
Vol.:(0123456789)

Digital Finance (2023) 5:689–716
https://doi.org/10.1007/s42521-023-00097-7

1 3

ORIGINAL ARTICLE

Fast approximation methods for credit portfolio risk
calculations

Kevin Jakob1 · Johannes Churt2 · Matthias Fischer3 · Kim Nolte2 ·
Yarema Okhrin1 · Dirk Sondermann2 · Stefan Wilke2 · Thomas Worbs2

Received: 6 May 2023 / Accepted: 26 September 2023 / Published online: 15 November 2023
© The Author(s) 2023

Abstract
Credit risk is one of the main risks financial institutions are exposed to. Within the
last two decades, simulation-based credit portfolio models became extremely popu-
lar and replaced closed-form analytical ones as computers became more powerful.
However, especially for non-homogenous and non-granular portfolios, a full simula-
tion of a credit portfolio model is still time consuming, which can be disadvanta-
geous within some use cases like credit pricing or within stress testing situations
where results must be available very quickly. For this purpose, we investigate if
methods based on artificial intelligence (AI) can be helpful to approximate a credit
portfolio model. We compare the performance of AI-based methods within three
different use cases with suitable non AI-based regression methods. As a result, we
see that AI-based methods can generally capture portfolio characteristics and speed-
up calculations but - depending on the specific use case and the availability of train-
ing data - they are not necessarily always the best choice. Particularly, consider-
ing the time and costs for collecting data and training of the complex algorithms,
non-AI-based methods can be as good as or even better than AI-based ones, while
requiring less computational effort.

Keywords Credit risk · AI · Credit portfolio model · Approximation

JEL Classification C63 · G32

1 Introduction

In many financial institutions, credit portfolio models are used to estimate the loss
distribution of the credit portfolio and to calculate corresponding risk figures such
as value at risk or expected shortfall (McNeil et al. 2015). The tail of the loss dis-
tribution is mainly determined by the correlation between default events or rating
changes of individual obligors if they represent a significant share of the portfolio

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s42521-023-00097-7&domain=pdf

690 Digital Finance (2023) 5:689–716

1 3

(concentration risk). Capturing these correlations precisely results in quite complex
mathematical models. There are some closed-form models, e.g. the Vasicek model
(Vasicek 2002) or the CreditRisk+ approach (Credit Swiss 1997), which, however,
require strong and to some extent unrealistic assumptions on portfolio structure, sto-
chastic distributions, and correlations. For example, the Vasicek model assumes a
portfolio of infinite granularity, i.e. without any concentration risk on counterparty
level, whereas the CreditRisk+ model in its basic form assumes Poisson distributed
defaults and independent economic sectors.

Thus, these models do not suffice for real-world application within the inter-
nal capital adequacy assessment process (ICAAP) of financial institutions. There-
fore, most credit risk portfolio models rely on Monte Carlo techniques to simulate
defaults, rating migrations, or changes of asset values (e.g. Gupton et al. 1997).
Nowadays, computer performance improves more and more but the estimation of
the loss distribution and corresponding risk measures on a portfolio level is still
time-consuming. Calculations that take hours may be acceptable for monthly checks
of risk bearing capacity, but neither what-if-scenarios for risk management or cali-
bration purposes nor pricing considerations can be practically supported by Monte-
Carlo-simulation-based models if results are needed within minutes. To address
this issue, several variance reduction techniques (like importance sampling, see e.g.
Glasserman 2003)) are available or one can use specific approximation techniques
for the portfolio loss distribution as the ones described by Grundke and Moos-
brucker (2008). However, in this paper, we want to investigate different methods to
achieve a fast and accurate approximation of the full credit portfolio Monte Carlo
simulation. In particular, we compare how Artificial Intelligence (AI) techniques
perform compared to suitable non AI-based regression methods.

AI in risk management has become a field of active research. We refer to Leo
et al. (2019) or Aziz and Dowling (2019) for an overview of AI methods and appli-
cations in different areas of risk management as well as credit risk. Here, we make
use of the established approach of training an AI model to approximate a non-linear
function (i.e. the loss distribution depending on portfolio and correlation parame-
ters) that is computationally expensive to calculate otherwise (see Liu et al. (2019)).
To the best of our knowledge, this approach has not been applied to credit portfolio
models yet.

In practice, in the context of loan pricing (e.g. see Chun and Lejeune (2020)
or Duffie (2003)) or scenario analysis, in most cases it is not necessary to obtain
the same level of precision as in case of the monthly ICAAP reporting. Therefore,
approximations of the full credit portfolio model are used, e.g. to obtain a risk con-
tribution for an additional loan in the portfolio. These approximations are often quite
ad-hoc and do not consider much of the complex interactions (i.e. due to correla-
tions) between the loans of the portfolio.

We evaluate the performance of different approximation methods on three use
cases, namely to predict

• the total value at risk for a credit portfolio,
• the risk contribution of an individual (additional) counterparty, and
• the portfolio value at risk given a change in model (i.e. correlation) parameters.

691

1 3

Digital Finance (2023) 5:689–716

The second case can be used to assess the effect of additional loans in the portfo-
lio (e.g. during initial business contact), while the first and the third can be used in
the context of calibration and stress testing (i.e. if economic circumstances changes
significantly).

The paper is organized as follows: In Sect. 2, we give a brief overview of the
credit portfolio models in focus. Section 3 briefly presents the AI and non AI-based
methods used. In Sect. 4, we describe our simulation study in detail, followed by a
summary and outlook in Sect. 5.

2 Overview of credit portfolio model

The credit portfolio model we use within our study is a simulative framework of
CreditMetrics type, i.e. the link function between sector variables and counterparties
PD (see Sect. 3) is of CreditMetrics type (see Gupton et al. (1997)). In this section,
we introduce the model setup and distributional assumptions, followed by a short
description of the implementation.

Without loss of generality, we assume that our loan portfolio is already aggre-
gated on counterparty level. Therefore the portfolio contains M ∈ ℕ>0 counterpar-
ties CPi with i = 1, ...,M . The maximum exposure to each counterparty which can
be lost in case of a default is described by EXPi > 0 . In case of a default of coun-
terparty i the loss is given by Li ∶= EXPi ⋅ CCFi ⋅ LGDi, where CCFi describes the
so-called credit conversion factor and LGDi the loss given default.

To keep the model setup simple and to focus on the different approximation
methods, we assume that CCFi = 1 and LGDi = 1 for each counterparty. Of course,
within real world applications a CCF < 1 is necessary for contingent liabilities such
as credit commitments or credit avals to account for the probability that these posi-
tions are actually used. Furthermore, the LGD describes the share of the exposure
that will be lost, i.e., which is not covered by guarantees, other types of collateral
or which cannot be recovered during the liquidation process. However, since both
CCF and LGD are not modelled stochastically within our framework, it is not a
crucial restriction to assume that both are constant and equal to 1. Furthermore,
CCF and LGD affect the resulting loss only in a linear way, whereas we want to
focus on the approximation of non-linear relationships (i.e. between counterparties’
creditworthiness and the risk figures). Therefore, we will use the terms EXPi and
EADi ∶= EXPi ⋅ CCFi , which denotes the exposure at default interchangeably.

The probability of default for counterparty i is denoted by PDi . We assume this
as an exogenous variable estimated via an internal or external rating system. I.e., the
estimation of PDi is not part of the credit portfolio model framework or our approxi-
mation methods.

