
Applied Intelligence (2023) 53:30865–30886
https://doi.org/10.1007/s10489-023-05062-w

Imitation learning by state-only distribution matching

Damian Boborzi1 · Christoph-Nikolas Straehle2 · Jens S. Buchner3 · Lars Mikelsons1

Accepted: 28 September 2023 / Published online: 29 November 2023
© The Author(s) 2023

Abstract
Imitation Learning from observation describes policy learning in a similar way to human learning. An agent’s policy is trained
by observing an expert performing a task. Although many state-only imitation learning approaches are based on adversarial
imitation learning, one main drawback is that adversarial training is often unstable and lacks a reliable convergence estimator.
If the true environment reward is unknown and cannot be used to select the best-performing model, this can result in bad real-
world policy performance. We propose a non-adversarial learning-from-observations approach, together with an interpretable
convergence and performance metric. Our training objective minimizes the Kulback-Leibler divergence (KLD) between the
policy and expert state transition trajectories which can be optimized in a non-adversarial fashion. Such methods demonstrate
improved robustness when learned density models guide the optimization. We further improve the sample efficiency by
rewriting the KLDminimization as the Soft Actor Critic objective based on a modified reward using additional density models
that estimate the environment’s forward and backward dynamics. Finally, we evaluate the effectiveness of our approach on
well-known continuous control environments and show state-of-the-art performance while having a reliable performance
estimator compared to several recent learning-from-observation methods.

Keywords Imitation learning · State-only · Normalizing flows · Reinforcement learning · Learning from observations

1 Introduction

Imitation learning (IL) describes methods that learn optimal
behavior that is represented by a collection of expert demon-
strations. In standard reinforcement learning (RL), the agent
is trained on environment feedback using a reward signal. IL
can alleviate the problem of designing effective reward func-
tions using demonstrations. This is particularly useful for
tasks where demonstrations are more accessible than design-
ing a reward function. One popular example is to train traffic
agents in a simulation to mimic real-world road users [1].

Learning-from-demonstrations (LfD) describes IL app-
roaches that require state-action pairs fromexpert demonstra-
tions [2]. Although actions can guide policy learning, itmight
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be very costly or even impossible to collect actions along-
side state demonstrations in many real-world setups. For
example, when expert demonstrations are available as video
recordingswithout additional sensor signals. One example of
such a setup is training traffic agents in a simulation, where
the expert data contains traffic recordings in bird’s eye view
[1]. No direct information on the vehicle physics, throttle,
and steering angle is available. Another example is teach-
ing a robot to pick, move, and place objects based on human
demonstrations [3]. In such scenarios, actions have to be esti-
mated based on sometimes incomplete information to train
an agent to imitate the observed behavior.

Alternatively, learning-from-observations (LfO) performs
state-only IL and trains an agent without actions being avail-
able in the expert dataset [4]. Although LfO is a more
challenging task than LfD, it can be more practical in case
of incomplete data sources. Like LfD, distribution matching
based on an adversarial setup is commonly used in LfO [5].
In adversarial imitation learning (AIL), a policy is trained
using an adversarial discriminator, which is used to esti-
mate a reward that guides policy training. AIL methods
obtain better-performing agents than supervisedmethods like
behavioral cloning (BC) using less data. However, adversar-
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ial training often has stability issues [6] and, under some
conditions, is not guaranteed to converge [7]. One possibil-
ity to improve the stability of generative adversarial networks
is to use normalization layers like spectral normalization [6].
Jin et al. [7] give further insights into improving the stability
of minimax optimization which is used in adversarial train-
ing. Additionally, estimating the performance of a trained
policy without access to the environment reward can be very
challenging. Although the duality gap [8, 9] is a convergence
metric suited for GAN based methods, it is difficult to use in
the AIL setup since it relies on the gradient of the generator
for an optimization process. In the AIL setup, the generator
consists of the policy and the environment and therefore the
gradient is difficult to estimate with black box environments.
As an alternative for AIL setups, the predicted reward (dis-
criminator output) or the policy loss can be used to estimate
the performance. We evaluate this approach empirically in
Section 5.

To address the limitations of AIL, we propose a state-
only distribution matching method that learns a policy in a
non-adversarial way. We optimize the matching between the
actionless policy and expert trajectories by minimizing the
Kulback-Leibler divergence (KLD) of the conditional state
transition distribution of the policy and the expert for all
time steps.We estimate the expert state transition distribution
using normalizing flows, which can be trained offline using
the expert dataset. Thus, stability issues arising from themin-
max adversarial optimization inAILmethods can be avoided.
This objective is similar to FORM [10], which was shown to
be more stable in the presence of task-irrelevant features.

Although maximum entropy RL methods [11] can improve
policy training by increasing the exploration of the agent,
they also add a bias if being used to minimize the proposed
KLD. To match the transition distributions of the policy and
the expert exactly, the state-next-state distribution of the pol-
icy is expanded into policy entropy, forwarddynamics and the
inverse action model of the environment. It has been shown
that such dynamic models can improve the convergence [12]
and are well suited to infer actions not available in the dataset
[13]. We model these distributions using normalizing flow
models which have been demonstrated to perform very well
in learning complex probability distributions [14]. Combin-
ing all estimates results in an interpretable reward that can be
used together with standard maximum entropy RL methods
[15]. The optimization based on the KLD provides a reliable
convergence metric of the training and a good estimator for
policy performance.

As contributions, we derive SOIL-TDM (State Only Imi-
tation Learning by Trajectory Distribution Matching), a
non-adversarial LfO method which minimizes the KLD
between the conditional state transition distributions of the
policy and the expert using maximum entropy RL. We show
the convergence of the proposed method using off-policy

samples from a replay buffer. We develop a practical algo-
rithm based on the SOIL-TDM objective and demonstrate
its effectiveness in measuring its convergence compared to
several other state-of-the-art methods. Empirically we com-
pared our method to the recent state-of-the-art IL approaches
OPOLO [12], F-IRL [16], and FORM [10] in complex
continuous control environments. We demonstrate that our
method is superior especially if the selection of the best pol-
icy cannot be based on the true environment reward signal.
This is a setting thatmore closely resembles real-world appli-
cations in autonomous driving or robotics where it is difficult
to define a reward function [3].

2 Background

In this work, we want to train a stochastic policy function
πθ (ai |si ) in continuous action spaces with parameters θ in
a sequential decision making task considering finite-horizon
environments1.

The problem is modeled as a Markov Decision Process
(MDP), which is described by the tuple (S, A, p, r) with the
continuous state spaces S and action spaces A. The transition
probability is described by p(si+1|si , ai ) and the bounded
reward function by r(si , ai ). At every time step i the agent
interacts with its environment by observing a state si and tak-
ing action ai . This results in a new state si+1 and a reward
signal ri+1 based on the transition probability and reward
function. We will use μπθ (s, a) and μπθ (s′, s) to denote
the state-action and state-next-state marginals of the trajec-
tory distribution induced by the policy πθ . These marginal
distributions describe the state-action and state-next-state
frequency over all time steps of a given policy πθ .

2.1 Maximum entropy reinforcement learning
and soft actor critic

The standard objective in RL is the expected sum of undis-
counted rewards

∑T
i=0 E(si ,ai )∼μπθ [r(si , ai )]. The goal of the

agent is to learn a policy πθ(ai |si ) which maximises this
objective. The maximum entropy objective

Jπ (θ) =
T∑

i=0

E(si ,ai )∼μπθ [r(si , ai ) + αH(πθ (·|si ))] (1)

introduces a modified goal for the RL agent, where the agent
has to maximise the sum of the reward signal and its out-
put entropy H(πθ (·|si )) = Ea∼πθ [− logπθ(·|si )] [11]. The
parameter α controls the stochasticity of the optimal policy

1 An extension to infinite-horizons is given in Section 3
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by determining the relative importance of the entropy term
versus the reward.

