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a b s t r a c t 

We aimed to quantitatively characterize progressive brain network disruption in Amyotrophic Lateral 

Sclerosis (ALS) during cognition using the mismatch negativity (MMN), an electrophysiological index of 

attention switching. We measured the MMN using 128-channel EEG longitudinally (2–5 timepoints) in 

60 ALS patients and cross-sectionally in 62 healthy controls. Using dipole fitting and linearly constrained 

minimum variance beamforming we investigated cortical source activity changes over time. In ALS, the 

inferior frontal gyri (IFG) show significantly lower baseline activity compared to controls. The right IFG 

and both superior temporal gyri (STG) become progressively hyperactive longitudinally. By contrast, the 

left motor and dorsolateral prefrontal cortices are initially hyperactive, declining progressively. Baseline 

motor hyperactivity correlates with cognitive disinhibition, and lower baseline IFG activities correlate 

with motor decline rate, while left dorsolateral prefrontal activity predicted cognitive and behavioural 

impairment. Shorter survival correlates with reduced baseline IFG and STG activity and later STG hy- 

peractivation. Source-resolved EEG facilitates quantitative characterization of symptom-associated and 

symptom-preceding motor and cognitive-behavioral cortical network decline in ALS. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
Abbreviations: ALS, Amyotrophic Lateral Sclerosis; AEP, Auditory evoked poten- 
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1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegen-

erative disease defined by the presence of upper and lower motor

neuron degeneration. Disease progression is variable with median

survival times ranging from 20 to 48 months ( Chio et al., 2009 ).

Imaging ( Mazón et al., 2018 ), electrophysiological ( Iyer et al., 2017 ;

Vucic et al., 2008 ) and histological ( Gregory et al., 2019 ) studies

have demonstrated that pathologic processes underlying ALS can

begin many years before clinical manifestation. This is likely to

be due to a combination of reserve neurons facilitating normal

function ( Eisen et al., 1993 ) and compensation from other brain

regions ( Schoenfeld et al., 2005 ; Witiuk et al., 2014 ). This obser-

vation points to the requirement for diagnostic biomarkers that

can identify such early ALS pathology, ideally prior to the earli-

est point of clinical presentation. Further, as disease heterogene-

ity is an important confounding factor in clinical trials of potential
 open access article under the CC BY license 
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therapeutic agents, reliable measures which segregate patients by

patterns of disease progression are urgently needed. 

Most of the existing studies regarding cortical dysfunction in

ALS have focussed on resting, widespread cortical activity and

connectivity patterns, such as resting state functional magnetic

resonance imaging, electroencephalography (EEG) and magne-

toencephalography studies, or have employed motor cortical

stimulation/engagement paradigms (such as motor cortex tran-

scranial magnetic stimulation combined with electromyography or

EEG during movement tasks) ( Bizovi ̌car et al., 2014 ; Kasahara et al.,

2012 ; Proudfoot et al., 2017 ; Vucic et al., 2018 ). However it is now

well established that non-motor symptoms are also associated

with ALS, including cognitive, behavioral and language impairment

[for detailed review see William et al., 2020 Huynh et al., 2020],

with approximately 50% of ALS patients displaying executive dys-

function ( Phukan et al., 2012 ). Further, such nonmotor pathology is

relevant to individual prognoses, with cognitive impairment pre-

dicting shorter survival times ( Elamin et al., 2011 ). It is therefore

imperative that quantitative measures of function/dysfunction in

motor and non-motor cortical networks in ALS are developed for

clinical prognostic and diagnostic applications. 

While structural magnetic resonance imaging (MRI) can cap-

ture both motor and non-motor cortical atrophy ( Bede and Hardi-

man, 2014 ; Finegan et al., 2020 ), it is unsuitable for some

patients, such as those unable to lie flat in a scanner due to res-

piratory symptoms ( Antonescu et al., 2018 ). Unlike MRI and other

structural imaging methods, functional imaging and electrophysi-

ology can capture both primary network dysfunction and exces-

sive, compensatory network function, providing sensitive measures

of early pathology which may precede tissue atrophy. While tran-

scranial magnetic stimulation (TMS) of the motor cortex has pro-

vided important measures of early motor cortex hyperexcitability

and GABA-ergic interneuron decline in ALS ( Vucic et al., 2018 ), the

single and paired pulse protocol used in these studies are unsuit-

able for investigating such changes in non-motor regions such as

cognitive networks or in patients lacking target muscle function

(see Supplementary Introduction for more detailed comparison of

TMS and EEG for study of non-motor networks in ALS). 

EEG is accessible to patients with respiratory symptoms when

recorded in seated positions and is relatively cost effective

( Lystad and Pollard, 2009 ). Advances in source localisation of EEG

signals, including the development of beamforming methods (such

as linearly constrained minimum variance, LCMV ( Van Veen et al.,

1997 )), with greater spatial precision than low resolution elec-

tromagnetic tomography, LORETA, ( Fontanarosa et al., 2004 ), and

use of boundary or finite element models which describe the

head tissue with greater accuracy than previously adopted spher-

ical shell models ( Fuchs et al., 20 02 , 20 01 ), have improved spa-

tial resolution to rival other functional imaging methods. These

source localisation methods can use personal MRI scans or gen-

eral templates (see Supplementary Introduction for a discus-

sion). Furthermore, as source resolved EEG directly captures neu-

ronal dysfunction rather than tissue loss or secondary measures

(e.g., blood oxygenation or glucose metabolism), it provides ex-

cellent temporal resolution, facilitating examination of spatiotem-

poral patterns of cortical network activation in relation to task

cues. 