To introduce a dependence structure between counterparties, we assume
that each of them belongs to one of K ∈ ℕ>0 sectors. The model can be easily
extended to a model with multiple sectors per counterparty including a vector of
asset correlations and a sector correlation matrix. However, to concentrate on the
AI approximation methods, we restrict the model framework to one sector per
counterparty, which is still very relevant for real world applications. Typically, a

692 Digital Finance (2023) 5:689–716

1 3

sector represents an industry and/or country of risk the counterparty (primarily)
belongs to, but it can also be used for other characteristics influencing the credit-
worthiness of the counterparty. The current state of the kth sector is denoted by Sk
with k = 1, ...,K . Sk is a stochastic variable distributed according to the standard
normal distribution, i.e. N(0, 1) . Given a realization sk of Sk , the creditworthiness
index (also named ability to pay variable or asset value) is modeled by

with model variable Rk(i) determining the correlation of counterparty i’s creditwor-
thiness with the realization sk of sector k(i) it belongs to and �i ∼ N(0, 1) for all i.

Since Rk(i) affects the correlation structure between different counterparties and
therefore significantly influences the estimation of the portfolio loss distribution,
its estimation is an important issue. However, this is not within the focus of this
study. For more information on this topic, we refer to Kalkbrener and Onwunta
(2010), Düllmann et al. (2010), Dorfleitner et al. (2012), Gordy and Heitfield
(2010) or Pfeuffer et al. (2019). A default occurs if the creditworthiness Bi falls
below a certain default threshold determined by PDi . To indicate a default event,
we use the default variable

where � denotes the indicator function and Φ−1 the quantile function of the standard
normal distribution.

Using Eqs. (1) and (2), the conditional probability of default PDS
i
 given a reali-

zation sk reads

Typically, the multivariate sector distribution of S =
(
S1, ..., SK

)
 is modeled by a

multivariate normal distribution N(�,Σ) with mean vector � = 0 and correlation
matrix � . Please note that to ensure Sk ∼ N(0, 1) , the variances of all sectors must
be equal to one (i.e. � is truly a correlation, not only the covariance matrix). But,
using Sklar’s theorem (see Sklar (1959)) from copula theory, it is also possible to
create a new multivariate distribution function S for S with an arbitrary copula func-
tion (determining the dependence structure between different sectors) and using
N(0, 1) for the marginal distributions.

Within our simulation study, we use the implementation of the model
described above within the GCPM R-package. The package includes a simulative
framework with the link function (3) of the CreditMetrics type. The simulation
process described in Jakob and Fischer (2016) contains the following steps for
N > 0 simulations:

(1)Bi ∶= Rk(i)sk +
√

1 − R2

k(i)
�i,

(2)Di ∶= �Bi≤Φ
−1(PDi)

,

(3)PD
S
i
(sk;PDi,Rk(i)) ∶= Φ

⎛⎜⎜⎜⎝

Φ−1(PDi) − Rk(i)sk�
1 − R2

k(i)

⎞⎟⎟⎟⎠
.

693

1 3

Digital Finance (2023) 5:689–716

Algorithm 1 Simulation Algorithm
for n = 1, ..., N (simulation loop)

draw sector realizations sn = (sn1 , ..., s
n
K) ∼ S

for i = 1, ...,M (counterparty loop)

calculate conditional PD: PDS
i := Φ

(
Φ−1(PDi)−Rk(i)sk√

1−R2
k(i)

)

default drawings: Di ∼ Bern PDS
i

)

determine counterparty loss: Ln
i = EXPiDi

determine portfolio loss: Ln =
∑M

i=1 L
n
i

Given the N different realizations Ln, n = 1, ...,N , one can easily estimate the dis-
tribution or density function of the portfolio loss by means of the respective empiri-
cal counterparts. Given the loss distribution, portfolio risk figures such as value
at risk VaR� , which is defined as the �-Quantile of the portfolio loss, or expected
shortfall

which is defined as the conditional mean given a portfolio loss greater or equal to
the value at risk on level � ∈ (0, 1) , can be determined.

To analyze the portfolio risk figures in more detail, it is also possible to calculate
so-called risk contributions on a counterparty level. The counterparty risk contri-
butions to expected shortfall are estimated based on the mean loss of the counter-
party within expected-shortfall-relevant portfolio simulations and denoted by RCES�

i
 .

Within the GCPM package, it holds true that
∑M

i=1
RC

ES�

i
= ES� . For more detailed

information, please refer to Jakob and Fischer (2016) or the package documentation.
Using the described credit portfolio model, we can calculate risk figures like VaR

on portfolio and on counterparty level to create our training and test data. Within the
next section, we introduce the AI methods we are going to use to approximate and
speed up the calculation of the credit portfolio model.

3 AI‑based approximation methods

In this section, we give a brief overview of the AI methods used in this paper.
The birth of the artificial intelligence discussion dates already back to Alan

Turing’s seminal work on “Computing Machinery and Intelligence” in Turing and
Haugeland (1950). Roughly speaking, AI describes a broad field of computer sci-
ence where the focus is on a machine’s capability to produce rational behavior from
external inputs. The goal of AI is to create systems that can perform tasks that would
otherwise require human intelligence. The strongly growing popularity of AI mainly
results from the recent advancements in the sub-field of machine learning (ML).

ES� ∶=

∑N

n=1
�Ln≥VaR�

Ln

∑N

n=1
�Ln≥VaR�

,

694 Digital Finance (2023) 5:689–716

1 3

Machine learning algorithms can be subdivided into four classes: supervised
learning, unsupervised learning, semi-supervised learning, and reinforcement learn-
ing. Due to the nature of our problem to predict features (real number output values)
from a given set of labels (real number input values), our study explores various
supervised regression machine learning methods and their suitability for our simula-
tion. In supervised regression learning, an algorithm attempts to derive a function
from a given training data set with label-feature pairs. The function is optimized
to accurately predict new, unknown feature (output) values from new label (input)
values.

3.1 Artificial neural networks

Recently, artificial neural networks (ANNs) have been very successful at machine
learning tasks like those mentioned above. ANNs are based on a collection of con-
nected nodes, the so-called neurons. In the common variant of a sequential ANN,
each connection, like the synapses in a biological brain, can transmit a signal to
other neurons. After receiving a signal, the neuron processes it and forwards signals
to connected neurons. The signal at a connection or edge is a real number, and the
output of each neuron is computed typically by some linear or non-linear function
(activation function) of the sum of its inputs.

In addition, neurons and edges typically have a weight that varies as learning pro-
ceeds. The weight increases or decreases the strength of the signal at a connection.
Neurons may also have a threshold such that a signal is sent only if the aggregate
signal exceeds that threshold. In sequential ANNs, neurons are grouped into so-
called layers. Different layers may perform different transformations on their inputs.
In the chosen network, signals travel from the first layer, the so-called input layer, to
the last layer, the output layer. All other layers in between are termed hidden layers.

For a specified loss function, optimization algorithms (optimizers) are applied to
determine the unknown parameters of the ANN for a suitable training data set. For
more details on ANN’s, see for instance Huang et al. (2020) or Dixon et al. (2020).

3.2 Alternative AI methods

Besides ANNs, many other machine learning methods for supervised regression
learning have been successfully applied. Therefore, we also investigate the suitabil-
ity of other AI-based algorithms in this study. In particular, we test various tree-
based models like the rule-based model CUBIST method, Support Vector Machines,
XGBoost or Random Forest method or piece-wise regression with Multivariate
Adaptive Regression Splines and the K-Nearest Neighbors Algorithm for regression
problems.

3.2.1 CUBIST method

CUBIST is a rule-based multivariate regression model founded mainly on the work
of Ross Quinlan (see Kuhn and Quinlan 2022). The CUBIST models a decision tree,

695

1 3

Digital Finance (2023) 5:689–716

where the nodes are linear regressions using as many labels as the level of the node.
After setup the tree is simplified again by removing branches without effect on the
error or by combining similar branches. The final ruleset of the model consists of
the linear regressions assigned to the leaves of the tree.

For a “boost-like” capability, the CUBIST generates iterative decision trees dur-
ing training, called “committees”. Each subsequent tree has the additional goal to
adjust over- or under-predictions. The final prediction is formed by averaging across
all committees.

