does not affect the position of 

rules’ bounds, which is in stark contrast to most previously 
proposed LCSs. Individuals can only be composed of rules 
in the pool and those rules remain unchanged by the GA’s 
operators. Therefore, a specific bitstring will always express 
the same specific fitness during one training run, regardless 
of when it is evaluated during the training process.

The main subject of this article is the RD phase’s opti-
mizer, extending the analysis conducted in [6] by investi-
gating additional algorithmic variants. In contrast to many 
typical optimization problems, we do not want to find a 
singular globally optimal rule but rather a set of localized 
rules that perform well in their particular feature space parti-
tion. Thus, we are attempting to find an unknown number of 
local optima without mapping the entire fitness landscape 
(or even all local optima). The discovered rules should be a 
diverse set to enable SC to compose a good overall model 
from them, which would be difficult from a set of very simi-
lar rules that do only cover a small part of the input space. 
However, as SC will select the subset of discovered rules 
most appropriate to solve the learning task, even heavily 
overlapping rules in the pool are not an issue. As described 
above for SC, a variety of different optimizers can achieve 
this. In the following, the different optimization approaches 
for RD that will be compared in the remainder of this article 
are presented. As we did previously [6], we build two base-
lines with a simple evolution strategy (cf. [5, 9]) and an even 
less sophisticated random search that only exploits infor-
mation from the SC phase. We compare those with three 
different variants of novelty search, for each of which we 
test two substantially different ways of applying the archiv-
ing component (against which the novelty gets computed). 
For all heuristics, we utilize the same approach for calculat-
ing rule fitness by combination of two objectives, utilizing 
the in-sample error and the matched feature space volume, 
respectively (cf. [5]).

Evolution Strategy

Some form of evolutionary algorithm is the traditional 
choice for an LCS’s optimization processes. Therefore, the 
first strategy employed for RD in SupRB, which was also 
used for the experiments in [10] and [9], is an evolution 
strategy (ES), specifically, a simplified (1, �)-ES [5].

The approach is summarized below and in Algorithm 1. 
The ES’s initial individual is generated by selecting a ran-
dom example from the training data around which a rule 
is placed, preferring those examples exhibiting a high in-
sample error in the intermediate global solution. This indi-
vidual serves both as the initial candidate for addition to the 
pool and the parent of the next generation. From this parent, 
we generate � children with a non-adaptive mutation opera-
tor, which moves the upper and lower bounds further out-
wards by adding random values sampled from a half-normal 
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distribution. The child individual with the highest fitness 
becomes the parent for the next generation. If this individual 
showed a better fitness than the current candidate, it also 
becomes the new candidate. When for a fixed number of 
generations no new candidate has been found, the evolution-
ary search terminates. This ES produces one rule at a time, 
which allows it to be easily parallelized. One merit of this 
approach is in the explainability of both the search procedure 
and the resulting pool. In general, rules that have fitness 
independent from other rules are easier to understand for 
most non-experts (and even experts for more complex mod-
els). Whereas, in most current LCSs, the fitness assigned 
to each rule is highly dependent on the other rules it is sur-
rounded by. Beyond these fitness-based considerations on 
the understandability of our learning process, the ES itself 
is also an easy to follow search method: expand the area 
(or hypervolume) an individual matches, evaluate the new 
individuals, choose the best new option and repeat.

Random Search

As an alternative to the strongly fitness-guided RD per-
formed by the ES, we introduce a form of random search 
(RS). RS commonly serves as a baseline for testing the per-
formance of other optimization algorithms. Furthermore, 
with the ulterior motive of finding diverse rules to add to 
the pool, RS provides an interesting approach where the fit-
ness only plays a role in the selection of the final candidate 
but not in the generation of new rules.

