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Improving the Transfer of Machine Learning-Based
Video QoE Estimation Across Diverse Networks

Michael Seufert, Member, IEEE, and Irena Orsolic

Abstract—With video streaming traffic generally being en-
crypted end-to-end, there is a lot of interest from network
operators to find novel ways to evaluate streaming performance at
the application layer. Machine learning (ML) has been extensively
used to develop solutions that infer application-level Key Perfor-
mance Indicators (KPI) and/or Quality of Experience (QoE) from
the patterns in encrypted traffic. Having such insights provides
the means for more user-centric traffic management and enables
the mitigation of QoE degradations, thus potentially preventing
customer churn. The ML–based QoE/KPI estimation solutions
proposed in literature are typically trained on a limited set of
network scenarios and it is often unclear how the obtained models
perform if applied in a previously unseen setting (e.g., if the model
is applied at the premises of a different network operator). In this
paper, we address this gap by cross-evaluating the performance
of QoE/KPI estimation models trained on 4 separate datasets
generated from streaming 48000 video streaming sessions. The
paper evaluates a set of methods for improving the performance
of models when applied in a different network. Analyzed methods
require no or considerably less application-level ground-truth
data collected in the new setting, thus significantly reducing the
extensiveness of required data collection.

Index Terms—video streaming, traffic encryption, machine
learning.

I. INTRODUCTION

Video streaming services are held accountable for the largest
portion of globally generated network traffic. According to
Ericsson Mobility Report from Nov. 2021 [1], video traffic
is estimated to account for 69 percent of all mobile data
traffic and its share is expected to increase to 79 percent by
2027. During the same time, total global mobile data traffic
is expected to grow 4.4 times. Additional strain on networks
has been put amid the COVID-19 pandemic. Dramatic surges
in network traffic have been observed corresponding to web
conferencing, video-on-demand and gaming services [2], [3],
with billions of people opting for or being forced into using
online meetings, education, entertainment, etc.

In the context of such immense amounts of generated
network traffic, it is becoming more and more important
to manage both the services and the networks in a way to
efficiently use available resources while keeping the customers
satisfied. This requires the understanding of how measureable
network- and application-level parameters influence end-users’
Quality of Experience (QoE) and thereupon invoking QoE-
aware service/network management mechanisms [4], [5]. A
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special research focus in this direction has been put on video
streaming sevices, due to their impact on the global network
traffic. Aiming to meet the users’ expectations, streaming
services may employ various quality adaptation strategies
(e.g., adaptive streaming in compliance with MPEG-DASH
[6]), utilize increasingly efficient compression techniques [7],
etc. Management mechanisms from the network perspective
may include, for example, QoE-aware resource (re)allocation
and (re)routing [8]. While the impact of application-level
parameters onto QoE is described in literature and embodied
in existing QoE models [9], [10], the relationship between
network-level metrics and QoE is far more complex to unveil,
particularly given the widespread use of encryption.

Motivated by the high interest from the industry, plenty of
research efforts have been put into describing the relationship
between network-level metrics and video streaming perfor-
mance [11]–[21]. In these studies, streaming performance is
commonly expressed in terms of QoE and/or application-level
key performance indicators (KPI) such as startup delay, video
encoding bitrate, and video resolution. Most of aforementioned
studies are exploiting methods from the domain of machine
learning (ML) in order to map the network traffic patterns
to quality degradations perceived by users. While proposed
approaches have proven to perform well on individual use-
cases focused on a particular streaming service and when
applied on a dataset collected in one particular experiment
setup, it is often unclear how well they generalize across
various use-cases. In this paper we go beyond related work
by investigating the applicability of such ML models across
different network setups and over longer periods of time.

The goals of this study are 1) to investigate how well
QoE/KPI estimation models perform when applied on data
collected in a different network setting and in a different
time period, and 2) to propose potential solutions for adapting
the models in order to perform well in new setups and over
extended periods of time. The paper evaluates various data
science methods for detecting and eliminating dissimilarities
in data from different sources, with the aim to reduce the
extensiveness of data collection while developing and main-
taining accurate QoE/KPI estimation solutions. We believe that
this research is of high interest to companies developing user
experience analytics solutions based on ML, as the presented
analysis and methods may help them reduce the time to
customize the solution for a specific network as well as reduce
maintenance costs.

The contributions of the paper can be summarized as
follows:
1) Large video on demand streaming datasets. During this
study, four datasets were collected using measurement setups
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described in Section III-A. The datasets were collected during
the period from July 2020 to August 2021 and differ in the
location where the measurement campaign was run (Würzburg,
Zagreb) as well as in the type of the access network (Ethernet,
Wi-Fi). All datasets include data corresponding to the same
set of 2000 distinct videos being streamed to a laptop, with
and without using an ad-blocking plugin, under 3 different
bandwidth constraints. This results in 48000 streamed video
sessions. The description of the dataset is given in Section
IV and we will publish the processed dataset (ready for ML
analysis) online1.

2) Dataset analysis. We analyzed and compared the datasets
in terms of both application-level data (Section IV-A) and
network traffic features. In Section IV-B we analyze network
traffic features on a per-video level, while in Section IV-C
network traffic features are analyzed on a per-second level. We
note that in this paper we consider session-level (per-video)
classification only, but both types of datasets are made publicly
available, and thus described.

3) Session-level QoE/KPI estimation models. We trained
numerous models for estimating QoE, startup delay, video
resolution, video bitrate, and rebuffering occurrence. For this,
we focus on shallow learning only, which proved to work
well for QoE/KPI estimation in related works. Moreover, since
QoE datasets are typically small due to the expensive dataset
creation, the added value and utility of training deep learning
models might be very small, such that we do not consider deep
learning in this work. Using a systematic approach, we com-
pare i) the performance of network-specific models (trained
and tested on a single dataset), ii) the performance of general
models (trained and tested on all datasets merged), and iii)
the cross-applicability performance of network-specific models
(trained on a single dataset and tested on all other datasets
separately). The models are trained and their performance
is analyzed for session-level (per-video) QoE/KPI estimation
(Section VI).