3.2.2 Support Vector Regression (SVR) method

The difference between “plain” regression models like linear regression and SVR is
the optimization target. While plain models minimize the error rate itself, SVR aims
to find a best fitting hyperplane in the typically multidimensional label/feature space
allowing a given absolute error threshold band of � around this hyperplane. The
optimization target of the SVR is not to minimize the error itself but to minimize the
L2-Norm of the linear coefficients together with the restriction that the absolute error
is located within the � band. This may result in better-adopting models that are more
robust compared to the plain ones. Another big advantage of SVR is its support of
non-linear relationships between input and output variables within data sets using
the so-called "kernel trick". Kernels are functional transformations of the label/fea-
ture space into a higher dimensional space to make them separable by linear hyper-
planes despite their non-linear dependencies. An introduction to SVR with further
details can be found here (Premanand 2021).

3.2.3 Random Forest™ method

The Random Forest™ regression method has its roots in Classification And Regres-
sion Trees (CARTs). Random Forest™ sets up an ensemble of B CARTs when
trained but, in contrast to XGBoost described in the next section, these trees are
independent. Each of the B trees is trained from a separate training data set Db
(for b ∈ {1,… ,B}) that is randomly sampled from the whole training set D with
replacement meaning Db may contain the same sample di of the original training set
D multiple times. This sampling method is called Bootstrapping. Within a typical
implementation, the predictions of all B trees are aggregated simply by calculating
the mean of the predictions of all B trees after the training. This aggregation step
together with the aforementioned Bootstrapping, is called Bagging. In Random For-
est™ it has several advantages compared to plain CARTs. It especially avoids over-
fitting, the model is very robust, and it allows highly parallel computing through the
independent trees (Sruthi 2022).

The first algorithm for a Random ForestTM was designed in 1995 by Tin Kam
Ho (see Ho 1998). Leo Breiman and Adele Cutler (see Breiman 2001) extended the
algorithm with Breiman’s "Bagging" idea later in 2001.

696 Digital Finance (2023) 5:689–716

1 3

3.2.4 Xtreme Gradient Boosted Trees (XGBoost) method

XGBoost is a relatively young machine learning method developed by Tianqi Chen
and Carlos Guestrin resulting from a research project of the University of Washing-
ton (Chen and Guestrin 2016).

The XGBoost algorithm combines three machine learning techniques: CART, the
ensemble method of Boosting, and the use of a Taylor expansion of the loss func-
tion up to the second derivative considering the average gradient of the loss as the
criterion to be minimized with each subsequent boosting step. CARTs are binary
decision trees taking a decision on each leaf based on the value of a specific label
(less or equal or greater than a learned decision boundary) to determine the path to
the next leaf (see Breiman 1984). Boosting combines multiple sequentially arranged
CARTs in a manner that with each new tree the feature prediction of the previous
tree is improved by an additive component. Starting with an initial regression func-
tion F0(x) simply delivering the mean of a feature of the training data set samples, a
sequence of CARTs is generated using the residual errors of the predecessor as addi-
tional label input to produce an additive correction as the output feature refining the
overall prediction step by step. When it comes to the optimization of the CART leaf
splits, XGBoost uses the mean gradient of the loss improvements for a new refining
CART. For more details please refer to Bhaskar Sundaram (2022) and Chen and
Guestrin (2016).

4 Simulation study

After presenting the credit portfolio model in Sect. 2, which provides us the objec-
tive values (i.e., VaR) we want to approximate and the several AI-based methods
describe in Sect. 3 we now compare them within a simulation study to non AI-based
methods. In the following sections, we describe the overall simulation framework
(i.e. the data generation process) and the quality measures we apply. Afterwards, we
compare the approximation performance of the different methods in three use cases
mentioned in Sect. 1.

The simulation framework is implemented in R using several packages like
Keras, caret and Tensorflow for the AI based methods and the GCPM, MLmetrics
and copula packages to obtain training and test data to evaluate the approximation
performance. The training of the AI-based methods was performed in an environ-
ment with 32 CPU cores and 4 GPUs (NVIDIA Tesla V100), while the generation
of training data, which does not benefit from GPU support, was performed in an
environment with 72 CPU cores and no GPUs.

4.1 Data generation and simulation preparation

The data sets for all use cases consist of synthetic credit portfolios. Due to the very
time-consuming CPU-intensive process of data generation and training we simply

697

1 3

Digital Finance (2023) 5:689–716

split our data set into training and test data by 70 to 30 instead of using a classical
cross validation.

Depending on the use case, each credit portfolio consists of up to 20,000 coun-
terparties. As described in Sect. 2, each counterparty i has the characteristics EADi ,
PDi (which is discretized into one of 21 rating classes RGi), a business sector
k(i) ∈ {1, 2, 3} determining the correlation parameter Rk(i) , and value at risk on level
� = 99.9% denoted by VaR�,i . The value at risk of a counterparty is calculated by the
credit portfolio model (see Sect. 2) as the counterparty’s risk contribution RCES�

i
 to

the portfolio’s expected shortfall ES� on confidence level � , such that on portfolio
level ES� = VaR� for confidence level � = 99.9% . All characteristics are summa-
rized in Table 1.

In addition to the VaR , we also use a VaR weight defined by

which, in case it is not constant across different counterparties, characterizes the
non-linear relationship between the EAD and the VaR and which varies much more
slowly with the EAD.

The business sector k(i) of counterparty i is independent of its EADi and PDi .
The sector correlation parameter R strongly influences the VaR of the portfolio.
The values typically observed vary depending on the specific sector, the portfolio
and the data used for estimation (see Düllmann et al. (2010)). For simplification,
we use only K = 3 business sectors for the portfolio, representing sectors with high
(R1 = 0.30), medium (R2 = 0.15) and low correlation (R3 = 0.05) parameter. This
covers the range of correlation parameters usually observed (e.g. see Düllmann et al.
(2010), Lee et al. (2011), Hahnenstein (2004), Geidosch (2014) or Akhavein et al.
(2005)). We randomly assign one of the sectors to each counterparty. The depend-
ency between business sectors is modeled via a t-copula with 3 degrees of freedom
and fixed correlation parameter of 0.5. A short explanation of the copula concept
and the t-copula is given in Appendix A.

In practice, credit risk applications often use discrete rating classes instead
of a continuous PD . Therefore, the PDi is discretized into 21 rating classes
RGi ∈ {1,… , 21} . To achieve this, the rating classes are exponentially spaced
between the extreme values 0 and 1 for the PD . Each counterparty is assigned the
rating class matching its PD.

(4)VaRWi ∶=
VaRi

EADi

,

Table 1 Characteristics of a
counterparty

Characteristic Source

Exposure at default EAD
i

Drawn from distribution
Probability of default PD

i
Drawn from distribution

Value at risk VaR
i

Credit Portfolio Model (Sect. 2)
Rating class RG

i
Discretization of PD

i

Business sector affiliation k(i) Random assignment

698 Digital Finance (2023) 5:689–716

1 3

4.1.1 Drawing EAD and PD

To create realistic training and test data, we use the following distributions and
parameters. Typically, the creditworthiness of counterparties is not symmetrically
distributed but right skewed such that the share of counterparties with higher PDs is
lower. Therefore, we use a gamma distribution Γ

(
1,

1

100

)
 with parameters such that

� = 0.01 and � = � to simulate the PD s across the portfolio. Usually, the EAD dis-
tribution is also right-skewed. However, to introduce more concentration risk, we
use a log-normal instead of a gamma distribution with � = 106 and � = 1014 . Fur-
thermore, from empirical observations, we know that the EAD and PD of a counter-
party are not independent (Jacobs 2010). To take this into account, we use a t-copula
with dispersion parameter −0.5 and three degrees of freedom to allow for some tail
dependencies.