In SupRB, RS (cf. Algorithm 2), similarly to ES, ran-
domly selects a fixed number of data points with the proba-
bility of selection being weighted by their respective in-sam-
ple prediction errors in the last solution candidate (produced 
by the previous SC phase). We then place random bounds 
around those points based on half-normal distributions (to 
ensure we always match the selected point). To balance the 
computational cost between RD approaches, we produce 
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substantially more rules initially than we would in an ES 
generation but a number roughly similar to the total number 
of children present in the ES. We then greedily select the 
rule(s) with the highest fitness to become part of the pool.

Novelty Search

One of the central challenges of RD is that the optimizer’s 
objective is to find multiple rules that partition the feature 
space and, in their individually matched hypervolume, pre-
dict data points well. Contrastingly, optimizers operating on 
many typical optimization problems are expected to find a 
single global optimum (or at least a point very close to it). 
The RD’s primary objective can somewhat be viewed as 
the optimizer being tasked to map an unknown number of 
deeper local optima within the search space. In other words: 
with RD, we aim at finding a diverse set of well-performing 
rules for all areas of the feature space.

In this section, we describe a new approach towards 
discovering rules based on Lehman’s novelty search (NS) 
[11]. In this evolutionary search method, the optimizer tries 
to find individuals that exhibit new behavior previously 
unknown within the population, rather than being guided 
(or at least not being fully guided) by the typical fitness func-
tion. In SupRB, behavior of rules can be equated to what 
subsample of the training data they match, as we want to 
find a rule that predicts an area of the feature space currently 
unmatched or only matched by rules with high errors in this 
area. This makes NS a natural fit out of the field of quality-
diversity optimization techniques. An application of MAP-
elites [12], another common quality-diversity technique, is 
much less straight-forward in our use case as we are unaware 
where rules should be placed and what properties good rules 
should have before training was performed. Likely, we even 
want multiple rules with quite similar properties but located 
differently.

For our adaptation, we base the NS on a ( � , �)-ES with 
elitism and follow the extensive experimental findings laid 
out by [13]. In each iteration, we select a list of � parents out 
of the current population. These parents are paired, undergo 

a uniform crossover and a half-normal mutation (cf. Sec-
tion “Evolution Strategy”). The resulting children are then 
fitted and the best performing � children are selected for the 
next population. In addition, we select a number of high-
performing parents equal to the number of rules the NS is 
expected to produce within one RD phase as part of the new 
population (elitism). Performance of an individual can be 
based on novelty alone or on a combination of fitness (as 
used in the ES; cf. Section “Evolution Strategy”) and nov-
elty, e.g., a linear combination.

For the novelty of a rule, we compare its match set and 
the match sets of the other rules. In this paper, we experi-
ment with two different approaches at the selection of those 
other rules. Previously [6], we chose the rules in the pool 
and those in the current NS population, where we would 
compare with the other children for the selection or the par-
ents for elitism, respectively. In the remainder of this paper, 
we refer to this as NS-P, with the P indicating that a compar-
ison of past populations is only based on rules in the pool. In 
addition, we investigate another option called NS-G. In this 
approach, we use a more traditional archiving technique and 
compare with this archive and the current population (either 
children or parents, as previously). Initially during each RD 
phase, the entirety of the pool is copied into the archive. 
Therefore, NS-G automatically encompasses all compari-
sons made in NS-P. In addition, in each generation, � (which 
is subject to hyperparameter tuning) rules are selected from 
the children and put into this archive, giving NS-G its name. 
Thus, the archive grows with each generation and—in con-
trast to NS-P—NS-G is discouraged from exploring regions 
it has already explored in this RD phase. Note that, after an 
RD phase completes, the archive is reset to the then current 
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pool. This avoids a heavy computational load on one hand 
but is also more in line with the idea of independent opti-
mization only based on the current solution to the problem. 
Would we account for previous RD phases, we might hinder 
the incorporation of information from this solution, as some 
region might have been touched but that rule not added to 
the pool as it was unimportant at the time but did become 
beneficial to further explore now.