4) Analysis of methods for improving the model cross-
applicability. In order to reduce the exhaustiveness of data
collection for model training purposes, it would be valuable
if once trained models could be reused for other use-cases
(e.g., different networks/locations) besides the one they were
specifically trained for. Thus, we aim to investigate potential
solutions for improving the cross-applicability of the models
(Section V-C). We apply and evaluate methods based on
scaling, decomposition, manifold learning, ML-based feature
representation transfer, drift elimination, and enrichment (Sec-
tion VI).

The initial results of the study were published in [22], where
we trained and tested network-specific, cross-network, and
general models for session-level QoE/KPI classification on
a smaller sample of around 5000 videos collected in 2020.
This paper presents a much more comprehensive analysis
of cross-network model applicability and extends the initial
study by using a 10 times larger and more diverse dataset,
giving a deeper insight into the differences in data across
measurement scenarios. This paper builds on top of previous

1https://urn.nsk.hr/urn:nbn:hr:168:227338

work by assessing various additional methods for improving
model cross-applicability.

The paper is organized as follows. Section II outlines back-
ground and related work on ML–based in-network QoE/KPI
estimation models, applicability of such models across dif-
ferent usage settings, and potential for model adaptation and
transfer. Section III describes the measurement setup, data
collection campaigns, and data processing. The dataset is then
portrayed and analyzed in Section IV. Section V presents
the modeling procedure and methods for improving model
transfer. Results are shown and discussed in Section VI,
followed by a conclusion and outlook in Section VII.

II. BACKGROUND AND RELATED WORK

A. In-network video streaming QoE/KPI estimation
The idea of applying ML for estimating QoE and video

streaming KPIs in the network was suggested in [11]. The
proposed Prometheus approach outperformed existing solu-
tions that required control over the app services and domain
expertise. Soon thereafter, many of the popular video stream-
ing services started introducing encryption to their flows,
thus making some of the network traffic features needed as
input inaccessible. Hence, the study in [15] relied exclusively
on features obtainable from the encrypted traffic, but the
application-level ground-truth was still derived from non-
encrypted flows captured at a web-proxy. Building on top of
these ideas, the studies published in [23], [24] resulted with
approaches fully applicable in the context of encrypted traffic,
i.e, not needing the access to packet payloads at any phase of
the model training. These studies have proven the feasibility
of classifying YouTube video streams into QoE classes in a
per-video (session-level) manner based only on the statistical
properties of the encrypted traffic volume.

In parallel with the further development of session-level
QoE/KPI estimation solutions [25], [26], a number of real-
time KPI estimation approaches were proposed [13], [16],
[18]–[20], [27]–[29]. Such solutions, as opposed to session-
level ones, might be more appropriate for network operators
looking to dynamically manage QoE and optimize resource
allocation. Session-level approaches, on the other hand provide
per-video session metrics and may be more appropriate for
network planning purposes.

Focusing on the deployment of these ML–based models in
5G networks, in [30], [31] the authors present their simulations
used to assess such models when embedded in NWDAF
(Network Data Analytics Function) – an analytics entity in
5G with machine learning capabilities [32], [33].

Another interesting research avenue on QoE monitoring
for HTTP adaptive streaming (HAS) is the inclusion of user
behavior and its impact on traffic patterns and, consequently,
on model performance. In [21], [34], the authors explore this
important issue, given its relation to deploying robust QoE
monitoring solutions in the network.

B. Applicability of QoE/KPI estimation models across differ-
ent scenarios

Related work has barely scratched the surface of the prob-
lem of inherent dimensionality originating from the variety of
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possible video streaming usage scenarios. The cross-testing
efforts described in [25], [35] were focused on the appli-
cability of YouTube QoE/KPI classification models trained
in a lab setting on data collected in an operational mobile
network. Similarly, models trained on data collected on An-
droid platform were cross-tested with data collected on iOS
[25]. The paper reports limited cross-applicability capabilities,
with models demonstrating a decrease in performance. On the
other hand, the performance of general models, trained on the
dataset containing samples from both platforms is comparable
to that of models trained for a specific platform [20].

Similar conclusions, but focused on different services and
not platforms, have been found in [18]. The authors show
that developing well–performing general models is feasible if
the training set included data from all services. Applying the
model trained on Amazon, YouTube, and Twitch data to Net-
flix data resulted in a significant drop in model performance.
Regarding the generalization efforts, interesting approaches
can be found in [36], [37], where the authors investigate
challenges related to model sharing and a transfer-learning
approach which allows local models to learn a generic base
model for MOS, and then consider additional features for
location-specific QoE models. However, both approaches rely
on application-level KPIs and do not consider estimating QoE
from encrypted network traffic.

C. Adaptation and transfer of QoE/KPI estimation models

In real-life applications, data used as input for prediction
models often changes over time, making the performance of
the models degrade as newly generated data is presented to
them. Similarly, there might be slight differences between
the same type of data but generated by different sources. In
general, this phenomenon is known as the dataset shift or
dataset drift [38], [39]. Dataset shift can be divided into three
categories: 1) covariate shift (shift in independent variables,
2) prior probability shift (shift in the target variable), and
3) concept drift (target concept depends on hidden contexts
that are not explicitly provided to the learner algorithm) [40],
[41]. Depending on the domain, concept drift can appear sud-
denly (sudden, abrupt, instantaneous concept drift), gradually
(gradual concept drift), and temporarily disappear and reappear
(reoccurring concept drift) [42]–[44].