4.1.2 Intensifying Concentration Risk

Real-life credit portfolios tend to be concentrated with respect to EAD , and the
resulting concentration risk can strongly influence the portfolio VaR . The chosen
log-normal distribution of EAD already creates a certain level of concentration risk.
However, depending on the use case, we enlarge the EAD of the 10 counterparties
with the highest exposure by a random factor in the range between 1 and 10 to inten-
sify the concentration risk and to challenge our AI and non AI-based approximation
methods further.

4.1.3 Reducing Intrinsic Error of the Monte Carlo simulation

The VaRi of a counterparty is calculated with the help of a Monte Carlo simulation.
Thus, the stability of the VaRi figures, i.e. the intrinsic simulation error, represented by
the RMSPE of VaRi over all simulations of the data-generating process is limited by
the number of simulation loops within the Monte Carlo simulation. Especially within
the use case of Sect. 4.3 this was a crucial problem. For each portfolio setup we deter-
mined the maximum number of loops possible within the memory limit of our system.

If the resulting instability was too high to evaluate the performance of the approx-
imation methods because the approximation error could not be separated from the
simulation error, we repeated the Monte Carlo simulation multiple times and aver-
aged the result over the runs. Since we need this kind of technique only in use case 2
to reduce the simulation error down to 0.28% within an acceptable amount of time,
we decided to use this simple and convenient way instead of other more complex
methods like importance sampling to reduce the simulation error.

4.1.4 Quality measures

To quantify the error of our approximation, we used the root mean square percent-

age error RMSPE ∶=

√
1

N

(
x−y

y

)2

 as relative error measure, where y denotes the

699

1 3

Digital Finance (2023) 5:689–716

true VaRi from the data generating process and x denotes the model prediction.
Since the approximation results in our use cases are some variant of the VaR , the
error is influenced by the quality of the data generating process (i.e., the Monte
Carlo simulation). Therefore, we will compare the RMSPE of our approximations to
the intrinsic error of the Monte Carlo simulation for the use cases.

4.2 Use Case 1: predicting the total VaR of a credit portfolio

The objective of the first use case is to predict the overall portfolio VaR as a
function of the portfolio composition, i.e. the individual counterparty param-
eters. The systemic risk parameters (sector correlations) were held fixed in this
use case. Please note, that predicting the VaR on portfolio level does not imply a
prediction of VaR contributions on counterparty level. Even if one could in prin-
ciple calculate the VaR difference of a base portfolio and the same portfolio with
a given counterparty added, the inevitable uncertainties of the approximations
would render this difference meaningless.

4.2.1 Approximation using an ANN

4.2.1.1 Drawing portfolios The portfolios for this use case are drawn as described
in Sect. 4.1, applying the additional step of enlarging concentration risk to provoke
more non-linear effects i.e. a disproportionate increase of the VaR due to an increas-
ing EAD . Since the simulation error is much smaller compared to the use case in
Sect. 4.3 we did not apply simulation averaging.

4.2.1.2 Data preparation The portfolio contains parameters PD , EAD , and business
sector for each counterparty. Therefore, a portfolio with M counterparties corre-
sponds to 3M variables. Regarding the amount of available training data, this number
of variables is too high to train the ANN and to prevent over-fitting. Since the risk
figures of a credit portfolio do not depend on the order of counterparties, we apply the
following binning approach, which significantly reduces the test data and computing
power requirements.

• The EADi of a counterparty is normalized by replacing it with the portfolio share
EADi∕

∑
j EADj.

• These normalized values are mapped to 21 buckets using equidistant cuts in the
range from 0 to the maximum value across all portfolios.

• The PDi of a counterparty is discretized by its assignment to a rating class RGi.
• Combining an EAD bucket e ∈ {1,… , 21} , a rating class RG ∈ {1,… , 21} and

a business sector k ∈ {1, 2, 3} results in a representation b = (e, RG, k) for each
counterparty with a total of 21 ⋅ 21 ⋅ 3 buckets.

• For each bucket b, the number of counterparties Cb and the mean EAD ratio Eb
are calculated.

700 Digital Finance (2023) 5:689–716

1 3

• The number of buckets is reduced by merging sparsely filled buckets (e, RG, k)
with the next densely filled bucket (e�, RG, k) or, if there is no such densely filled
bucket, with (e, RG�

, k) . Here, a bucket b is considered sparsely filled if the aver-
age of Cb across all portfolios does not exceed 2. The figures Cb und Eb are recal-
culated for the merged buckets. This merging step reduces the number of bins
from 21 ⋅ 21 ⋅ 3 to 105.

As a result of binning, we end up with a total of 210 variables Cb and Eb . We use the
transformed quantities Db = Cb ⋅ Eb and Eb as input labels for the ANN. Since the
overall VaR of a portfolio increases linearly if all EADj are scaled by a certain factor
(this is just a scaling invariance with respect to the currency unit), we use the invari-
ant ratio V = VaR∕

∑
j EADj as output label and thereby reduce the approximation

problem by an unnecessary degree of freedom.
By construction, the input labels are always located on the hyperplane

∑
b Db = 1 .

Using only training data with this property could result in a model that is not robust
to input data that deviate from the hyperplane, e.g. due to rounding errors. There-
fore, we improve the robustness of the resulting model by extending the training
data by observations in an environment of the hyperplane. These additional observa-
tions are derived from the original training data by using the scaling property
described above, i.e., by scaling a VaR and the corresponding EADj by the same fac-
tor f. For each original observation, we choose 20 random factors f = e� , where � is
drawn from a uniform distribution in the interval

[
−

1

5
,
1

5

]
 , and add new observations

with VaR� = f ⋅ VaR and EAD�
j
= f ⋅ EADj to the training data set. At the level of

the input and output labels defined above, this means V � = f ⋅ V , D�
b
= f ⋅ Db and

E�
b
= f ⋅ Eb.

Table 2 Setup of the ANN and credit portfolios

Parameter Value

Number of layers 5
Neurons per layer 210 - 210 - 210 - 70 - 1
Activation function ReLu - ReLu - ReLu - ReLu - Linear
Regularizer L1(0.02) - L1(0.04) - L1(0.06) - L1(0.08) - none
Initializer He normal
Optimizer Adam
Learning rate 12 ⋅ 10−5

Learning rate decay 1 ⋅ 10−5

Learning weight 1
Maximum number of epochs 800
Batch size 720
Input labels Transformed EAD and number of counterparties per bin
Output label Transformed VaR on portfolio level
Number of portfolios 95000
Number of counterparties per portfolio 1000

701

1 3

Digital Finance (2023) 5:689–716

Based on our training and test data we evaluated several ANNs with different set-
tings. We varied the number of layers and neurons, activation functions, batch size
and other parameters. Finally, with respect to the approximation performance we
choose the setup described in Table 2 with the transformations on EAD , number of
counterparties and VaR as described above.

4.2.2 Alternative methods and discussion of results

As already mentioned in Sect. 3, besides the ANN method we also test the suitabil-
ity of several other AI methods on the prediction of the total VaR of a credit portfo-
lio. Like in case of the ANN, the output label of all other methods is the transformed
value of the VaR on portfolio level (see 4.2.1). Due to limited computing power, we
only used as a subset of 1000 counterparties of the whole data set for alternative AI
methods.