The novelty score assigned to a rule is the average Ham-
ming-distance between its match set and its k nearest neigh-
bors’ (most similar rules) from the respective comparison 
set. A value typically encountered for k with other NS appli-
cations in literature—e.g., [14]—is 15, although we tune 
between 10 and 20.

After a set number of iterations, we add a predefined num-
ber of rules from the current population to the pool and con-
clude this phase. Which rules get added can be randomized 
or based on the highest novelty(-fitness combination).

In addition to the basic NS, we implemented and experi-
mented with two variants: minimal criteria novelty search 
(MCNS) [11, 14] and Novelty Search with Local Competi-
tion (NSLC) [11]. For both variants, we also applied and 
benchmarked the ‘generational’ and ‘pool-only’ options for 
the novelty calculation.

MCNS imposes additional pressure on the search to 
explore less vividly and focus more on rules that at least 
fulfill some minimal requirement. In our experiments, we set 
the minimal criterion to a minimum number (tuned between 
5 and 15) of examples from the training data having to be 
matched by the rule to become viable, although we did also 
impose that at most one-fourth of the population should be 
removed because they missed the minimal criterion to pre-
vent collapsing gene pools. We also use progressive minimal 
criteria novelty search [15], itself based on MCNS, as an 
option for combining fitness and novelty as the objective. 
Here, all individuals that do exhibit a fitness worse than the 
median fitness are removed automatically in each iteration 
of the search. This approach is not tied to MCNS and can be 
used in all three variants.

NSLC introduces a localized fitness-based pressure on 
the new generation. The idea is that, within a neighborhood 
(based on their behavior and not their position in the search 

space) of similar rules, the rules that exhibit high fitness 
should be chosen. A rule’s novelty score gets increased by 
a factor of b∕� , where b is the number of individuals within 
the neighborhood specified by � that have a worse fitness 
than the rule currently evaluated. We tune � in the same 
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range as k, as this does also specify a neighborhood of rules 
this rule is in competition with.

One disadvantage of NS-like approaches is that rule 
selection is no longer solely based on independent metrics 
(fitness) but rather on the independent fitness and the highly 
dependent (on other rules) novelty score.

Evaluation

To examine the differences between the rule discovery meth-
ods and to find the most versatile strategy, we evaluated 
those strategies within SupRB on several regression datasets.

Experiment Design

The experimental design of this article follows those of pre-
vious papers on SupRB [6, 9, 10]. SupRB is implemented1 
in Python 3.9, adhering to scikit-learn [16] conventions. The 
target is standardized and input features are transformed into 
the range [−1, 1] . While these transformations are reversible, 
they improve SupRB’s training process as they help prevent-
ing rules to be placed in regions where no sample could be 
matched and remove the need to tune error coefficients in 
fitness calculations, respectively. Based on our assumptions 
about the number of rules needed, 32 cycles of alternating 
rule discovery and solution composition are performed, gen-
erating four (or 8 in case of NS variants) rules in each cycle 
for a total of 128 (256 for NS variants) rules. In addition, the 
GA is configured to perform 32 iterations with a population 
size of 32. To tune some of the more sensitive parameters, 
we performed a hyperparameter search using a Tree-struc-
tured Parzen Estimator in the Optuna framework [17] that 
optimizes average solution fitness on 4-fold cross-validation. 
We tuned the optimizers on each dataset independently for a 
fixed tuning budget of 360 core hours. The final evaluation, 
for which we report results in Sect. 4.2, uses 8-split Monte 
Carlo cross-validation, each with 25% of samples reserved 
as a validation set. Each learning algorithm is evaluated with 
8 different random seeds for each 8-split cross-validation, 
resulting in a total of 64 runs.