The strategies of handling the drift differ among these
types. Covariate shift can be detected using ML and the
drifting features can be excluded from model training later
on. This is done in the Drift elimination method, applied in
this paper. For sudden drifts, a common approach is to re-
train the model on instances captured both before and after the
sudden drift occurrence [38], [45]. This principle is adopted in
another method for improving transfer proposed in this paper:
Enrichment. Aiming to reduce the drift between the datasets,
we also test various feature transformation and dimensionality
reduction techniques, including Scaling, Decomposition, Man-
ifold learning [46], [47], and ML–based feature representation
transfer. These methods are described in more detail in Section
V-C.

III. DATASET PREPARATION

A. Measurement setup

The measurements were conducted using a Java–based
framework similar to [16], [48]. The measurement framework
is able to automatically start a Chrome browser using the Se-
lenium browser automation tool2. The browser was configured
to log all HTTP requests to a file (-log-net-log) and
QUIC traffic was enabled (--enable-quic). Optionally,
the browser could also load and install a Chrome extension
during startup. For a single measurement run, the browser
creates a new and isolated browsing session independent of
browsing history or previously stored session or user data
(e.g., cookies), and accesses the video streaming service main
page. After the page has fully loaded and occasional pop-ups
have been handled, the framework spawns a separate thread,
which captures the network traffic using tshark3. Next, the
browser accesses a single video page and injects a JavaScript–
based monitoring script [49], [50] into the webpage, which
periodically polls the current timestamp, the current video
playtime, buffered playtime, video resolution, and player state
every 250 ms. The video is then streamed for 180 s or until
the video end, and the application-layer information about
the streaming session is logged to a file. Afterwards, the
framework closes the browser and terminates the network
traffic capture, before a new measurement run can be started.

A list of 2000 videos was selected according to the popu-
larity of the video content, such that the full range of video
popularity, ranging from below 100 views to over billions of
views, was represented in the list. The measurements were
conducted in a high speed optical fiber campus network at
the University of Würzburg, Germany, in a cable broadband
network of an ISP in Würzburg, Germany, and in a cable
broadband network of an ISP in Zagreb, Croatia. In all
locations, the framework was installed on a laptop and a
Raspberry Pi 4 was used as a bridge to connect the laptop
to the network. The Raspberry Pi acted as a network emulator
and was able to limit the bandwidth using Linux traffic control
(tc). Three different network conditions were emulated in
both locations, namely, no limitation, a fixed limitation of
1 Mbps, as well as a stochastic limitation following an ex-
ponential distribution with a mean of 1 Mbps. The whole list
of 2000 videos was measured both without and with an ad-
blocking Chrome extension, in Würzburg and Zagreb, in all
three network conditions, both in 2020 and 2021, which results
in a dataset of roughly 48000 streamed video sessions. The
measurement runs were conducted over five months in 2020
(Jul. – Nov.) and over three months in 2021 (Apr. – Jun.). A
summary of the datasets is given in Table I.

B. Dataset preprocessing

For each measurement run denoted with year (2020, 2021),
location (Wue, Zag), bandwidth limitation setting (unlim-
ited, 1 Mbps, stochastic), and ad-blocking plugin status (on,
off), the raw datasets contain HTTP logs, measurement logs

2https://www.selenium.dev/
3https://www.wireshark.org/docs/man-pages/tshark.html
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TABLE I: Summary of collected datasets.

Label Network description Videos Measurement scenarios

Wue_2020 Ethernet, high speed optical fiber, campus network 11373 Datasets include the same set of 2000 videos played
under all combinations of following conditions.
Bandwidth limitations: 1) unlimited, 2) 1 Mbps,
3) stochastic
Ad-blocking plugin: 1) on, 2) off

Zag_2020 WiFi, cable broadband, home network 10993

Wue_2021 Ethernet, cable broadband, home network 9927

Zag_2021 Ethernet, cable broadband, home network 10914

Fig. 1: The collected raw datasets are processed into two
ML datasets that can be used for 1) session-level QoE/KPI
estimation and 2) real-time KPI estimation.

(application-level events), and network traffic traces. From
these logs, we generate two datasets that can later on be
used to train the QoE/KPI estimation models. We refer to
these datasets as session-level ML dataset and real-time ML
dataset, as opposed to the term raw datasets which we use
to describe initial logs. This is summarized in Figure 1.
Both datasets are .csv files with rows containing network
traffic features (statistical properties of the encrypted traffic)
and QoE/KPI labels. While in the session-level ML dataset
each row represents a single video with features and labels
describing the whole video session, in the real-time ML dataset
a row represents one second of a video streaming session.
These two ML datasets are publicly accessible online4 and
briefly described in the continuation of the paper. Due to
paper length limitations and limitations with regards to the
computation environment, in this study we train models using
session-level variant of the dataset only.

IV. DATASET CHARACTERISTICS

Out of the scheduled 48000 video streams, 43207 were
played, e.g., not skipped due to video being deleted or its avail-
ability settings changed over the course of the measurement
campaigns. Out of these videos, for further analysis we used:
8833 videos from Wue_2020, 9410 from Zag_2020, 5310
from Wue_2021, and 6640 from Zag_2021. The videos
were selected based on log consistency criteria in order to
exclude incomplete logs and measurement errors. The ML
datasets that we provide to the research community are filtered
based on these criteria.

4https://urn.nsk.hr/urn:nbn:hr:168:227338

A. Application-level data

We observe in Figure 2a that measurement durations follow
similar distributions in all datasets. The only notable differ-
ence is around 20 s offset for 10-12% of the videos, which
could be attributed to a change of advertisement strategy
between 2020 and 2021. In Figure 2b it can be seen that
the bandwidth limitations were applied as configured, as
roughly two thirds of the sessions have an average down-
link bandwidth of at most 1 Mbps with overlapping CDFs.
Regarding the sessions streamed with unlimited bandwidth,
it can be seen that Wue_2021 had slightly higher average
bandwidths than the other three datasets. However, the highest
average bandwidth was be observed in the Wue_2020 data
with 36.84 Mbps compared to 10.61 Mbps for Wue_2021,
4.37 Mbps for Zag_2021, and 4.33 Mbps for Zag_2020.
When comparing the ratio of active download time and session
duration in Figure 2c, we see a clear difference between
2020 and 2021 measurements, which indicates changes in
the adaptive bitrate logic and resulting download behavior
of the streaming service. Nevertheless, within each year, the
distribution of active download ratios is similar across both
locations.

