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� This review focuses on the most useful methods and techniques for the study of movement and move-
ment disorders.

� Tools that can be used to study movement include kinematics, kinetics, and the underlying muscle
activity with EMG.

� The brain activity driving movement can be studied with EEG, MEG, and functional MRI.

a b s t r a c t

Clinical neurophysiology studies can contribute important information about the physiology of human
movement and the pathophysiology and diagnosis of different movement disorders. Some techniques
can be accomplished in a routine clinical neurophysiology laboratory and others require some special
equipment. This review, initiating a series of articles on this topic, focuses on the methods and tech-
niques. The methods reviewed include EMG, EEG, MEG, evoked potentials, coherence, accelerometry, pos-
turography (balance), gait, and sleep studies. Functional MRI (fMRI) is also reviewed as a physiological
method that can be used independently or together with other methods. A few applications to patients
with movement disorders are discussed as examples, but the detailed applications will be the subject of
other articles.
Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

There are many different tools and techniques for evaluating
movement disorders. They can be used for diagnosis and for assess-
ment of severity that can be useful for monitoring progression or
therapy. There are general principles for their use and specific
guidelines; describing them is the purpose of this chapter. Some
applications are noted as examples, but the full details of how indi-
vidual movement disorders are addressed will be found in subse-
quent chapters. The first sections on electromyography (EMG) and
kinesiology show howmovements can be measured. The posturog-
raphy and gait section discusses quantitative assessment for these
special and important movements. The next section deals with
brain activity and the various ways it can be evaluated. Brain activ-
ity controls the muscle activity and this process can be assessed
with corticomuscular coherence, the next topic. Polysomnography
uses all these methods and more to evaluate sleep. The last section
deals with functional magnetic resonance imaging (fMRI), another
important tool to investigate brain activity which can be used on
its own or together with EEG. A special section on direct recordings
of deep brain activity, nowpossible during operations for deep brain
stimulation, will be a separate, associated manuscript.
2. Electromyography

Electromyography (EMG) is a valuable technique for the analy-
sis of movement disorders. Muscles make movements, and EMG
measures the activity of muscle and, therefore, is also a measure
of alpha motoneuron activity. Needle EMG is typically used for
the analysis of neuromuscular disease. As a general rule, when
dealing with movement disorders, it is assumed that those aspects
are normal; the questions are different. In this situation the ques-
tions asked include what muscles are active and what is the pat-
tern of activation. The term kinesiological EMG is sometimes used.

EMG data can be measured with surface, needle, or wire elec-
trodes. Surface electrodes have the advantages that they are not
painful, and they record from a relatively large volume of muscle
producing a good average of its activity. Recordings are made with
pairs of surface electrodes, typically placed near the middle of the
muscle belly about 2 or 3 cm apart. Belly-tendon recording is usu-
ally not appropriate since recording volume would be too large and
pickup would include nearby muscles. A European consortium
called SENIAM (Surface Electromyography for the Non-Invasive
Assessment of Muscles) has proposed detailed technical guidelines
for use of surface EMG (seniam.org). Needle electrodes have the
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advantage that they are more selective, but they are stiff and can
only be used for movements that are close to isometric. Needle
electrodes are used when there is question of peripheral origin of
the movement disorder where there would be characteristic find-
ings such as fasciculations. Pairs of fine wire electrodes have the
advantage of selectivity similar to that of needle electrodes but
are flexible and permit free movement with only little pain.

Another way of recording surface EMG is with high-density
arrays of electrodes, which can show possible changes in spatial
location of activity within a muscle as the task changes. For exam-
ple, activity of several lower extremity muscles was recorded with
an array of 64 electrodes with 8 mm spacing arranged in 5 columns
and 13 rows (Schlink et al., 2020). When normal individuals vary
locomotor speed from walking to running, the spatial spread and
center of gravity of activity in the muscles change. Similarly, the
center of activation in the biceps brachii muscle changes with level
of force (Borzelli et al., 2020). It is also possible to decompose the
signal to determine the firing behavior of a number of the motor
units. For example, this method was used to identify instability
of motor unit behavior in patients with multiple sclerosis with
impaired gait (Davis et al., 2020).

It is important to avoid movement artifact, which can contami-
nate the EMG signal. Low-frequency content of the EMG signal can
be removed or dampened with filtering, and this will remove much
of the movement artifact. Movement artifact is mostly in the range
of DC to 10 or 20Hz. Surface EMGhas significant power in this range
also, but the peak power is at about 100 Hz, so the filtering of power
below 20 Hz still leaves most of the EMG power.When surface elec-
trodes are used, their impedance should be reduced to 10Kohms or
less. This will reduce electrogenesis at the electrode–skin interface
caused by slight movements. To reduce the impedance sufficiently,
it is usually necessary to clean and abrade the skin.

The amplitude of EMG provides information about the magni-
tude of the central nervous system command. For this purpose,
the magnitude in mV can be used but only thoughtfully. Since the
electrodes are not in a ‘‘standard” position and there will be varying
relationships between the skin surface and the muscle belly, the
absolute measurement has ambiguous meaning. There are two
ways of standardizing the measurements. One is with respect to
maximal voluntary EMG output, but maximum output itself might
be difficult to obtain. For example, persons can generally not pro-
duce a maximum contraction of triceps surae. The other method
is relative to a maximum compound muscle action potential
(CMAP) produced by nerve stimulation. When using these stan-
dardized methods, the values in mV should be reported in addition



Fig. 1. Recordings from pairs of antagonist muscles in different tremors. (A) Needle EMG (electromyography) recordings from the first lumbrical (1st lumb) and the extensor
indicis (ext ind) in a patient with essential tremor showing synchronous activation. (B) Surface EMG recordings in a patient with Parkinson disease showing alternating
activity in tibialis anterior (tib ant) and gastrocnemius (gastroc). From (Sabra and Hallett, 1984), with permission.
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to ratios to make sure the reader understands the measurements.
EMG is occasionally used as a measure of force, but this should only
be considered approximate since the relationship between EMG
amplitude and force is not exact, may change in different circum-
stances, and is often not linear (Solomonow et al., 1986). Moreover,
the relationship can vary in pathology (Zhou et al., 2007). Compar-
ing EMG amplitude intersubject, normalizing to the ensemble peak
or average amplitude is best (Yang et al., 1984).

In analyzing the EMG for amplitude, it can be beneficial to rectify
and smooth the recording. This process produces an ‘‘envelope” of
the EMG signal. The amplitude of the envelope can be used as the
magnitude of the EMG, and for a burst of EMG, the integrated area
of the envelope is a good measure. In the situation of a tremor, then
the successive envelopes of EMG form a curve like a sinusoid, and
the record can be analyzedwith a frequency analysis to get informa-
tion about the frequency content of the signals driving the tremor.

Since numerous muscles act on any joint, it is highly recom-
mended to record from at least twomuscleswith antagonist actions
to understand the pattern. For voluntary movements, the EMG pat-
terns are characteristic and vary with the speed of movement
(Berardelli et al., 1996). A slow, smooth movement is characterized
mainly by continuous activity in the agonist. A movement made as
rapidly as possible, a so-called ballistic movement, has a triphasic
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patternwith a burst of activity in the agonist lasting 50 to 100msec,
a burst of activity in the antagonist lasting 50 to 100 msec, and
return of activity in the agonist often in the form of a burst.

In different disorders of voluntary movement, there are charac-
teristic abnormalities of attempted rapid movement. With cerebel-
lar lesions, there is prolongation of the first agonist and/or
antagonist EMG bursts. With parkinsonian bradykinesia, there is
abnormal patterning, with multiple bursts having the appearance
of repetitive cycles of the triphasic pattern to complete the move-
ment. With dystonia and athetosis, there is excessive activity,
including co-contraction activity, in the antagonist. Excessive
activity also overflows into muscles not needed for the action.
EMG burst length can be prolonged.

Inspection of the EMG signal of an involuntary movement
reveals, first, whether the movement is regular (usually a tremor)
or irregular. There are occasionally unexpected findings in such
an analysis. For example, rhythmic EMG activity can appear irreg-
ular if the amplitude varies. The duration of the EMG burst associ-
ated with an involuntary movement can also be measured; specific
ranges of duration are associated with different types of move-
ments. Specification of duration in the range of 30 to 300 msec
by clinical inspection alone is virtually impossible due to the
relative slowness of the mechanical events compared with the



Fig. 2. Comparison of (A) 10–50 ms, synchronous and (B) 50–100 ms, alternating
EMG (electromyogram) appearance underlying different types of myoclonus. A is
from a patient with reticular reflex myoclonus, and B is from a patient with ballistic
movement overflow myoclonus. Arrows in A point to 3 different myoclonic jerks.
Arrow in B points to one myoclonic jerk. Vertical calibration is 1 mV for part A and
0.5 mV for part B. F.FLEX. = finger flexor muscles; F.EXT. = finger extensor muscles.
From (Chadwick et al., 1977), with permission.

M. Hallett, L.M. DelRosso, R. Elble et al. Clinical Neurophysiology 132 (2021) 2608–2638
electrical events. Finally, antagonist muscle relationships can be
specified as synchronous, asynchronous, or alternating (reciprocal)
(Fig. 1).

There are three EMG patterns that may underlie involuntary
movements (Hallett et al., 1994)(Hallett et al., 1994). Two patterns
are similar to the voluntary patterns for slow and ballistic move-
ments described above. The third pattern resembles the burst
occurring in many reflexes, such as the H reflex. The EMG burst
duration is 10 to 50 msec, and EMG activity in the antagonist mus-
cle is virtually always synchronous.

Different types of myoclonus can be characterized by one of the
three types of patterns, and the EMG can help make the diagnosis
(Fig. 2). Dystonia and athetosis show mostly tonic patterns. Chorea
is characterized by a wide variation of EMG burst durations
encompassing all three patterns. In tic, there can be ballistic or
tonic patterns. These patterns are summarized in Table 1.

There can also be brief lapses in tonic innervation that are clin-
ically called asterixis or negative myoclonus (Shibasaki, 1995, Toro
et al., 1995). Clinically, the lapses appear as an involuntary jerk
superimposed on a postural or intentional movement (Fig. 3). Care-
ful observation should show that the jerk is in the direction of
gravity, but this can be difficult since the lapse is frequently fol-
lowed by a quick compensatory antigravity movement to restore
limb position. Asterixis is usually irregular, but when it comes
rapidly there may be the appearance of tremor.
Table 1
EMG (electromyography) Appearance in Different Types of Involuntary Movements.

EMG Pattern

Disorder 10–50 ms, synchronous 50–100 ms
Alternating

Myoclonus X
X

Tic X
Dystonia
Chorea X X
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In clinical practice, it is of course valuable to couple EMG stud-
ies with either kinesiologic or EEG observations or both. Neverthe-
less, the simple application of EMG can be extremely helpful as a
first step.
3. Kinesiology, accelerometry

Kinesiology is the study of body movement and includes kine-
matics, the measurement of movement, and kinetics, the measure-
ment of forces that produce a movement. Kinematics is frequently
combined with EMG in the clinical neurophysiological investiga-
tion of movement and movement disorders. There are multiple
methods and devices for the measurement of kinematics, and they
need to be used carefully to obtain accurate information.

The human body consists of multiple segments that are linked
by joints. The body segments vary in size, shape and deformability,
and the joints vary in their rotational degrees of freedom. Muscles
acting about each joint produce moments of force that rotate one
segment relative to another. Therefore, a point on the body (e.g.,
the total-body center of mass) may exhibit linear or curvilinear
motion, but this is always the result of linked body segments that
rotate with respect to each other. This is analogous to the linear
motion of an automobile, produced by wheel rotation. The kine-
matics and kinetics of multi-joint 3-dimensional human motion
are too complex be comprehensively characterized with a single
motion transducer such as a triaxial (3-dimensional) accelerome-
ter, but a single transducer or inertial measurement unit can often
produce useful and sufficient information if properly deployed.

Three types of accelerometer are used in human applications:
piezoresistive, piezoelectric and capacitance devices. All three
types contain a small seismic mass attached to an elastic element,
and the elastic element is stretched or compressed in proportion to
acceleration. Acceleration is thereby determined using Newton’s
law of mass acceleration (force = mass � acceleration) and Hooke’s
law of spring action (force = spring constant � change in length of a
spring). Very small, inexpensive accelerometers are manufactured
using microelectromechanical systems (MEMS) technology, and
they are used in a variety of electronic devices, including smart
phones, smart watches and activity monitors, all of which have
been used to measure physiologic and pathologic movements
(Elble et al., 2016).

Accelerometers have been used in the study of physiologic and
pathologic tremor for more than 60 years. However, their limita-
tions are often unappreciated or ignored. Perhaps the two most
important limitations are 1) nearly all commercially available
accelerometers detect linear acceleration and 2) they are influ-
enced by earth’s gravity g = 9.81 m/s2. Therefore, if an accelerom-
eter rotates in space, the axes of the accelerometer will rotate with
respect to earth’s gravity, producing fluctuating gravitational arti-
fact at the frequency of rotation. This artifact cannot be removed
with filtering, so it will confound the desired measurement of iner-
tial acceleration. A linear accelerometer spinning in space in one
location (i.e., rotating on the axis of rotation) will produce an
100–300 ms Examples/comment

Epileptic myoclonus
Ballistic movement overflow myoclonus

X Dystonic myoclonus
X Not fully involuntary
X Also athetosis
X Also dyskinesia, ballism



Fig. 3. EMG (electromyogram) and accelerometric (accel) recording of asterixis. Patient is holding arms up in front of him with wrists dorsiflexed. EMG is from flexors and
extensors of the wrist and accelerometer was on the dorsum of the hand. From (Hallett, 1999), with permission.