As previously, we evaluate on four datasets part of the 
UCI machine learning repository [18]. An overview of sam-
ple size and dimensionality is given in Table 1. The com-
bined cycle power plant (CCPP) [19, 20] dataset shows an 
almost linear relation between features and targets and can 
be acceptably accurately predicted using a single rule. Air-
foil self-noise (ASN) [21] and concrete strength (CS) [22] 
are both highly non-linear and will likely need more rules to 
predict the target sufficiently. The CS dataset has more input 
features than ASN but is easier to predict overall. Energy 
efficiency cooling (EEC) [23] is another rather linear data-
set, but has a much higher input features to samples ratio 
compared to CCPP. It should similarly be possible to model 
it using only few rules. Overall, these four datasets offer 
a mix of complex and more linear problems for different 
dimensionalities, therefore, enabling a more balanced testing 
whether the different RD techniques are really advantageous 
or just perform well on certain classes of problems.

Results

In the following, we abbreviate SupRB using X as RD 
method simply by X.

Table 1  Overview of the regression datasets the eight rule discovery 
approaches for SupRB are compared on

Name ndim nsample

Combined cycle power plant (CCPP) 4 9568
Airfoil self-noise (ASN) 5 1503
Concrete strength (CS) 8 1030
Energy efficiency cooling (EEC) 8 768

Table 2  Mean and standard deviation (over 64 runs, rounded to two 
decimal places) of MSE achieved by the eight RD approaches on the 
four datasets

Best entry in each row (if one exists) marked in bold

CCPP ASN CS EEC

ES 0.07 ± 0.0 0.16 ± 0.03 0.14 ± 0.04 0.03 ± 0.01

RS 0.07 ± 0.0 0.23 ± 0.03 0.17 ± 0.03 0.06 ± 0.02

NS-G 0.07 ± 0.0 0.21 ± 0.02 0.15 ± 0.04 0.04 ± 0.01

MCNS-G 0.07 ± 0.0 0.19 ± 0.02 0.14 ± 0.05 0.04 ± 0.01

NSLC-G 0.07 ± 0.0 0.21 ± 0.02 0.15 ± 0.04 0.04 ± 0.01

NS-P 0.07 ± 0.0 0.22 ± 0.02 0.13 ± 0.02 0.04 ± 0.01

MCNS-P 0.07 ± 0.0 0.23 ± 0.02 0.13 ± 0.02 0.04 ± 0.01

NSLC-P 0.07 ± 0.0 0.20 ± 0.02 0.12 ± 0.02 0.04 ± 0.01

Table 3  Mean and standard deviation like Table 2 but for model com-
plexity

Best entry in each row (if one exists) marked in bold

CCPP ASN CS EEC

ES 4.52 ± 1.48 31.78 ± 2.21 24.95 ± 2.45 12.94 ± 2.10

RS 12.86 ± 3.13 32.98 ± 3.11 29.56 ± 2.47 30.17 ± 3.78

NS-G 7.58 ± 1.54 50.69 ± 5.83 40.83 ± 4.56 17.67 ± 3.33

MCNS-G 6.45 ± 1.30 42.45 ± 3.71 39.09 ± 3.65 19.17 ± 2.48

NSLC-G 7.58 ± 1.54 50.69 ± 5.83 40.83 ± 4.56 17.67 ± 3.33

NS-P 5.84 ± 0.91 18.22 ± 2.91 23.50 ± 3.47 6.92 ± 1.70

MCNS-P 6.02 ± 1.39 18.81 ± 2.46 22.38 ± 3.02 6.22 ± 1.13

NSLC-P 6.94 ± 1.41 29.75 ± 3.84 33.83 ± 3.28 10.16 ± 1.941 Recent code at: https:// github. com/ heidm ic/ suprb.

https://github.com/heidmic/suprb
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Tables 2 and 3 give the means and standard deviations 
of model performances (measured using the standardized—
individually per dataset—mean squared error on test data 
(MSE)) and model complexities (measured by the number of 
rules in the final elitist) achieved by the eight RD approaches 
when evaluated—as described in the previous section—on 

the four real-world datasets. At a first glance, on all four 
datasets, RS shows the worst performance in terms of mean 
MSE and, with the exception of ASN and CS, the mod-
els it creates also have the highest model complexity. For 
ASN and CS, the models are still substantially more com-
plex than the on average smallest models but about average 