We now look in more detail into the application-layer KPIs
among the four collected datasets. While most curves have
similar shapes across datasets, an interesting observation is
that average video resolutions were often higher in Wue_2021
as compared to the other datasets (Figure 2e), consequently
resulting in longer startup delays (Figure 2d) and higher
average bitrates (Figure 2f). With the exception of Wue_2021,
which has a large portion of videos played in 1080 p, most
commonly observed resolutions were 480 p and 720 p (Figure
2e). Most of the average video encoding bitrates are under
1000 kbps and the values are very rarely exceeding 3000 kbps
(Figure 2f). Stalling was noted in approximately 40% of the
played videos (Figure 2h), rarely occurring multiple times in
a single video, and half of the videos with stalling events had
a total stalling time of less than 2 seconds (Figure 2i). MOS
values in all datasets cover a range from roughly 3.0 to 4.7,
with half of the values above 4.5 (Figure 2j).

B. Session-level network traffic features

We aggregated the packet-level traces - consisting of time-
stamp, src/dst IP address, src/dst port, protocol type, packet
size - of each video session into a set of 109 features,
which characterize the traffic using statistical descriptors,
see Table II. These features were selected based on domain
knowledge and related works, e.g., [27] and include session
duration, as well as packet count, count of packets greater than
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(a) Measurement duration. (b) Downlink bandwidth.

(c) Active download time. (d) Startup delay.

(e) Average resolution. (f) Average video bitrate.

(g) Number of quality changes. (h) Number of stalling events.

(i) Total stalling time. (j) MOS.

Fig. 2: Distributions of KPIs/QoE across datasets.

TABLE II: Overview of recorded data from stream of en-
crypted packets and the derived features.

recorded data derived features

packet count (dir.: ul/dl; size: all/>100 B)
packet size volume (dir.: ul/dl), distribution (dir.: ul/dl; size: all/>100 B)
packet IAT distribution (dir.: ul/dl)
time slot volume distribution (dir.: ul/dl; slot length: 100 ms/1 s/10 s)
throughput avg. session throughput (dir.: ul/dl),

avg. start phase throughput (dir.: dl, phase length: 1 s/5 s/10 s)
duration session

TABLE III: Overview of classification targets per QoE metric
and respective split conditions. *MOS and startup delay are
only considered in session-level estimation

QoE metric definition

MOS* regression
startup delay* short (<5 s), long (≥5 s)
avg. resolution high (≥700 p), low (<700 p)
stalling false (no stalling), true (contains stalling)
avg. bitrate high (≥500 kbps), low (<500 kbps)

100 bytes, volume, and average throughput for both uplink and
downlink traffic. We also add the active download ratio and
the average downlink throughput in the first 1/5/10 seconds.
Moreover, we consider the distribution of packet size, packet
size of packets greater than 100 bytes, packet inter-arrival time,
and data volume in 0.1/1/10-seconds time slots for both uplink
and downlink traffic. From these distributions, we compute
mean, variance, standard deviation, coefficient of variation,
skewness, kurtosis, minimum, and maximum and also add
these descriptors to the set of features.

The distribution of each feature was compared between
all six pairs of datasets using the univariate Wald-Wolfowitz
runs test and the univariate Kolmogorov-Smirnov test. We
found that at most 14% (WW runs test), or 6% (KS test),
respectively, of the columns do not show a significant dif-
ference with respect to the 5% significance level, and thus,
can be considered similar. These findings persist even when
scaling the data to standard scores, both when using a common
scaling for both datasets or when using individual scaling per
dataset. We additionally conducted the multivariate Friedman-
Rafsky runs test and the multivariate Kolmogorov-Smirnov
test according to [51] over all features. The tests were con-

Fig. 3: Distribution of samples across datasets and classes for
session-level QoE/KPI classification.
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ducted on a 5% random sample of the datasets due to the
computational complexity of the multivariate tests. Here, when
using Euclidean pairwise distance, we find high p-values for
some pairs, namely, for Wue_2020 and Wue_2021 (p =
0.60), Wue_2020 and Zag_2021 (p = 0.34), Zag_2020
and Wue_2021 (p = 0.57), Zag_2020 and Zag_2021
(p = 0.65), and Wue_2021 and Zag_2021 (p = 0.09). This
suggests that these pairs of datasets are not too different from
a statistical point of view. However, considering Mahalanobis
distance or applying standard scaling minimizes p-values for
all pairs to below 0.01, and thus, confirms that the session-level
features become highly different when streaming videos from
a different network. This can cause problems when applying
ML methods trained on one dataset to another dataset, as we
will showcase below. Thus, it is required to research and apply
mechanisms which can improve the model transfer.

Considering the labels, the datasets contain all KPIs in
Figure 2 (d)-(j), namely, startup delay, average resolution,
average video bitrate, number of quality changes, number of
stalling events, total stalling time, and MOS as estimated by
the standardized QoE model from ITU-T Recomm. P.1203 [9].
We additionally apply a simple binary classification into high
(≥ 700p) or low average resolution, existing (true) or non-
existing (false) stalling, short (< 5 s) or long startup delay,
and high (≥ 500 kbps) or low average bitrate according to
thresholds listed in Table III. The resulting distribution of
samples across datasets and classes is depicted in Figure 3.
It can be seen that all classes have a substantial amount of
instances, with the minimum of 1861 instances.