Fig. 4. A schematic diagram of two limb segments rotating about two joints P and D (orange circles) in the plane of the diagram. The axis of joint P is anchored in the plane of
the diagram. Angular acceleration aP and aD at the two joints is the second derivative of joint rotation ØP and ØD. A transducer (blue box) is mounted on limb segments 1 and
2. The instantaneous vertical linear inertial acceleration of transducer 1 is a1y = L�aP, and if rotation at joint D is not allowed, the instantaneous vertical linear acceleration of
transducer 2 is a2y = 2.6�L�aP. Also note that aP = (a2y – a1y)/1.6L. If joint P is fixed and rotation occurs only at joint D, the same angular acceleration at joint D will produce an
instantaneous vertical linear acceleration of transducer 2 equal to 0.6�L�aD. The instantaneous vertical acceleration recorded by each accelerometer will be the inertial
acceleration minus earth’s gravity g (Elble, 2005). The arc length S for transducers 1 and 2 and rotation Ø (joint D is fixed) is L�ØP and 2.6�L�ØP, respectively. If joint P is fixed
and the same rotation Ø occurs at joint D, the arc length of transducer 2 is 0.6�L�Ø. Thus, the perceived displacement and linear acceleration of an accelerometer are
proportional to the distance of the transducer from the axis of rotation.
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output that fluctuates between ± 1g and will detect no inertial
acceleration despite the forces needed to rotate the device in space.
A linear accelerometer detects angular (rotational) inertial acceler-
ation only to the extent that the axes of sensitivity are located
some distance L from the axis of rotation (Fig. 4). The output of
an accelerometer is linearly proportional to L, and inconsistent
placement of an accelerometer will therefore produce inconsistent
measurements.

A single accelerometer, even one with three orthogonal axes of
sensitivity (triaxial accelerometers), can produce only a very lim-
ited assessment of multi-joint limb motion. An accelerometer
mounted on the hand will have an instantaneous axis of rotation
that is proximal to the wrist if rotation also occurs at the elbow
or shoulder, and the location of the instantaneous axis of rotation
will vary to the extent that rotation varies among the wrist, elbow
and shoulder. This variation in the instantaneous axis of rotation
will produce proportional variation in the amplitude of accelera-
tion detected by the accelerometer, and it may also affect the fre-
quency content of the recordings. Consequently, linear
accelerometers are suitable for measuring tremor amplitude only
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when motion is restricted to one joint, motion is primarily in one
direction, and the transducer is mounted in a consistent location
(Elble, 2005, Elble et al., 2016). These three requirements are nearly
impossible to achieve in human applications. Angular rotation can
be measured with multiple accelerometers mounted on the same
body segment (Fig. 4), but the problem with this approach is that
the transducers must be strategically mounted with precise orien-
tation of their axes (Elble, 2005). Similarly, tremor frequency is
measured most reliably when motion is restricted to a single joint
and a standardized task (Longardner et al., 2019, Vial et al., 2019).

Most three-dimensional accelerometers are now packaged in
small, inexpensive inertial measurement units (IMUs) that also
contain three-dimensional gyroscopes and frequently contain a tri-
axial magnetometer. The gyroscopes measure angular velocity of
the body segment, to which the gyroscope is attached. Gravita-
tional artifact is not an issue with gyroscopic transducers, but the
relative rotations of multiple joints can make interpretation diffi-
cult. For example, consider a gyroscope on the hand, with the
upper limb fully extended horizontally. A 30-degree oscillation at
the wrist will displace the hand in space far less than a 30-



Fig. 5. Head tremor was recorded for 60 s with an inertial measurement unit (IMU) mounted at the vertex of the head of a 33-year-old woman with a very rhythmic 3.1-Hz
horizontal head tremor, rated 2 on a 0–4 clinical rating scale (Elble et al., 2012). Note that the half peak-to-peak horizontal acceleration was only 0.083 g or 81.3 cm/s2. The
half peak-to-peak displacement was estimated by dividing the acceleration by the squared frequency in radians/s. Thus, the accelerometer detected a half peak-to-peak
displacement of only 0.21 cm. By contrast, the gyroscope recorded a 69 deg/s rotation in the horizontal plane, which corresponds to a half peak-to-peak rotation of 3.54 deg.
Assuming a radial distance of 15 cm from the axis of rotation to the tip of the nose, this rotation would produce an arc length of movement = 15�2�p�3.54/360 = 0.93 cm or an
average 1.86 cm peak-to-peak horizontal oscillation of the nose.
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degree oscillation at the shoulder because the arc length of motion
of any point on the hand is proportional to the distance from that
point to the axis of rotation (Fig. 4). Therefore, when assessing tre-
mor amplitude, it is preferable to restrict motion to one joint if pos-
sible because it is impossible to know or control the instantaneous
axis of rotation when multiple joints are involved in a movement.
Furthermore, the frequency of rotation may differ among joints,
and a single IMU will detect these frequencies but cannot locate
their origins.

The limitations of accelerometry versus gyroscopy are illus-
trated in the measurement of head tremor in patients with essen-
tial tremor and cervical dystonia (Elble et al., 2017). An IMU
mounted at the vertex of the head is capable of recording head
motion in three-dimensional space. Head motion is primarily rota-
tional, and the instantaneous axis of rotation will usually vary over
time because head tremor is usually multi-directional. For tremor
in the horizontal plane, the instantaneous axis of rotation will be
close to an IMU mounted at the vertex of the head. Accelerometers
therefore give misleadingly small and variable estimates of tremor
amplitude (Fig. 5). By contrast, a three-dimensional gyroscope pro-
duces valid estimates of tremor amplitude that correlate very
strongly with clinical ratings (Elble et al., 2017).

In some applications, the occurrence of an abnormal movement,
rather than its amplitude, may be the desired measure. IMUs, par-
ticularly accelerometers, are extremely sensitive to movement, and
frequency-domain and time-domain statistical features of a move-
ment are useful in identifying the type of movement (e.g., normal
walking, chorea, tremor) and in answering the binary question
‘‘present or absent”. For example, the frequency content of most
normal movements is primarily in the range of 0–3 Hz, and all tre-
mors except myorhythmias have frequencies > 3 Hz. Furthermore,
tremor, by definition, is rhythmic and oscillatory (Bhatia et al.,
2018). Therefore, tremor-detection algorithms are easy to develop
using methods of spectral analysis to detect rhythmic motion at a
frequency > 3 Hz. These tremor-detection algorithms have good
sensitivity and specificity for pathologic tremor (Thorp et al.,
2018), and the percentage of awake time with tremor correlates
strongly with clinical ratings of rest tremor in Parkinson disease
(Hoff et al., 2001). Other abnormal movements are not rhythmic
and have frequency content and other kinematic features that
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overlap with those of normal voluntary movement. Consequently,
mathematical algorithms for identifying arrhythmic movements
(e.g., chorea, dystonia, myoclonus) must utilize additional
frequency-domain and time-domain methods of signal (time ser-
ies) analysis to answer the binary question ‘‘present or absent”.

Algorithms for detecting abnormal movements typically com-
bine frequency- and time-domain signal characteristics (statistics)
with machine learning (Bennasar et al., 2018, Lonini et al., 2018).
These algorithms are developed empirically, using large volumes
of clinical data, to distinguish abnormal involuntary movements
from normal movements and to distinguish among the various
types of abnormal movements. Continuous recordings with wear-
able IMUs can identify ‘‘on” time, ‘‘off” time, and time with dyski-
nesia in Parkinson disease (Pfister et al., 2020). Optimum
placement and optimum number of IMUs appear to differ among
the various disturbances of motion (bradykinesia, freezing, rest
tremor, dyskinesia) in Parkinson disease (Thorp et al., 2018). These
factors, the influence of activities of daily living, within-subjects
variability, and between-subjects variability are continuing chal-
lenges in this field (Thorp et al., 2018).

Multiple strategically mounted IMUs are needed for a detailed
kinematic analysis of movements involving multiple body seg-
ments. This is illustrated in relatively simple studies of elbow rota-
tion (El-Gohary et al., 2015) and knee rotation (Favre et al., 2008,
Jakob et al., 2013, Seel et al., 2014). The computational analysis
of IMU recordings in 3-dimensional motion capture is not trivial,

but commercial software (www.xsens.com/motion-capture) and

freeware (simtk.org/projects/opensim) are available for this pur-
pose (Tagliapietra et al., 2018). Motion capture with IMUs is
accomplished by ‘‘fusing” the three-dimensional accelerometer,
gyroscope and sometimes magnetometer recordings (depending
on the magnitude of environmental ferromagnetic interference)
with a kinematic model of the body segments using a mathemati-
cal algorithm (e.g., extended Kalman filter) to determine the orien-
tation of each IMU with respect to a global coordinate system that
is based on earth’s gravity and sometimes magnetic North (Jakob
et al., 2013, Lebel et al., 2013). The accuracy of this approach varies
with the design of the IMU, number of IMUs, velocity of motion,
duration of motion, and environmental ferromagnetic interference
(Lebel et al., 2013). Three-dimensional camera-based motion cap-



Fig. 6. Balance domains and 3 techniques (Clinical, Neurophysiology and Wearable Technology) to assess each domain. Abbreviations, CTSIB: Clinical Test of Sensory
Interactions on Balance, SPPB: Short Physical Performance Battery, PPA: Physiological Profile Assessment, BESTest/MiniBESTest: Balance Evaluation Systems Test or Mini
Balance Evaluation Systems Test. sEMG: surface electromyography; IMU: Inertial Measurement Units. Items with * are part of the BESTest.

Fig. 7. Gait Domains and 3 techniques to assess each domain. Abbreviations, 25ft walk: time to walk 25 feet; 6MWT: 6-minute walking test; 2MWT: 2-minute walking test;
BESTest/MiniBESTest: Balance Evaluation Systems Test or Mini Balance Evaluation Systems Test; Fig. 8: time to walk a Fig. 8 shape; sEMG: surface electromyography; IMU:
Inertial Measurement Units.
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ture systems are still the gold standard particularly for gait analy-
sis (see next section), but these systems are laboratory-based and
expensive (Jakob et al., 2013). There are a variety of systems with
active and passive markers positioned on body parts, and newer
systems are being developed that are markerless (Colyer et al.,
2018, Menolotto et al., 2020)

Most applications do not require a comprehensive kinematic
analysis of motion. For example, single IMUs can be used to obtain
representative performance measures such as step count, arm
swing, turning, and postural sway as described in the next section
(Case et al., 2015, Mancini et al., 2016b). Furthermore, there are
alternatives to IMUs, depending on the desired clinical application.
Goniometers are being used to assess tremor in the shoulder,
elbow and wrist to guide clinicians in the administration of botu-
linum toxin, tailored to the distribution of each patient’s tremor
(Samotus et al., 2018). Three-dimensional camera-based motion
capture systems can accurately record limb trajectories, as in a
reaching task (Deuschl et al., 2000). Three-dimensional ultrasound
(Pedrosa et al., 2013) and electromagnetic systems (Matsumoto
et al., 2001) have also been used for this purpose.

In summary, wearable motion transducers and recording sys-
tems are becoming increasingly portable, accurate and affordable.
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The effective use of these devices requires a careful consideration
of the objectives and complexities of the desired application and
the limitations of the available devices. For example, a detailed
kinematic analysis of the upper limb is necessary to study joint
interaction torques and rotations underlying decomposition of
movement during a reaching task in ataxia (Bastian et al., 1996),
but it is not needed to assess the functional impact of tremor or
dysmetria of the hand (Bastian et al., 2000, Deuschl et al., 2000).
Furthermore, clinical performance assessed with a clinical rating
scale can be as sensitive as an IMU to clinically important change
because the advantages of transducers (sensitivity and precision)
are largely mitigated by test–retest (within-subjects) variability
in performance (Elble et al., 2016). Clinicians must therefore
choose their tools wisely when assessing movement disorders.
4. Balance and gait analysis

Balance control has the goal of maintaining postural equilib-
rium, that is control of the body center of mass over its base of sup-
port. Gait control has the goal of efficiently and effectively moving
the body in space using the legs. However, balance and gait each
consist of several, separate domains (Figs. 6 and 7) that are affected
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independently by different neurological disorders and therapeutic
interventions and, thus, are likely controlled by different brain cir-
cuity. Therefore, a comprehensive assessment of balance or gait
requires testing control of each domain because a disorder within
each domain has different functional and clinical implications.

Here, we describe 3 general approaches to assess each balance
and gait domain: 1) clinical assessments by a neurologist or phys-
ical therapist without technology; 2) clinical neurophysiology
assessment with laboratory equipment and expert analysis and
interpretation of results, and 3) upcoming clinical neurophysiolog-
ical assessment using less expensive, wearable technologies with
automatic (or semi-automatic) algorithms to derive outcomes for
prescribed tasks and free-living mobility. Fig. 6 summarizes the 3
types of assessments for 6 Balance Domains: Postural Alignment
(posture), Subjective Vertical, Limits of Stability, Postural Sway,
Automatic Postural Responses, and Anticipatory Postural Adjust-
ments. Five of the 6 balance domains are assessed in a clinical bal-
ance test called the ‘‘Balance Evaluation Systems Test” (BESTest) as
indicated by the asterisks (Horak et al., 2009, Mancini et al., 2010).
Fig. 7 summarizes 6 gait domains: Pace, Temporal, Variability,
Asymmetry, Stability, and Transitions (e.g.; Turning and Sit-to-
stand) that have been identified using Factor Analysis or Principal
Component Analysis (Lord et al., 2012, Horak et al., 2016).