Soft Actor-Critic (SAC) [15, 17] is an off-policy actor-
critic algorithm based on the maximum entropy RL frame-
work. Since we apply SAC in our imitation learning setup
the main objectives will be briefly explained. SAC combines
off-policy Q-Learning with a stable stochastic actor-critic
formulation.

The state value function and Q-function are used to esti-
mate how good an agent is in a specific state si or to perform
a specific action ai in a given state si , based on the expected
return. The Q-function can be estimated using a function
approximator Q�(si , ai ). The soft Q-function parameters �

can be trained to minimize the soft Bellman residual

JQ(�) = E(si ,ai )∼DRB [1
2
(Q�(si , ai ) − Q̂

�̂
(si , ai ))

2], (2)

where state-action pairs are sampled from a replay buffer
DRB which contains state-action pairs from repeated policy-
environment interactions. The target Q-function Q̂

�̂
can be

estimated by

Q̂
�̂

(si , ai ) = r(si , ai ) + γEsi+1[V�̂
(si+1)], (3)

using the soft state value function V
�̂

(si ), the current reward
r(si , ai ) and the discount factor γ . There is no need to include
a separate function approximator for the soft value function
since the state value is related to theQ-function and the policy
by

V
�̂

(si ) := Eai∼πθ [Q�̂
(si , ai ) − α logπθ (ai |si )]. (4)

To stabilize the training, the update uses a target networkwith
parameters �̂ that are a moving average of the parameters�.
Lastly, the policy is optimized by minimizing the following
objective:

Jπ (θ) = Esi∼DRB [Eai∼πθ [α logπθ (ai |si ) − Q�(si , ai )]],
(5)

where the states are sampled from the replay buffer DRB and
the actions ai are sampled using the current policy πθ .

2.2 Imitation learning

In the IL setup, the agent does not have access to the true envi-
ronment reward function r(si , ai ) and instead has to imitate
expert trajectories performed by an expert policy πE col-
lected in a dataset DE .

In the typical learning-from-demonstration setup the
expert demonstrations DL f D

E := {ski , aki , ski+1}Nk=1 are given
by state-action-next-state transitions. Distribution matching

has been a popular choice among different LfD approaches.
The policy πθ is learned by minimizing the discrepancy
between the stationary state-action distribution induced by
the expert μE (s, a) and the policy μπθ (s, a). An overview
and comparison of different LfD objectives resulting from
this discrepancy minimization were made by Ghasemipour
et al. [18]. Often the backward KLD is used to measure this
discrepancy [19]:

JL f D(πθ ) := DK L(μπθ (s, a)||μE (s, a)). (6)

Learning-from-observation (LfO) considers a more chal-
lenging task where expert actions are not available. Hence,
the demonstrations DL f O

E := {ski , ski+1}Nk=1 consist of state-
next-state transitions. The policy learns which actions to
take based on interactions with the environment and the
expert state transitions. Distributionmatching based on state-
transition distributions is a popular choice for state-only IL
[5, 12]:

JL f O(πθ ) := DK L(μπθ (s′, s)||μE (s′, s)). (7)

3 Method

In a finite horizon MDP setting, the joint state-only trajec-
tory distributions are defined by the start state distribution
p(s0) and the product of the conditional state transition dis-
tributions p(si+1|si ). For the policy distribution μπθ and the
expert distribution μE , this becomes

μπθ (sT , . . . , s0) = p(s0)
∏

i=0...T−1

μπθ (si+1|si ),

μE (sT , . . . , s0) = p(s0)
∏

i=0...T−1

μE (si+1|si ).

Our goal is tomatch the state-only trajectory distributionμπθ

induced by the policy with the state-only expert trajectory
distribution μE by minimizing the Kulback-Leibler diver-
gence (KLD) between them. This results in the SOIL-TDM
objective

JSO I L−T DM = DK L(μπθ ||μE )

= E(sT ,...,s0)∼μπθ [logμπθ − logμE ]
=

∑

i=0...T−1

E(si+1,si )∼μπθ [logμπθ (si+1|si )

− logμE (si+1|si )]. (8)

To estimate the policy-induced conditional state transition
distribution, we define the following equation based on the
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Bayes theorem

π ′
θ (ai |si+1, si ) = p(si+1|ai , si )πθ (ai |si )

μπθ (si+1|si ) . (9)

The posterior distribution is represented by the inverse action
distribution density π ′

θ (ai |si+1, si ), the likelihood distribu-
tion is represented by the environment model p(si+1|ai , si ),
the prior is represented by the policy distribution πθ (ai |si ),
and the marginal likelihood by the policy-induced condi-
tional state transition distribution μπθ (si+1|si ). By solving
for the marginal likelihood, we can rewrite (9) to

μπθ (si+1|si ) = p(si+1|ai , si )πθ (ai |si )
π ′

θ (ai |si+1, si )
. (10)

It holds for any ai where π ′ > 0. Thus, one can extend
the expectation over (si+1, si ) by the action ai and the KLD
minimization minDK L(μπθ ||μE ) can be rewritten as

min
∑

i=0...T−1

E(si ,ai ,si+1)∼πθ
[log p(si+1|ai , si ) + logπθ (ai |si )

− logπ ′
θ (ai |si+1, si ) − logμE (si+1|si )]. (11)

Now, we define a reward function (also see Appendix B)

r(ai , si ) := Esi+1∼p(si+1|ai ,si )[− log p(si+1|ai , si )
+ logπ ′

θ (ai |si+1, si ) + logμE (si+1|si )], (12)

which depends on the expert state transition likelihood
μE (si+1|si ), on the environment model p(si+1|ai , si ) and on
the inverse action distribution density π ′

θ (ai |si+1, si ). Using
this reward function, the state-only trajectory distribution
matching problem can be transformed into a max-entropy
RL task

minDK L (μπθ ||μE ) = max
∑

i=0...−1

E(ai ,si )∼πθ
[− logπθ (ai |si ) + r(ai , si )]

= max
∑

i=0...T−1

E(ai ,si )∼πθ
[r(ai , si ) + H(πθ (·|si )]. (13)

In practice, the reward function r(ai , si ) can be computed
using Monte Carlo integration with a single sample from
p(si+1|ai , si ) using the replay buffer.

This max-entropy RL task can be optimized with standard
max-entropy RL algorithms. In this work, we applied the
SAC algorithm [15] as it is outlined in Section 2.1.

The extension to infinite horizon tasks can be done by
introducing a discount factor γ as in the work by Haarnoja
et al. [17]. In combination with our reward definition, one

obtains the following infinite horizon maximum entropy
objective

JME−i H =
∑

i=0... inf

E(ai ,si )∼πθ
[

∑

j=i ... inf

γ j−i
E(a j ,s j )∼πθ

[r(a j , s j )

+H(πθ (·|s j )|si , ai ]]. (14)

3.1 Algorithm

To evaluate the reward function, the environment model
p(si+1|ai , si ) and the inverse action distribution function
π ′

θ (ai |si+1, si ) have to be estimated. We model both distri-
butions using conditional normalizing flows and train them
with maximum likelihood based on expert demonstrations
and rollout data from a replay buffer. The environment
model p(si+1|ai , si ) is modeled by μφ(si+1|ai , si ) with
parameter φ, while the inverse action distribution function
π ′

θ (ai |si+1, si ) is modeled by μη(ai |si+1, si ) with parameter
η.