Numerous electrophysiological measurements have shown util-

ity for the measurement of non-motor network impairment in ALS

( Cosi et al., 1984 ; Dukic et al., 2019 ; McMackin et al., 2020 , 2019 b;

Raggi et al., 2010 ). The mismatch negativity (MMN) is a particularly

attractive EEG measurement for the study of cognitive impairment

in ALS patients as the associated paradigm does not require active

physical or cognitive engagement by the patients ( Näätänen et al.,

2014 ), who may be limited in these capacities due to
disease symptoms (see Supplementary Introduction for fur-

ther introduction to the MMN). The MMN has been employed as

an index to measure auditory and cognitive cortical pathophysi-

ology in a number of psychiatric and neurodegenerative diseases

(e.g. schizophrenia ( Fulham et al., 2014 ), Parkinson’s disease

( Brønnick et al., 2010 ), multiple sclerosis ( Jung et al., 2006 )), both

to increase understanding of the cortical regions affected by those

diseases and in search of diagnostic or prognostic disease biomark-

ers. It has also been employed in clinical trials as an outcome

measure of centrally targeted therapeutics (e.g. NCT01556763,

NCT00527020, NCT00527020). 

We also recently used the MMN as a tool to identify early

changes in cognition in ALS, based on its combination of advan-

tages ( McMackin et al., 2019b ). Having identified delay in the MMN

at sensor level in ALS ( Iyer et al., 2017 ), we performed source anal-

ysis to identify the associated dysfunctional sources of the wave-

form and demonstrated the utility of source-imaged EEG for mea-

suring this disease ( McMackin et al., 2019b ). In that study, we

applied three different source analysis pipelines to harness the

individual advantages of LCMV, exact LORETA and dipole fitting

methods when investigating dysfunctional sources of MMN. Us-

ing dipole fitting, we demonstrated that the inferior frontal gyri

(IFG) and left superior temporal gyrus (STG) show significantly re-

duced activity in ALS. Alterations in IFG activity provided excellent

discrimination (area under the receivership operating curve > 0.9)

between controls and ALS patient with greater susceptibility to

cognitive decline ( C9orf72 expansion carriers ( Byrne et al., 2012 ),

referred to hereafter as C9orf72 + , and bulbar onset patients

( Schreiber et al., 2005 )), demonstrating that source engagement

during this paradigm can provide more relevant quantitative mea-

sures of ALS-related changes compared to sensor level ERP char-

acteristics. Using LCMV as a beamforming analysis we also es-

tablished abnormal hyperactivity in the left primary motor (M1),

dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cor-

tices ( McMackin et al., 2019b ). Use of source-analysis in this

study provided a major advantage compared to previous stud-

ies on cognitive event-related activity in ALS ( Hanagasi et al.,

2002 ; Raggi et al., 2010 , 2008 ). However, ALS is highly hetero-

geneous in its progression between patients. This cross-sectional

analysis could not determine the temporal profile of the identi-

fied cortical activity changes with respect to disease progression

or determine whether such changes can act as a marker of dis-

ease progression. We have, therefore, now performed a longitu-

dinal study of MMN source activity change in ALS and the re-

lationship between these EEG measures and ALS progression to

improve our understanding of extra-motor cortical dysfunction in

ALS and to investigate their predictive and prognostic utility as

biomarkers. 

In this study, we have now tracked MMN source activity

changes in ALS over time. We sought to determine whether pro-

gressive changes occur in cortical sources of neuroelectric activity

corresponding to abnormal functional changes at baseline in ALS.

We also aimed to investigate the relationship between any pro-

gressive changes in network function and survival times and dis-

ease progression as measured by functional (ALS functional rating

scale-revised, ALSFRS-R ( Cedarbaum et al., 1999 )) and cognitive-

behavioral scores (Edinburgh Cognitive and Behavioral ALS Screen,

ECAS ( Abrahams et al., 2014 ), and Beaumont Behavioral Inven-

tory, BBI ( Elamin et al., 2017 )). Finally, to probe the prognostic

utility of these electrophysiological measures and the relevance

of nonmotor cortical pathology to ALS prognosis, we have inves-

tigated whether baseline cortical activity changes are predictive

of ALS symptom progression after one year and whether changes

in non-motor function associated network hubs relate to survival

times. 
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2. Materials and methods 

2.1. Ethical approval 

Ethical approval was obtained from the ethics committee of

Beaumont Hospital (REC reference: 13/102) and the St. James’s

Hospital (REC reference: 2017-02). All participants provided writ-

ten informed consent before participation. All work was performed

in accordance with the Declaration of Helsinki. 

2.2. Participants 

2.2.1. Recruitment 

Patient recruitment was undertaken from the National ALS spe-

cialty clinic in Beaumont Hospital. Healthy controls included neu-

rologically normal, age-matched individuals recruited from an ex-

isting cohort of population-based controls. A total of 71 ALS pa-

tients underwent longitudinal recording while 71 healthy controls

underwent a single recording session. Of those who underwent

recording, 60 patients (17 female; age mean: 60.56 years, range:

32–81 years, standard deviation: 11.49 years) and 62 controls (42

female; age mean: 60.25 years, range: 36–82 years, standard devi-

ation: 10.70 years) were included in final analyses as data lacking

clear auditory evoked potentials (AEPs) were excluded (one partici-

pant, who did not report hearing issues, showed no AEP over three

separate recordings. Remaining excluded participants took part in

two or three recordings, showing AEPs in one recording, but no

clear AEP in the other(s), due to similar baseline and poststimu-

lus signal amplitudes. Due to lack of longitudinal data of sufficient

quality, they were therefore excluded). Patients and controls were

age matched ( p = 0.14) but not gender matched ( p = 3.00 × 10 −5 ,

χ2 = 17.42), however we previously established no significant dif-

ference between genders for these measures ( McMackin et al.,

2019b ), and we have included gender as a factor in our statisti-

cal analysis. Controls did not undergo longitudinal assessment (pri-

marily driven by recruitment difficulty due to hesitation to en-

rol in longitudinal studies). Significant individual test-retest sta-

bility has, however, been previously demonstrated for the MMN

( Pekkonen et al., 1995 ), supporting the stability of measures in

controls as baseline. 