Given our test data the ANN results in a RMSPE of 3.2% . The error decreased
very quickly with respect to the epochs. The ANN is followed by the CUBIST
method with 100 committees as the best of our alternative AI-methods with a
RMSPE of 3.9% and the two SVRs with radial and linear kernel function with 4.2%
and 4.4% respectively. The computational cost of the SVR training was extremely
high, orders of magnitude above all other models mentioned, and at the limit what
we could afford with our environment. When applying the linear kernel we had to
cut down our data set to 15,000 samples to get any result at all in reasonable com-
puting time. Additionally, as a simple benchmark to the ANN we also used a lin-
ear regression V =

∑
b(�b Db + �b Eb) with parameters �b , �b and the same buckets

b and input features Db , Eb used for the ANN. This results in a RMSPE of 4.4% ,
which is only slightly worse than the 3.2% of the ANN and on the same level as

−20

−10

0

10

20

0.05 0.10 0.15 0.20
VaR / EaD

R
el

at
ive

 E
rro

r [
%

]

Fig. 1 Relative error for the ANN prediction, dotted line is the RMSPE, dashed lines are 95% - and 99%
-confidence intervals, data points are the different portfolios

702 Digital Finance (2023) 5:689–716

1 3

the linear SVR. Taking into account the significantly lower computational cost of
the linear regression this should be preferred over the SVRs. The great number of
input labels prevents the application of non-linear regression models. Even with a
quadratic model, the number of regression parameters would have the same order
of magnitude as the number of observations in the training data set. The XGBoost
method leads to RMSPE of 5.0% after a series of hyperparameter optimization
cycles. Regarding computing effort for training cycles XGBoost performs extremely
well, far ahead of SVRs and Random ForestTM . We could use the full 63,000-records
training set without any problem, completing the training in a few minutes. With the
Random Forest™ we achieve a RMSPE result of 6.79% after a rudimentary hyper-
parameter optimization, which is roughly 1.7% worse than XGBoost. The computing
cost of the training is not in the high range of SVRs, but far higher than CUBIST
and XGBoost. Therefore we restrict the data set from 63,000 to only 31,000. We
also evaluate some other methods like CART, MARS, or K-nearest neighbors with
worse results. All results are summarized in Figs. 1 and 2.

Besides the RMSPE we also evaluated the maximum single outlier for all meth-
ods. Within the ANN experiment, the worst single outlier is well within the bound-
ary of 25% regarding the relative error between output feature and prediction. For
the best-performing other method, CUBIST, we find an 47.5% outlier. The only
method performing in a similar outlier range as the ANN is the SVR with a linear
kernel with a maximum relative error of 22.5%.

4.3 Use case 2: predicting VaR on counterparty level

Within the loan origination process, the contribution of a new counterparty or a
new loan to the overall portfolio VaR is an important information. This is the case
because the portfolio VaR is usually subject to limits set within the ICAAP. Further-
more, in the context of risk-based pricing, the marginal risk contribution is relevant
for credit pricing.

Using a classical Monte Carlo simulation, the calculation of marginal risk con-
tributions would be very time and resource consuming. Thus, banks could benefit

Fig. 2 Overview of approximation results from AI-based and non-AI based models

703

1 3

Digital Finance (2023) 5:689–716

from a quick and more efficient way of calculating VaR contributions for new loans.
Therefore, the aim of this use case is to approximate the counterparty specific VaR
contribution to an otherwise fixed portfolio depending on idiosyncratic parameters
like EAD , PD , or sector.

This is performed using an ANN Sect. 4.3.1 and a non AI-based approximation
method Sect. 4.3.2.

4.3.1 Approximation using an ANN

4.3.1.1 Creation of training and test data Since we are interested in the contribution
of an individual counterparty to the VaR of a given portfolio, we could in principle
create a fixed portfolio of M − 1 counterparties and then add a randomly drawn Mth
counterparty in multiple runs. Instead, we make use of the risk contributions VaRi
on counterparty level provided by the credit portfolio model (cf. Sect. 2). Using this
approach, the model results for a fixed portfolio of M counterparties yield a data set
of M observations consisting of the idiosyncratic parameters of a particular counter-
party and its risk contribution.

To reduce the intrinsic error of the credit portfolio model, the resulting VaRi are
averaged over several Monte Carlo runs as described in Sect. 4.1.

4.3.1.2 Data preparation In this use case, the input labels are the PD , the EAD and
the business sector of a single counterparty and the output label is the risk contribu-
tion VaRi of that counterparty (we will suppress the index i in the following).

The VaR is transformed into the VaRW (4) and for each business sector VaRW is
centralized around 0. Then a normalization over all business sectors is applied to the
centralized VaRW , so that the resulting values lie in a range between −1 and 1.

We transform the EAD and PD in a similar fashion. At first, the logarithm of
the values is centralized around 0, and afterwards a normalization is applied to the
results to fall into the range between −1 and 1.

4.3.1.3 Training weights Running the ANN first without a training weight, we
observe a higher RSMPE for counterparties in a sparsely populated rating class and
business sector combination. Since the EAD is generated using a log-normal distri-
bution (see Sect. 4.1), the peak for the EAD is 106 . To reduce the influence of these
highly populated areas during the training of the ANN and therefore the RMSPE, we
introduce a training weight.

The weight consists of two parts. First, we adjust the contribution for one coun-
terparty by the number of counterparties with similar EAD . To achieve this the
training data is divided into 50 EAD-buckets of constant width. The effect of each
training sample on the learning is reduced by a factor proportional to the number of
samples in the bucket it belongs to. Second, to not overemphasize the tail of the dis-
tribution, we introduce a linear downscaling by the term −10−9EAD.

The combination of the two parts and the scaling term of the second part are
determined experimentally, resulting in the training weight for a sample in bucket
b ∈ {1,… , 50}:

704 Digital Finance (2023) 5:689–716

1 3

where Cb denotes the number of counterparties in bucket b. With the help of train-
ing weights, the RMSPE could be reduced from 2.74% to 1.29% in the case shown in
Fig. 3.

1 −
Cb

maxj Cj

× 0.45 − 10−9EAD

0.00172

0.00176

0.00180

0.00184

6.5 7.0 7.5 8.0
log(EAD)

Va
RW

Without training weight

0.00172

0.00176

0.00180

0.00184

6.5 7.0 7.5 8.0
log(EAD)

Va
RW

With training weight

Fig. 3 Characteristic curve for rating class 1 and business sector 2, line is the prediction, data points are
the counterparties in the portfolio

Table 3 Setup of the ANN and credit portfolios

Parameter Value

Number of layers 6
Neurons per layer 64 - 64 - 64 - 64 - 64 - 1
Activation function eLu - eLu - ReLu - ReLu - ReLu - Linear
Optimizer Adam
Learning rate 10−4

Training weight 1 − 10−9EAD− scaling factor for data
density

Maximum number of epochs 5000
Input label Transformed EAD , PD and business sec-

tor of the counterparty
 Output label Transformed VaR of the counterparty
Number of portfolios 1
Number of counterparties per portfolio 20,000

705

1 3

Digital Finance (2023) 5:689–716

−4

−2

0

2

4

50−e650−e450−e200+e0
VaR / EaD

R
el

at
ive

 E
rro

r [
%

]

Fig. 4 Relative error for the ANN prediction, dotted line is the RMSPE, dashed lines are 95% - and 99%
-confidence intervals, data points are the counterparties in the portfolio

0.001700

0.001725

0.001750

0.001775

6.5 7.0 7.5 8.0
log(EAD)

Va
RW

Rating class = 1 | Business sector: 2

0.0317

0.0318

0.0319

0.0320

0.0321

0.0322

6.6 6.9 7.2 7.5
log(EAD)

Va
RW

Rating class = 10 | Business sector: 2

Fig. 5 Characteristic curve for rating classes, line is the prediction, data points are the counterparties in
the portfolio

706 Digital Finance (2023) 5:689–716

1 3

4.3.1.4 Setup of the ANN Like in the use case in Sect. 4.2 we varied several param-
eters of the ANN. Based on the transformations of EAD , VaR and the data density
described in the previous paragraphs, the setup of the ANN with the best fit is sum-
marized in Table 3.

4.3.1.5 Evaluation The evaluation of the trained ANN with the test data set resulted
in a RMSPE of 0.42% (cf. Fig. 4) for the counterparties in the portfolio.