The whole training process according to Algorithm 1 is
described in the following.2 The expert state transitionmodel
μE (si+1|si ) is trained offline using the expert dataset DE

which contains K expert state trajectories. We assume the
expert distribution is correctly represented by the dataset.
If the expert demonstrations are incomplete and important
information is missing, the resulting policy might perform
sub-optimally. For optimal performance, additional guid-
ance like an additional reward might be a possible solution
under such circumstances. We show that our method can
learn meaningful expert state transition distributions even
for incomplete expert trajectories (Appendix G). Since we
use a normalizing flow to estimate the expert state transition
distribution, this transition distribution can be complex and
multimodal. Therefore learning the behavior from different
experts is possible. We performed experiments using experts
trained differently in the same environment by using differ-
ent Reinforcement Learning algorithms. The results show
that our method is able to train well-performing agents also
in the case of multimodal demonstrations which come from
different expert trajectories. Density modeling of the expert
state transitions can still result in overfitting when only a
few expert demonstrations are available (due to limit of the
sample amount). We improve the expert training process by
adding Gaussian noise to the state values. The standard devi-
ation of the noise is reduced during training so that the model
has a correct estimate of the density without overfitting to the

2 Code will be available at https://github.com/FeMa42/soil-tdm
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explicit demonstrations. With this approach, we are able to
successfully train expert state transition models on at least
one expert trajectory. The influence of this improved routine
is studied in Appendix F.

After this initial step, the following process is repeated
until convergence in each episode. The policyπθ (âi |si ) inter-
acts with the environment for T steps by generating an
action âi based on the current state si . The environment
generates a next-state si+1 based on its current state and
the received action at each time step. The collected state-
action-next-state information is saved in the replay buffer
DRB . The conditional normalizing flows for the environment
model μφ(si+1|ai , si ) (policy independent) and the inverse
action distribution model μη(ai |si+1, si ) (policy dependent)
are optimized using samples from the replay buffer DRB for
N steps. In Appendix C we show that this reduces the KLD
(11) in each step.

To train the Q-function, we compute a one-sampleMonte-
Carlo approximation of the reward using the learned models
together with the samples from the reply buffer. The policy
πθ (at |st ) is updated based on Jπ (θ) using SAC as described
in Section 2.1. The entropy weight α in (1) is set to constant
1 during the optimization without automatic entropy weight
tuning (proposed in [17]).

The SAC-based Q-function training and policy optimiza-
tion also minimize the KLD in (11) (see (13)) in each step.
During the SAC optimization, the reward function is fixed.
Alternately, the subcomponents of it (μφ and μη) are trained
separately to the policy optimization. However, since after
each SAC policy learning step we use data from new rollouts
to adapt the inverse action distribution approximation (Algo-
rithm 1), π ′

θ and μη do not diverge. Theoretically, without
the limit of sample amount, and under the assumption of
well-behaved function approximators, the inverse action dis-
tribution (π ′

θ ) can be approximated without bias. The SAC
based policy optimization together with the inverse action
policy learning leads to a converging algorithm since all steps
reduce the KLD, which is bounded from below by 0 (see
Appendix C).

It is worth noting that the overall algorithm is non-
adversarial, the inverse action policy optimization and the
policy optimization using SAC both reduce the overall objec-
tive - the KLD. On the contrary, the AIL algorithms (like
OPOLO) are based on an adversarial nested min-max opti-
mization. Additionally, we can estimate the similarity of state
transitions from our policy to the expert during each opti-
mization step, since we model all densities in the rewritten
KLD from (11). As a result, we have a reliable performance
estimate enabling us to select the best-performing policy
based on the lowest KLD between policy and expert state
transition trajectories.

3.2 Relation to learning from observations

TheLfO objective of previous approaches likeOPOLOmini-
mizes the divergence between the joint policy state transition
distribution and the joint expert state transition distribution

JL f O(πθ ) = DK L(μπθ (s′, s)||μE (s′, s)), (15)

which can be rewritten as (see Appendix A)

JL f O(πθ ) = DK L(μπθ (sT , . . . , s0)||μE (sT , . . . , s0))

+
∑

i=1...T−1

DK L(μπθ (si )||μE (si )). (16)

Thus, the LfO objective minimizes both KLD of the joint
distributions and the KLDs of the marginal distributions of
all time steps. The SOIL-TDMobjective in comparisonmini-
mizes purely the KLD of the joint distributions. In the case of
perfect distribution matching - a zero KLD between the joint
distributions - the KLDs of the marginals also vanish so both
objectives have the same optimum. Minimizing purely the
KLD of the joint distributions can contribute to the robust-
ness of the learning algorithm, as it was demonstrated by
Jaegle et al. [10]. Methods based on conditional state prob-
abilities are less sensitive to erroneously penalizing features
that may not be in the demonstrator data but lead to correct
transitions. Hence, suchmethods may be less prone to overfit
to irrelevant differences between the learner and the expert
data. This, as well as the relation to the work by Jaegle et al.
[10], is discussed further in Section 4.1.

4 Related work

Many recent IL approaches are based on inverse RL (IRL)
[20]. In IRL, the goal is to learn a reward signal for which
the expert policy is optimal. AIL algorithms are popular
methods to perform IL in a RL setup [2, 19, 21]. In AIL,
a discriminator gets trained to distinguish between expert
states and states coming from policy rollouts. The goal of
the policy is to fool the discriminator. The policy gets opti-
mized to match the state action distribution of the expert
using this two-player game. Based on this idea more gen-
eral approaches have been derived based on f-divergences.
Ni et al. [16] derived an analytic gradient of any f-divergence
between the agent and expert state distribution w.r.t. reward
parameters. Based on this gradient they presented the algo-
rithm F-IRL that recovers a stationary reward function from
the expert density by gradient descent. Ghasemipour et al.
[18] identified that IRL’s state-marginal matching objective
contributes most to its superior performance and applied this
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Algorithm 1 State-Only Imitation Learning by Trajectory
Distribution Matching (SOIL-TDM).
1: Input:
2: Expert Dataset DE : {s0, s1, . . . sT }Kk=0
3: Randomly initialized μE , μη, μφ , Qψ , Q�̂

, and πθ

4: procedure SOIL- TDM(DE )
5: Train μE (si+1|si ) with DE � expert model optimization
6: for episodes do
7: for range(T) do � generate data
8: âi ← sample(πθ (âi |si ))
9: si+1 ← psim(si+1|si , âi ) � apply action
10: Store (si , âi , si+1) in DRB
11: end for
12: for range(N) do � update dynamics models
13: {(si , âi , si+1)}Bi=1 ∼ DRB � sample batch
14: train μη(âi |si+1, si ) and μφ(si+1|âi , si )
15: end for
16: for range(N) do � SAC optimization
17: {(si , âi , si+1)}Bi=1 ∼ DRB � sample batch
18: ai ← sample(πθ (ai |si ))
19: optimize πθ (ai |si ) with Jπ from (5)
20: � estimate reward
21:

r(si , âi ) ← − logμφ(si+1|âi , si ) + logμη(âi |si+1, si )

+ logμE (si+1|si )
22: optimize Qψ(âi , si ) with JQ from (2)
23: end for
24: end for
25: end procedure
26: Output:TrainedNormalizing FlowmodelsμE ,μη,μφ , and policy

πθ

understanding to teach agents a diverse range of behaviors
using simply hand-specified state distributions.