4.1. Balance domains

Posture or Postural Alignment is the relationship of body seg-
ment positions to one another and to gravity, the base of support
and surrounding environment (Bullock-Saxton, 1993). Optimal
postural alignment is a prerequisite for optimal functional move-
ments. Appropriate postural alignment allows stability (balance)
as well as body orientation in space by integrating visual, vestibu-
lar and proprioceptive inputs to make postural adjustments
(Carpenter et al., 2004). A tilted or inaccurate internal representa-
tion of postural or visual verticality (see Subjective Vertical, below)
could result in abnormal posture that is not aligned with gravity
(Horak and Macpherson, 2011, Bronstein et al., 2013). Examples
of postural misalignment are often seen in people with Parkinson’s
disease (PD), who present a characteristic flexed posture as well as,
up to one third who have deformities of their neck or trunk such as
camptocormia (forward bent trunk), anterocollis (flexed neck), Pisa
syndrome (lateral lean of trunk) or scoliosis (Ashour et al., 2006,
Benatru et al., 2008). Clinicians can measure, in degrees, postural
alignment between different body segments with goniometers
and alignment respect to the vertical of the whole body with pos-
ture grids. Standard Clinical Neurophysiology uses motion analysis
kinematics to accurately quantify postural alignment during static
quiet standing (where the participant is asked to stand still from a
minimum of 30 s up to a couple of minutes) or during walking.
Reflective markers are placed on many body segments and a
biomechanical model allows the calculation of displacement and
orientation of each body segment, as well as estimates of position
of the body center of mass (CoM). More recently, accelerometers or
Inertial Measurement Units (IMUs) have been used to calculate the
inclination of a body segment from gravity and the change in incli-
nation over time (Vaugoyeau et al., 2007, Carpenter et al., 2011).

Subjective Vertical is the perception of upright (gravity) that
arises from an internal representation based on the integration of
somatosensory, vestibular and visual information, and prior expe-
rience (Bisdorff et al., 1996, Dieterich et al., 2019). Subjective visual
vertical is thought to be independently controlled from subjective
postural vertical since patients usually have one or the other
affected (Dieterich et al., 2019). Subjective visual vertical measures
the accuracy of aligning a visual line to gravitational vertical when
other visual cues are not available (e.g., in the dark). Visual vertical
is often evaluated by asking subjects to align a line across the
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diameter of a large to their perceived ‘vertical’ with an inclinome-
ter (as from an application in a smart phone) on the bottom of the
bucket to indicate degrees away from gravitational vertical. Labo-
ratories can more accurately measure subjective vertical with a
remote-control laser line in a dark room. In contrast to visual ver-
tical, postural (somatosensory) vertical is measured by asking the
patient to indicate perceived vertical, such as with a light, hand-
held rod, while they are tilted while standing or sitting on a tilt
board. An accelerometer on the rod can indicate tilt away from
gravitational vertical. Healthy adults showing normal visual verti-
cal are accurate <±1 degree and postural vertical < ±2 degrees.
Patients with unilateral vestibular loss often show abnormal visual
vertical, whereas patients with right-sided stroke (left brain
affected) or with progressive supranuclear palsy (PSP) can show
abnormal postural vertical (Dale et al., 2017). An altered visual or
postural verticality sense may affect posture as well as balance,
resulting in being more vulnerable to falls (Vaugoyeau et al.,
2007, Carpenter et al., 2011).

Postural Sway refers to the horizontal (antero-posterior and
medio-lateral) movements around the body CoM during quiet
standing, (i.e., static posturography) (Bloem et al., 2003). The abil-
ity to maintain postural equilibrium in static postures relies on the
ability of the central nervous system to control the body’s CoM so
that it remains within safe boundaries above the base of support
(Winter, 1995, Winter, 2009). Postural sway during quiet standing
is commonly quantified by the motion of the Center of Pressure
(CoP), namely the point of application of the ground reaction force
vector under the feet (Morasso et al., 1999), using a force plate.
Clinicians judge sway area using subjective assessment and with
stopwatches to time howmany seconds a person can hold a partic-
ular stance (i.e., feet together, eyes closed etc.).

CoP movements are closely related to the Center of Mass (CoM)
movements during quiet standing. Force plates act as dynamome-
ters using mechano-electrical force transducers (strain gages or
piezoelectric crystals) and record the ground-reaction forces
between the body and ground, thus allowing the calculation of
the CoP (Winter, 1995, Chiari, 2009). In fact, even small deviations
from an upright body position result in a gravity-induced torque
acting on the body, causing it to accelerate further away from
the upright position. As a consequence, several muscles activate
to oppose the destabilizing torques due to gravity making standing
still a very active process, where visual, somatosensory, and
vestibular need to be working together. When a sensory input is
distorted or removed, e.g., when vision is not available or the visual
surround is moving sway will increase. Impairments in sensory,
motor, or central nervous function, caused by the natural aging
process or pathology, will reflect in changes in maintaining stabil-
ity during postural sway. Thus, measures of the CoP during sway
are of critical importance to unravel neural mechanisms of postural
control (Winter, 2009). In addition, CoP analysis may serve as an
objective way to assess severity of postural instability in people
with neurological diseases (Maurer et al., 2000, Visser et al., 2008).

Several methods exist to characterize postural sway and one of
the most common is considering the signal stationary and describ-
ing it in the time and frequency domains (Chiari, 2009). Sway has
been shown to consist of three different components, area, velocity
and frequency. Fig. 8 shows the CoP trajectories in the horizontal
plane (statokinesigram) of a representative healthy control and a
representative individual with Parkinson’s disease (PD) Off and
On dopaminergic treatment. People with PD often show impaired
postural stability, characterized by larger, faster and higher fre-
quency sway in both the medio-lateral and antero-posterior direc-
tions compared to age-matched healthy controls. In addition, while
levodopa replacement helps certain aspects of mobility, such as
gait speed and APAs (below), it does not improve postural sway
(Rocchi et al., 2002, Schoneburg et al., 2013). In fact, postural sway



Fig. 8. Representative CoP (Center of Pressure) displacements in the horizonal plane (antero-posterior, AP and medio-lateral, ML) in a representative healthy control, and
individual with Parkinson’s Disease (PD), Off and On dopaminergic treatment from static posturography on a force plate (statokinesigram).
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area may increase when individuals with PD are On levodopa for
many reasons, such as reduced rigidity, increased dyskinesia, and
interference with control of standing balance (Curtze et al., 2015).

Over the past 20 years, several studies shown the validity and
sensitivity of measuring postural sway with wearable sensors, such
as a single IMU (e.g., a Smart phone) attached to the low back, com-
pared to a force plate (Mayagoitia et al., 2002, Moe-Nilssen et al.,
2002, Mancini et al., 2011). Inertial sensors provide a robust and
valid approach to characterizing postural sway, although some
algorithms use linear accelerometers, other use angular velocity
to calculate changes in rotation of the trunk, and others use both.

Limits of Stability measure how far a subject can lean their
body CoM over their base of support without external support or
taking a step (Schieppati et al., 1994). To assess limits of stability,
clinicians ask a standing patient to reach forward (or backwards or
sideways) as far as they can (Functional Reach Test) next to a tape
measure on the wall (Duncan et al., 1992). However, subjects can
reach without moving their body CoM so the Functional Reach Test
results does not always relate well to displacement of the CoP on a
force plate. Limits of stability can be measured while standing on a
force plate as the maximum CoP movement and velocity while
attempting to lean (Schieppati et al., 1994). Motion analysis can
be used to measure the kinematic strategy used to achieve the
maximum limits of stability (Mancini et al., 2008). Limits of stabil-
ity are particularly impaired in the forward direction in people
with PD compared to age-matched healthy controls, while the
backward limits of stability are similar among people with PD
and age-matched healthy controls (Mancini et al., 2008). While
levodopa treatment helps increase forward limits of stability, it
does not restore it to a normal range (Mancini et al., 2008). Clini-
cians can now use wearable sensors on the low back (near the cen-
ter of mass) while subjects lean to measure limits of stability to
measure maximum displacement of the trunk.

Automatic Postural Responses (APRs) are the automatically-
triggered muscle responses to sudden, external disturbances to
body equilibrium (Horak and Macpherson, 1996). The first muscle
bursts activated when a standing human is pushed forwards or
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backwards are ankle muscles at 90–120 ms, although stepping
responses often have even longer latencies. Postural muscle
responses are activated in groups, called synergies, that receive a
common command signal dependent upon the direction and speed
of the disturbance (Ting et al., 2007). For example, when forward
sway is induced by an external perturbation, the distal-to-
proximal muscle synergy results in an ankle strategy that restores
balance primarily by rotating the body about the ankle joints
(Horak and Nashner, 1986). However, when forward sway is
induced when standing across a narrow beam, such that surface
forces cannot restore equilibrium, a hip and trunk muscle synergy
results in a hip strategy to restore body center of mass by bending
at the hip joints and counter-rotating at the ankle joints (Horak and
Nashner, 1986). Postural responses are influenced by recent expe-
rience, so they adapt gradually to a sudden change in biomechan-
ical conditions, such as from a flat, firm surface to a narrow beam
or from standing to sitting (Horak et al., 1992). Postural responses
can also improve with practice (Dijkstra et al., 2015, Peterson et al.,
2016). However, patients with PD demonstrate mixed ankle and
hip strategies that do not quickly adapt to new biomechanical con-
ditions and slower improvement of postural responses with prac-
tice (Horak et al., 1992, Peterson et al., 2016).

Clinician generally assess APRs using the ‘‘Pull test” or the ‘‘Push
and Release test” (Jacobs et al., 2006). Clinicians assess the ability
to recover equilibrium by taking a single step after pulling back-
ward on the shoulders in the Pull test. Perturbations to postural
equilibrium are induced via sudden release of isometric muscle
forces by the patient against the clinician’s hands on the shoulders
or hips in the Push and Release test. The Push and Release test
allows evaluation of both feet-in-place responses, such as the ankle
strategy, as well as stepping responses.

APRs can be evaluated more precisely in the laboratory by pro-
viding velocity-, amplitude- and direction-controlled perturbations
to equilibrium, such as sudden translations or rotations of the sur-
face or by pulling on a harness or releasing a harness that a subject
is leaning against (Mille et al., 2003). Surface EMG, surface reactive
forces and whole-body kinematic responses are then character-



Fig. 9. Representative CoP (Center of Pressure) traces in a representative healthy control, and individual with Parkinson’s disease (PD), Off and On dopaminergic treatment. A)
Reactive Postural Adjustments to a forward platform transition that does not require a step, and B) Anticipatory postural adjustments prior to a voluntary step. Both
automatic postural responses (APRs) and anticipatory postural adjustments (APAs) are slow and weak in people with Parkinson’s disease. APRs do not improve with levodopa
but APAs are larger On, than, Off levodopa.
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ized. For example, forward translation of the surface upon which a
subject stands results in backward body CoM tilt which must be
overcome by activating tibialis anterior, quadriceps and abdominal
muscles, resulting in a torque on the surface that can be character-
ized as the latency, peak, rate of rise and area of the CoP displace-
ment (Fig. 9A). Although people with PD have normal latencies to
the onset of postural responses, their peak, rate of rise and area of
CoP response to external displacements are small and are not
improved with levodopa therapy (Fig. 9A). Recently, patterns of
multiple muscle surface EMG activation have been characterized
as postural synergies in response to external displacements
(Chvatal et al., 2013, Sawers et al., 2017). Small studies have shown
that people with PD have abnormal postural synergy structure that
is not improved by levodopa nor DBS (Mileti et al., 2020). Wearable
sensors can also be used to quantify APRs during the Pull test or the
Push and Release test. Measures like postural response latencies,
compensatory step length and step velocity, and time to recover
equilibriummay be useful objective measures for clinical research-
ers(Craig et al., 2017).
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Anticipatory Postural Adjustments (APAs) are postural mus-
cle activations that occur in anticipation of voluntary movements
to prevent destabilization of postural orientation and equilibrium.
APAs are specific to biomechanical conditions. For example, when a
standing subject rapidly lifts their arms or pulls on a handle, leg
muscles are activated prior to arm muscles (Horak et al., 1984).
However, when the subject performs the same pull with their body
is supported, no anticipatory leg muscle activity occurs and arm
muscle activation occurs earlier (Cordo et al., 1982). APAs are also
critical for step initiation as they accelerate the body center of
mass forward and laterally to unweight the leg about to step. This
anticipatory postural adjustment is independent of locomotor con-
trol. Clinicians and physical therapists cannot easily assess APAs
but they can infer a problem if their patients have difficulty with
postural transitions, such as step initiation, stand on one foot or
the sit-to-stand task.

In the laboratory, APAs are assessed primarily as changes in
center of pressure under the feet prior to a voluntary movement
and by the muscle synergies responsible. For example, APAs asso-
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ciated with step initiation are initiated by hip abductor muscles,
such as tensor fasciae latae, in the leg about to step and bilateral
tibialis anterior muscle activation. The size of an APA prior to step
initiation can be measured as the peak lateral (and anterior) dis-
placement of the CoP (Fig. 9B). APAs have been shown to be weak
or absent in people with PD and improved by dopamine replace-
ment therapy (Burleigh-Jacobs et al., 1997) (Fig. 9B). Recently,
APAs associated with step initiation have been captured with an
inertial sensor placed on the lumbar spine of subjects, which
makes it possible for clinicians to quantify the amplitude of APAs
(Mancini et al., 2016a). Acceleration of the sensor towards the sup-
port leg and forward coincides with displacement of the center of
pressure under the feet towards the stepping leg and backward
prior to step initiation (Mancini et al., 2016a).