Patient participants were informed at recruitment that the

study was longitudinal (up to five sessions, T1-T5, approximately

every four to six months), but that participants were not required

to commit to all follow up sessions in order to take part, as high

dropout was expected by session four and five ( > 1 year after

baseline recording) due to disease progression. Participant drop

out was due to disease progression (resulting in inability to attend

the hospital and/or sit upright, relaxed and still due to motor

disability). 

2.2.2. Inclusion criteria 

All participants were over 18 years of age and able to give in-

formed written or verbal (in the presence of two witnesses) con-

sent. Patients were diagnosed with Possible, Probable or Definite

ALS in accordance with the El Escorial Revised Diagnostic Criteria

( Ludolph et al., 2015 ). 

2.2.3. Exclusion criteria 

Exclusion criteria included multiple sclerosis, stroke, seizure

disorders, brain tumors, psychological and structural brain dis-

eases, and other relevant neuromuscular comorbidities were

excluded. 
2.3. Experimental paradigm 

The experimental paradigm and data processing pipeline is il-

lustrated (simplified) in Fig. 1 . The experimental paradigm is the

same as the implementation in our previous cross-sectional stud-

ies ( Iyer et al., 2017 ; McMackin et al., 2019b ), which is briefly

described as follows. Subjects were seated in a chair and asked

to relax and watch a silent, black and white film (The Artist,

Warner Bros.) while auditory tones were played through head-

phones (HD650, Sennheiser, Wedemark, Germany). Presentation of

a film during recording is part of standard MMN recording pro-

tocol ( Bonetti et al., 2018 ; Lonka et al., 2013 ; Schirmer and Es-

coffier, 2010 ) to avoid eye-movements and to prevent participants

attending to the tones and performing unrequested mental tasks.

As the film is played independently of auditory stimulus presen-

tation and not time locked to any aspect of the task, any cortical

activity induced by the film is removed from the ERP via averag-

ing across trials. Participants were instructed to minimize their eye

movements, ignore the auditory tones and relax during the EEG ac-

quisition. Standard (720 Hz) and deviant (800 Hz) auditory stimuli

were generated by Presentation® (NeuroBehavioral Systems, Inc.,

Berkeley, CA, USA), such that deviant tones had a higher pitch (i.e.,

a frequency mismatch). All tones had a duration of 150ms and

inter-stimulus-interval of 833ms. Tones were mostly of fixed am-

plitude (i.e., loudness), set to 50% of desktop output to the head-

phones (except for a few participants who considered the tones as

loud, where this level was reduced). All tones were of fixed ampli-

tude and duration within individuals. Deviant tones were delivered

at random amongst standard tones, constituting about 10% of stim-

uli, with a minimum of 2 standard tones played between each de-

viant tone. Following a briefing with the participant of what the

session involves and informed consenting, the recording session

started, which lasted for about 1 hour and 15 minutes (from be-

ginning of equipment setup to end of the paradigm). This included

30 minutes for head measurement, external electrode placement,

cap fitting, application of gel and placement of electrodes, 10 min-

utes for checking and maximisation of recording quality based on

online recording and electrode impedance values (to be < 25 uV or

> -25 uV), 5 minutes for auditory stimulus check, silent film setup

and explanation of the task to the participant, 30 minutes for the

auditory oddball paradigm. 

2.4. Data acquisition 

2.4.1. EEG 

EEG recordings were conducted in dedicated laboratories in

the University of Dublin and St. James’s Hospital, Dublin using a

BioSemi® ActiveTwo system with 128 active sintered Ag-AgCl elec-

trodes and headcaps (BioSemi B.V., Amsterdam, The Netherlands).

EEG data were filtered online over the range 0–134 Hz and digi-

tized at 512 Hz. 

2.4.2. ALS functional rating scale revised (ALSFRS-R) 

Longitudinal ALSFRS-R data (at least two data points, collected

at least 6 months apart) were collected at the National ALS spe-

cialty clinic in Beaumont Hospital. These data were collected in a

clinical setting and therefore were only collected for those patients

who attended the clinic with frequency and timing which suffi-

ciently overlapped with the patient’s participation in this study

(see results Section 3.1.1 ). 

2.4.3. Cognitive and behavioral tests 

Longitudinal Edinburgh Cognitive and Behavioral ALS Screen

(ECAS) ( Abrahams et al., 2014 ), Beaumont Behavioral Inventory

(BBI) ( Elamin et al., 2017 ) and the Delis-Kaplan Executive Function
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Fig. 1. Illustration of data collection and processing pipeline for each dataset. Frequencies cited refer to the pitch of tones delivered (720 Hz – Standard tone, 800 Hz –

Deviant tone). AEP, Auditory evoked potential; MMN, Mismatch negativity; LCMV, Linearly constrained minimum variance; IFG, Inferior frontal gyrus; STG, Superior temporal 

gyrus; L, Left; R, Right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System Colour Word Interference Test (CWIT) (Delis et al., 2001)

data were also collected as part of a concurrent psychological re-

search study for some participants, who took part in both studies

at overlapping time periods (see results section 3.1.1 ). Versions A,

B and C of the ECAS were used for longitudinal cognitive and be-

havioral screening to avoid practice effects ( Crockford et al., 2018 ).