As can be seen in Fig. 4, the relative error is highest for counterparties with small
values of VaR . Since the VaR roughly scales with the rating class (lower rating
classes correspond to lower VaR), this translates into lower (better) rating classes
contributing most to the relative error. This is due to two effects. First, these rating
classes are sparsely populated resulting in few training data points in this VaR range.
Second, good rating classes are characterized by few defaults, which increases the
variance of the VaR training data from the Monte Carlo simulation. Both effects
make it hard for the ANN to achieve a sufficiently good approximation for low VaR .
The RMSPE for the approximation of sparsely populated rating class 1 and business
sector 2 is 1.29% , whereas for the more populated rating class 10 and the same busi-
ness sector it is 0.27% (cf. Fig. 5).

The business sector also has an impact on the approximation error: The lower the
correlation between the counterparties in the sector, the higher is the approximation
error. The highly dependent business sector 1 has a RMSPE of 0.18% , sector 2 has a
RMSPE of 0.31% and sector 3 with the lowest dependency has a RMSPE of 0.63% .
This can be explained as follows: In the case of higher dependency (i.e. R2 value),
the information of the business sector (which is a model input) accounts for a greater
share of creditworthiness-volatility (i.e. evolution of Bi). In case of a lower depend-
ency, the information about the business sector is less valuable to the model, leading
to a higher approximation error.

4.3.2 Approximation using quadratic regression

Next, we solve the same task using an approximation model that relies on non AI-
based methods. Since the number of input labels is significantly smaller than in the
first use case, a wider range of methods become feasible. It turns out that a quadratic
approximation suggested by the following heuristic considerations is sufficient to
surpass the results of the neural network.

• For a given rating class and a given business sector, the VaR is proportional to
the EAD if the EAD is sufficiently small (i.e., as long as concentration effects are
negligible).

• The factor of proportionality is a function of the rating class and the business
sector.

• With higher values of EAD , the VaR increases faster than linearly, but the devia-
tions from linearity are still small if the ratio of the counterparty’s exposure to
the total exposure of the portfolio is small.

707

1 3

Digital Finance (2023) 5:689–716

−4

−2

0

2

4

50−e650−e450−e200+e0
VaR / EaD

R
el

at
ive

 E
rro

r [
%

]

Fig. 6 Relative error for the quadratic regression, dotted line is the RMSPE, dashed lines are 95% - and
99% confidence intervals

0.001675

0.001700

0.001725

0.001750

0.001775

0.001800

6.5 7.0 7.5 8.0
log(EAD)

Va
RW

Rating class = 1 | Business sector: 2

0.0317

0.0318

0.0319

0.0320

0.0321

0.0322

6.5 7.0 7.5
log(EAD)

Va
RW

Rating class = 10 | Business sector: 2

Fig. 7 Characteristic curve for rating classes, line is the prediction, data points are the counterparties in
the portfolio, data points are the counterparties in the portfolio

708 Digital Finance (2023) 5:689–716

1 3

A suitable approach using quadratic regression would therefore be

where a and q are functions of the rating class and business sector to be determined
by linear regression.

Results of this approximation are shown in Fig. 7 below. Training and testing this
quadratic regression with the same data set used for the ANN in the previous sec-
tions results in an RMSPE of 0.37% (cf. Fig. 6).

4.3.3 Discussion

Both the ANN and the quadratic regression (cf. Table 4 and Fig. 8) lead to similarly
low errors for the approximation of a counterparty’s VaR contribution to the overall
portfolio. The maximal relative error of the quadratic regression is lower compared
to the ANN because the non AI-based approach can cope better with the sparsely
populated rating classes. Therefore, the regression method performed better not only
with respect to the overall approximation error but also regarding runtime.

The approximation error of both methods is mainly limited by the intrinsic
error resulting from the Monte Carlo simulation, which is around 0.28% . The non

(5)VaRW = a

�
1 + q

EAD∑
j EADj

�
,

Table 4 Comparison of
the ANN and the quadratic
regression

ANN (%) Quadratic
regression
(%)

RMSPE 0.42 0.37
95% confidence interval 0.69 0.71
99% confidence interval 1.49 1.38

Fig. 8 Overview of approximation results from AI-based and non-AI based models

709

1 3

Digital Finance (2023) 5:689–716

AI-based approximation assumes a simple functional dependence between EAD and
VaR , which—in the case of our portfolio setup—captures the actual situation quite
accurately. In the regime of sparse training data, this gives a clear advantage over the
(model-free) ANN (cf. Fig. 7).

4.4 Use case 3: predicting model parametrization effects on total VaR

In the previous use cases, we used an ANN to predict the overall or counterparty
VaR as a function of changing portfolio or idiosyncratic risk parameters (i.e., EAD ,
PD) whereas the systematic risk parameters (i.e. dependency parameters) were held
constant. In times of an economic recession or due to other circumstances, these
parameters can also vary. Therefore, portfolio models need to be validated fre-
quently, which may lead to updated dependency parameters. In this section, we
investigate the capability of an ANN to predict the portfolio VaR with respect to
changing model parameters, while the underlying portfolio is constant. We will
focus on changing the dependency parameters, i.e.:

• dependency between counterparties and business sectors (intra-sector depend-
ency determined by Rk)

Table 5 Parameters for Vasicek
distribution

Label Mean Variance

Sector 1 0.3 0.01
Sector 2 0.15 0.01
Sector 3 0.05 0.01
Inter-sector correlation 0.25 0.01

Table 6 Setup of the ANN and credit portfolios

Parameter Value

Number of layers 6
Neurons per layer 6 - 8 - 6 - 6 - 4 - 1
Activation function ReLu - ReLu - ReLu - ReLu - ReLu - Linear
Optimizer Adam
Learning rate 10−3

Learning weight 1
Maximum number of epochs 1000
Input label Inter- and intra-sector correlation for the portfolio
Output label Transformed VaR of the portfolio
Number of portfolios 1500
Number of counterparties per portfolio 1000

710 Digital Finance (2023) 5:689–716

1 3

• dependency between the different business sectors (inter-sector dependency,
determined by the sector copula and its dispersion matrix Σ)

4.4.1 Approximation using an ANN

4.4.1.1 Creation of the portfolios Since the focus of this use case is the impact of the
dependency parameters, the counterparties within the portfolios should be constant.
Therefore, we create one master portfolio defining the parameters of each counter-
party and used it with different parameter sets for the dependency parameters.

During creation of the master portfolio, we include a concentration risk as
described in Sect. 4.1 within the VaR-calculation to provoke stronger non-linear
relationships between counterparties’ EAD and their VaR contribution.

4.4.1.2 Drawing sector correlations We draw the inter- and intra-correlation of sec-
tors from Vasicek distributions with parameters shown in Table 5. We choose the
mean to be the fixed value described in Sect. 4.1.

4.4.1.3 Transformation of VaR For better training performance, the VaR of the train-
ing portfolios is divided by the portfolio EAD before feeding it into the ANN. We

−10

−5

0

5

10

02.051.001.050.0
VaR / EaD

R
el

at
ive

 E
rro

r [
%

]

Fig. 9 Relative error for ANN, dotted line is the RMSPE, dashed lines are 95% - and 99% confidence
intervals, data points are the different configurations of the portfolio

711

1 3

Digital Finance (2023) 5:689–716

−10

−5

0

5

10

02.051.001.050.0
VaR / EaD

R
el

at
ive

 E
rro

r [
%

]

Fig. 10 Relative error of a fourth-order Taylor approximation, dotted line is the RMSPE, dashed lines are
95% - and 99% confidence intervals, data points are the different configurations of the portfolio

Table 7 Comparison of
the ANN and the Taylor
approximation

ANN 4th order Tay-
lor approxima-
tion

RMSPE 1.88% 1.77%

95% confidence interval 3.58% 3.47%

99% confidence interval 5.45% 4.87%

Fig. 11 Overview of approximation results from AI-based and non-AI based models

712 Digital Finance (2023) 5:689–716

1 3

do not perform any further transformation since the input labels, i.e. the correlation
parameters, are already all between 0 and 1.