Fig. 1  Violin plots of the 
(standardized) MSEs achieved 
in the 64 runs performed by the 
different RD methods on CCPP

Fig. 2  Violin plots of the 
(standardized) MSEs achieved 
in the 64 runs performed by the 
different RD methods on ASN
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when compared to the other optimizers. The other optimiza-
tion approaches vary in their results between datasets, with 
‘pool-only’ novelty search variants showing a tendency for 
smaller models than their ‘generational’ counterparts.

In order to get a better overview, as well as include dis-
tributional information, we create violin plots to visualize 
the MSE results. For CCPP (Fig. 1), it can be seen that the 

distributions of MSE values achieved look very similar for 
all optimizers, which is reinforced by identical values in the 
rounded mean and standard deviations given in Table 2. 
However, from a visual perspective, NSLC-P might be hav-
ing a very slight edge (consider the y axis scale). Here, RS 
also seems to have a worse performance than the other opti-
mizers. In terms of model complexity (Table 3), RS is clearly 

Fig. 3  Violin plots of the 
(standardized) MSEs achieved 
in the 64 runs performed by the 
different RD methods on CS

Fig. 4  Violin plots of the 
(standardized) MSEs achieved 
in the 64 runs performed by the 
different RD methods on EEC
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Fig. 5  Box plot (with standard 
1.5 IQR whiskers and outliers) 
of the posterior distribution 
obtained from the model by 
Calvo et al. [25, 26] applied to 
the MSE data. An RD method 
having a probability value of 
q % says that the probability of 
that RD method performing the 
best with respect to MSE is q %
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Fig. 6  Box plot like Fig. 5 but 
for the model complexity metric
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Fig. 7  Density plot of the poste-
rior distribution obtained from 
Corani and Benavoli’s Bayesian 
correlated t-test [27] applied to 
the difference in MSE between 
NSLC-P and ES. Orange dashed 
lines and numbers indicate the 
99 % HPDI (i.e., 99 % of prob-
ability mass lies within these 
bounds). HPDI bounds rounded 
to two significant figures. An 
earlier version of this figure was 
part of [6]
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the worst approach, while ES substantially outperforms 
the others on average. The violin plot for the ASN dataset 
(Fig. 2) as well as means in Table 2 suggest that ES outper-
forms all other optimizers and that NSLC-P and MCNS-G 
are at least slightly better than the others. However, with 
respect to model complexity (Table 3), we observe that NS-P 
and MCNS-P find models of a low complexity, while the 
mean number of rules in the solutions found by NSLC-P, 
ES and RS is higher by more than ten, with the ‘genera-
tional’ archive variants being more than twice as complex 
than NS-P and MCNS-P. When regarding the CS dataset, 
Table 2 and Fig. 3 hint towards NSLC-P being the best of the 
considered methods, with all but RS performing similarly 
to each other but slightly worse than NSLC-P. In terms of 
model complexity (Table 3), ES, NS-P and MCNS-P are 
similar and result in much less complex solutions than the 
other optimizers. For the last dataset, EEC, ES is indicated 
again as the best performing method (Fig. 4). The model 
complexity, however, is slightly lower for NSLC-P and much 
lower for NS-P and MCNS-P, with the ‘generational’ archive 
variants being three times as complex as those two optimiz-
ers, while exhibiting almost identical errors.