4.2. Gait domains

Gait temporal and spatial measures all are defined and averaged
across gait cycles. A gait cycle is defined as the interval of time
between successive heel strikes at which the heel of the same foot
strikes the ground (Fig. 5 shows the cycle of the right leg). The gait
cycle includes a stance phase, during which the foot is in contact
with the ground (60% to 70% of the cycle duration), and a swing
time (30% to 40% of the cycle duration), which begins when the
toes leave the ground and, by definition, is equal in time to the sin-
gle support time of the other leg. About 20–25% of the gait cycle,
both feet are in contact with the ground (double-support). The
double support time can be increased in patients with postural
instability, for example with aging or neurological conditions.

Classic gait spatio-temporal parameters, such as step length
(distance leg travels between right and left heel strikes) or stride
length (distance leg travels between one leg heel strikes), are cal-
culated with respect to each gait cycle and averaged across gait
cycles. Gait has been shown to consist of several, separate, rela-
tively uncorrelated, components such as pace, timing, variability,
asymmetry, postural stability, and turning (Lord et al., 2012).

Gait Pace represents measures related to the speed of locomo-
tion, such as stride velocity (or gait speed), stride length, and
cadence (steps per minute). Energization of gait, as well as volun-
tary movement in general, is thought to be driven from the basal
ganglia via the motor cortex to brainstem locomotor centers so is
affected by Parkinsonian disorders (Mancini et al., 2020). However,
gait also slows to compensate for imbalance, asymmetry, temporal
and variability impairments that disrupt locomotion so can be a
sensitive predictor of future fall risk and even mortality in the
elderly (Hausdorff, 2007). Gait pace is most commonly measured
Fig. 10. Representative gait cycle for the right limb (red) starting from h
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as ‘gait speed’ in the clinic using a stopwatch or distance walked
over a fixed time (Fig. 10). Most clinical walking tasks are per-
formed at patient’s normal pace, although some walks, such as
the 25-foot walk and the 6-minute walk tests, are performed with
instructions to walk as fast or as far as possible, respectively. Char-
acteristics of gait quality can be derived from sophisticated and
well-equipped gait analysis laboratories. These laboratories
include motion analysis systems, force-plates, and wireless surface
EMGs to characterize kinematics (joints motion) and kinetics
(forces that act across the joints) of gait as well as muscle activity
during walking. Together, they provide a comprehensive picture of
the various factors contributing to gait disorders. Recently, clinical
trials and clinical practice take advantage of wearable technology,
in the form of inertial sensors, to quantify gait pace metrics more
quickly and with less expensive equipment compared to a fully
equipped gait laboratory. Studies have shown that inertial sensors
on the feet produce the most accurate measures of gait speed, fol-
lowed by sensors on the ankles and then waist (Hsu et al., 2018).
Since prescribed walking tasks in the laboratory may not reflect
how people walk in daily life, when their attention is diverted to
other tasks, it is increasingly popular to add a cognitive, ‘‘dual task”
while walking (Hyndman et al., 2004, Hausdorff et al., 2008). This
cognitive-gait interference is calculated as the percent change in
gait parameters, such as slowing of velocity or shortening of step
length, compared to the same parameters without the dual-task.
The amount of change is thought to be related to how much con-
trol of gait requires cortical attention, or lacks automaticity
(Clark, 2015). In fact, dual-task cost can be especially high in
patients with neurological disorders who are at a high risk for falls
(Hausdorff et al., 2008).

Gait Timing, Variability and Asymmetry refers to 3 different
domains of gait (Lord et al., 2012). Temporal aspects of gait, such
as double- and single-support time arise from crossed connections
between spinal, brainstem and cortical locomotor centers and can
reflect compensation for postural instability (e.g.; by reducing % of
time spent on one foot and increasing % of time spent on two feet).
Thus, increased double support time has be related to fall risk
(Kwon et al., 2018). Variability of gait measures, using standard
deviations, coefficient of variation, etc. are the most sensitive gait
measures in patients with cerebellar disorders (Hausdorff, 2004,
2009). Consistency of gait is thought to be due to automatic spinal
locomotor control but gait becomes more variable with more cor-
ticospinal control of the locomotor centers, indicating it is less
automatic (Maidan et al., 2016). Asymmetry of right-left leg move-
ments (stride time or length) can reflect either central nervous sys-
tem lateralized lesion (i.e., stroke) or biomechanical impairments
eel-strike (or initial foot contact) to the following right heel-strike.
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(i.e., leg joint or muscle). Clinical gait assessments cannot distin-
guish among these 3 domains of gait control. Clinical rating scales
for gait such as the Tinetti Performance Oriented Mobility Assess-
ment (Tinetti, 1986) and the Gillette Gait Index attempt to use rat-
ings of task accomplishment or visual qualitative assessment of
kinematic parameters (Wren et al., 2007). Gait laboratories gener-
ally use a combination of whole-body kinematics with motion
analysis as well as ground reaction forces from force plates for a
single step (located in the center of the motion analysis calibrated
space) to quantify leg joint displacements, power of push-off, and
the temporal, variability and asymmetry domains of gait. Alterna-
tively, good measures of foot fall during gait can be obtained with
gait pressure mats, although upper body motions and turning are
generally left out. Wearable sensors have been extensively used
to automatically quantify many gait metrics, with the most accu-
rate metrics from placement on the feet, then ankles, then low
back compared to gold-standard motion analysis or pressure sen-
sor walkways (Storm et al., 2016). Body-worn inertial sensors
allow for much longer walking task across a variety of environ-
ments, including continuously during daily life (Horak et al.,
2015). Gait during daily life has been shown to be slower and more
variable than gait measured in a laboratory test (Hillel et al., 2019).
Daily life gait also consists of over 85% of gait bouts lasting less
than 10 seconds and gait speed is slower, the shorter the bout
(Shah et al., 2020a). Recent studies suggest that quantifying gait
quality during daily life is more sensitive and specific than the
same gait measures derived from a gait tasks in a laboratory.

Postural stability during walking involves controlling the CoM
of the upper body over the moving legs, especially in the lateral
direction. Excessive lateral displacement of the trunk and excessive
lateral and externally rotated foot placement and their increased
variabilities are signs of postural instability during locomotion
(Dean et al., 2007). Patients with abnormal postural stability dur-
ing gait may exhibit normal automatic and anticipatory postural
adjustments, normal postural sway in stance under different sen-
sory conditions, and normal orientation to vertical, suggesting that
postural control and gait have different nervous system circuits.
Several clinical rating scales (such as the Dynamic Gait Index)
attempt to assess postural stability during gait by adding postural
challenges to walking, such as obstacle clearance, changes gait
speed, rotating the head, and adding a cognitive task. Most clinical
gait scales either rate how much assistance is needed to walk or
what type of gait is possible (jumping, running, etc.). No clinical
tests specifically evaluate trunk stability or foot placement to rate
postural stability during gait, although the BESTest and MiniBEST
evaluates trunk motion and veering of locomotion during chal-
lenges such as head rotations. Motion analysis or wearable sensors
on the trunk can be used to estimate postural stability during
walking by quantifying the range of trunk motion in each gait cycle
and by measuring double support time and variability of foot head-
ing. Stability during gait can also be assessed via local dynamic sta-
bility (LDS) measures of the trunk acceleration while walking
(Ihlen et al., 2012). Phase-dependent LDS is an indicator of the rate
at which local perturbations are attenuated during specific phases
of the gait cycle (Ihlen et al., 2012). Impaired phase-dependent LDS
during weight transfer, but not other phases, is found in people
with neurological disorders compared to their healthy peers
(Fino et al., 2018) and is a sensitive discriminatory measure
between elderly fallers and non-fallers during daily life (Ihlen
et al., 2016).

Turning involves a change in direction of forward progression.
The ability to modify the direction of locomotion is fundamental
yet a complex component of walking behavior. Turning requires
the central nervous system to coordinate body re-orientation
towards a new travel direction, while continuing with the on-
going step cycle, and at the same time maintaining postural stabil-
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ity in the medial–lateral plane (Patla et al., 1999). Normally, gaze
rotation initiates the turn and occurs approximately 200 ms before
the start of the turn (Courtine et al., 2003, Hicheur et al., 2005).
After the head, then the trunk, later the pelvis and feet rotate to
the inner side of the turning cycle and the center of mass (CoM)
deviates to the same side (Crenna et al., 2007). During turning,
velocity decreases and stride width increases to improve stability
of body weight during trunk rotation and lateral translation, com-
pared to straight gait. Turning is essential to functional mobility in
daily life, in fact, the majority of activities during daily life require
3–4 turns and over 50% of daily steps are turning steps (Glaister
et al., 2007).

Clinical assessment of turning is largely based on counting the
steps and recording the time to complete a 360-degree turn-in-
place with a stopwatch. Although increased turning duration
reflects typically reflects turning impairments, other aspects of
turning not assessed with this approach, such as stability during
turning, inter-limb coordination, and smoothness. In fact, when
some neurological patients turn faster, they are more unstable
and likely to fall. Motion analysis and surface EMGs can be used
to quantify stability and multi-segment coordination during turn-
ing. Turning impairments are common in people with PD (Stack
et al., 2008) from early in the diagnosis, and negatively affect func-
tional independence. In fact, impairments during turning difficul-
ties have recently been shown to be a major risk factor for falls,
institutionalization and death in PD (Morris et al., 2001). Turning
maybe more prone to impairments compared to straight-ahead
gait because of its complex nature. In fact, coupling between bal-
ance and gait and modification of locomotor patterns during turn-
ing likely require frontal lobe cognitive and executive function
(Herman et al., 2011). Gait characteristics change a few steps
before and after a turn so steady-state, straight-ahead gait should
consider these steps separately when calculating gait
characteristics.

Physical activity (accelerometry). Physical activity, as opposed
to sedentary time, is a key component of health, well-being, and
mental health (Taraldsen et al., 2012). The most commonmeasures
of physical activity use light-weight, accelerometer-based wear-
able sensors that continuously record motion over several days
(Taraldsen et al., 2012). Quantitative evaluation is possible using
light-weight, motion-sensing accelerometer-based devices that
continuously record positional change and motion over days
(Taraldsen et al., 2012). Outcomes have typically been derived
from activity counts and activity recognition (sedentary, moderate
and vigorous levels of activity), but lately have been described in
terms of activity pattern and compositional data analysis, such as
time spent standing versus lying, number of sit-to-stands and
number of stairs up and down, as well (Chastin et al., 2010, Lord
et al., 2011). However, the information is often limited to the over-
all quantity of activity that may not be sensitive to subtle mobility
changes.

Daily Life Mobility Monitoring. In contrast to the quantity of
physical activity with accelerometry, the quality of activity, specif-
ically quality of walking and postural transitions (sit-to-stand,
turning) can also be measured with inertial sensors during daily
life (Horak et al., 2015, Del Din et al., 2016). Gait and turning mea-
sures during daily life (as also described in prescribed walking
tasks) are sensitive and specific to neurological disease (Horak
et al., 2015, Del Din et al., 2016, Hillel et al., 2019, Shah et al.,
2020a, Shah et al., 2020b) and predict falls in the elderly (van
Schooten et al., 2016). It is known that mobility assessment in
the laboratory or clinic reflects more the capacity of individuals,
i.e. what an individual can do, rather that mobility function during
daily life. This is particularly observed in people with PD, in fact,
walking performance assessed in the clinic is far superior than
the motor performance reported during daily life by a caregiver



Fig. 11. Schematic diagram of electrical current and magnetic flow in the apical
dendrite of large cortical neuron, showing the deep layer of the apical dendrite
being activated. The intracellular current flows from the activated site to the
superficial site while the extracellular current flows into the activated site.
Magnetic flow occurs surrounding the intracellular current. (Designed by Prof.
Takashi Nagamine of Sapporo Medical University).
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or spouse. There are many potential benefits of digital biomarkers
of mobility in unsupervised settings for clinical care as well as for
digital endpoints in future intervention trials (Warmerdam et al.,
2020). In fact, daily life measures of gait and balance have the
potential to revolutionize health care (Warmerdam et al., 2020).
However, this field is very young, and although such technologies
are now widely available in consumer devices such as smart phone
applications and exercise devices, care should be used as many
devices and algorithms have not undergone validation, particularly
Fig. 12. EEG-EMG (electroencephalogram-electromyogram) polygraph in a patient
with progressive myoclonus epilepsy. Frequent sharp discharges are seen in the
EMG corresponding to myoclonic jerks, some of which are associated with EEG
spikes. Rt thenar = right side thenar muscles, Rt 1stDI = right-side first dorsal
interosseous muscle, Rt ECR = right side extensor carpi radialis muscle, Rt
biceps = right side biceps muscle.
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for patient populations. In addition, harmonization of protocols
and devices has not been established (Warmerdam et al., 2020).
5. EEG, MEG, ECoG, SEPs, and correlations with EMG

The electroencephalogram (EEG) and magnetoencephalogram
(MEG) have been effectively applied to the elucidation of the cen-
tral control mechanism of voluntary movement and of the patho-
physiology underlying the generation of various involuntary
movements (Shibasaki, 2012). The correlation of cortical activities
with movements can be studied noninvasively by the simultane-
ous recording of EEG and/or MEG with the electromyographic
(EMG) correlates of movements. Recording of cortical activities
directly from the epicortical electrodes (electrocorticogram, ECoG)
as a part of the presurgical evaluation of patients with medically
intractable epilepsy have provided supportive evidence for the
findings obtained by those noninvasive techniques. In special cases
of involuntary movements like myoclonus which are characterized
by over-excitability of the primary somatosensory cortex (S1) and
the primary motor cortex (M1), cortical responses to various stim-
uli can be studied by using evoked responses, especially the
somatosensory evoked potentials (SEPs) (Shibasaki and Hallett,
2005).