4.4.1.4 Setup of the ANN The best setting of parameters we could find for the ANN
is described in Table 6.

4.4.1.5 Evaluation Evaluating the ANN with the test data set results in a RMSPE of
1.88% (cf. Fig. 9).

There is no obvious relationship between the VaR resulting from different cor-
relation parameter configurations and the quality of the approximation. There are
configurations outside the 95% confidence interval over the complete VaR spectrum.

4.4.2 Taylor approximation

As an alternative non AI-based method to solve the approximation task, we use
a non-linear regression based on the Taylor approximation of the ratio of the
total VaR to the total EAD . This is an appropriate method here as this ratio var-
ies slowly with model parameterization and the number of model parameters is
small.

The input labels x consists of 3 intra-sector dependencies and 3 independent
components of the dispersion matrix, x = (R1,R2,R3,Σ12,Σ13,Σ23) . We use the
following approach

where a denotes a 6-dimensional multi-index, x̄ the mean of x over the training data
and g the order of the approximation. The regression coefficients � (for a given order
g, � has (6g+1 − 1)∕5 components) are determined by minimizing the mean squared
error on the training data.

We evaluate this regression for different orders on the test data set (cf. Fig. 11).
Up to fourth order, the RMSPE decreases. For higher orders, the gain in precision
is neglectable. Overall, we achieve a RMSPE of 1.77% (cf. Fig. 10) with a fourth-
order approximation.

4.4.3 Discussion

For our parameter selection, both ANN and Taylor approximation (cf. Table 7
and Fig. 11) lead to similarly low approximation errors.

Again, the minimal error of both models is limited by the intrinsic error due to
the VaR Monte Carlo simulation.

The training and optimizing efforts are much lower for the Taylor approxima-
tion than for the ANN. Thus, in a scenario with a small number of parameters it
can be more favorable to use a non AI-based method. However, this may change
with an increasing number of parameters.

(6)VaR = EAD ⋅

∑
|a|≤g

𝛼a (x − x̄)a ,

713

1 3

Digital Finance (2023) 5:689–716

5 Summary

In this paper, we compare the performance of different (AI- and non AI-based)
approximation methods to speed up credit portfolio calculations. For the hypo-
thetical portfolios used, non AI-based methods (Taylor approximation or quadratic
regression) roughly match the performance of AI methods. In addition, non AI-
based methods require less training data and effort and are more transparent.

The availability of training data often restricts the use of AI models. In the case
of credit portfolio models, this problem is especially serious because of the high
dimensionality of the input data (usually on individual loan level). In the first use
case presented in this paper, we therefore employ a custom-made pre-processing
(binning) approach to limit the training data requirements. Subsequently, we focus
our work on two practically relevant cases that use a fixed loan portfolio as a point
of reference, which massively reduces the need for training data. Once successfully
trained to perform the approximation, AI models have the advantage that results can
be obtained extremely quickly, and that the approximation is able to capture a wide
range of non-linear relationships between input and output variables.

In summary, we demonstrate that there is a wide range of methods that can
be used to obtain quick approximations for credit portfolio calculations if certain
levels of approximation error can be accepted. Both AI and non AI-based meth-
ods perform well on our use cases and (hypothetical) sample portfolios. There-
fore, our recommendation for the use cases considered here is to start with non
AI-based methods even for larger or more concentrated portfolios; AI models
should only be used where non AI-based methods fail.

Appendix A: Copulas

According to Sklar’s theorem, a multivariate distribution function F on ℝd with
marginal functions Fi can be decomposed with the help of a unique copula
function

The t-copula is the copula function implicitly defined by the multivariate t-distribu-
tion with a given dispersion matrix Σ and � degrees of freedom. For more details on
copula functions and risk management, we refer to McNeil et al. (2015).

C ∶ ×d
i=1

Im(Fi) → [0, 1] such that

F(x) = C(F1(x1), ...,Fd(xd)) for all x ∈ ℝ
d.

714 Digital Finance (2023) 5:689–716

1 3

Appendix B: Detailed overview of methods and results of use case 1

Table 8 Additional methods for prediction of the total VaR

AI Method CUBIST SVR SVR XGBoost
Radial Linear

RMSPE 3.91% 4.18% 4.43% 4.98%
Max. outlier 47.5% 47.8% 22.5% 42.0%
Number of portfolios 63000 63000 15000 63000
Input labels C

b
 , C

b
⋅ E

b
 , C

b
⋅ P

b
C
b
 , C

b
⋅ E

b
 , C

b
⋅ P

b
C
b
⋅ E

b
 , C

b
⋅ P

b
C
b
 , C

b
⋅ E

b

Table 9 Additional methods for prediction of the total VaR

AI Method SVR 3rd degree Random MARS CART K Nearest
polynomial kernel Forest™ Neighbor

RMSPE 5.77% 6.79% 9.82% 11.0% 11.9%
Max. outlier > 100% 48.1% 48.0% 49.6% 37.6%
Number of portfolios 63000 31000 31000 31000 63000
Input labels C

b
⋅ E

b
C
b
⋅ E

b
C
b
⋅ E

b
C
b
⋅ E

b
, C

b
⋅ P

b
C
b
⋅ E

b

Variables used for the input labels: transformed number of counterparties Cb ,
transformed EAD Eb , for definition and details see 4.2.1 and transformed prob-
ability of default Pb , derived from binning in the same way as the other variables.

Maximal outliner is the highest relative error of a single test sample that
occurred in the predictions of the test data set (70/30 train/test split applied).

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The data underlying the findings are simulated. Therefore they cannot be shared. Infor-
mation regarding the data generating process are given within the article. If necessary, more information
are available upon request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Akhavein, J.D., Kocagil, A.E., & Neugebauer, M. (2005). A comparative empirical study of asset correla-
tions. Fitch Ratings, New York

Aziz, S., & Dowling, M. (2019). Machine learning and AI for risk management. In: Disrupting Finance:
FinTech and Strategy in the 21st Century, pp. 33–50

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

715

1 3

Digital Finance (2023) 5:689–716

Bhaskar Sundaram, R. (2022). An End-to-End Guide to Understand the Math behind XGBoost. Retrieved
10 Nov 2022 from https:// www. analy ticsv idhya. com/ blog/ 2018/ 09/ an- end- to- end- guide- to- under
stand- the- math- behind- xgboo st/

Breiman, L. (1984): Classification And Regression Trees (1st ed.). Routledge. https:// doi. org/ 10. 1201/
97813 15139 470

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https:// doi. org/ 10. 1023/A: 10109
33404 324

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. CoRR abs/1603.02754
Chun, S. Y., & Lejeune, M. A. (2020). Risk-based loan pricing: Portfolio optimization approach with mar-

ginal risk contribution. Management Science, 66(8), 3735–3753. https:// doi. org/ 10. 1287/ mnsc. 2019.
3378

Credit Swiss First Boston. (1997). Creditrisk+: A credit risk management framework. Technical report,
Credit Suisse First Boston: Technical report.

Dixon, M.F., Halperin, I., & Bilokon, P. (2020). Machine Learning in Finance vol. 1170. Berlin: Springer
Dorfleitner, G., Fischer, M., & Geidosch, M. (2012). Specification risk and calibration effects of a multi-

factor credit portfolio model. The Journal of Fixed Income, 22(1), 7–24. https:// doi. org/ 10. 3905/ jfi.
2012. 22.1. 007

Duffie, D. (2003). Credit risk: Pricing, Measurement, and management. Princeton series in finance.
Princeton: Princeton University Press

Düllmann, K., Küll, J., & Kunisch, M. (2010). Estimating asset correlations from stock prices or default
rates—which method is superior? Journal of Economic Dynamics and Control, 34(11), 2341–2357.
https:// doi. org/ 10. 1016/j. jedc. 2010. 06. 003

Geidosch, M. (2014). Asset correlation in residential mortgage-backed security reference portfolios.
Journal of Credit Risk 10(2)

Glasserman, P. (2004). Monte Carlo Methods in financial engineering. Stochastic Modelling and Applied
Probability. https:// doi. org/ 10. 1007/ 978-0- 387- 21617-1

Gordy, M., & Heitfield, E. (2010). Small-sample estimation of models of portfolio credit risk. Recent
Advances in Financial Engineering, 2009, 43–63. https:// doi. org/ 10. 1142/ 97898 14304 078_ 0002

Grundke, P., & Moosbrucker, T. (2008). Approaches to generate the loss distribution. In: The Definitive
Guide to CDOs, pp. 161–185

Gupton, G. M., Finger, C. C., & Bhatia, M. (1997). CreditMetrics: Technical document. New York: J.P.
Morgan & Co.