2.4.4. Survival 

Survival was calculated for deceased patients as the number of

months between symptom onset and death. 

2.5. Data analysis 

2.5.1. EEG signal processing 

All signal processing and source analysis procedures were iden-

tical to that of our cross-sectional study ( McMackin et al., 2019b ),

which are explained as follows. Data were pre-processed using

custom MATLAB (R2014a and R2016a, Mathworks Inc., Natick, MA,

USA) scripts and the EEGLAB ( Delorme and Makeig, 2004 ) and AD-

JUST ( Mognon et al., 2011 ) toolboxes. Data were high- and low-

pass filtered at cut-off frequencies of 0.3 Hz (dual-pass 5th order

Butterworth filter) and 35 Hz (dual-pass 117th order equiripple fi-

nite impulse response filter), respectively. Episodes of heavily con-

taminated signal recordings were identified and removed by visual

inspection. Remaining data were epoched to include 100ms pres-

timulus to 500 ms poststimulus. Independent component analysis

(ICA) was then employed to remove stereotyped artefacts (e.g., eye

blinks, horizontal eye movements) via decision rules given by AD-

JUST. Presence of standard tone AEPs was the criterion for inclusion

in further analysis. The common-average referenced EEG epochs

were then averaged separately for standard and deviant trials to

obtain the standard and deviant AEPs, as well as their difference

(MMN). The AEPs were baseline-adjusted for analysis. 

The number of standard trials was matched to that of deviant

trials by random selection for source analysis to avoid bias in
LCMV localisation due to differences in the signal to noise ratio

( Van Veen et al., 1997 ). Standard trials were chosen at random,

rather than those immediately preceding deviant trials, as some

deviant trials were preceded by a standard trial which was elimi-

nated during visual inspection for noise (and therefore would have

to be discarded also in the matching process, further reducing sig-

nal to noise ratio), and to maintain consistency with existing MMN

literature, wherein standard trials are averaged irrespective of their

occurrence relative to deviant trials ( Garrido et al., 2009 ). Mean

number of included artefact-free standard/deviant trials for con-

trols was 1230/144 and for patients was 1274/145 at T1, 1230/141

at T2, 1182/136 at T3, 1195/136 at T4 and 1137/131 at T5. There-

fore, following matching of standard trial numbers (e.g., approxi-

mately 140 trials) clear individual AEPs were still obtained from

trial means, in alignment with trial numbers of other auditory EEG

studies ( De Beer et al., 1996 ; Ethridge et al., 2016 ; Kaneshiro et al.,

2020 ). 

2.5.2. Source analysis 

Source analyses were performed using the FieldTrip Toolbox

( Oostenveld et al., 2011 ) and custom scripts in MATLAB (R2016a,

Mathworks Inc., Natick, MA, USA). Channels with continuously

noisy data were excluded (controls mean [range]: 1.56 [1–7], pa-

tients mean [range]: T1: 1.15 [0–5], T2: 1.38 [1–7], T3: 1.29 [1–4],

T4: 1.23 [1–3], T5: 1.5 [1–4]) and modeled by spline interpolation

of surrounding channels. 

Brain, skull, and scalp tissues were modelled using boundary

element models. Personal models were generated for 45 patients,

using T1-weighted images from MRI. This MRI data were acquired

on a 3 Tesla Philips Achieva MRI platform with a maximum gradi-

ent strength of 80mT/m using an 8-channel receive-only head coil.

T1-weighted images were obtained using a three-dimensional in-

version recovery prepared spoiled gradient recalled echo sequence

with a field of view of 256 × 256 × 160 mm, spatial resolution:
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1 mm 

3 , TR/TE: 8.5/3.9ms, TI: 1060ms, flip angle: 8 °, SENSE factor:

1.5 ( Schuster et al., 2017 ). These MRI were collected on the same

day as baseline EEG recording, at the Centre of Advanced Medi-

cal Imaging, St. James’ Hospital. A ICBM152-based ( Fonov et al.,

2011 ) head model was used for remaining patients and controls

who declined to/were unsuitable to undergo MRI. Comparable lo-

calization accuracy has been demonstrated for template-based and

individualised boundary-element head models ( Douw et al., 2018 ;

Fuchs et al., 2002 ), indicating that personalised MRI scans were

not essential for modelling. Further, as a single model was used

across timepoints for each individual, observed changes in source

activity over time are not driven by change in head tissue mod-

elling. For group level analyses, source position coordinate vectors

of personal MRI-based head models were warped to those of the

ICBM152-based headodels to ensure matching sources were com-

pared. 

As we previously identified that the spatial precision of dipole

fitting was best suited to the study of the most consistently re-

ported four sources of the MMN while LCMV identified exces-

sive activity of other cortical sources in ALS with better spatial

resolution than exact LORETA ( McMackin et al., 2019b ) we have

again used dipole fitting and LCMV for common and uncommon

MMN source analysis respectively in keeping with our previous

protocol (the design of which is discussed extensively in detail in

( McMackin et al., 2019b )). For data processing times see Supple-

mentary Methods. 