C. Real-time network traffic features

The real-time network traffic features are based on the same
raw data as the session-level features. However, here, the
packet-level traces are split into small time slots of 1 second,
which results in a dataset containing more than 5 million time
slots. For each time slot, the traffic is described with a set of
features and labeled with the corresponding application-level
KPIs, namely, the current resolution and average bitrate of the
played out representation and whether the video is currently
stalling or not. When we apply binary classification using
the same thresholds as above (Table III), this results in the
distribution of samples across datasets and classes, which is
depicted in Figure 4. Having these features and labels with
one second granularity allows to train ML models, which can
estimate the video streaming KPIs every second, and thus,
allows for a fine-granular real-time tracing of the QoE.

The feature set is the same set that was used in [16], [17].
First, we compute packet count (total, uplink, downlink), traf-
fic volume (total, uplink, downlink), uplink and downlink ratio
of packet count and traffic volume, and number and volume as
well as ratio of TCP and UDP packets. In addition, we consider
the time from time slot start until the first uplink and downlink
packet and time from the last uplink and downlink packet until
time slot end, which give the burst duration (total, uplink,
downlink) within the time slot. We compute the time slot
throughput (total, uplink, downlink), burst throughput (total,
uplink, downlink), as well as distributional statistics (mean,

Fig. 4: Distribution of samples across datasets and classes for
real-time KPI classification.

variance, standard deviation, coefficient of variation, skewness,
kurtosis, minimum, maximum) for both the packet size and
inter-arrival time distribution for uplink and downlink traffic.
Finally, we compute slope and intercept of the regression line,
which fits the cumulative upload and download volume and
cumulative uplink and downlink inter-arrival times within the
time slot. This results in a total of 69 features per time slot.

Additionally, we compute features to track trends as well as
the overall state of the ongoing session. The trend features use
a sliding window of length 3 seconds, i.e., three consecutive
time slots. The time slots are considered as a single trend
macro time slot of 3 seconds for which the same 69 features
are computed as for the micro time slot of 1 second. In a
similar fashion, we compute features of a session macro time
slot, which are based on all past time slots including the
current one. This results in a total of 208 features (time slot
number + 69 time slot features + 69 trend features + 69 session
features).

V. METHODOLOGY FOR TESTING CROSS-APPLICABILITY

The methodology for testing cross-applicability of models is
summarized in Fig. 5, while the following subsections provide
more detailed information about the depicted steps.

A. Model selection

To find the best model and hyperparameters, we follow a
two stage approach using scikit-learn. First, we do a
broad study on different model types and very few hyper-
parameter combinations. For this, we focus on each data-
set individually and additionally filter out all videos, which
contain an advertisement. We compare the performance of
different classifiers for the binary classes described above.
We undersample the classes to obtain a balanced dataset
and avoid any preprocessing of the features, such as scaling.
We perform an 80:20 training/test split, apply 3-fold cross-
validation on the training set, and compare the performance
of Gaussian Naive Bayes, Stochastic Gradient Descent, k-
Nearest Neighbors, Decision Tree, Random Forest, Extremely
Randomized Trees, Gradient Tree Boosting, XGBoost, and
Support Vector Machine classifiers. Similarly, we study the
performance for continuous P.1203 MOS estimation on the
session-level datasets using Bayesian Ridge, Stochastic Gra-
dient Descent, k-Nearest Neighbors, Decision Tree, Random
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Fig. 5: Methodology for testing model cross-applicability, repeated for each combination of dataset and KPI.

Forest, Extremely Randomized Trees, Gradient Tree Boosting,
XGBoost, and Support Vector Machine regressors.

Our results confirmed earlier findings, e.g., [17], that tree-
based models provide the best trade-off between estimation
accuracy and training and inference speed. In the study, we
compared the obtained F1 scores for all algorithms. The results
have shown that Random Forest was either outperforming all
other algorithms or sharing the top result (when F1 score is
rounded to 2 decimals) with one of the following: Support
Vector Machine, XGBoost, Gradient Tree Boosting. For con-
sistency purposes and to reduce the number of test iterations,
we decided to test the subsequent steps of the methodology
using Random Forest only. We also note that some algorithms,
e.g., Support Vector Machine, gave comparable results to
Random Forest, but are computationally much more intensive,
additionally motivating not considering them further. Thus, we
focus on Random Forest models for the rest of this work.
As a second step of the hyperparameter study, we then focus
exclusively on Random Forest and explore a larger set of
hyperparameter combinations for that algorithm. This includes
different max tree depth values of 3, 5, 8, 10, or None (no
limit), and different numbers of trees, ranging from 20 to 200
in steps of 20. Additionally, we allow a feature selection using
the SelectKBest algorithm, selecting either all features or the
features with the k highest scores. Here, parameter k ranges
from 5 to 50 in steps of 5, and scores are computed either
based on mutual information or F-score.

B. Baseline establishment

Using Random Forest with maximum tree depth and number
of trees determined in the hyperparameter study, we evaluate
the performance in the following cases:

• Network-specific evaluation – Each model is trained on a
subset (66%) of the dataset and tested on the rest (34%)
of the same dataset. This results in 20 models, estimating
5 QoE metrics for 4 datasets.

• Cross-testing – Each of the 20 network-specific models
(trained as defined above) are tested on the remaining 3
datasets.

• General model evaluation – Models are trained on a
subset (66%) of the merged datasets (containing samples
from all 4 datasets) and tested on the rest of the merged
dataset (34%).

These results are then used as a baseline for assessing
the methods for improving the transfer. Our expectation is
that our methods for improving transfer would yield model
performance between the one achieved with cross-testing and
network-specific evaluation. The goal of the transfer improve-
ment is to get as close as possible to the results obtained with
network-specific and general models without needing all the
data that was used for baseline models.

C. Improving transfer

For the remainder of this work, we will refer to the dataset,
on which a model was originally trained, as the source dataset
or source domain. We will consider the other dataset, on
which the trained model is tested, as the transfer dataset
or transfer domain. Aiming to improve the model transfer
in comparison to the results obtained via cross-testing, we
identify and assess methods based on scaling, decomposition,
manifold learning, ML-based feature representation transfer,
elimination of drifting features, and enrichment of the source
dataset with the data from the transfer domain. This section
describes the used methods.