A key problem with AIL for LfD and LfO is optimization
instability [6].Wang et al. [22] avoided the instabilities result-
ing from adversarial optimization by estimating the support
of the expert policy to compute a fixed reward function.
Similarly, Brantley et al. [23] used a fixed reward func-
tion by estimating the variance of an ensemble of policies.
Both methods rely on additional behavioral cloning steps
to reach expert-level performance. Liu et al. [24] proposed
Energy-Based Imitation Learning (EBIL) which recovers
fixed and interpretative reward signals by directly estimat-
ing the expert’s energy. Neural Density Imitation (NDI) [25]
uses density models to perform distribution matching. Deter-
ministic and Discriminative Imitation (D2-Imitation) [26]
requires no adversarial training by partitioning samples into
two replay buffers and then learning a deterministic policy
via off-policy reinforcement learning. Inverse soft-Q learning
(IQ-Learn) [27] avoids adversarial training by learning a sin-
gleQ-function to represent both reward and policy implicitly.
The implicitly learned rewards from IQ-Learn show a high
positive correlation with the ground-truth rewards.

LfO can be divided into model-free and model-based
approaches. GAILfO [5] is a model-free approach that uses

the GAIL principle with the discriminator input being state-
only. Yang et al. [28] analyzed the gap between the LfD and
LfO objectives and proved that it lies in the disagreement of
inverse dynamics models between the imitator and expert.
Their proposed method Inverse-Dynamics-Disagreement-
Minimization (IDDM) is based on an upper bound of this
gap in a model-free way. OPOLO [12] is a sample-efficient
LfO approach also based on AIL, which enables off-policy
optimization. The policy update is also regulated with an
inverse action model that assists distribution matching in a
mode-covering perspective.

Other model-based approaches either apply forward dynam-
ics models or inverse action models. Sun et al. [29] proposed
a solution based on forward dynamics models to learn time
dependent policies. Although being provably efficient, it is
not suited for infinite horizon tasks. Alternatively, behav-
ior cloning from observations (BCO) [13] learns an inverse
action model based on simulator interactions to infer actions
based on the expert state demonstrations. GPRIL [30] uses
normalizing flows as generative models to learn backward
dynamics models to estimate predecessor transitions and
augment the expert data set with further trajectories, which
lead to expert states. Jiang et al. [31] investigated IL using
few expert demonstrations and a simulator with misspecified
dynamics. A detailed overview of LfO was done by Torabi
et al. [4].

4.1 Method discussion and relation to FORM

While our proposed method SOIL-TDM was independently
developed, it is most similar to the state-only approach
FORM [10]. In FORM the policy training is guided by a
conditional density estimation of the expert’s observed state
transitions. In addition a state transition model μπθ


 (si+1|si )
of the current policy is learned. The policy reward is esti-
mated by: ri = logμE (si+1|si ) − logμπθ


 (si+1|si ). The
approachmatches conditional state transition probabilities of
expert and policy in comparison to the joint state-action (like
GAIL) or joint state-next-state (like OPOLO or GAILfO)
densities. The authors of FORM argue that this conditional
statematching contributes to the robustness of their approach.
Namely, methods based on conditional state probabilities are
less sensitive to erroneously penalizing features that may not
be in the demonstrator data but lead to correct transitions.
Hence, such methods may be less prone to overfit to irrele-
vant differences. Jaegle et al. [10] demonstrate the benefit of
such a conditional density matching approach.

In contrast to FORM we show in (10) that the policies
next-state conditional density μπθ (si+1|si ) can be separated
into the policies action density and the forward- and the
backward-dynamics densities. Using this decomposition, we
show that the KLD minimization is equivalent to a maxi-
mum entropy RL objective (see (13)) with a special reward
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(see (12)). Here the entropy of the policy stemming from
the decomposition of the conditional state-next-state density
leads to the maximum entropy RL objective. Jaegle et al.
[10] mention that the second term logμπθ


 (si+1|si ) in their
reward objective can be viewed as an entropy-like expression.
Hence, if this reward is optimized using a RL algorithm that
includes some formof policy entropy regularization like SAC
this entropy is basically weighted twice. In the experiments,
we show that this double accounting of the policy entropy
negatively affects the sample efficiency of the algorithm in
comparison to our method.

5 Experiments

We evaluate our proposed method described in Section 3 in a
variety of different IL tasks and compare it against the base-
line methods OPOLO, F-IRL, and FORM. For all methods,
we use the complex and high-dimensional continuous control
environments AntBulletEnv-v0, HalfCheetahBulletEnv-v0,
HopperBulletEnv-v0, Walker2DBulletEnv-v0, Humanoid
BulletEnv-v0 of the Pybullet physics simulation [32]. To
evaluate the performance of all methods, the cumulative
rewards of the trained policies are compared to cumulative
rewards from the expert policy. The expert data generation
as well as the used baseline implementations are described
in Appendix E.

Since we assume no environment reward is available as
an early stopping criterion, we use other convergence esti-
mates available during training to select the best policy for
each method. In adversarial training, the duality gap [8, 9]
is an established method to estimate the convergence of the
training process. In the IL setup, the duality gap can be very
difficult to estimate since it requires the gradient of the pol-
icy and the environment (i.e. the gradient of the generator)
for the optimization process it relies on. We, therefore, use
two alternatives for model selection for OPOLO. The first
approach selects the model with the lowest policy loss and
the second approach selects the model based on the highest
estimated cumulative reward over ten consecutive epochs.
For F-IRL we selected the model with the lowest estimated
Jensen-Shannon divergence over ten epochs. To estimate the
convergence of SOIL-TDM the policy loss based on theKLD
from (11) is used. It can be estimated using the same mod-
els used for training the policy. Similarly, we used the effect
models of FORM to estimate the convergence based on the
reward.

Many IL approaches show asymptotic performance.
Although it is a reasonable comparison, we also argue that
early stopping based on estimated performance gives valu-
able insights into how well the policy performance can
be estimated without relying on external signals like an
environment reward. It especially shows that the perfor-

mance of adversarial methods can be estimated less reliably.
Estimating the convergence asymptotically for unknown
hyperparameter setups without any external signal is there-
fore less reliable. However, for complete transparency, we
also included results based on the best environment reward
and also added additional results in Appendix H which show
the time to convergence as well as the asymptotic perfor-
mance of all methods.

The evaluation is done by running 3 training runs with ten
test episodes (in total 30 rollouts) for each trained policy and
calculating the respectivemean and confidence interval for all
runs. The methods are compared based on different amounts
of expert trajectories. This limited amount of expert demon-
strations can cause a suboptimal learned representation of
expert behavior which can lead to a deviation to expert per-
formance. We plot the cumulative reward normalized so that
1 corresponds to expert performance. Values above 1 mean
that the agent has achieved a higher cumulative reward than
the mean of the expert. The expert in the proposed experi-
ments is a policy trainedon the true environment rewardusing
SAC. The expert is not necessarily optimal w.r.t the environ-
ment reward (episode rewards of the expert are reported in
Appendix E). Hence, achieving the most similar behavior
is more desirable than surpassing the reward of the expert.
Additionally, smaller confidence intervals are also desired
since they indicate higher training stability and more reliable
results. Implementation details of our method are described
in Appendix D.

The evaluation results of the discussed methods on a suite
of continuous control tasks with unknown true environment
reward and the previously described selection criteria are
shown in Fig. 1.