Details of the source analysis protocol are as follows: 

2.5.2.1. Dipole fitting. Dipole fitting ( Scherg and Berg, 1991 ) was

used to generate least-square error models of the contributions

of the four major established sources of MMN, namely the bilat-

eral inferior frontal gyri and superior temporal gyri ( Jemel et al.,

2002 ; Oades et al., 2006 ; Oknina et al., 2005 ). Fixed dipoles

were modelled at the centroid coordinates of the bilateral supe-

rior temporal gyri and pars triangularis of the inferior frontal gyri

(right panel, Fig. 1 ), as determined from an AAL atlas ( Tzourio-

Mazoyer et al., 2002 ). Models were estimated based on the av-

erage MMN response (mean{deviant response}-mean{standard re-

sponse}) for 40 ms surrounding the global field power peak be-

tween 105 and 271 ms post-stimulus, the period within which we

previously demonstrated MMN to be significant ( Iyer et al., 2017 ).

Subsequently, mean power for each dipole was calculated. Residual

variance (the percentage of variance in the data not accounted for

by the model) was used as a measure of goodness of the model

fit. The rationale for using this time frame is based upon our pre-

vious findings that these four sources better accounted for the

data in this window (i.e., had smaller residual variance) than the

longer time window of data 10 0–30 0 ms post-stimulus, as used for

LCMV. We previously demonstrated that a model generated using

the longer 200 ms time window provided the same cross-sectional

findings ( McMackin et al., 2019b ). 

2.5.2.2. LCMV. To characterise additional cortical source, LCMV was

employed by calculating the brain maps of mean power for the

average AEP 10 0-30 0 ms after standard and deviant cues. Left dor-

solateral prefrontal, posterior parietal and motor cortical (chosen

based on our previous ( McMackin et al., 2019b ) cross-sectional sta-

tistical analyses) power values were subsequently calculated as the

mean LCMV-determined power value of each hyperactive voxel in

the left superior and medial frontal gyri (combined), left superior

and inferior parietal lobe and left precuneus (combined) and left

precentral gyrus respectively, according to the AAL atlas ( Tzourio-

Mazoyer et al., 2002 ). Maps of LCMV-determined cortical activity

are given as 10 ×log 10 (Deviant Power/Standard Power) to prevent
single voxel extrema offsetting plot heat maps. Different localisa-

tion methods were used for the seven sources of interest based

on our previous findings. Namely, while LCMV detected the same

trends of dysfunction in the inferior frontal and superior temporal

sources as dipole fitting, the effect was spatially distributed such

that no specific voxel showed statistically significant differences in

ALS. In contrast, the dipole fitting method provides a single mea-

sure of power in the region which provided much greater group

discrimination ( McMackin et al., 2019b ). 

2.6. Statistics 

2.6.1. Comparison of patient and control power 

In order to investigate how ALS patient data varied over time

relative to control baseline (for example, to investigate if initially

underactive sources become normally active or hyperactive), lon-

gitudinal data were grouped for comparison to controls. Due to

variable intervals between EEG data collection (due to practical as-

pects and availability of the participants), patient longitudinal data

were grouped according to months since first EEG: 0 months (i.e.,

T1, n = 60), 3–7 months (n = 51), 8–11 months (n = 32), 12–15

months (n = 24), 16–19 months (n = 7), and 20–57 months (n = 8)

for comparison to control data. Each ALS patient had a maximum

of one data point per time group. 

LCMV: For LCMV, a 10mm grid in the brain volume (including

white matter regions) yielding 1726 modeled sources was imple-

mented. In order to compare power between patients within each

time group to control values for all voxels throughout brain simul-

taneously, a 10% False Discovery Rate ( Benjamini, 2010 ) was used

as a frequentist method for preliminary screening of significant ac-

tivity difference, corrected across the 1726 source model voxels.

Subsequently, Empirical Bayesian Inference (EBI) ( Efron, 2009 ) was

used to find Bayesian posterior probabilities, as well as achieved

statistical power and Area Under the Receiver Operating Charac-

teristic Curve (AUROC). AUROC is a measure of how well the test

separates patient and control groups ( Hajian-Tilaki, 2013 ) which

ranges from 0 to 1, where AUROC values further from 0.5 indicate

greater group discrimination. 

Dipole fitting: For lower dimensional comparison of dipole

power for each of the four modelled dipoles, data from the con-

trol and ALS patient groups were compared by Mann-Whitney

U-test. A 5% FDR was implemented using the Benjamini and

Hochberg (1995) method ( Benjamini and Hochberg, 1995 ) to ac-

count and correct for multiple comparisons, following the signifi-

cance testing at p < 0.05. Specifically, this FDR was applied across

the six time group power values compared to controls power val-

ues across all 4 sources of interest (i.e. correction across 24 p -

values). 

2.6.2. Models of longitudinal change in source power 

To investigate change in power over time within ALS patients,

the fixed effect of time since T1 and the random effects of delay

from symptom onset, gender and age at baseline were simultane-

ously investigated for each source by linear mixed effects models

with the following Wilkinson-style ( Wilkinson and Rogers, 1973 )

model description formula: 

Power = Time since T1 + (1|Delay from symptom onset) + (1|Sex)

+ (1|Age at baseline) + (Time since T1|Patient) 

Intercept and slope were permitted to vary randomly per pa-

tient in all models. Group effect (i.e., patient or control) was not

incorporated into this analysis the main purpose is to test for lon-

gitudinal changes in patients (not measured in controls). For source

activity models of the LPPC, LDLPFC, and LM1, power was calcu-

lated from the mean activity of voxels within the region demon-
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Table 1 

Summary of ALS patient clinical characteristics at baseline 

Site of onset (spinal/bulbar/thoracic) 50/9/1 

C9orf72 expansion carrier (n) 5 

Comorbid FTD diagnosis 3 

ALSFRS-R (median [IQR]) 37.76 [35.80-41.42] 

Months since symptom onset (median [IQR]) 21.10 [12.26-40.30] 

BBI (median [IQR]) 4.23 [1.4-7.15] 

ECAS total (median [IQR]) 113.26 [105.81-118.76] 

ECAS ALS specific (median [IQR]) 85.30 [77.26-88.11] 

ECAS ALS non-specific (median [IQR]) 29.25 [26.75-31.89] 

Key: IQR, Interquartile range. 