Scaling. We apply min-max-scaling and standard scaling to
each feature individually based on three modes. First, for a pair
of datasets (source and transfer), we train the scalers only on
the source dataset, and apply them to both source and transfer
datasets (source (S)). Second, we train and apply two scalers
independently of each other, one on the source dataset and one
on the transfer dataset (source & transfer, (S&T)). Finally, we
add 10% of the transfer dataset to the source dataset only
for training a single scaler. Afterwards, the trained scaler is
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applied to both original source and transfer datasets (source
merged (SM)).

Decomposition. We use the decomposition-based methods
Principal Component Analysis (PCA) and Canonical Correla-
tion Analysis (CCA), which allow to reduce the dimensionality
of datasets by concentrating most of the dataset’s variance
in fewer dimensions using a linear transformation. For PCA,
we linearly transform the datasets keeping all components,
i.e., without reducing dimensionality. Note that the subsequent
feature selection can act as dimensionality reduction in this
case. CCA is a supervised approach requiring labels. It reduces
the datasets to a single component, i.e., a single dimension. For
both PCA and CCA, we again apply all three modes source,
source & transfer, source merged.

Manifold learning. We apply manifold learning, which
is a non-linear dimensionality reduction technique, in par-
ticular Local Linear Embedding (LLE) and Isomap. While
LLE computes a lower-dimensional projection of the dataset
that preserves distances within local neighborhoods, Isomap
computes a lower-dimensional embedding which considers
distances between all data points. For both LLE and Isomap,
we again apply all three modes source, source & transfer,
source merged. Additionally, we implemented semi-supervised
manifold alignment (SSMA) [46], [47] in mode source &
transfer, which considers distances of pairs of corresponding
instances between source and transfer datasets. We construct
these pairs from the video sessions in both datasets, which
streamed the same video under the same bandwidth limitation,
and compute their distance according to their application-
layer KPIs, namely initial delay, number of stalling event,
total stalling time, number of quality changes, average quality,
and average bitrate. While the embedding is learned from the
corresponding pairs, it can then be computed also for all other
data points.

ML-based feature representation transfer. We implemented
an ML-based feature representation transfer (MLFRT) in mode
source & transfer, which again considers the same pairs of
corresponding instances between source and transfer datasets
as above. It trains a multi-output Random Forest regressor
to transform the features from the transfer dataset into the
corresponding features of the source dataset. It performs a
3-fold cross-validation to find the best hyperparameters from
the considered Random Forest hyperparameter set described
above. Afterwards, it transforms the transfer dataset into its
source domain representation.

Drift elimination. For a pair of datasets (source and trans-
fer), we find the features that differ among the two datasets and
eliminate them prior to model training on the source dataset.
The assumption here is that the model would perform better on
the transfer dataset if it relies only on features that are similar
in the two datasets. To identify drifting features, we evaluate
how well can models based on one feature classify the origin
of the sample (source or transfer dataset). Concretely, we take
network traffic features of both datasets, and label the samples
with their origin (dataset). Then, for each feature, we train a
Random Forest model that classifies the origin based on that
feature only and evaluate it through 2-fold cross-validation. If
the model performs well, the feature is considered as drifting.

(a) Classification. (b) Regression.

Fig. 6: Performance of baseline and general models.

In the analysis described later, we eliminate the features based
on the area under the receiver operating characteristic curve
(ROC AUC), which is a measure for the goodness of the
classification performance. This means, we eliminate features
that exceed the drifting threshold set to ROC AUC > 0.7
and ROC AUC > 0.8.

Enrichment. The source dataset is enriched with a labeled
subsample from the transfer dataset. We evaluated three in-
tensities of enrichment that we later refer to as 10%- 20%-
and 30%-enrichment, depending on how much data from the
transfer domain is added to the source domain training set.
Note that 10% enrichment means that to the balanced source
dataset that has the size of N samples, we add 0.1N samples
from the transfer dataset. The rest of the transfer dataset
samples are used for testing.

VI. EVALUATION

We established the baseline by training and testing models
in a network-specific fashion. The performance of such models
is depicted in Figure 6. The figure also shows the performance
of general models trained and tested on the merged dataset
consisting of samples from all four datasets (denoted by “all”
in the Figure). For all KPIs, general models outperformed
network-specific models. This indicates that introducing data
from different sources into model training results in better
coverage of feature space, thus increasing the performance
over all datasets. The estimation of P.1203 is an exception
in that regard, which could be explained by MOS generally
being a more complex concept, but also poor results obtained
on individual datasets (e.g., Zag_2021). The figure shows
that models trained and tested on Wue_2020 perform better
in comparison to other network-specific models. This may be
attributed to somewhat clearer separation between the classes
for that particular dataset (cf. Figure 2).

Figure 7 evaluates the classification performance of the
investigated transfer methods on the transfer dataset. For this,
we compare the performance of models, which are trained on
the source dataset and transferred to the transfer dataset, to the
performance of the best model trained on the transfer dataset,
which acts as baseline. The different methods to improve
transfer are depicted on the x-axis. The plot shows boxplots
for each method, which describe the distribution of difference
in F1 score compared to baseline over all 12 source/transfer
dataset combinations and all 4 classification targets, i.e., in
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Fig. 7: Transfer dataset classification performance of models trained on source dataset using different methods for improving
transfer compared to best model trained on transfer dataset (baseline). Positive values indicate improvement wrt. to baseline.

total 48 combinations. The median (50-percentile) is depicted
as an orange line, the box extends from the lower to the upper
quartile (25- to 75-percentile), whiskers reach from 5- to 95-
percentile, and extreme values beyond the whiskers are plotted
as individual points. Positive values indicate improvements
with respect to the baseline while negative values show a
decrease in F1 score. For example, considering the leftmost
box for ”No Preprocessing”, the lowest point at -0.38 indicates
that there was a combination of source dataset, transfer dataset,
and target for which the transferred model had an F1 score,
which was 0.38 lower than the baseline result. This shows
that the performance of trained models can substantially drop
when models are applied to other datasets for which they have
not been trained and no method for improving the transfer is
applied. Nevertheless, the median difference when applying no
preprocessing is at -0.05 and the upper whisker extends to the
maximum value of -0.01, which suggests that performance of
the transferred models without any preprocessing can be also
close and only slightly below the baseline.