Although the true environment reward is unknown the
results show that SOIL-TDM achieves or surpasses the
performance of the baseline methods on all tested environ-
ments (except for two and four expert trajectories in the
HumanoidBulletEnv-v0 environment and two trajectories
in the Walker2DBulletEnv-v0 environment). In general the
adversarial-basedmethods OPOLO and F-IRL exhibit a high
variance of the achieved rewards using the proposed selection
criteria. Although loss and reward are well suited for select-
ing the best model in usual setups, the results demonstrate
that they might be less expressive for estimating the conver-
gence in adversarial training due to the min-max game of the
discriminator and the policy. The stability of the SOIL-TDM
training method is evident from the small confidence band
of the results which gets smaller for more expert demonstra-
tions. Although the selection of FORM is more stable than
the adversarial methods it generally achieves lower rewards
in the sample efficient regime of one and two expert trajec-
tories.

Figure 2 shows the benchmark results of OPOLO, F-IRL,
FORM, and SOIL-TDM if the true environment reward is
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Fig. 1 Unkown true environment reward selection criteria: Relative
cumulative reward for a different amount of expert trajectories on con-
tinuous control environments. The best policies based on estimated

convergence values were selected. The value 1 corresponds to expert
policy performance. The confidence intervals are plotted using lighter
colors

used as an early stopping criterion. In this setup, our method
still achieves competitive performance or surpasses OPOLO,
F-IRL, and FORM. Compared to the results from Fig. 1 the
baseline methods often achieve better results using the true
environment reward as a selection criterion. In contrast, our
proposed method has more similar results for both selection
criteria, which underlines the reliability of our proposed per-
formance estimation.

We argue that the reduced performance of the baseline
methods OPOLO and F-IRL are due to missing reliable
and tractable convergence estimators for adversarial-based
approaches if the best policy is selected based on estimated
performance. The results based on the best true environment
reward selection criterion are more similar in performance
among the different IL approaches. The optimum can only be
reached if enough expert demonstrations are available and for
enough trajectories, all methods result in expert-level perfor-
mance. Although the statement that SOIL-TDMandOPOLO
have the same optimum under the condition of a zero KLD
between the joint distributions (whichmight be violated with
conditional Gaussian policies and limited data) is not contra-

dicted by the experiments, we can show that SOIL-TDM is
efficient regarding expert demonstrations. Additional figures
for comparing the training performance and efficiency can
be found in Appendix H. An ablation study for our method
is in Appendix F.

6 Conclusion

In this work, we propose a non-adversarial state-only imi-
tation learning approach based on minimising the Kulback-
Leibler divergence between the policy and the expert state
trajectory distribution. This objective leads to a maximum
entropy reinforcement learning problem with a reward func-
tion depending on the expert state transition distribution
and the forward and backward dynamics of the environment
which can be modelled using conditional normalizing flows.
The proposed approach is compared to several state-of-the-
art learning from observation methods in a scenario with
unknown environment rewards and achieves state-of-the-art
performance.
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Fig. 2 Best true environment reward selection criterion: Relative cumu-
lative reward for a different amount of expert trajectories on continuous
control environments. The best policies based on the cumulative reward

were selected. The value 1 corresponds to expert policy performance.
The confidence intervals are plotted using lighter colors

Appendix A: Relation to LfO

The learning from observations (LfO) objective minimizes
the divergence between the joint policy state transition dis-
tribution and the joint expert state transition distribution:

min JL f O(πθ ) = minDK L(μπθ (s′, s)||μE (s′, s)) (A1)

where s′ is a successor state of s given a stationary policy
and stationary s′, s marginals. This can be rewritten as

JL f O (πθ ) =
∑

i=0...T−1

DK L (μπθ (si+1, si )||μE (si+1, si ))

=
∑

i=0...T−1

∫

μπθ (si+1, si )(logμπθ (si+1, si )

− logμE (si+1, si ))

=
∑

i=0...T−1

∫

μπθ (sT , . . . , s0)(logμπθ (si+1, si )

− logμE (si+1, si ))

=
∫

μπθ (sT , . . . , s0)
∑

i=0...T−1

(logμπθ (si+1, si )

− logμE (si+1, si ))

=
∫

μπθ (sT , . . . , s0)
∑

i=0...T−1

(logμπθ (si+1|si )

+ logμπθ (si ) − logμE (si+1|si )) − logμE (si )

= E(sT ,...,s0)∼μπθ [log μπθ (sT , . . . , s0)

μE (sT , . . . , s0)

+ log
∏

i=1...T−1

μπθ (si )

μE (si )
]

= DK L (μπθ (sT , . . . , s0)||μE (sT , . . . , s0))

+
∑

i=1...T−1

E(sT ,...,s0)∼μπθ [log μπθ (si )

μE (si )
]

= DK L (μπθ (sT , . . . , s0)||μE (sT , . . . , s0))

+
∑

i=1...T−1

DK L (μπθ (si )||μE (si )) (A2)
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Appendix B: Bounded rewards

Since we use the SAC algorithm as a subroutine all rewards
must be bounded. This is true if all subterms of our reward
function

r(ai , si ) = Esi+1∼μπθ (si+1|si )[− log p(si+1|ai , si )
+ logπ ′

θ (ai |si+1, si ) + logμE (si+1|si )] (B3)

are bounded which holds if

ε ≤ π ′
θ (ai |si+1, si ), p(si+1|ai , si ),

μE (si+1|si ) ≤ H ∀ai , si , si+1 (B4)

for some ε and H which is a rather strong assumption
that requires compact action and state spaces and a non-
zero probability of reaching every state si+1 given any
action ai from a predecessor state si . Since this is in gen-
eral not the case in practice, we clip the logarithms of
π ′

θ (ai |si+1, si ), p(si+1|ai , si ), μE (si+1|si ) to [−15, 1e9]. It
should be noted that clipping the logarithms to a maximum
negative value still provides a reward signal which guides the
imitation learning to policies that achieve higher rewards.
The clip interval was selected such that the trainings on
all tested environments converged. A wide range of inter-
vals converges and just very large absolute values should be
clipped.

Appendix C: Correctness of using replay buffer

Here we argue that Algorithm 1 leads to a local optimum
of the KLD objective from (11) under the conditions: a) In
the large sample limit per iteration b) appropriate density
estimators and optimizers are used c) (11) is minimized by
optimizing the policy using a maximum entropy RL algo-
rithm d) the inverse action policy π ′(a|s′, s) is trained using
maximum likelihood from a replay buffer in an alternating
fashion with the policy optimization.

In Section 3 we show that (11) is a maximum entropy RL
objective. Thus when optimizing the policy πθ(e) in episode
e in Algorithm 1 using the maximum entropy RL algorithm
SAC [15] keeping the parameters of the conditional normal-
izing flows μE (s′|s), μφ(s′|s, a), and μη(a|s′, s) (to stay
consistent with our method section, we use the distribution
definitions here instead of the model definition) fixed which
define the reward implies

∑

i=0...T−1

E(si ,ai ,si+1)∼πθ(e) [log p(si+1|ai , si )

+ logπθ(e)(ai |si ) − logπ ′
θ(e)(ai |si+1, si )

− logμE (si+1|si )]

≤
∑

i=0...T−1

E(si ,ai ,si+1)∼πθ(e−1) [log p(si+1|ai , si )

+ logπθ(e−1)(ai |si ) − logπ ′
θ(e)(ai |si+1, si )

− logμE (si+1|si )] (C5)

Now, in the next episode e+1 the first part of Algorithm 1,
i.e. optimizing the model of the inverse action policy π ′

θ(e+1)
with a maximum likelihood objective using the new replay
buffer data (si , ai , si+1) ∼ πθ(e) obtained from rollouts in
episode e + 1 with the new policy πθ(e) trained in episode e
leads to

∑

i=0...T−1

E(si ,ai ,si+1)∼πθ(e) [− logπ ′
θ(e+1)(ai |si+1, si )]

≤
∑

i=0...T−1

E(si ,ai ,si+1)∼πθ(e) [− logπ ′
θ(e)(ai |si+1, si )] (C6)

due to the maximum likelihood objective for the inverse
action policy.