Symptom onset date is determined by patient reported estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strating significant hyper activation in our previous cross-sectional

analysis. Power values were normalised for linear mixed modelling

by inverse normal transformation ( Beasley et al., 2009 ) as residu-

als were not normally distributed for IFG and STG models without

transformation. The null hypothesis of model residuals being nor-

mally distributed was not rejected by Shapiro Wilks tests for each

model following normalisation of power values ( p > 0.05). 

Linear regression models with time since T1 as the fixed vari-

able and power at source of interest as the dependent variable

were also fitted for each source per individual. Robust estimation

was used where 3 or more data points were available. Linear re-

gression modelling facilitated clear illustration of the change in in-

dividual source activity over time and allowed for assignment of

rate of change values to each individual for correlation analyses.

Furthermore, these models allowed for estimation of power values

for each individual at common time points relative to baseline de-

spite variation across and within datasets in number of data points

and intervals between data points (e.g., power at one year after

baseline). Second order models (curves) were calculated for all 7

sources per individual, however no quadratic components were

deemed significant by sign rank testing (comparing the coefficient

value to zero), so further analyses were based on first order mod-

els. 

Longitudinal analysis was performed with respect to baseline,

rather than with respect to patient reported disease onset ( Table 1 )

or time of diagnosis as timing of symptom onset relative to un-

derlying pathophysiology is highly variable in neurodegenerative

disease, patient reported disease onset may or may not represent

true first disease symptoms as early symptoms may be missed or

unrelated events may attributed to the disease, and ALS diagno-

sis occurs with substantial variation relative to symptom onset and

initial clinical presentation. While baseline referencing has similar

limitations, it provides a basis for the alignment of individual par-

ticipation timelines. 

2.6.3. Modeling functional and cognitive-behavioral scores for 

correlation analysis 

As intervals between EEG collection and psychological/motor

test score collection varied across individuals, linear regression

models (robust estimation method used where 3 or more data

points were available) were generated for functional or cognitive-

behavioral measures (CWIT color naming, word reading, inhibition

and inhibition-switching subscores, ECAS total, ECAS ALS-specific,

ECAS AL S-nonspecific, AL SFRS-R and BBI scores) for those indi-

viduals where 2 data points collected more than 6 months apart

were available. In these models, the functional/cognitive-behavioral

measure was the dependent variable and time since baseline EEG

was the independent variable. Second order models (curves) were

also calculated for all scores, however no quadratic components

were deemed significant by sign rank testing (comparing the co-

efficient value to zero). Therefore, the slope (1st order coordinates)
of each linear model was used to quantify the rate of change for

each measure per individual. Based on these models, the values of

each variable (e.g., motor and cognitive-behavioral test scores) at

baseline EEG (T1, i.e., 0 months) and after 12 months were calcu-

lated. 

2.6.4. Correlations 

Spearman’s nonparametric rank correlation, which is robust to

outliers ( de Winter et al., 2016 ), was used to investigate relation-

ships between source activity changes, and between source activity

and psychological/motor test scores. Confidence intervals (95%) of

rho values were determined by bootstrapping of the rho statistic

using 10 0 0 bootstrap samples of the patient dataset with the re-

quired clinical scores. Partial correlation was implemented for in-

vestigating relationships to CWIT scores, to account for ALSFRS-R

speech score at time of CWIT testing, as performance in this task

is affected by speech impairment. Multiple comparison correction

across the 7 sources of interest, separately for ALS total score (7

comparisons), ECAS total score (7 comparisons), survival (7 com-

parisons), CWIT scores (4 × 7 comparisons) and BBI post MND

score (7 comparisons) was implemented using a 5% FDR, imple-

mented using the Benjamini and Hochberg method ( Benjamini and

Hochberg, 1995 ). 

2.6.5. Participant demographics 

The differences between age and gender in the patient and con-

trol groups were tested by Mann-Whitney U test and chi-squared

proportions test respectively. 

3. Results 

3.1. Participant demographics 

3.1.1. Patient clinical data characteristics 

ALSFRS-R data were available for 50 patients (n range: 2–20

data points, mean: 10.66). Cognitive-behavioral data were available

for 45 (ECAS, n range: 2–5, mean: 3.48), 19 (BBI, n range: 2–4,

mean: 3.1) and 19 (CWIT, n range: 3–4, mean: 3.84, one lacking

an inhibition switching subscore) patients. The timespan of this

data collection overlapped with that of EEG data collection for all

but 5 patients, who had a baseline EEG within 6 months after fi-

nal ECAS follow-up and had either 3 or 4 ECAS data points each

spanning at least 14 months, facilitating reliable modeling. Time in

months (median [range]) between baseline EEG and nearest data

point collection was 0.53 [0–4.11] for ALSFRS-R, 1.74 [0–6.74] for

ECAS, 0.20 [0.03–2.10] for CWIT and 1.59 [0.19–5.36] for BBI. Sur-

vival data (median: 49.93 months, interquartile range: 35.73–69.69

months) were available for 38 patients, who were deceased by the

time of analysis. Patient clinical characteristics at baseline (EEG

T1) are summarized in table 1 . Overlap in cohort with those in-

cluded in our previous cross-sectional analysis ( McMackin et al.,

2019b ) includes 34 patients (including all 5 C9orf72 + patients

and 6 of those of bulbar onset) and 39 controls included in this

study. 