5.1. EEG, MEG and EcoG

It is well established that both EEG and MEG reflect the electri-
cal activity generated in the apical dendrites of large pyramidal
neurons in the cerebral cortex (Shibasaki et al., 2007). When an
apical dendrite is activated at a specific site in response to an exci-
tatory synaptic input, the extracellular current flows from other
sites of that apical dendrite (source) into the activated (depolar-
ized) site (sink) (Fig. 11). For example, if an apical dendrite is acti-
vated near the cell body, then the extracellular current flows from
the tip of the apical dendrite into its deep layer, thus producing a
surface-positive, depth-negative electrical field distribution with
respect to the cortical surface. EEG is the summation of these elec-
trical fields generated from many neurons and recorded from the
head surface. Intracellularly, the electrical current flows from the
activated (depolarized) site to other sites of that apical dendrite.
If we place the right thumb along the direction of this intracellular
current flow, magnetic flow is generated in the direction of other
fingers of the right hand surrounding the current flow or the apical
dendrite (Fig. 12). This is the reason that to the magnetic field, the
MEG sensor must be placed tangentially with respect to the apical
dendrite.

5.2. Cortical activity associated with involuntary movements

Involuntary movements vary widely from a simple muscle con-
traction like cortical myoclonus to complex movements like
chorea, dyskinesia and athetosis. Among these involuntary move-
ments, abnormalities of the sensorimotor cortex (S1-M1) have
been identified in cortical myoclonus, tremor and focal dystonia
(Shibasaki, 2012, Avanzini et al., 2016, Chen et al., 2020).

Cortical myoclonus as seen in patients with progressive myo-
clonus epilepsy is often preceded by a spike on EEG. With a con-
ventional EEG–EMG polygraph, however, it is difficult to study
the temporal and spatial relationship between the EEG spike and
the myoclonus precisely (Fig. 12). In this case, the technique of
back averaging EEG or MEG with respect to the myoclonus onset
may be effective (jerk-locked back averaging) (Shibasaki et al.,
1975, Shibasaki and Hallett, 2005) (Figs. 13, 14). Technical details
for performing back averaging are published (Merchant et al.,
2020, Vial et al., 2020).



Fig. 13. Principle and method of jerk-locked back averaging.

Fig. 14. Back averaged EEGs (electroencephalograms) time-locked to myoclonus of
the right hand in a patient with progressive myoclonus epilepsy. See Fig. 12 for the
original polygraphic record of the same patient. Rt thenar = right side thenar
muscles, Rt 1stDI = right-side first dorsal interosseous muscle, Rt ECR = right side
extensor carpi radialis muscle, Rt biceps = right side biceps muscle.

Fig. 15. Giant SEP (somatosensory evoked potential) and long-loop (C) reflex
following electric stimulation of the left median nerve in a patient with progressive
myoclonus epilepsy.
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Cortical myoclonus is characterized electrophysiologically by a
preceding spike arising from the somatotopically corresponding
part of M1, a pathologically enhanced somatosensory evoked
potential (giant SEP), and an exaggerated long latency, long loop
reflex called ‘C reflex’ (C for cortex which was assumed to be the
site of mediation of the reflex) by Sutton and Mayer (Sutton
et al., 1974) (Fig. 15). The same electrophysiological findings are
demonstrated also in patients with negative myoclonus of cortical
origin (cortical reflex negative myoclonus) (Shibasaki et al., 1994).
Application of MEG provided these physiological abnormalities
with better spatial resolution (Uesaka et al., 1996, Mima et al.,
1998, Anzellotti et al., 2016) (Fig. 16).

The C reflex has been shown to be caused by pathological
enhancement of a component (called LLR2, M2 or V2) of the long
loop reflex, which is observed during sustained contraction of the
corresponding muscle in normal subjects (Deuschl et al., 1990).
Based on noninvasive, electrophysiological studies including
MEG, there is now evidence that the mechanism of C reflex is
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transcortical via S1-M1 (Shibasaki and Hallett, 2005). Hitomi
et al., 2006 by epicortical recording in a patient with focal cortical
reflex myoclonus as a part of presurgical evaluation, demonstrated
temporal pattern of giant SEPs in the somatosensory area (Fig. 17).
In response to tibial nerve stimulation, a giant SEP was first seen at
the foot area of S1, and 5 ms later it was followed by a giant poten-
tial at the foot area of M1.
5.3. Cortical activities associated with voluntary movements

Kornhuber and Deecke (Kornhuber et al., 1965) first recorded
EEG activity preceding volitional movement in humans (Fig. 18).
Cortical activity recorded by EEG or MEG in association with volun-
tary movements have been mainly applied for research purposes.
Their clinical application is limited partly because recording of
the movement-related cortical activity is often complicated by
technical difficulty, and partly because it requires considerable
cooperation of the patients most of whom suffer from various dif-
ficulties in execution of the given movement tasks (Shibasaki et al.,



Fig. 16. Current dipoles of the early cortical components of the somatosensory
evoked response to the median nerve stimulation, calculated from the averaged
magnetic fields, in a patient with cortical reflex myoclonus. Note that the P25 peak
of SEP (somatosensory evoked potential) (shown in blue) is generated in the
precentral gyrus close to the spike preceding spontaneous myoclonus (shown in
red) in the precentral gyrus. CS = central sulcus. (Courtesy of Dr. Tatsuya Mima, of
Kyoto University Graduate School of Medicine, currently Ritsumeikan University,
Kyoto).
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2006). Processing of the data has been a limitation, but software is
available for back-averaging (Vial et al., 2020).

The initial slope of BP, called ‘early BP’ or BP1, begins about 2 s
before the movement onset in the pre-supplementary motor area
(pre-SMA) with no site-specificity and in the SMA proper according
to the somatotopic organization, and shortly thereafter in the lat-
eral premotor cortex bilaterally with relatively clear somatotopy
(Shibasaki et al., 2006) (Table 2). About 400 ms before the move-
ment onset, the steeper negative slope, called ‘late BP’ or BP2 (also
referred to as NS’), occurs in the contralateral M1 and lateral pre-
motor cortex with precise somatotopy. These two phases of BP
are differentially influenced by various factors, especially by com-
plexity of the movement which enhances only the late BP. The BP
can be used to investigate the pathophysiology of various move-
ment disorders. BP-like activity similar to that seen before volun-
tary muscle contraction is also seen before volitional motor
inhibition or muscle relaxation. Since BP with a typical waveform
Fig. 17. Somatosensory evoked ECoG (electrocorticogram) following the left tibial nerve
focal cortical reflex myoclonus of the left foot, investigated as a part of pre-surgical eva
(primary sensory cortex), 5 ms later followed by M1 (primary motor cortex). The scalp re
et al., 2006) with permission.)
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and temporospatial pattern does not occur before organic involun-
tary movements, BP can be used for detecting the participation of
the ‘voluntary motor system’ in the generation of involuntary
movements in patients with functional movement disorders
(Kamble et al., 2016) (Fig. 19).
5.4. Frequency-based analysis of movement-related cortical activities

In addition to the analysis of field potentials described above,
cortical activity can also be studied by analyzing the power change
of EEG oscillations in the frequency domain. Power decrease in the
alpha or beta band time-locked to an event or a task, which is
called event-related desynchronization (ERD), is considered to rep-
resent increased activation of the corresponding cortical area while
power increase, event-related synchronization (ERS), is associated
with return to the resting condition or even decreased activation
(Bai et al., 2005, Oishi et al., 2007, Savic et al., 2020). Advances in
the digital EEG equipment and computer processing enabled
applying these methods for analyzing even high gamma activity
(100 to 300 Hz) to the ECoG dataset (Crone et al., 2006).
Movement-related power decrease (desynchronization) and
movement-related power increase (synchronization) in the alpha
and beta frequency range are observed over the relatively wide
region of the sensory and motor areas, whereas movement-
related desynchronization or synchronization of the gamma fre-
quency range is observed over a relatively limited area of S1-M1.
All these analysis methods can be applied to an ECoG dataset for
functional mapping of the motor cortex (Fig. 20) (Neshige et al.,
2018).
5.5. Application of movement-related EEG/MEG to brain-machine
interface (BMI)

If we can detect intention to move by recording cortical activi-
ties by EEG or MEG, it can be applied to rehabilitation of patients
with motor paralysis. This brain-machine interface (BMI) or
brain-computer interface (BCI), however, requires a single-trial
analysis of the cortical activities without depending on averaging
across trials. Since the BP is as small as 10 lV, it is extremely dif-
ficult to extract it from the background activities in a single-trial
analysis. Therefore, oscillation-based approach detecting the
power change of certain frequency bands is more commonly
applied for this purpose (Fukuma et al., 2018, Abiri et al., 2019).
stimulation, recorded from the foot area of the right central sulcus in a patient with
luation due to medically intractable epilepsy. The giant response is first seen in S1
cording on the top trace shows the summation of the two responses. (From (Hitomi



Fig. 18. Averaged EEGs time-locked to the self-paced movement of the right finger,
originally reported by Kornhuber and Deecke (Kornhuber et al., 1965). EEG:
electroencephalogram, BP: Bereitschaftspotential, PMP: pre-movement potential,
MP: motor potential, RAP: reafferente Potentiale.

Table 2
Generator sources of movement-related cortical poten-
tials in unilateral simple hand movement. EMG = elec-
tromyography. (Cited from (Shibasaki et al., 2006).)

Component Generator sources

Early BP
Earliest Pre-SMA (bilateral)

SMA proper (bilateral)*
Next earliest Area 6 (bilateral)*
Late BP (NS’) Area 6 (mainly contralateral)**

Area 4 (mainly contralateral)**

MP (N-10) Area 4 (contralateral)**

fpMP (N + 50) Area 3 (contralateral)**

BP = Bereitschaftspotential, SMA = supplementary
motor area, NS’=negative slope, MP = motor potential,
fpMP = frontal peak of the motor potential.

* Somatotopically organized to some degree.
** Somatotopicaly organized precisely.

Fig. 19. Averaged EEG (electroencephalogram) time-locked to jerks of the neck
which are clinically judged to be functional (psychogenic). A slowly rising, small,
surface-negative potential is recognized at C1, Cz and C2 electrodes. EMG
(electromyogram) was recorded from the left sternocleidomastoid (SCM) muscle.
EOG = electro-oculogram. (From (Terada et al., 1995) with permission.)
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6. Coherence

Coherence can be estimated in the frequency domain which
measures the linear association between two simultaneously
recorded signals. It is the most widely used analytical tool to look
at the relation or connection between two electrophysiologically
recorded signals in movement disorders and is therefore dealt with
in a separate section. Coherence analysis results in a coherence
spectrum displaying the degree of correlation between 0 and 1 (or-
dinate) for each frequency bin (abscissa), with 0 indicating no cor-
relation at all and 1 indicating perfect correlation. The level of
significance is mathematically defined. It depends on the length
of the recordings and the desired frequency resolution and is typ-
ically displayed as a horizontal line in the spectrum above which
coherence values can be regarded statistically significant (Fig. 21
(Halliday, 1998, Muthuraman et al., 2008)). Coherence analysis
algorithms are part of some available EEG and EMG systems and
of most advanced signal analysis platforms (e.g., MATLAB, FieldTrip
toolbox (Oostenveld et al., 2011)).
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In movement disorders, coherence analysis is most commonly
applied to non-invasively acquirable signals, that is EEG/MEG, sur-
face EMG from one or several muscles and accelerometry from one
or different limbs. Oscillations occurring in the same narrow fre-
quency band with respective peaks in the frequency (power) spec-
trum (e.g., tremors) are not necessarily correlated and only
coherence analysis can detect a possible correlation (Fig. 21). Look-
ing at the coherence between a broad band signal without clear
frequency peaks (e.g., EEG) and a signal clearly focused in one fre-
quency band (e.g., tremor EMG) coherence analysis can detect rel-
evant activity of the broad band signal in this specific frequency
range (Fig. 22).

Significant coherence values indicate coupling between the two
signals in the frequency range in which the coherence rises above
the level of significance. The neurophysiological basis of this cou-
pling can be diverse. Signals could be recorded from two nodes
of the same network (e.g., cortico-cortical coherence), they could
be driven by the same higher order center or process (e.g.,
musculo-muscular coherence) or one signal could be transmitted
to or driven by the other (e.g., corticomuscular coherence).
Whereas the site of recording in the motor system gives rise to
assumptions concerning the type of interaction other more
advanced mathematical methods (e.g., phase spectra, partial direc-
ted coherence, Granger causality) beyond pure coherence analysis
are necessary to gain direct evidence.

As the frequency ranges of pathological activity are well known
in a number of movement disorders (e.g., tremor frequency, beta
band activity in PD) the finding of coupled activity in these specific
frequencies, changes of this with test-treatments or in specific
tasks and also a lack of coupling between certain recording sites
can give clues as to the pathophysiology of the disease under
study.

A common concern in coherence analysis is spurious results due
to shared artefacts in both recordings mimicking a physiological or
pathophysiological meaningful interaction between the two sig-
nals. Movement artefacts caused by cable or electrode movements
are a common phenomenon. In EMG recordings these can be elim-



Fig. 20. Movement-related cortical potential (MRCP) and event-related perturbations recorded with subdural electrodes in a patient during self-paced movement of the left
shoulder. Largest MRCP, event-related desynchronization (ERD) of the alpha and beta range and synchronization (ERS) of the high gamma range) are observed from Electrode
2 where high frequency stimulation elicited a positive motor response in the left shoulder. ECS = electrical cortical stimulation, CS = central sulcus, PreCG = pre-central gyrus,
PoCG = post-central gyrus, EMG = electromyogram. (From (Neshige et al., 2018) with permission.)
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inated by a high pass filter (for EMG-preprocessing see first part of
this chapter). There is an ongoing debate as to whether rectifica-
tion of surface EMG is detrimental (McClelland et al., 2012) or
advantageous for the detection of coupling in certain frequency
ranges (Ward et al., 2013). However, this may depend on the fre-
quency band and task condition of interest (Dideriksen et al.,
2018). To fully understand the effects of rectification more system-
atic comparative studies are needed, which should include simula-
tions and real EMG data.