Using this inequality one obtains

∑

i=0...T−1

E(si ,ai ,si+1)∼πθ(e) [log p(si+1|ai , si )

+ logπθ(e)(ai |si ) − logπ ′
θ(e+1)(ai |si+1, si )

− logμE (si+1|si )]
≤

∑

i=0...T−1

E(si ,ai ,si+1)∼πθ(e−1) [log p(si+1|ai , si )

+ logπθ(e−1)(ai |si ) − logπ ′
θ(e)(ai |si+1, si )

− logμE (si+1|si )] (C7)

Thus Algorithm 1 optimizes (11) also in the "update
dynamics models" part when trainingμη(a|s′, s) using max-
imum likelihood from a replay buffer. Thus, optimizing the
policy π using SAC and training the model of the inverse
action policy π ′ using the replay buffer and maximum likeli-
hood are non-competing and non adversarial objectives, they
alternately minimize the same objective in each part of Algo-
rithm 1 and decrease theKulback-Leibler Divergence in each
step, ending in a minimum at convergence since the KLD is
bounded by 0 from below.

The inequality from (C6) is based on the maximum like-
lihood objective and a "clean" replay buffer that contains
only samples from the current policy. But it can be shown
that it also holds for a replay buffer that contains a mixture
of samples from the current and old policies: the inequality
holds for the mixture distribution which contains a fraction
α of the replay buffer which stems from the new policy
and a fraction 1 − α which stems from the old policies
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(α depends on the size of the replay buffer and the num-
ber of new samples obtained in the current rollout). I.e.
p(RB(e + 1)) = απθ(e+1) + (1 − α)p(RB(e)). Since the
old inverse action policy π ′

θ(e) is the argmax of the maximum
likelihood objective of the 1 − α fraction of RB(e+1) which
is RB(e) it is better or equal than any other inverse action
policy with regard to that previous replay buffer RB(e). Thus

∑

i=0...T−1

E(si ,ai ,si+1)∼RB(e)[− logπ ′
θ(e+1)(ai |si+1, si )]

≥
∑

i=0...T−1

E(si ,ai ,si+1)∼RB(e)[− logπ ′
θ(e)(ai |si+1, si )] (C8)

due to the maximum likelihood objective for π ′
θ(e+1) on the

data RB(e+1)) the following inequality follows:

∑

i=0...T−1

E(si ,ai ,si+1)∼RB(e+1)[− logπ ′
θ(e+1)(ai |si+1, si )]

≤
∑

i=0...T−1

E(si ,ai ,si+1)∼RB(e+1)[− logπ ′
θ(e)(ai |si+1, si )] (C9)

Also, by using the mixture definition of RB(e+1) one can
rewrite an Expectation over RB(e+1) as follows:

E(si ,ai ,si+1)∼RB(e+1)[ f ] = αE(si ,ai ,si+1)∼πθ(e) [ f ]
+(1 − α)E(si ,ai ,si+1)∼RB(e)[ f ] (C10)

Using the expanded Expectation Inequality (C9) can be
rewritten as follows:

∑

i=0...T−1

[αE(si ,ai ,si+1)∼πθ(e) − logπ ′
θ(e+1)(ai |si+1, si )

+(1 − α)E(si ,ai ,si+1)∼RB(e) − logπ ′
θ(e+1)(ai |si+1, si )]

≤
∑

i=0...T−1

[αE(si ,ai ,si+1)∼πθ(e) − logπ ′
θ(e)(ai |si+1, si )

+(1 − α)E(si ,ai ,si+1)∼RB(e) − logπ ′
θ(e)(ai |si+1, si )] (C11)

By using Inequality (C8) it can be rewritten to

∑

i=0...T−1

[αE(si ,ai ,si+1)∼πθ(e) − logπ ′
θ(e+1)(ai |si+1, si )

+(1 − α)E(si ,ai ,si+1)∼RB(e) − logπ ′
θ(e+1)(ai |si+1, si )]

≤
∑

i=0...T−1

[αE(si ,ai ,si+1)∼πθ(e) − logπ ′
θ(e)(ai |si+1, si )

+(1 − α)E(si ,ai ,si+1)∼RB(e) − logπ ′
θ(e+1)(ai |si+1, si )] (C12)

which implies (by subtracting the common 1− α term from
both sides)

∑

i=0...T−1

[αE(si ,ai ,si+1)∼πθ(e) − logπ ′
θ(e+1)(ai |si+1, si )

≤
∑

i=0...T−1

[αE(si ,ai ,si+1)∼πθ(e) − logπ ′
θ(e)(ai |si+1, si ) (C13)

which is Inequality (C6)multiplied byα and thus also implies
(together with Inequality (C5)) Inequality (C7). From this
follows the convergence of Algorithm 1 to a minimum when
using a mixed replay buffer.

Appendix D: Implementation details

We use the same policy implementation for all our SOIL-
TDM experiments. The stochastic policies πθ (ai |si ) are
modeled as a diagonal Gaussian to estimate continuous
actions with two hidden layers (512, 512) with ReLU non-
linearities.

To train a policy using SAC as the RL algorithm, we also
need to model a Q-function. Our implementation of SAC is
based on the original implementation from Haarnoja et al.
[17] and the used hyperparameters are described in Table 1.
In this implementation, they use two identical Q-Functions
with different initialization to stabilize the training process.
These Q-Functions are also modeled with an MLP having
two hidden layers (512, 512) and Leaky ReLU. We kept the
entropy parameter α fixed to 1 and did not apply automatic
entropy tuning as described by Haarnoja et al. [17].

We implement all our models for SOIL-TDM using the
PyTorch framework version 1.9.0.3 To estimate the imita-
tion reward in SOIL-TDM a model for the expert transitions
μE (s′|s) as well as a forward μφ(s′|s, a) and backward
dynamics model μη(a|s′, s) has to be learned. All three
density models are based on RealNVPs [34] consisting of
several flow blocks where MLPs preprocess the conditions
to a smaller condition size. The RealNVP transformation
parameters are also calculated using MLPs, which process
a concatenation of the input and the condition features. After
each flow block, we added activation normalization layers
like [35]. To implement these models, we use the publicly
available VLL-FrEIA4 framework version 0.2 [36] using
their implementation of GLOWCouplingBlocks with expo-
nent clamping activated. The setup for each model is layed
out in Table 2. We add Gaussian noise to the state vector as
a regularizer for the training of the expert transition model
μE (s′|s) which increased training stability for a low amount

3 https://github.com/pytorch/pytorch
4 https://github.com/VLL-HD/FrEIA (Open Source MIT License)
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Table 1 Training Hyperparameter

SAC Parameter Value

Optimizer Adam

learning rate policy 1 · 10−4

learning rate Q-function 3 · 10−4

discount γ (Halfcheetah, Walker2D) 0.7

discount γ 0.9

mini batch size 2048

replay buffer size 1 · 105
target update interval 1

number of environments 16

max number of environment steps 4.0 · 106
SOIL-TDM Parameter Value

expert transition model training steps 103 − 104

learning rate expert transition model 1 · 10−4

learning rate forward dynamics model 1 · 10−4

learning rate backward dynamics model 1 · 10−4

update interval dynamics models 1

of expert trajectories. We implement a linear decrease of the
standard deviation from 0.05 to 0.005 during the training of
the expert model.