3.2. Cross-sectional analysis 

Baseline cross-sectional analysis in this cohort confirms the

presence of previously observed abnormal cognitive and motor cor-

tical function. Subgroup cross-sectional analysis was not repeated

due to the high overlap of C9orf72 + and bulbar-onset patients with

our previous publication ( McMackin et al., 2019b ). 

At baseline, both IFG showed significantly reduced power

( Fig. 2 , left: p = 0.0157, right: p = 0.0022) compared to controls,

as we previously observed ( McMackin et al., 2019b ). While the left
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Fig. 2. Comparison of power in each source of MMN, modelled by dipole fitting, between controls and patients at different follow-up times. Significant differences (false 

discovery rate = 5%) are highlighted by asterisk(s). Red asterisks – Significant increase in patient longitudinal time group power relative to controls. Blue asterisks – Signifi- 

cant decrease in patient longitudinal time group power relative to controls. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, X axis label shows the time range of the data (in months) in 

each bin and [group n] values represent datapoints per bin. L/RIFG, Left/right inferior frontal gyrus; L/RSTG, Left/right superior temporal gyrus; C, Controls. 

 

 

 

 

 

 

 

 

STG showed a trend of decreased activity in line with our pre-

vious findings, this difference was not statistically significant ( p

= 0.24). Baseline hyperactivity in left motor, posterior parietal, dor-

solateral prefrontal and mid cingulate cortices was again identified

in T1 (baseline time point) recordings (Supplementary Fig. 1), con-
sistent with previously findings ( McMackin et al., 2019b ). Signifi-

cantly increased activity was also observed within the left medial

occipital and right dorsolateral prefrontal cortices. Maximum AU-

ROC was 0.67, in the right middle frontal gyrus. 
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Table 2 

Summary of statistics for significant correlations between EEG measures and clinical characteristics in the ALS patient cohort. 

Clinical characteristic EEG measure n Source Rho p Bootstrapping- 

derived rho 

confidence 

interval 

Motor 

ALSFRS-R slope Slope 50 RSTG −0.40 0.0042 [ −0.62, −0.14] 

Power at 

baseline 

LIFG 0.43 0.0022 [0.14,0.61] 

RIFG 0.47 0.00058 [0.20, 0.67] 

ALSFRS-R at baseline LSTG −0.37 0.0087 [ −0.59, −0.06] 

RSTG −0.39 0.0058 [ −0.61, −0.10] 

Survival 

Survival time (months) 38 LIFG 0.49 0.0016 [0.17, 0.69] 

RIFG 0.48 0.0023 [0.21, 0.67] 

LSTG 0.47 0.0032 [0.15, 0.68] 

RSTG 0.48 0.0025 [0.24, 0.68] 

Behavioural 

BBI score 1 year after 

baseline 

19 DLPFC −0.68 0.0017 [ −0.84, −0.39] 

Cognitive 

ECAS total score 1 year 

after baseline 

46 DLPFC −0.41 0.0056 [ −0.60, −0.12] 

CWIT word reading 

score slope 

18 LSTG 0.60 0.0088 [0.13, 0.88] 

RSTG 0.60 0.0086 [0.19, 0.85] 

CWIT inhibition 

switching score slope 

LIFG 0.61 0.0098 [0.17, 0.84] 

LSTG 0.73 0.00094 [0.35, 0.92] 

RSTG 0.66 0.0037 [0.27, 0.86] 

Key: DLPFC, Left dorsolateral prefrontal cortex; L/R, Left/right; STG, Superior temporal gyrus; IFG, Inferior frontal gyrus; ECAS, Edinburgh Cognitive and Behavioral ALS 

Screen; BBI, Beaumont Behavioral Inventory, CWIT, Delis-Kaplan Executive Function System Color-Word Interference Test; ALSFRS-R, Revised ALS Functional Rating Scale. 

Confidence intervals are determined by bootstrapping of the rho statistic using 10 0 0 bootstrap samples of the patient dataset with the required clinical scores (n). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Longitudinal analysis 

Patients took part in a mean of 3.05 sessions (total recording

number × number of patients: 2 × 25, 3 × 14, 4 × 14, 5 × 7), with

no more than one visit per time point group but potential absence

of data in an intermediate time group (for example, data grouped

into 0 months, 3–7 and 12–15 months due to delay in return for

third recording). Longitudinally, mean residual variance of dipole

fitting models was consistent across timepoints and groups (con-

trols: 22%, AL S baseline: 21%, AL S follow up: 3–7 months – 21%, 8–

11 months – 25%, 12–15 months - 21%, 16-19 months – 21%, 20–57

months – 18%), demonstrating consistent goodness of fit. At follow

up times the left IFG and STG (3–15 months post-baseline) and the

right STG (3–19 months post-baseline) showed significantly greater

activity than controls, indicating a transition from decreased ac-

tivity to a state of hyperactivation ( Fig. 2 ). By contrast, the initial

hyperactivity observed in the left M1, PPC and DLPFC returned to

control levels on inactivity thereafter (i.e., no significant difference

from controls). Linear mixed effects modeling demonstrated signif-

icant longitudinal decrease in bilateral IFG and STG power and sig-

nificant longitudinal increase in LDLPFC and LM1 (but not LPPC)

power within patients with increasing time from baseline (coeffi-

cient p -values reported in Fig. 3 ). 