Overall, the visual analysis combined with the rounded 
statistics of mean and standard deviation is not capable of 
providing us with a conclusive answer regarding which of 
the RD methods should be preferred on tasks like the ones 
considered. We thus investigate the gathered data more 
closely using Bayesian data analysis.2

We start by applying the model proposed by Calvo et al. 
[25, 26] to our data which, for each of the RD methods, pro-
vides us with the posterior distribution over the probability 
of that RD method performing best. We apply this model 
to both the MSE observations as well as the model com-
plexity observations and provide box plots (Figs. 5 and 6) 
which show the most relevant distribution statistics. Both 
figures show that the locations of the distributions over the 
probabilities of performing the best (respective to a single 

Fig. 8  Density plot like Fig. 7 
but for the model complexity 
metric and with the region of 
practical equivalence (rope) 
marked by green dotted lines 
and a green area
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(a) Comparing NSLC-P and ES. An earlier version
of this figure was part of [6].

(b) Comparing MCNS-G and ES.

2 We deliberately do not use null-hypothesis significance tests due to 
their many flaws and possible pitfalls—cf. e.g. [24].
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metric) are rather close to each other. Therefore, the figures 
show that a very confident conclusive statement for a single 
RD method cannot be made given the data available.

When considering model complexity (Fig. 6), there is an 
about 75 %3 probability that one of NS-P and MCNS-P per-
forms the best. These two algorithms are about as likely to 
build the smallest model (albeit, each at less than 40 % of 
the total probability mass which means that the probability 
of that candidate not being the best is above 60 %). However, 
since the probability of each of these not performing the 
best MSE-wise is 89 % or more, which is usually the more 
important metric, we posit to not consider them competitive 
enough to merit a closer analysis within the present work. 
Similarly, the very poor performance on complexity discards 
all the ‘generational’ archive variants, most notably, when 
considering not only the locations of the posterior distribu-
tions according to the Calvo model but also the raw numbers 
in Table 3. ES, the third most likely algorithm to produce the 
smallest model, is far from being a clear candidate but might 
at least be a better option, especially when accounting for 
the absolute numbers where it did perform at least average 
and even best on CCPP.

Looking at the MSEs, we find that, based on the existing 
data, the Calvo model does not support an automated deci-
sion. Furthermore, the Calvo model suggests that—except 
concerning RS—the optimizers do not considerably outrank 
each other at all. There might be slight tendencies towards 
NSLC-P, NS-G and MCNS-G, but even ES and the oth-
ers behind it are not much less likely. Given the insights 
from the model complexities, which would discard NS-G 
and MCNS-G, this warrants a closer comparison of ES and 
NSLC-P.

We next consider the difference in performance between 
ES (since it is both the originally used RD method as well 
as the next-best runner up with respect to the probability 
of being the best MSE-wise and a good candidate for low 
model complexity) and NSLC-P (since it has the highest 
probability of having the lowest MSE) by applying Corani 

and Benavoli’s Bayesian correlated t-test [27]. The resulting 
posteriors (given in Figs. 7 and 8a including 99 % high pos-
terior density intervals (HPDIs)) are the distribution of the 
difference between the considered metric for ES and the con-
sidered metric for NSLC-P (practically, this equates to val-
ues below zero indicating ES having a higher (worse) met-
ric value than NSLC-P). The difference in MSEs between 
NSLC-P and ES on the CCPP dataset is most certainly neg-
ligible in practice, which corroborates the earlier statement 
that all optimizers but RS perform similarly on that dataset. 
On the other hand, on ASN, ES outperforms NSLC-P by an 
MSE of at least 0.04 with a probability of over 99 %4 (99 % 
of probability mass lies between the dashed lines which are 
both considerably right of the center). The probability of 
ES being outperformed by NSLC-P on the CS dataset by 
an MSE of 0.019–0.022 is 99 %. On the last of the four 
datasets, EEC, we can, again, not really notice a significant 
difference (i.e., the two should be considered to perform 
equivalently with a probability of over 99 % if a difference 
in MSE of 0.0033 could be considered not practically rel-
evant on this dataset). Recalling the information we have 
about the datasets, namely that EEC and CCPP are more 
linear (and, therefore, easier to solve) than the other two 
datasets, this is not too surprising. What we learn here is 
that, with the basic idea behind SupRB’s alternating phases 
and information sharing, we can solve such problems equally 
well, regardless of the specific optimizer employed. While 
an important lesson, it does not advance our effort towards 
a decision between ES and NSLC-P.