In case of EEG recordings, the movement frequencies are within
the range of physiological and pathological EEG activities which
makes a technical elimination difficult. Therefore, great care must
be taken during recordings to avoid swinging cables or wobbling
electrodes. In particular during parallel recordings of EEG and
EMG in higher amplitude tremors this cannot always be avoided
completely. Typical reference electrodes in EEG like mastoids or
earlobes are especially prone to movement artefacts. Therefore
local reference schemes (current source densities, Hjorth transfor-
mation) are recommended (Hjorth, 1982, Mima et al., 1999) and
show the best results for EEG-EMG (corticomuscular) coherence.
Movement artefacts in EEG-EMG coherence are typically widely
distributed in most of the recorded electrodes on both sides of
the skull. In particular they do not follow the physiological soma-
totopy (e.g., typical maximal coherence in the contralateral central
hand area when relating EEG to a recorded forearm muscle). Thus,
they can usually be detected if larger electrode arrays are used, at
least 10/20montage and, if possible, even higher EEG electrode
densities. If only a few central electrodes of interest are recorded,
detection of such artefacts is hardly possible. In addition, simple
coherence which is a parametric method does not give a robust
estimation for signals with non-Gaussian distribution and noisy
components. Another way would be to use non-parametric meth-
ods based on the median of auto-/cross-spectra for the estimation
of coherence (Nasseroleslami et al., 2019). As MEG is reference free
and typically recorded with a fixed high-density sensor array, arte-
facts are less common and can be detected as described for EEG.
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In case of EEG-EEG (cortico-cortical) coherence, shared move-
ment artefacts leading to spurious results are more difficult to spot.
Due to volume conduction the same oscillatory activity in a region
of the brain can be picked up by many EEG electrodes, and this can
lead to strong coherence between electrodes not necessarily
reflecting interactions between the underlying brain regions. Field
spread in MEG can produce similar effects (Winter et al., 2007).
Local reference schemes (e.g., Hjorth transformation) can reduce
this effect in EEG recordings and the imaginary part of the coher-
ence reduces instantaneous volume conduction effects (Nolte
et al., 2004). However, it can be difficult to interpret as it is blind
to synchronizations between brain areas without time lag. Partial
coherence can also be used to control (‘partialize’) for the effect
of volume conduction of dominant oscillatory activity as recorded
from a third distant brain region; e.g., the effect of the common
spread of alpha-rhythm to frontal electrodes can be controlled
for by partializing for an occipital electrode (Mima et al., 2000).
However, the origin of many other oscillatory brain activities is less
clear and can change over time, so partial coherence is not helpful
in controlling for their volume conduction effects.

The extent of volume conduction depends on the relative loca-
tion of the electrodes with respect to the generators of oscillatory
activity in the brain. This must be kept in mind when comparing
EEG-electrode-to-electrode coherence between different subjects
or different sessions. For intraindividual comparisons between dif-
ferent conditions or tasks in the same session the extent of volume
conduction has little influence. However, changes in the distribu-
tion of oscillatory activity in the brain cannot be separated from
true changes in cortico-cortical interactions in EEG-EEG coherence
analysis. One way to circumvent these problems is to apply an
inverse method deducing the location and signal of oscillatory
sources in the brain from the superficially recorded EEG signals.
Components of the signal in the EEG electrodes originating from
specific brain regions are extracted by a spatial filter. Coherence
between the signals from different brain regions can then be calcu-
lated and even combined with corticomuscular coherence (Gross



Fig. 21. EMG-EMG (electromyogram to electromyogram) coherence between muscles within the same limb (A) and between muscles from different limbs (B) in a patient
with Parkinsonian tremor. Surface EMG recordings with tremor bursts and the time points of these bursts are displayed on the left, corresponding power spectra and
coherence spectra on the right. Despite equal tremor frequencies in all recorded muscles, significant coherence is only found between muscles from the same limb whereas
the oscillations in arm and leg are independent (not coherent). In the power spectra the lowest frequency peak is indicative of the tremor frequency; the higher frequency
peaks are harmonics. ECU = extensor carpi ulnaris, FCU = flexor carpi ulnaris, tib ant = tibialis anterior.
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et al., 2001). There are no unequivocal inverse solutions, but per-
formance improves with large electrode arrays and knowledge of
exact electrode position with respect to individual MRI-anatomy.
These methods have contributed to our knowledge on the central
oscillating networks of different tremors (Fig. 23). Whereas coher-
ence between the peripheral tremor oscillations and EEG activity in
the electrodes above the contralateral sensorimotor cortex can be
shown similarly for almost all pathological tremors, it is the central
network and its interactions as resolved by coherent source analy-
sis that offers clues to the differential pathophysiology of tremors
(e.g., (Muthuraman et al., 2018)). Furthermore, the coherence can
also be used as a measure to infer causality in both domains,
namely in frequency and time. First, we estimate time-dependent
multivariate (MVAR) coefficients; the next step is to use these
auto-regressive coefficients to infer causality between the time
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series. By calculating the time dependent MVAR coefficients at
each time point, we can also calculate time resolved partial direc-
ted coherence (PDC). In this way we can infer causality between
any two signals (Muthuraman et al., 2018).

Coherence between different peripheral signals (e.g.,
accelerometry and EMG) from different limbs or within the same
limb is more readily available and surface EMG and accelerome-
try/kinesiology recordings are common tools in the clinical neuro-
physiological work-up of movement disorders (see part 1 and 2 of
this chapter). Coherence between surface EMG signals from ago-
nistic and antagonistic muscles of the same limb are mostly inter-
preted as common central drive to the muscles in the respective
frequency band. For example, in dystonia the intermuscular coher-
ence between muscles of the same affected limb is known to be
increased at low frequencies (Grosse et al., 2004) and a reduction



Fig. 22. Example of cortico-muscular coherence in an essential tremor patient with EEG (electroencephalogram) spectrum (Hjorth-transformed recording from C4) and EMG
(electromyogram) spectrum (surface recording from left forearm extensors). Although not visible as a separate peak in the broad spectrum of the EEG significant coherence at
the tremor frequency (and its first harmonic) reveals narrow-band oscillatory EEG activity related to contralateral tremor.

Fig. 23. Example of coherent sources in a template brain of a Parkinsonian tremor patient. The cortical sources are shown in the top of the figure for the left and right
hemisphere. The bottom of the figure shows the subcortical sources for the left and right hemisphere separately. The marked brain regions contain signal that is coherent with
the peripheral tremor at its frequency. In a further step the signal from these sources can be extracted to study the interaction within this tremor-related network. The color
bar indicates the strength of coherence.
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of this could be useful for objective monitoring of therapeutic
interventions (Doldersum et al., 2019). One concern in EMG-EMG
coherence between neighboring muscles is that coherence could
be artificial due to electrical crosstalk, again due to volume conduc-
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tion, that is instantaneous propagation of the signal frommore dis-
tant muscles not directly underlying the surface electrodes. A
discontinuous sharp peak at zero time lag in the cross-
correlation function can help to detect this (Raethjen et al.,
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2000), but as for EEG volume conduction effects, it is difficult to
differentiate between instantaneous crosstalk and pathophysiolog-
ical meaningful synchronization without time lag.

A pathophysiologic characteristic of most organic tremors man-
ifesting in different parts of the body is a lack of significant coher-
ence because of independent oscillations in each affected limb
(Raethjen et al., 2000). One exception to this rule is primary ortho-
static tremor. The high frequency oscillations (13–18 Hz) of pri-
mary orthostatic tremor are highly synchronized (coherent)
throughout the body, and intermuscular coherence between differ-
ent limbs is one diagnostic clue (Koster et al., 1999). As a second
exception, coherence of low frequency tremors (3–10 Hz) between
different limbs is a sign of a functional tremor (Raethjen et al.,
2004, Schwingenschuh et al., 2016). The fact that independent vol-
untary rhythmic movements in different limbs cannot be main-
tained by normal subjects and the assumption that functional
tremors rely on the same mechanisms led to the development of
the (coherence) entrainment test (McAuley et al., 2004). In func-
tional tremor rhythmic voluntary tapping at a lower frequency in
a non-affected or less affected limb often entrains the tremor to
the tapping frequency, and this can be detected by a significant
coherence between EMG or accelerometry at this frequency.
Although this test is diagnostically very useful care must be taken
that significant coherence with high amplitude strenuous tapping
movements is not over-interpreted. When it is performed accelero-
metrically a mechanical resonant coupling between the limbs
under study could lead to small but highly coherent artificial oscil-
lations at the voluntary tapping in addition to the tremor oscilla-
tion. Probably owing to physiological (Carson, 2005) or
pathologically enhanced (Cox et al., 2012) mirror innervation with
effortful contralateral tapping small coherent activity may overlay
the tremor-bursts even in EMG recordings of organic tremors (un-
published observation). Thus along with the coherence spectrum
between the tapping limb and the tremor limb both power spectra
should always be quantified. The change in tremor frequency
towards or on the tapping frequency seems to be the most valid
hint at a functional tremor in the entrainment test (Zeuner et al.,
2003, Schwingenschuh et al., 2016).

A measure of linear dependency between two signals at each
frequency coherence is not completely blind to many non-linear
associations (Brillinger, 2001). However, its reliability decreases,
and the nature of the coupling is not resolved. One common
method to detect non-linear connections is mutual information
but there are others (e.g., phase lag index, Granger causality, trans-
fer entropy) and there is no broad consensus as to which yields the
most reliable results for biological signals like EEG and EMG. Often
the results are not frequency specific and there is no straight for-
ward definition of the level of significance for these methods. Inter-
actions between different frequency bands seem to be a common
way of (non-linear) communication especially between different
brain regions and methods to analyze this cross-frequency cou-
pling can be more powerful to detect certain pathophysiological
aspects of movement disorders and possible mechanisms of action
of neurostimulation (Muthuraman et al., 2020). The cross-
frequency coupling (CFC) can be divided into many types. When
dealing with modelled interactions, bispectrum and bicoherence
give robust estimates. With real electrophysiological data which
are non-linear and noisy in nature, CFC is robust mainly phase to
phase, phase to frequency, phase to amplitude, and power to
power. The phase to amplitude is well-known and a widely used
variant in both animals (Axmacher et al., 2010) and humans. Also
we recently showed power-to power CFC in Parkinson’s disease
deep brain stimulated patients (Muthuraman et al., 2020).

In conclusion, coherence is a well-established measure yielding
statistically clear results. Care must be taken to avoid and detect
spurious coherence introduced by movement artefacts, mechanical
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resonance or volume conduction. With this in mind coherence
analysis substantially extends the neurophysiological perspective
on oscillatory activity and motor phenomena in movement disor-
ders, and it can aid their diagnosis. Its place in the neurophysiolog-
ical diagnostic work-up-routine has yet to be established.
7. Polysomnography

Polysomnography (PSG) is the main diagnostic tool used in
sleep medicine and consists of a multi-parameter recording study
of several different signals obtained by electrodes and transducers
placed in strategic places of the body. The first goal of the test
result is to score sleep stages characterizing sleep architecture that
is then graphically represented with the so-called ‘‘hypnogram”.
The second goal is to identify the presence and severity of a sleep
disorder.

The full laboratory PSG is recorded during the whole night and
requires continuous supervision and control by an accredited tech-
nician. In some instances, such as for shift workers and subjects
with circadian rhythm sleep-wake disorders, it can be performed
at other times of the day. The basic physiological signals included
in a PSG recording are the electroencephalogram (EEG) – at least
three channels from the frontal, central, and occipital areas of
one hemisphere, referred to the contralateral mastoid (for example
F3-M2, C3-M2, and O1-M2), electrooculogram (EOG) – at least two
channels from 1 cm above and 1 cm more lateral than the lateral
canthus of one eye and from 1 cm below and 1 cm more lateral
than the lateral canthus of the other eye, both referred to the same
mastoid, surface-recorded electromyogram from the chin and tib-
ialis anterior muscles (EMG) and electrocardiogram (ECG) (Berry
et al., 2020). For the study of sleep-related breathing disorders
(sleep apnea), signals that explore the respiratory functions are
included, such as oronasal airflow and respiratory effort measures,
as well as peripheral pulse oximetry, capnography and snoring
sound by a microphone.

Less complex tests than the full laboratory PSG can be per-
formed, such as cardiorespiratory monitoring, which usually
includes only the channels for respiration and ECG monitoring,
and unsupervised ‘‘Out of Center Sleep Testing” (OCST). Wearable
sensors can be used to monitor movements during the night, as
has been done successfully in patients with Parkinson disease
(Zampogna et al., 2020).

PSG must be performed by board-certified technicians in Sleep
Medicine; however, this is not always possible and other technical
staff, such as neurophysiology technologists, nurses, respiratory
therapists, sometimes perform PSG. Board-certified technicians in
Sleep Medicine are often involved in sleep staging of PSG record-
ings but the interpretation of PSG studies can only be done bymed-
ical personnel with specific training in Sleep Medicine. Sleep
staging is carried out with the American Academy of Sleep Medi-
cine criteria (Berry et al., 2020) which define the rules to identify,
beside wakefulness (stage W), three NREM sleep stages (N1, N2,
and N3), and REM sleep (stage R). These stages correspond, to a
large extent but not completely (Danker-Hopfe et al., 2009,
Novelli et al., 2010), to the sleep stages previously defined by
Rechtschaffen and Kales in 1968 (Rechtschaffen et al., 1968) who
indicated them as S1, S2, S3, and S4, in NREM sleep (the new N3
includes the previous S3 and S4).