We train and test all algorithms on a computer with 8
CPU cores, 64 GB of working memory, and an RTX2080
Ti Graphics card. The computing time for the SOIL-TDM
method depends on the time to convergence and is from 4h
to 14h.

Appendix E: Expert data generation and base-
line methods

The expert data is generated by training an expert policy
based on conditional normalizing flows and the SAC algo-
rithm on the environment reward. A conditional normalizing
flow policy has been chosen for the expert to make the dis-
tribution matching problem for the baseline methods and

Table 2 Normalizing Flow Setup

μE (s′|s) μφ(s′|s, a) μη(a|s′, s)

N flow blocks 16 16 16

Condition hidden neurons 64 48 256

Condition hidden layer 2 2 2

Condition feature size 32 32 32

Flow block hidden neurons 64 48 256

Flow block hidden layer 2 2 2

Exponent clamping 6 1 1

Table 3 Episode Reward of Expert Policy

Environment Average Expert Episode Reward

AntBulletEnv-v0 2583

HalfCheetahBulletEnv-v0 2272

HopperBulletEnv-v0 2357

Walker2DBulletEnv-v0 1805

HumanoidBulletEnv-v0 2750

SOIL-TDM - which employ a conditional Gaussian policy
- more challenging and more similar to real-world IL set-
tings. The idea is that real-world demonstrations might be
more complex and experiments using the same policy setup
for the expert and the imitator might not translate well to
real-world tasks.

The stochastic flow policy πθ (ai |si ) is based on Real-
NVPs [34] which have the same setup as the normalizing
flow implementations used for μE (s′|s), μφ(s′|s, a), and
μη(a|s′, s) also using N=16 GLOWCouplingBlocks. The
state is processed as a condition with one MLP having a
hidden size of 128. Each flow block has an additional fully
connected layer to further process the condition to a small
feature size of 8. Every flow block has 128 hidden neurons.
Finally, each action is passed through a tanh layer as it is
described in the SAC implementation. The log probability
calculation was adapted accordingly [17]. The final episode
reward of the trained expert policy is in Table 3.

The expert trajectories are generated using the trained
policy and saved as done by [2].5 For the OPOLO6 and F-
IRL7 baseline, the original implementations with the official
default parameters for each environment are used. Only the
loading of the expert data was changed to use the demon-
strations of the previously trained normalizing flow policy.
Since no official code for FORM was publicly available, the
FORM baseline was implemented based on our method. We
changed the reward to use the state prediction effect model
μ

πθ


 (s′|s) as proposed by Jaegle et al. [10].Both effectmodels
were implemented using the same implementation as for our
expert transitionmodelμE (s′|s). Training of the expert effect
model μE

ω (s′|s) was performed offline with the same hyper-
parameter setup used for our expert transitionmodelμE (s′|s)
(see Tables 1 and 2). The policy optimization was done using
the same SAC setup as for our method since FORM does not
depend on a specific RL algorithm [10]. We tested different
setups for the entropy parameter α and found that automatic
entropy tuning as described by Haarnoja et al. [17] worked
best.

5 https://github.com/openai/imitation (Open Source MIT License)
6 https://github.com/illidanlab/opolo-code (Open Source MIT
License)
7 https://github.com/twni2016/f-IRL (Open Source MIT License)
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It should be noted that training the expert policy usingSAC
might introduce a bias since FORM and our method SOIL-
TDM is also trained with SAC. But the results in Appendix
6 show that our method still performs reliably if the expert
is trained with another Reinforcement Learning algorithm,
namely PPO. We, therefore, argue that using SAC for train-
ing the expert did not influence the results in favor of our
proposed method. In addition, using a stochastic flow pol-
icy for the SAC expert data generation makes the task more
difficult for all tested imitation learning methods since all
methods (including FORM and our methods SOIL-TDM)
used conditional Gaussian policies.

For our experiment with an unknown true environ-
ment reward, the following selection criteria are used. For
"OPOLO est. reward" the estimated return based on the
reward r(s, s′) = −log(1 − D(s, s′)) with the state s, next
state s′ and the discriminator output D(s, s′) is used. For
"OPOLO pol. loss" the original OPOLO policy loss is used:

J (πθ , Q) = (1 − γ ) Es∼S0 [Q(s, πθ (s))] +
E(s,a,s′)∼R[ f (r(s, s′) +
γ Q(s′, πθ (s

′)) − Q(s, a))] (C14)

With the Q-Function Q and the f -divergence function. For
both estimates, the original OPOLO implementation was
used. For FORM the convergence was estimated with the
estimated return based on the reward: rt = logμE

ω (s′|s) −
logμπθ


 (s′|s) using the normalizing flow effect models. For
F-IRL we use the implementation of Ni et al. [16] for the
estimate of the Jensen-Shannon divergence between state
marginals of the expert and policy

1

2

∫

p(x)log
2p(x)

p(x) + q(x)
+ q(x)log

2q(x)

p(x) + q(x)
dx .

Appendix F: Ablation study

In this section, we want to investigate the influence of dif-
ferent components on our proposed imitation learning setup.
First, we want to answer whether learning additional back-
ward and forward dynamics models to estimate the state
transition KLD improves policy performance. We compare
our proposed method SOIL-TDM to an approach where we
train a policy only based on the log-likelihood of the expert

Fig. 3 Best environment reward for ablation experiments. The relative reward for a different amount of expert trajectories. The value 1 corresponds
to expert policy performance
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Table 4 Test log-likelihood values of expert transitionmodelsμE (s′|s)
for 1, 2, 4, 7, and 10 training trajectories using 20 unknown test trajec-
tories

Environment Log-Likelihood for μE (s′|s)
Ant 38.5, 43.5, 54.2, 59.9, 62.7

HalfCheetah 45.5, 47.8, 70.2, 71.1, 71.3

Hopper 14.4, 13.8, 15.9, 40.7, 36.9

Walker 38.9, 47.4, 62.5, 65.2, 67.4

Humanoid 39.5, 50.9, 62.9, 77.7, 77.4

defined by:

rabl(s, s
′) = logμE (s′|s) (C15)

Using this reward the policy is optimized using SAC
as described earlier. We call this simplified reward design
approach "Ablation only Expert Model". By comparing the
performanceof thismethod toour approach,wecan show that
learning additional density models to estimate forward and
backward dynamics leads to improved policy performance.
The resulting rewards are plotted in Fig. 3. The relative
reward using this ablation method is much lower compared
to SOIL-TDM. Only for a high amount of trajectories does
this method reach expert-level performance.

We furthermore want to evaluate how the quality of
the learned normalizing flows affects the overall algorithm
performance. We, therefore, report the estimated test log-
likelihood of the trained expert models μE (s′|s) for a
different amount of expert trajectories using a separate test
dataset with 20 unseen expert trajectories in Table 4. The
influence of the expert model quality on the overall algorithm
performance can be seen by comparing the test log-likelihood
to the reward of the trained policy (in Fig. 3 "SOIL-TDM"
for our method and "Ablation only Expert Model" for the
simplified reward using the same expert model μE (s′|s)).
SOIL-TDM is less sensitive to expert model performance
compared to "Ablation only Expert Model".