Things look differently when regarding the model com-
plexities produced by the two approaches (Fig. 8a). We find 
that there is considerable probability mass on each side of 
0 on all of the datasets, although the exact amount varies. 
While computing the integral to the right (or left) of 0 is 
possible, this would include differences which do not hold 
practical relevance. Thus, we opted for defining a region of 
practical equivalence (rope) centered around an equal com-
plexity. To accommodate for the high difference of result-
ing model complexity among the learning tasks (i.e., they 
require different solution sizes), we define the rope to be 
task-dependent. Choosing this based on the task alone is dif-
ficult, as it would require detailed domain knowledge about 
the different processes that generated the data. Therefore, we 
let the collected data inform our choice for each task’s rope: 
We choose as the bounds of the rope the mean of the stand-
ard deviations of ES, NS-P, MCNS-P and NSLC-P (leaving 
out RS, NS-G, MCNS-G and NSLC-G since the results with 

Table 4  Probability (in percent, rounded to one decimal place) of ES 
or NSLC-P performing better or worse than the other—or practically 
equivalently—with respect to model complexity

ES worse Pract. equiv. NSLC worse

CCPP 1.3 23.5 75.1
ASN 45.6 28.4 26.0
CS 1.4 12.4 86.2
EEC 65.6 29.6 4.9

3 A typical minimal threshold for automated decision making is 80 % 
(or usually even more) for a single algorithm [24].

4 To elaborate: this states that we would expect that in over 99 % of 
future runs the difference of MSE between the two approaches was at 
least 0.04.
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respect to solution complexity that these methods achieved 
are not even remotely competitive). In Fig. 8, a green area 
delimited by green dotted lines indicates the rope for each 
task. Based on the Bayesian correlated t-test model and the 
assumed ropes, we can now compute the probabilities for ES 
and NSLC-P performing practically equivalently or worse 
than the respective other. These can be found in Table 4. 
Upon close inspection, we can determine that, for ASN, the 
data is inconclusive. For CCPP and CS, the probabilities 
that ES produces less complex solutions than NSLC-P are 
75.1 % and 86.2 %, respectively. There is some evidence 
hinting towards NSLC-P creating more compact solutions 
for EEC, although, this is, again, not fully conclusive, as the 
probability of it not being the case is 34.4 %.

We performed the same comparisons among ES, NS-P, 
MCNS-P and MCNS-G, finding largely similar results. 
Novelty search variants with a ‘pool-only’ archive outper-
form ES (or are outperformed by it) on the same datasets as 
NSLC-P was. The resulting plotted distributions look almost 
the same (with only variations in the scale). Therefore, these 
additional comparisons did also not yield any new insights. 
To illustrate why the Calvo model shown in Fig. 6 assigned 
MCNS-G such a low probability and what this means in 
practical terms when compared with ES, we show the dis-
tributions in Fig. 8b. ES clearly outperforms on complexity. 
On the corresponding MSE distribution, we found that, other 
than with ASN (were ES is better), none of the differences 
was practically significant, despite MCNS-G being the sec-
ond most likely (admittedly, with a low probability) method 
to produce the best model (cf. Fig. 5).

We conclude our analysis with a summary of the key 
takeaways.

• On datasets like the ones we considered, NSLC-P has the 
highest probability of being the best option MSE-wise. 
However, the collected data is not at all conclusive with 
respect to that (there remains an around 77 % chance of 
NSLC-P not having the best MSE on such datasets).

• When considering model complexity alone, there is a 
high probability of either of NS-P or MCNS-P being the 
best—however, their MSEs are with a considerable prob-
ability not the best.