Important information can be obtained from PSG, concerning
both sleep structure (e.g., sleep latency, REM sleep latency, awak-
enings after sleep onset, total sleep duration, percentages and the
duration of each sleep stage, etc.) and clinically relevant informa-
tion allowing/supporting the diagnosis of different sleep disorders,
in particular movement, behaviors, respiration, cardiovascular
parameters, etc. In addition, based on the clinical features of each
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patient, PSG allows including the recording of additional signals
useful for the detailed description of the individual sleep problem
(for example, additional EMG channels such as the recording of
masseter muscle contractions, body temperature, esophageal pH,
etc.).

Video-PSG is an extension of PSG with the addition of synchro-
nized video recording. The possibility to analyze the video of the
movements or behaviors accompanying the signal features cap-
tured by PSG provides an extremely powerful tool for the assess-
ment of sleep disorders such as parasomnia (NREM and
especially REM sleep parasomnia, such as REM sleep behavior dis-
order or RBD) and sleep-related seizure disorders.

As introduced above, PSG is a very important exam within the
diagnostic process of sleep-related movement disorders which
include a variety of conditions. The International Classification of
Sleep Disorders, 3rd ed. (American Academy of Sleep, 2014)
includes in this category: Restless Legs Syndrome (RLS), Periodic
Limb Movement Disorder (PLMD), Sleep Related Leg Cramps, Sleep
Related Bruxism, Sleep Related Rhythmic Movement Disorder
(RMD), Benign Sleep Myoclonus of Infancy, Propriospinal Myoclo-
nus at Sleep Onset, Sleep Related Movement Disorder Due to a
Medical Disorder, Sleep Related Movement Disorder Due to a Med-
ication or Substance, Sleep Related Movement Disorder-
Unspecified, Isolated Symptoms and Normal Variants (Excessive
Fragmentary Myoclonus, Hypnagogic Foot Tremor and Alternating
Leg Muscle Activation, Sleep Starts or Hypnic Jerks).

RLS is a common neurologic sleep-related movement disorder,
affecting both children and adults, characterized by an irresistible
compulsive urge to move the legs, often associated with dysesthe-
sias. RLS exclusively occurs or is enhanced at periods of rest, the
urge to move and the associated dysesthesias are heightened at
night, and both are partially or totally relieved by movements
(Allen, 2014). All these features are essentially subjectively
reported by patients with RLS; however, the presence of a high
number of periodic leg movements during sleep (PLMS) can be
found in the PSG of up to 90% of adult patients with RLS (Aurora
et al., 2012) and have been indicated to be a motor sign supporting
the diagnosis, in particularly when it is dubious or in children
(Allen, 2014). Also PLMD is characterized by the presence of exces-
sive PLMS on PSG (PLMS/hour > 5 for children, >15 for adults) that
cause significant sleep disturbance impairment in normal daytime
functioning; in PLMD, PLMS and related symptoms are not better
explained by another disorder (such as sleep disordered breathing,
as an example) (American Academy of Sleep, 2014).
Fig. 24. Periodic leg movements during sleep stage N2 in a patient with RLS
ECG = electrocardiogram).
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PLMS are currently defined as four or more consecutive leg
movements separated from each other by a minimum interval of
10 s and a maximum of 90 s (Ferri et al., 2016) or, following a sec-
ond and less updated set of criteria, by a an interval of 5–90 s
(Berry et al., 2020) (Fig. 24). In recent years, a substantial amount
of evidence has been produced on the neurophysiological features
and possible clinical significance of PLMS (Ferri et al., 2017) that
are fully taken into account by the first set of scoring criteria cited
above but not by the second set.

Other leg motor activities during sleep, such as alternating leg
muscle activation (ALMA) and hypnagogic foot tremor (HFT)
(American Academy of Sleep, 2014), can be detected by PSG that
are very similar movement patterns of the feet and legs, occurring
most often at sleep onset and correlated with arousals. These phe-
nomena are suspected to be related to PLMS and RLS; however, this
remains to be determined. ALMA during sleep is a quickly alternat-
ing pattern of the anterior tibialis muscles occurring at a frequency
of approximately 0.5 to 3 Hz, lasting between 0.1 and 0.5 seconds,
organized in sequences of alternating activations lasting up to 20–
30 s (Fig. 25). HFT has several similarities to ALMA with foot move-
ments occurring at the transition fromwakefulness to sleep or dur-
ing light sleep, recorded by PSG as recurrent EMG potentials at 0.3–
4 Hz in one or both feet in a run of at least 4 events. In both ALMA
and HFT, the EMG bursts are longer than those of myoclonus
(>250 ms) and last usually less than 1 s. It should be mentioned
that the term ‘‘high frequency leg movements” has been used for
a similar pattern that reflects, probably, the same phenomenon.

RBD is a REM sleep parasomnia (rather than a sleep related
movement disorder) in which the physiological atonia during
REM sleep is lost or greatly diminished with the occurrence of
dream-enacting behavior, often associated with nightmares
(American Academy of Sleep, 2014). The presence of sustained or
intermittent elevations of the submentalis muscle EMG tone or
excessive phasic submentalis muscle twitching (or of upper and
lower limbs) is a required PSG feature for the diagnosis of RBD
(American Academy of Sleep, 2014). This PSG feature is called
‘‘REM sleep without atonia” (RSWA) (Fig. 26) which can be
detected by a general and non-quantitative visual analysis or, bet-
ter, with more quantitative assessments based on both visual and
automatic approaches (Puligheddu et al., 2019). All these methods
have been reported to show sufficient sensitivity and specificity for
their application in both clinical practice and research settings and
also seem to provide comparable results.
(restless legs syndrome) (TA = tibialis anterior, EOG = electro-oculogram,



Fig. 25. Runs of alternating leg movement activity during light sleep in a patient with a complaint of daytime consequences (TA = tibialis anterior, EOG = electro-oculogram,
ECG = electrocardiogram).

Fig. 26. REM (rapid eye movement) sleep without atonia in a patient with RBD (REM behavior disorder) (TA = tibialis anterior, EOG = electro-oculogram,
ECG = electrocardiogram).

Fig. 27. Sequences of rhythmic masticatory muscle activations during light sleep in a patient with sleep bruxism (Mass. = masseter, EOG = electro-oculogram,
ECG = electrocardiogram).
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Sleep bruxism is characterized by grinding or clenching of the
teeth during sleep, usually associated with sleep arousals
(American Academy of Sleep, 2014). PSG is indicated when sleep
bruxism is suspected in association with sleep disorders (sleep
apnea, RBD), nocturnal seizures or oro-facial-mandibular disor-
ders. PSG typically shows an EMG artifact recorded on the surface
EEG leads, especially when referred to ear or mastoid electrodes (as
for PSG standards) (Berry et al., 2020). Chin EMG electrodes are
usually sufficient for the scoring of sleep bruxism; however, mas-
seter and/or temporal EMG allow a clearer detection and quantifi-
cation. An episode of sleep bruxism may consist of ‘‘rhythmic
masticatory muscle activity” (RMMA - at least 3 rhythmic phasic
contractions at a frequency of 1 Hz, lasting between 0.25–2 s)
(Fig. 27), tonic (sustained contraction for more than 2 s) or mixed
phasic-tonic masticatory muscle activities, associated with tooth
grinding sound during sleep. Each episode has to be separated by
a period of at least 3 s of stable background EMG to be scored as
a new sleep bruxism episode. Classically, for the diagnosis of sleep
bruxism, at least 4 episodes per hour of sleep have been considered
to be required; however, more recently, sleep bruxism has been
graded as of low (>1 � 2 episodes/hour), moderate (>2 � 4 epi-
sodes/hour) or high intensity (>4 episodes/hour) (Lobbezoo et al.,
2017).

Propriospinal myoclonus at sleep onset is a relatively rare
motor disorder characterized by massive and symmetric jerks
occurring during the transition from wakefulness to sleep, involv-
ing first the axial muscles of the abdomen, thorax or neck, and
spreading rostrally and caudally to the other myotomes by means
of slow propriospinal polysynaptic pathways (American Academy
of Sleep, 2014). The jerks typically occur during relaxed wakeful-
ness or drowsiness and are inhibited by mental activation and
sleep onset. Propriospinal myoclonus can cause insomnia because
the patients are not able to fall asleep for a long time, with the jerks
appearing repeatedly but not periodically. In general, and differ-
ently from RLS/PLMS, the jerks disappear during sleep. Placing
additional surface EMG electrodes over the axial muscles of the
abdomen, thorax and neck allows to appreciate the spreading of
muscle activation, rostrally and caudally, starting from the initial
site of contraction and thus confirming the clinical diagnosis
(Stefani et al., 2019).
Fig. 28. Two episodes of rhythmic movements (head rolling) at the transition between
Disorder) (TA = tibialis anterior, EOG = electro-oculogram, ECG = electrocardiogram).
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Patients with RMD present recurrent episodes of stereotyped
rhythmic body movements occurring predominantly during
drowsiness before sleep or light sleep, which may involve the head,
neck, trunk, or limbs, in isolation or in combination (Gwyther et al.,
2017). The movements cause clinical consequences with disturbed
sleep, significant impairment in daytime functioning, or self-
inflicted injuries (American Academy of Sleep, 2014). Rhythmic
movement episodes may last for seconds to several minutes.
Movements can involve the head (head banging or jactatio capitis
nocturna, head rolling) but also the body (body rocking) or, more
rarely, the legs (leg rolling or leg banging). Although the diagnosis
can be made clinically, videoPSG allows to better define the type
and site of movements and appears to be especially useful when
the diagnosis is doubtful or RMD occurs in association with other
sleep disorders. The use of additional EEG and EMG leads, in partic-
ular limbs leads, may help to distinguish RMD from other sleep-
related repetitive movements such as PLMS, ALMA or motor sei-
zures. At PSG the rhythmic movements are characterized by a fre-
quency of 0.5–2.0 Hz, they consist of at least 4 single movements
forming a rhythmic cluster, and the minimum amplitude of a sin-
gle rhythmic movement is at least two times the background EMG
activity (Fig. 28).

Excessive fragmentary myoclonus can be seen in PSG record-
ings as repetitive and sometimes almost continuous, very brief
(<150 ms) EMG potentials in various muscles, occurring asyn-
chronously and asymmetrically, in a sustained manner, without
apparent clustering. The current standards state that fragmentary
myoclonus can be considered as excessive when there are more
than 5 potentials per minute, sustained for at least 20 minutes of
NREM sleep (Berry et al., 2020).

Neck myoclonus (head jerks) indicates the movement associ-
ated with a short stripe-shaped movement-induced artifact visible
vertically over the PSG signals, especially during REM sleep. How-
ever, because it does not seem to be accompanied by any EEG
abnormalities and not preceded by any premotor potential, as well
as for its duration usually longer than that of the classical myoclo-
nus and its occurrence exclusively during sleep, a different name
has been proposed for this motor phenomenon (‘‘sleep-related
head jerks”) (Wolfensberger et al., 2019) and its clinical signifi-
cance is still under debate.
wakefulness and sleep in a patient with RMD (Sleep Related Rhythmic Movement



Fig. 29. A. Performing a task results in an increase in the MRI BOLD (Magnetic resonance imaging Blood Oxygen Level Dependent contrast) signal in the activated region
(circled in red), here during hand movement. Signal increase begins one to two seconds after the onset of neuronal activity and peaks after 8 to 10 seconds after the onset of
movement. When the subject stops working during the resting phase, the MRI signal gradually returns to the initial state. In the inactive region, signal changes are noise and
do not correlate with the task. B. Functional connectivity between distant regions here in yellow and green is defined as the Pearson linear correlation coefficients ‘r’ between
the BOLD fluctuations recorded in these two regions during rest or task performance (arrows). Effective connectivity quantifies the causal influence of a region on an adjacent
region (oriented arrows).
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Very recently, a new condition has been identified in children
and adolescents which has been named ‘‘restless sleep disorder”
(RSD). Clinically, RSD is characterized by concerns for frequent
nocturnal repositionings, body movements involving large muscle
groups and non-restorative sleep. Video-PSG indicates that large
body movements are frequent in children with RSD (>5/hour)
and are distributed along the whole night (DelRosso et al., 2019,
2020).

In conclusion, video-PSG is a useful tool to diagnose and quan-
tify the severity of various sleep disorders, in particular sleep-
related movement disorders. It has the advantage to be flexible
to adapt to new scoring rules, incorporate new technology (auto-
mated scoring) and to video monitor the patient. New abbreviated
home systems are developed but polysomnography remains the
gold standard for the diagnosis of many sleep-related movement
disorders.
8. Neuroimaging

Neuroimaging is widely used to study motor control in the
brain of healthy subjects and patients with movement disorders.
Techniques include MRI, molecular imaging, electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) (Toga, 2015).

The most used technique to study brain function is functional
MRI (fMRI) using Blood Oxygen Level Dependent (BOLD) contrast
(Ogawa et al., 1990). BOLD contrast is based on neurovascular cou-
pling and differences in magnetic susceptibility between oxy-
genated hemoglobin (oxyhemoglobin) and deoxygenated
hemoglobin (deoxyhemoglobin). Oxyhemoglobin is diamagnetic
and has no effect on the T2* signal. Deoxyhemoglobin is paramag-
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netic and disrupts the homogeneity of the magnetic field inducing
a decrease in the T2* signal. During brain activation, local increases
in oxygen consumption and deoxyhemoglobin concentration
appear early and are quickly followed by a large and prolonged
supply of oxyhemoglobin. The oxyhemoglobin / deoxyhemoglobin
ratio increases (deoxyhemoglobin becomes diluted). This increase
results in an increase in BOLD signal, which begins one to two sec-
onds after the onset of neuronal activity and peaks after 8 to 10
seconds (Fig. 29A). Another technique to measure neurovascular
coupling is functional near-infrared spectroscopy (fNIRS). fNIRS is
a technique that allows real-time non-invasive monitoring of brain
O2 saturation associated with brain activation, thanks to the
absorption of near infrared light by oxy- and deoxy-hemoglobin.
More recently, functional ultrasound imaging techniques have
been developed in animals that may be used in humans during sur-
gical procedures in the future (Dizeux et al., 2019).