We see a similar range of performance differences for most
of the investigated source mode (S) methods. In particular, we
find that more complex methods cannot outperform simple
scaling approaches. When investigating those distributions
more closely, we could not find any regularity concerning
source dataset, transfer dataset, or target. Thus, we infer
that the actual combination itself and its peculiarities in the
concrete training and test sets define whether a certain methods
performs close to the baseline or not. When investigating
the methods in S&T mode, we see that, except for standard
scaling, the boxes and whiskers extend to much lower val-
ues, which means that those methods can result in much
higher performance degradation compared to the baseline.
In addition, LLE and Isomap have a strongly negative 95-
percentile (upper whisker), while PCA, SSMA, and MLFRT
even have a strongly negative maximum value in S&T mode,
such that they will almost always (LLE, Isomap) or always
(PCA, SSMA, MLFRT) result in a substantial performance
loss, and thus, cannot be not recommended. Considering the
methods in SM mode, where some transfer data is merged to
the source data before training the methods, we see similar

performance than for the methods in S mode. Thus, also here,
transfer performance can be close to the baseline, but can also
lead to a substantial F1 score reduction. The most consistent
performance is reached by CCA (SM), which reaches values
close to the baseline in almost all cases, but requires labels
from the transfer domain. In contrast, all unsupervised ap-
proaches cannot outperform simple scaling methods, and thus,
cannot ensure high performance when models are transferred.

Finally, we investigate the performance when eliminating
drifting features or enriching the source dataset with a labeled
subsample of the transfer dataset, which is depicted in the
five rightmost boxes in Figure 7. Here, we can see that all
boxes intersect the red zero line, having values closer to the
baseline and in some cases even extending to positive values.
Here, again the fluctuations around the zero line might be
depending on the peculiarities of the actual data. Neverthe-
less, generally, boxes are smaller and we see a much more
consistent performance with respect to the baseline, which
means that they almost always avoid severe performance
degradation when using the transferred models. Thus, we
conclude that both methods are well suited for improving
the transfer performance. While enrichment gives the best
results, which was expected, it has the drawback that a labeled
subsample of the transfer dataset is required, which might
typically not be available. However, drift elimination provides
an almost equally good performance without requiring labels
from the transfer dataset. Therefore, it is much more applicable
in typical transfer scenarios, and thus, proves to be the most
valuable method for improving transfer here.

Similarly to Figure 7, Figure 8 depicts the transfer dataset
performance for P.1203 MOS estimation, which is a regres-
sion task. The figure shows a boxplot for the distribution
of difference in root mean square error (RMSE) between
transfer methods and baseline result over all 12 source/transfer
dataset combinations. Note that RMSE results are on the same
scale as MOS values, and that, as the differences (errors)
between estimated and actual P.1203 MOS values need to
become smaller, thus, in this figure, negative values indicate
an improvement with respect to the baseline. The best results
on the transfer dataset are again reached by enrichment. We
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Fig. 8: Transfer dataset regression performance of models trained on source dataset using different methods for improving
transfer compared to best model trained on transfer dataset (baseline). Negative values indicate improvement wrt. to baseline.

can see that these boxes are located around the baseline and
in some cases extending to negative values, i.e., to smaller
RMSEs than the baseline models.

For other methods, it can be seen that the results gener-
ally resemble the previously shown results for classification
performance. In particular, we see that most methods result
in a modest increase of RMSE with respect to the baseline
between 0.05 and 0.15 when the models were trained on the
source dataset with only few outliers. We also can observe that
S and SM mode models perform similarly, and that S&T mode
models perform typically worse. Again, the most consistent
performance is given by CCA (SM), which can reach RMSE
values closely above the baseline in all cases, but requires
labels from the transfer domain. Looking at the results for
drift elimination, we can see that it gives slightly worse RMSE
compared to the baseline in most cases, and can only improve
the RMSE in a single source/transfer dataset combination. This
is different from the classification results above, and shows that
this method not always can reach a transfer performance on a
par to baseline models. Still, it provides the best performance
when considering only unsupervised methods, which do not
require labels from the transfer domain.

In the following, we investigate drifting features in more de-
tail. Figure 9 shows the most severely drifting features across
all datasets. The severity of drift is measured as ROC AUC
in the 2-fold cross-validation of the model classifying the data-
set origin. Since feature drift is tested for distinct dataset pairs,
this gives 6 evaluations of ROC AUC (one for Wue_2020
and Wue_2021, one for Wue_2020 and Zag_2020, etc.).
The Figure shows the number of evaluations (dataset pairs) in
which the feature was identified as drifting and the average
value of ROC AUC. Note that the average only takes into
account evaluations in which ROC AUC was higher than
0.7. For example, the maximum size of uplink packets greater
than 100B was drifting in all 6 evaluation, with average drift
across 6 evaluations equal to 0.9577. The maximum download
data volume in slots of 100ms was drifting in 2 evaluations,
with average drift across those 2 evaluations being 0.8068.

The most severely drifting features are related to maximum
length of uplink and downlink packets. As these features

Fig. 9: Features identified as most drifting.

correspond to a largest packet for each video, the values are
expected to be defined by link properties and should not vary
a lot across video samples originating from the same dataset.
We confirm that with Figure 10a where it is visible that the
max downlink packet length is typically consistent within a
dataset, but the feature clearly separates distinct datasets.