Hahnenstein, L. (2004). Calibrating the CreditMetrics correlation concept-Empirical evidence from Ger-
many. Financial Markets and Portfolio Management, 18(4), 358–381.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(8), 832–844. https:// doi. org/ 10. 1109/ 34. 709601

Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: A literature review
and classification. Frontiers of Business Research in China, 14(13). https:// doi. org/ 10. 1186/
s11782- 020- 00082-6

Jacobs, M. J. (2010). An empirical study of exposure at default. Journal of Advanced Studies in Finance,
1(1), 31–59.

Jakob, K., & Fischer, M. (2016). GCPM: A flexible package to explore credit portfolio risk. Austrian
Journal of Statistics, 45(1), 25–44. https:// doi. org/ 10. 17713/ ajs. v45i1. 87

Kalkbrener, M., & Onwunta, A. (2010). Validating structural credit portfolio models. Model risk—identi-
fication, measurement and management. London: Risk Books, pp. 233–261

Kuhn, M., & Quinlan, R. (2022). Cubist: rule- and instance-based regression modeling. https:// topepo.
github. io/ Cubist/

Lee, S.-C., Lin, C.-T., & Yang, C.-K. (2011). The asymmetric behavior and procyclical impact of asset
correlations. Journal of Banking & Finance, 35(10), 2559–2568.

Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A litera-
ture review. Risks. https:// doi. org/ 10. 3390/ risks 70100 29

Liu, S., Oosterlee, C.W., & Bohte, S.M. (2019). Pricing options and computing implied volatilities using
neural networks. Risks 7(1). https:// doi. org/ 10. 3390/ risks 70100 16

McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts. Techniques
and Tools-revised Edition: Princeton University Press.

Pfeuffer, M., Nagl, M., Fischer, M., & Rösch, D. (2019). Parameter estimation, bias correction and uncer-
tainty quantification in the vasicek credit portfolio model. Journal of Risk, 22(4), 1–29. https:// doi.
org/ 10. 21314/ JOR. 2020. 429

https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/
https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1287/mnsc.2019.3378
https://doi.org/10.1287/mnsc.2019.3378
https://doi.org/10.3905/jfi.2012.22.1.007
https://doi.org/10.3905/jfi.2012.22.1.007
https://doi.org/10.1016/j.jedc.2010.06.003
https://doi.org/10.1007/978-0-387-21617-1
https://doi.org/10.1142/9789814304078_0002
https://doi.org/10.1109/34.709601
https://doi.org/10.1186/s11782-020-00082-6
https://doi.org/10.1186/s11782-020-00082-6
https://doi.org/10.17713/ajs.v45i1.87
https://topepo.github.io/Cubist/
https://topepo.github.io/Cubist/
https://doi.org/10.3390/risks7010029
https://doi.org/10.3390/risks7010016
https://doi.org/10.21314/JOR.2020.429
https://doi.org/10.21314/JOR.2020.429

716 Digital Finance (2023) 5:689–716

1 3

Authors and Affiliations

Kevin Jakob1 · Johannes Churt2 · Matthias Fischer3 · Kim Nolte2 ·
Yarema Okhrin1 · Dirk Sondermann2 · Stefan Wilke2 · Thomas Worbs2

 * Kevin Jakob
 kevin.jakob.research@gmail.com

 Johannes Churt
 johannes.churt@basycon.com

 Matthias Fischer
 Matthias.Fischer@fau.de

 Kim Nolte
 kim.nolte@basycon.com

 Yarema Okhrin
 yarema.okhrin@wiwi.uni-augsburg.de

 Dirk Sondermann
 dirk.sondermann@basycon.com

 Stefan Wilke
 stefan.wilke@basycon.com

 Thomas Worbs
 thomas.worbs@basycon.com

1 Department of Statistics, University of Augsburg, Universitätsstraße 16, Augsburg 86159,
Bavaria, Germany

2 Basycon Unternehmensberatung GmbH, Welserstraße 1, Munich 81373, Germany
3 Department of Statistics & Econometrics, Friedrich-Alexander-Universität Nürnberg, Lange

Gasse 20, Nuremberg 90403, Bavaria, Germany

Premanand, S. (2022). The A-Z guide to Support Vector Machine. Retrieved 14 Oct 2022 from https://
www. analy ticsv idhya. com/ blog/ 2021/ 06/ suppo rt- vector- machi ne- better- under stand ing/

Sklar, A. (1959). Fonctions de repartition a n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris, 8,
229–231.

Sruthi, E.R. (2022). Understanding Random Forest. Retrieved 10 Nov 2022 from https:// www. analy ticsv
idhya. com/ blog/ 2021/ 06/ under stand ing- random- forest/

Turing, A.M., & Haugeland, J. (1950). Computing machinery and intelligence. In: Shieber, Stuart M
(2004) The Turing Test: Verbal Behavior as the Hallmark of Intelligence, Mit Press, pp. 67–96.

Vasicek, O. A. (2002). The distribution of loan portfolio value. Risk, 15, 160–162.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://www.analyticsvidhya.com/blog/2021/06/support-vector-machine-better-understanding/
https://www.analyticsvidhya.com/blog/2021/06/support-vector-machine-better-understanding/
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/

	Fast approximation methods for credit portfolio risk calculations
	Abstract
	1 Introduction
	2 Overview of credit portfolio model
	3 AI-based approximation methods
	3.1 Artificial neural networks
	3.2 Alternative AI methods
	3.2.1 CUBIST method
	3.2.2 Support Vector Regression (SVR) method
	3.2.3 Random Forest™ method
	3.2.4 Xtreme Gradient Boosted Trees (XGBoost) method

	4 Simulation study
	4.1 Data generation and simulation preparation
	4.1.1 Drawing EAD and PD
	4.1.2 Intensifying Concentration Risk
	4.1.3 Reducing Intrinsic Error of the Monte Carlo simulation
	4.1.4 Quality measures

	4.2 Use Case 1: predicting the total VaR of a credit portfolio
	4.2.1 Approximation using an ANN
	4.2.1.1 Drawing portfolios
	4.2.1.2 Data preparation

	4.2.2 Alternative methods and discussion of results

	4.3 Use case 2: predicting VaR on counterparty level
	4.3.1 Approximation using an ANN
	4.3.1.1 Creation of training and test data
	4.3.1.2 Data preparation
	4.3.1.3 Training weights
	4.3.1.4 Setup of the ANN
	4.3.1.5 Evaluation

	4.3.2 Approximation using quadratic regression
	4.3.3 Discussion

	4.4 Use case 3: predicting model parametrization effects on total VaR
	4.4.1 Approximation using an ANN
	4.4.1.1 Creation of the portfolios
	4.4.1.2 Drawing sector correlations
	4.4.1.3 Transformation of VaR
	4.4.1.4 Setup of the ANN
	4.4.1.5 Evaluation

	4.4.2 Taylor approximation
	4.4.3 Discussion

	5 Summary
	Appendix A: Copulas
	Appendix B: Detailed overview of methods and results of use case 1
	References