The relationship between BOLD signal and neuronal electrical
activity has been studied in animals by simultaneous recordings.
Extracellular electrical signals include local field potentials and
multi-unit activities (Logothetis et al., 2004). The low frequency
(<500 Hz) local field potentials (LFP) correspond to synchronous
dendritic currents. High frequency (>1kHz) multi-unit activity
(MUA) potentials correspond mainly to the action potentials of
neurons. In general, a better prediction of the BOLD signal is
obtained by LFPs (Logothetis et al., 2004). The BOLD signal can
therefore be considered a reflection of the input and output electri-
cal activity and the intracortical processing of an activated region
(Hall et al., 2016)]. The BOLD signal does not generally make it pos-
sible to differentiate the inhibitory and excitatory activity of neu-
rons. Although the hemodynamic response to brain activity is
focal, observed near activated neurons, this response may spread



M. Hallett, L.M. DelRosso, R. Elble et al. Clinical Neurophysiology 132 (2021) 2608–2638
over short distances to neighboring larger vessels, responsible for a
certain loss of specificity.

Images sensitive to BOLD contrast are gradient weighted (T2*)
echo planar (EPI) images. In a fMRI experiment, EPI images cover-
ing the entire brain are acquired in 1 to 3 seconds and repeated for
several minutes while the subject under study performs the
requested tasks (task-based fMRI) or is at rest (resting state fMRI).
Task-based fMRI highlights differences in activity between differ-
ent cognitive states or mental processes. It does not allow absolute
quantification of the level of brain activity. In an fMRI study, sub-
jects perform a series of tasks defined by the examiner in the
experimental paradigm. There are two types of paradigms, block-
design and event-related. Block-design paradigms alternate a suc-
cession of activation and reference phases. During these phases,
subjects quickly repeat an identical predefined activity (motor,
visual or cognitive activity). During activation, the hemodynamic
response gradually increases until reaching a plateau 8–10 sec
after onset of activation (Fig. 29A). Block paradigms provide a mea-
sure of the average activity during each block but do not allow to
isolate variations in performance within a block. They are com-
monly used in clinical practice due to their simplicity. Event-
related paradigms are most often used in cognitive science studies.
An event-related paradigm seeks to isolate brain activity (i.e., BOLD
signal variations) associated with each cognitive event, each type
of stimuli or response (e.g., correct responses to wrong responses
during a task). Responses and behavioral parameters of the subject
when performing the tasks including motor or verbal responses,
eye movements, skin conductance, or even the electromyogram
or electroencephalogram, are recorded to ensure proper comple-
tion of the task and to evaluate subject’s performance. Because sig-
nal changes recorded for each individual stimulus are very small
(the signal does not have time to reach the plateau of activation),
it is necessary to average signal variations of a large number of
stimuli (usually several tens).

Analysis of fMRI data aims at detecting voxels whose signal var-
ies with changes in brain activation states within noise and arti-
facts. It takes into account the fact that BOLD signal variations
are small (typically of the order of one percent) and that the num-
ber of voxels in a brain volume is very high (often of the order of a
million voxels) to limit the risk of false negatives and false posi-
tives. The general linear model is most commonly used to detect
voxels in which BOLD signal varies depending on the experimental
model. Software provided by MRI manufacturers is able to provide
activation maps while subjects perform tasks inside the scanner
Fig. 30. Resting state networks are sets of distant regions in which BOLD(Blood Oxyg
networks are presented corresponding to the (A) fronto-executive, (B) motor, and (C) de
are deactivated when performing goal directed tasks.
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(real-time fMRI). Real-time fMRI is primarily used in clinical prac-
tice to monitor task performance in real time.

Another type of analysis using fMRI data is functional connec-
tivity (Fig. 29B). Functional connectivity aims at quantifying the
flow of information between two distant regions. Measures of
functional connectivity between two distant regions of the brain
are defined as the Pearson linear correlation coefficients between
the average BOLD signals recorded in these two regions
(Fig. 29B). It is therefore a measure of statistical dependence,
which can be calculated without a priori knowledge about the
experimental conditions. Under certain circumstances, the causal
influence of a region on another region can also be quantified using
effective connectivity (Friston et al., 2010). Effective connectivity
approaches aim to describe and quantify the causal influence of a
region on an adjacent region during a task (Fig. 29B). Effective con-
nectivity requires the definition of an a priori structural model
describing the regions and the links between these regions. Two
main techniques of effective connectivity are used, Structural
Equation Modeling (SEM) and Dynamic Causal Modeling (DCM).
Functional connectivity can be studied during task performance
or in the rest condition (resting state fMRI). Resting state fMRI is
based on the measurement of spontaneous low-frequency fluctua-
tions in the BOLD signal (<0.1 Hz) in the absence of an activating
task or stimulus. Distant but functionally connected brain regions
exhibit spontaneous fluctuations in BOLD signal that correlate
(Fig. 30). Spontaneous fluctuations in the fMRI signal include fluc-
tuations related to BOLD signal, due to neuronal activity in the
brain at rest, but also to electronic noise from the MRI machine
and to the subject’s non-BOLD physiological noise (heartbeat,
movements respiratory). Data analysis consists in extracting BOLD
signal fluctuations at rest from noise and studying long-distance
correlations. Resting state fMRI therefore allows the analysis of
the functional communications of the brain. It does not require
the active cooperation of the patient.

Limitations of BOLD fMRI include among others the sensitivity
to head movements, the fact that the technique is not truly quan-
titative, the dependence on task performance, the low temporal
resolution (of the order of a second), a modest sensitivity which
often requires the inclusion of many subjects and explains the lack
of reproducibility of results between studies which included a
small number of subjects and used low statistical thresholds
(Poldrack et al., 2017).

A number of other MRI techniques provide biomarkers that can
be used to study the relationships between the motor system and
en Level Dependent contrast) signal fluctuations co-vary with time at rest. Three
fault mode network. The default mode network corresponds to a set of regions that



Fig. 31. Many other MRI (magnetic resonance imaging) techniques provide biomarkers that can be used to study the relationships between the motor system and the brain
including (A) arterial spin-labeling (ASL) perfusion imaging, (B) structural imaging, (C) neuromelanin-sensitive imaging, a surrogate marker of dopaminergic neuron
degeneration, (D) markers of tissue microstructure such as T1 mapping associated with myelination, (E) iron sensitive imaging (QSM = quantitative susceptibility mapping),
and (F) diffusion imaging metrics including mean diffusivity (that quantifies the displacement of water molecules) and fractional anisotropy (that quantifies the directionality
of water displacement). (G) Diffusion-based tractography provides indirect visualization and quantification of brain fiber tracts.

Fig. 32. Examination of dopaminergic function using (A) Single-Photon Emission Computed Tomography (SPECT) and 123I-FP-CIT (DaTSCAN �) or (B) Positron Emission
Tomography (PET) and 18F –DOPA. (C) Glucose metabolism is studied using 18F-fluorodesoxuglucose (18F-FDG).
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the brain (Fig. 31). Another functional technique is arterial spin-
labeling (ASL) perfusion imaging that quantifies the perfusion of
brain tissue using magnetically-labeled arterial blood protons
(Fig. 31A). Structural imaging provides markers of neurodegenera-
tion allowing for instance to quantify brain atrophy (Fig. 31B) or
degeneration of catecholaminergic neurons using neuromelanin-
sensitive signal changes (Fig. 31C). Markers of tissue microstruc-
ture include T1 and T2 mapping (Fig. 31D), iron sensitive imaging
(Fig. 31E), and diffusion imaging measurements, sensitive to
microstructural changes in tissues that alter the regional diffusion
properties of water molecules (Fig. 31F). Diffusion-based tractogra-
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phy provides indirect visualization and quantification of brain fiber
tracts (Fig. 31G). These markers have been used to identify brain
networks involved in movement disorders, and also to categorize
patients with movement disorders from healthy subjects or other
types of movement disorders, and to follow the course of the dis-
ease. Magnetic resonance spectroscopy (MRS) gives information
about the absolute or relative concentrations of different metabo-
lites in the brain. Concentrations of metabolites are sensitive to
disease processes that affect the brain. Certain neurotransmitters
such as glutamate, glutamine, and gamma aminobutyric acid can
also be measured. MRS can thus provide qualitative and quantita-
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tive information about brain neurotransmission. MRS can also pro-
vide information about changes in neurotransmitter concentration
induced by transcranial magnetic stimulation of the cortex.

Molecular imaging is performed using Nuclear Medicine tech-
niques (Strafella et al., 2017). It is based on the administration of
radiolabeled tracers targeting a specific biological pathway and
revealing, by a quantitative approach of the image, its bio-
distribution. Brain function was formerly studied using oxygen-
15 that indirectly measures blood flow, but this technique has been
largely replaced by fMRI. Clinical imaging of movement disorders
is usually conducted using SPECT (Single-Photon Emission Com-
puted Tomography) and PET (Positron Emission Tomography).
SPECT studies are conducted by the administration of 123I-FP-
CIT or 123I-Ioflupane (DaTSCAN �), a tracer of the presynaptic
dopamine transporter (Fig. 32A). PET studies presynaptic dopamin-
ergic function by evaluating dopa-decarboxylase activity using 18F
–DOPA (Fig. 32B) or glucose metabolism using 18F-
fluorodesoxuglucose (18F-FDG) (Fig. 32C). There are a number of
other tracers that can quantify for instance other neurotransmit-
ters such as noradrenalin and serotonin, neuroreceptors such
dopamine, acetylcholine and serotonin receptors, peptides such
as amyloid and tau, and microglial activation. PET imaging has sev-
eral competitive advantages compared to SPECT, with in particular
a three-dimensional detection at the acquisition, a better resolu-
tion, a better sensitivity, and a more precise quantification.

EEG and MEG techniques, described in detail in another section
of this review, are non-invasive techniques that allow visualizing
brain activity on a millisecond time scale in normal or pathological
conditions. They offer a unique insight into the temporal dynamics
of the processing of brain function. Since MRI, PET, and SPECT have
good spatial resolution, but not temporal resolution, it is often use-
ful to combine them with EEG or MEG. EEG and fMRI can be done
simultaneously as used to advantage in epilepsy (Iannotti et al.,
2020).

In healthy subjects, fMRI allows detailed study of the functional
organization of the motor system at the level of the cortex, the
basal ganglia but also of smaller of brainstem structures such as
the substantia nigra and the pedunculopontine nucleus. Functional
imaging studies provide a precise analysis of how different cortical
regions interacted to generate simple or complex voluntary move-
ments, internally or externally-guided movements, goal-directed
movements or habitual control, to performmotor sequences, select
or plan actions, learn new movements or perform them automati-
cally (Doyon et al., 2009).

To show how these techniques can be helpful, some findings in
several movement disorders will be illustrated as examples. In
Parkinson’s disease, resting-state fMRI shows decreased coupling
in the cortico-striatal sensorimotor network and between the stria-
tum and the brain stem and increased coupling, interpreted as
compensatory, in the associative networks as well as a remapping
of cerebral connectivity within the primary motor cortex (M1) and
the cerebellum (Lehericy et al., 2017). Connectivity changes are
modulated by levodopa. The severity of motor symptoms corre-
lates with dopaminergic dysfunction in the striatum using PET
and SPECT, the reduction in neuromelanin content using
neuromelanin-sensitive MRI, a surrogate marker of dopaminergic
cell neurodegeneration, and the increase in iron content in the
SN. In patients with rapid eye movement sleep behavior disorders
(RBD), either idiopathic or in PD, neuromelanin-sensitive MRI con-
firm the relationships between the severity of RBD, as shown by
the increase in muscle tone during REM sleep, and the coeruleus/-
subcoeruleus complex (Garcia-Lorenzo et al., 2013).

In essential and orthostatic tremor, structural imaging, diffusion
tractography and resting-state fMRI show abnormal structure and
function in the cerebello-frontal network (Gallea et al., 2015).
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Structural and functional changes in the supplementary motor
area, but not in the cerebellum, correlate with clinical severity.

In dystonia, the diversity of clinical phenotypes of dystonia has
been associated with alterations of brain structure, function and
connectivity using voxel-based morphometry, fMRI, and tractogra-
phy. Traditionally linked to a dysfunction of the basal ganglia,
recent evidence suggests that abnormalities extend beyond these
circuits, including sensorimotor and cingulate cortices, the brain-
stem, and the cerebellum (Shakkottai et al., 2017).

In Tourette syndrome, studies show that there is a relationship
between the appearance of tics and anatomo-functional abnormal-
ities in the circuits that unite the cortex and the basal ganglia
(Worbe et al., 2015). Abnormal control of the descending motor
cortical pathways due to abnormal brain development could be
the cause of the genesis of tics. The occurrence of tics is associated
with several brain abnormalities including a modification of the
activity of the cortico-striatal network (reduced functional activa-
tion of the primary motor cortex), neurochemical abnormalities
(increased concentrations of gamma-aminobutyric acid in the
additional motor zone), and rearrangements of white matter
pathways.

In conclusion, neuroimaging techniques can be powerful phys-
iological tools for studying the brain and complement more tradi-
tional clinical neurophysiological methods.
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