In Figure 10b, we inspect the drift of the minimum inter-
arrival time of uplink packets across datasets. The minimum
value of inter-arrival time is typically reached when there are
two consecutive packets on the uplink, which are very small,
and the link is not congested. In this case, this feature can be
considered a proxy for the available link capacity. The figure
shows that, especially for larger values, the feature clearly
separates the datasets.

Finally, we look into the distributions of the minimum size
of non-trivial uplink packets in Figure 10c, i.e., packets greater
than 100KB, which excludes pure acknowledgement packets.
It can be seen that datasets collected in the same year are more

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3326664

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

(a) Maximum size of downlink
packets greater than 100 B.

(b) Minimum of uplink inter-
arrival time.

(c) Minimum size of uplink
packets greater than 100 B.

Fig. 10: Distributions of selected drifting features.

similar when it comes to this feature. Thus, while our previous
examples showed drifts in the network characteristics, this
hints at a drift happening on the application side. In particular,
we assume that the size of the non-trivial uplink packets has
increased by a few bytes most likely due to having introduced
a new field into the uplink data before our 2021 measurements.

To sum up, our evaluations showed that a consistent per-
formance on the transfer dataset close to the baseline, i.e., a
model specifically trained on the transfer dataset, can only be
reached by using labelled data from the transfer dataset. The
best method is enrichment of the source dataset with labelled
data from the transfer domain, which can even improve on the
baseline in some cases. The reason is that this method not only
allows to use a larger dataset for training the model but also
allows to consider examples collected in the transfer domain,
which help to learn meaningful and more general concepts
that apply to both source and transfer domains.

However, in a typical transfer scenario, such labels from
the transfer domain will not be available, which prevents to
use enrichment. In this case, while most methods could not
outperform simple scaling, we found drift elimination to be the
best method for reaching performance close to the transfer
baseline. By eliminating drifting features, which does not
require labels from the transfer domain, the trained models
need to focus on features that are similar in both domains.
This removes domain-specific peculiarities, such as maximum
downlink packet size from the data, and thus, forces models
to ignore them and focus on learning more general concepts
instead. Consequently, models trained only on similar features
should also give similar performance on both datasets. Our
results showed that, for MOS regression, the performance
of this method was only slightly worse than the baseline

performance, while for the classification tasks, its performance
was mostly on a par with the baseline or the enrichment
method. This shows that drift elimination can be recommended
for typical transfer scenarios.

VII. CONCLUSION AND OUTLOOK

Machine learning has been heavily used for estimating KPIs
and QoE of video streaming flows in the network. While
providing promising results in terms of estimation model
performance, such approaches typically require extensive data
collection - both of network traffic features and application-
level performance information. Considering the wide variety
of scenarios in which video streaming could be used (e.g.,
different devices, networks, operating systems), it is clear that
including all of the possible scenarios in the data collection
is demanding, if not impossible. In this paper, we tackled
the problem of data collection extensiveness by evaluating
whether an existing model trained on data from one network
could be adapted and used on data obtained from a different
network. The adaptation methods used in the paper require
only network traffic features without labels (which can be
calculated from the traffic generated by real users, without
test devices), or require a significantly smaller labelled dataset
from the network for which the model is adapted.

The paper evaluated adaptation methods based on scaling,
decomposition, manifold learning, ML–based feature repre-
sentation transfer, drift elimination, and enrichment. While the
evaluation pointed out that enrichment of the source dataset
with labelled data from the transfer domain and the elimina-
tion of drifting features are the most promising methods for
improving the transfer of models in this context, subsequent
studies are needed to address related research questions. An
interesting way forward may be to explore combinations of the
described methods. For example, eliminated drifting features
could be transformed and introduced back into the dataset.

Apart from the session-level QoE/KPI estimation models
considered in this work, we will investigate whether the
same methods are as promising in the case of real-time KPI
estimation using the collected real-time ML dataset, or when
considering transfer between different bandwidth limitation
conditions. Moreover, the methodology could be repeated
for new datasets obtained in scenarios differing in aspects
other than network (e.g., mobile operating system, streaming
service).

When it comes to collecting new datasets, a big challenge is
obtaining a good coverage of the feature space. For the model
to learn to detect QoE degradations, the training set needs to
include such degradations. Existing literature, however, does
not provide guidelines on how to collect data to ensure a
good coverage of scenarios that may occur in an operational
network. Another challenge is related to assessing the needed
size of the dataset to train robust QoE/KPI estimation models.

Additional questions arise when considering practical appli-
cation of the models. The research focus in the area has mainly
been on developing methodologies, while deploying solutions
based on proposed methodologies would require experimenta-
tion, adaptation, and customization. The amount of resources
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(compute, storage, network) needed for 1) real-time processing
of the traffic and calculating the traffic features, and 2)
executing the model on calculated features will depend on the
available infrastructure. There is a number of solution design
choices that may be considered in that regard. For example,
an ISP may be willing to sacrifice some model performance
(e.g., using simpler models) if that would significantly reduce
the computation cost. Moreover, they might not be interested
in assessing the QoE of each and every session, but rather in
sampling the traffic in a meaningful way.

With respect to the methods that may be considered in future
work, we also see deep learning based methods as worth
exploring when large datasets are available. In particular,
this includes approaches using pre-trained and frozen layers
obtained from the source dataset and newly added trainable
layers, which can adapt the model decisions to the transfer
dataset. Another promising direction are models for learning
more meaningful representations, such as transformers, which
can potentially learn embeddings that are more independent
of certain network peculiarities, and thus, allow for a better
transfer performance. We will investigate these approaches in
future works.
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[44] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An Overview of Concept
Drift Applications,” in Big data analysis: new algorithms for a new
society. Springer, 2016, pp. 91–114.
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