• The ‘generational’ archiving variants are contenders for 
the most likely best average MSE of a model, however, 
their model complexities fall considerably short of the 
better or even average performing RD methods.

• A closer comparison of ES with NSLC-P yielded:

– ES outperforms NSLC-P MSE-wise with very high 
probability (> 99 %) by a presumably practically rel-
evant amount on ASN, whereas this is the other way 
around on CS. However, on these two tasks, the data 

are either not conclusive as to which method yields the 
better model complexities (ASN) or the method with 
the worse MSE performs better in that regard (CS).

– On the other two tasks, ES and NSLC-P perform 
practically equivalently MSE-wise. There is some 
light evidence for ES yielding better model com-
plexities on the less difficult of these (CCPP) and 
for NSLC-P yielding better model complexities on 
the more difficult one (EEC).

• Similar close examinations among ES and the ‘pool-
only’ novelty search variants did yield a very similar 
picture, albeit with slightly different raw numbers.

• Comparing with the most likely to rank best ‘gen-
erational’ archiving variant MCNS-G, we find clearly 
stronger complexities for the other RD methods and 
inconclusiveness on MSE data. Although, ES likely out-
performs (MSE) practically significant on ASN, whereas 
the differences on the other three tasks cannot be deemed 
practically significant.

• Overall, we can say that, despite its simplicity when com-
pared to the other approaches, the (1, �)-ES performs not 
worse when only considering practically relevant differ-
ences.

Conclusion

In this article, we extended a previous [6] investigation into 
the use of different evolutionary optimizers performing the 
task of rule discovery in the supervised rule-based learning 
system (SupRB), a recently proposed learning classifier sys-
tem (LCS) for regression problems. This system’s key char-
acteristic is the separation of finding a diverse pool of rules 
that fit the data well from their composition into a model that 
is both accurate and uses a minimal number of rules—a key 
advantage when employed in settings where model trans-
parency is important, such as typical explainable artificial 
intelligence applications. By determining from intermediate 
solutions which areas of the problem space were already 
well covered, subsequent evolution can be guided towards 
other areas to form new rules there and, therefore, improve 
the overall diversity of the available rules.

The investigated methods were a (1, �)-evolution strategy 
(ES), a random search (RS) and three Novelty Search (NS) 
variants. For each of the three NS-based variants, we tested 
two differing approaches at building the archive against 
which the novelty is computed. The first was to only use the 
pool of rules available to solution composition in SupRB as 
the archive (denoted as *-P). In the second, we additionally 
archived a number of well-performing rules in each genera-
tion of the search heuristic (denoted as *-G). In total, this 
leads to a comparison of eight rule discovery approaches. 
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The NS-based variants all employed a (�, �)-ES, scored a 
rule’s novelty on the basis of its match set and combined it 
with traditional fitness. Besides a traditional NS, we inves-
tigated minimal criteria novelty search (MCNS) and novelty 
search with local competition (NSLC).

After an evaluation of the eight methods on four real-
world regression problems, we found that performances are 
close to equal in terms of prediction error, but—depend-
ing on the dataset—specific methods can be preferred, with 
ES and NSLC-P being the most interesting candidates. On 
the second important metric of complexity, these two meth-
ods perform about average but vastly outperform all of the 
‘generational’ archive variants while obtaining competitive 
or better error scores. These finding were confirmed by a 
rigorous statistical analysis. Interestingly, we found that 
ES and NSLC-P reciprocally outperform each other on the 
considered learning tasks, i.e., where ES can be expected to 
perform better on error than NSLC-P, it can also be expected 
to yield larger solution sizes (a higher number of rules in the 
model) and vice versa.

Overall, our recommendation based on the gathered data 
is to employ either ES or NSLC-P, although, ES seems to 
be the preferential candidate for cases where explainability 
requirements of users consider model construction impor-
tant, due to its greater algorithmic simplicity and the fact 
that rules are generated independently of the status of other 
rules.
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