Table 5 Test log-likelihood values of expert transition models
μE
abl1(s

′|s) for 1, 2, 4, 7, and 10 training trajectories using 20 unknown
test trajectories

Environment Log-Likelihood for μE
abl1(s

′|s)
(constant noise)

Ant 30.9, 30.8, 41.1, 41.1, 59.0

HalfCheetah 26.3, 25.1, 78.3, 77.9, 79.2

Hopper −31.6,−26.9,−24.1, 41.6, 40.8

Walker 42.1, 46.1, 55.8, 56.8, 58.1

Humanoid 26.4, 38.0, 51.5, 54.6, 57.4

Table 6 Test log-likelihood values of expert transition models
μE
abl2(s

′|s) for 1, 2, 4, 7, and 10 training trajectories using 20 unknown
test trajectories

Environment Log-Likelihood for μE
abl2(s

′|s) (no noise)

Ant 28.7, 31.9, 37.3, 37.4, 38.9

HalfCheetah −in f ,−in f ,−270.2,−194.2,−187.8

Hopper −171.3,−629.0,−379.1,−87.1,−70.9

Walker −in f ,−in f ,−389.0,−182.4,−180.1

Humanoid 25.9, 36.7, 46.4, 50.1, 52.1

Lastly, we want to investigate the expert model training.
In the improved expert model training Routine, we regularize
the optimization by adding Gaussian noise to the expert state
values and linearly decrease its standard deviation down to
0.005 during training. As an additional ablation, we tested
2 different training setups for the expert transition models
μE (s′|s). For the first model (μE

abl1(s
′|s)) we omit the noise

decay and only use the final constant Gaussian noise dur-
ing training. For the second model (μE

abl2(s
′|s)) no noise is

added during the training of the expert model. We also eval-
uated the test log-likelihood of the trained models using the
test dataset with 20 unseen expert trajectories. The resulting
test log-likelihoods are in Tables 5–6. The results show that
constant Gaussian noise already improves the performance
of the expert model and our applied noise scheduling rou-
tine results in further performance improvements. We also
used the trained expert models for policy training based on
the ablation reward from (C15). These ablation methods are
called "Ablation wo. Noise Sched.", "Ablation wo. Noise"
respectively. The final rewards of these methods are also
plotted in Fig. 3. The results indicate that adding noise to
the states during the offline training of the expert transition
model also improves final policy performance.

Appendix G: Incomplete and mixed expert
demonstrations

In this section, we investigate the influence of using dif-
ferent experts to generate demonstrations. In the following
experiments, the expert data comes from two differently
trained experts. The first expert is the same conditional nor-
malizing flow policy πθ (ai |si ) trained with SAC as in the
original experiments (See Section 6). The second expert is

Table 7 Average Episode Reward of Expert Policies

Environment Average Expert Episode Reward

HopperBulletEnv-v0 2546

HumanoidBulletEnv-v0 2682
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Fig. 4 Comparison of the different imitation learning methods using
demonstrations from two different expert policy action distributions for
each environment. The figure shows the relative reward for a differ-

ent amount of expert trajectories for the HopperBulletEnv-v0 (left) and
HumanoidBulletEnv-v0 (right) environment. The value 1 corresponds
to expert policy performance

a conditional Gaussian policy πθ2(ai |si ) trained with Proxi-
mal Policy Optimization (PPO)8 on the environment reward.
The mean and standard deviation of the Gaussian distribu-
tion used to sample the action is conditioned on the state. The
state is processed using aMLP having two hidden layers with
a hidden size of 256.

This results in two different expert policy action distri-
butions for one environment. We then combined the expert
demonstrations in two different ways. In the first approach
("Mixed Complete"), we combined the complete trajecto-
ries of both policies (resulting in 2, 4, 10 trajectories) and
in the second approach ("Mixed Incomplete"), we removed
50% of every trajectory from both experts and concate-
nated the trajectories of both (resulting in 1, 2, 4, 7, 10
trajectories). Hence, in the second approach, we have the
same amount of demonstrations (1000 for each amount
of selected trajectories) where the data is incomplete and
comes from different expert policy distributions. The Exper-
iments were performed on the HopperBulletEnv-v0 and
HumanoidBulletEnv-v0 environments for OPOLO, F-IRL,
FORM, and SOIL-TDM (our method).

The resulting rewards for the "Mixed Complete" and
"Mixed Incomplete" datasets are plotted in Fig. 4. It shows

8 based on https://github.com/openai/baselines

the highest relative reward and the relative reward based
on policies selected using the previously introduced con-
vergence estimates (the different performance estimation
methods are described inAppendix E). The learning problem
should be harder for both datasets since there is no consis-
tent expert behavior to observe. However, the performance
of FORM improved compared to the original experiments.
SOIL-TDM (our method) performs similarly well to the
experiments using one expert policy for each environment
and is still better or competitive with the baseline methods.
In the HopperBulletEnv-v0 environment, OPOLO performs
worse, while the resulting rewards are higher for F-IRL in
this setup. In Summary, methods based on conditional state
probabilities (FORM and SOIL-TDM) showed consistent or
improved performance in this experimental setup. This sug-
gests that these methods might be well suited for tasks where
the demonstrations come from multiple experts.

Appendix H: Additional Results

The following figures (Figs. 5– 9) show the policy loss and
the estimated reward together with the environment reward
during the training on different pybullet environments for
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Fig. 5 The policy loss,
estimated reward and the
environment test loss during
training in the pybullet Ant
environment using our proposed
SOIL-TDM and the OPOLO,
F-IRL, and FORM
implementations with 4 expert
trajectories
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Fig. 6 The policy loss,
estimated reward and the
environment test reward during
training in the pybullet Hopper
environment using our proposed
SOIL-TDM and the OPOLO,
F-IRL, and FORM
implementations with 4 expert
trajectories
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Fig. 7 The policy loss,
estimated reward, and the
environment test reward during
training in the pybullet
Walker2D environment using
our proposed SOIL-TDM and
the OPOLO, F-IRL, and FORM
implementations with 4 expert
trajectories
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Fig. 8 The policy loss,
estimated reward, and the
environment test reward during
training in the pybullet
HalfCheetah environment using
our proposed SOIL-TDM and
the OPOLO, F-IRL, and FORM
implementations with 4 expert
trajectories

123



30884 D. Boborzi et al.

Fig. 9 The policy loss,
estimated reward, and the
environment test reward during
training in the pybullet
Humanoid environment using
our proposed SOIL-TDM and
the OPOLO, F-IRL, and FORM
implementations with 4 expert
trajectories
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OPOLO, F-IRL, FORM, and SOIL-TDM (our method). All
plots havebeengenerated from training runswith 4 expert tra-
jectories and 10 test rollouts. It can be seen that the estimated
reward and policy loss from SOIL-TDM correlates well with
the true environment reward. The policy loss of SOIL-TDM
may be lower than 0 since it is not based on the true distribu-
tions. Instead, it is based on learned and inferred estimates of
expert state conditional distribution, policy state conditional
distribution, policy inverse action distribution and q-function
with relatively large absolute values (∼ 50−100) each. These
estimation errors accumulate in each time step due to sum
and subtraction and due to the Q-function also over (on aver-
age) 500 timesteps which can lead to relatively large negative
values.

Data Availibility Statement The datasets generated during the current
study are available from the corresponding author upon reasonable
request. We describe the data generation process using publicly avail-
able resources in Appendix E.
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