3.4. Correlation with clinical scores 

Significant correlations between electrophysiological baseline

measures or their rate of change over time and clinical scores

are summarized in Table 2 . Correlations not deemed significant

(corrected p > 0.05) are not reported due to the extensive num-

ber of correlations performed. All correlations deemed significant

by Spearman rank correlation were also deemed significant upon

omission of extreme outliers and had a rho value 95% confidence

interval derived by bootstrapping that did not cross zero. 
3.4.1. Survival 

Both IFG and STG baseline activity values correlated with sur-

vival, illustrating that those with lower activity at baseline had a

poorer outcome. 

3.4.2. ALSFRS-R 

The mean slope of ALSFRS-R change was 0.57 points per month

(range = −1.83 to 0.074, p = 1.02 × 10 −9 ). Significant positive

correlations were identified between ALSFRS-R slope and baseline

left and right IFG activity. This illustrates that those with lower

baseline IFG activity progressed more rapidly (i.e., have a faster

rate of ALSFRS-R decline). Further, a significant negative correlation

between slope of right STG engagement over time and ALSFRS-

R slope was observed (i.e., those whose right STG became more

rapidly hyperactive experienced faster ALSFRS-R decline). A sig-

nificant negative correlation between ALSFRS-R score at baseline

recording and STG power at baseline recording was also identified.

3.4.3. Cognitive and behavioral tasks 

Slope in word reading score positively correlated with baseline

STG activation (i.e. those patients with higher STG engagement at

baseline had a faster rate of decline in language function). Rate

of change in CWIT inhibition-switching score also correlated with

baseline LIFG and bilateral STG activity (i.e., more rapid decline in

cognitive flexibility correlates with higher baseline activity in these

sources). LDLPFC activity at baseline was negatively correlated with

model-interpolated total BBI score (higher score indicates greater

behavioral impairment) and ECAS total score (lower score indicates

greater cognitive impairment) 12 months later. DLPFC correlations

to concurrent BBI and ECAS total scores were not significant with

multiple comparison correction. 

3.4.4. Correlation between sources 

No significant correlations were found between individual

model slopes for left M1/DLPFC and those for the left and right
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Fig. 3. Modeled source activity change across EEG recording sessions in individual ALS patients. Asterisks indicate individual datapoints while lines represent first order 

models of data change per participant. P-values listed are the uncorrected values associated with the effect of time since baseline on power in these sources ascertained by 

linear mixed effects modelling. Title aasterisks denote time since baseline effect coefficient values deemed statistically significant at a 5% FDR. ∗∗p < 0.01, ∗∗∗∗p < 0.0 0 01 

X-axes have been limited to 30 months for clarity (e.g., a single data point at 57 months is not shown). Abbreviations: Power, Power determined by dipole fitting in A-m; 

Std Pow, Standard power determined by LCMV; Dev Pow, Deviant power determined by LCMV; M1, Primary motor cortex; PPC, Posterior parietal cortex; DLPFC, Dorsolateral 

prefrontal cortex. 
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Fig. 4. . Summary of median changes in normal and abnormal MMN sources in ALS patients illustrating that the activity of typical MMN generators increases over time in 

ALS, whereas the pathologically present activity in nontypical MMN generators declines as disease progresses. Lines represent median slope and intercept of patient models. 

M1, PPC and DLPFC lines are plotted according to the left-hand y-axis. IFG and STG lines are plotted according to the right-hand y-axis. L/RIFG, Left/right inferior frontal 

gyrus. L/RSTG, Left/right superior temporal gyrus; DLPFC, Left dorsolateral prefrontal cortex; M1, Left primary motor cortex; PPC, Left posterior parietal cortex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IFG or STG (n = 60 per correlation, 8 correlations performed, all p >

0.39, all absolute rho < 0.12). 

4. Discussion 

This study demonstrates that source localized EEG can detect

impairments in different regions (nodes) of cortical networks re-

lated to ALS progression and may provide useful insight on how

the diseases progression takes place. We have identified the emer-

gence of progressive cognitive network hyperactivation in ALS

which precedes clinical decline. In addition, we have demonstrated

that by directly measuring cortical activity, EEG can detect early

pathophysiology that predict current and later cognitive and be-

havioral symptoms, as well as functional decline measured by

ALSFRS-R, and survival. 

4.1. Initial suppression and subsequent hyperactivation of the IFG and

STG 

We previously postulated that decrease in power in IFG and

STG sources of MMN reflected an early imbalance between ac-

tivity in the attentional control networks, with the central ex-

ecutive network being overactive and these nodes suppressed

( McMackin et al., 2019b ). Our longitudinal data now show that pre-

viously observed suppressed nodes become progressively more ac-

tive to the point of hyperactivation by attention-demanding stimuli

with disease progression, as evidenced by significantly greater ac-

tivity at follow up time points relative to controls as well as rela-

tive to baseline. Significant negative correlation between ALSFRS-R

score at baseline and STG activation at baseline also highlights that

STG suppression is associated with early stages of ALS. These data

support the hypothesis that as ALS progresses, initially hyperactive

nodes (such as those in the left frontoparietal network) suppress

IFG and STG activity. As such early hyperactivation subsequently

declines and pathology spreads, the IFG and STG themselves sub-

sequently becoming hyperactive. 

Baseline IFG and STG suppression correlates with shorter sur-

vival time, with baseline IFG suppression also correlating to more

rapid motor decline. 

Further, the correlation of greater STG activation at baseline

with more rapid deterioration in performance in the CWIT word

reading task indicates that hyperactivation of the STG may have

pathogenic effects on language functions, known to be affected
in some ALS patients ( Pinto-Grau et al., 2018 ). This is in keeping

with previous evidence that the STG contributes to language im-

pairment in ALS (for review see Pinto-Grau et al., 2018 ). A sim-

ilar correlation was identified between baseline STG and left IFG

activity and CWIT inhibition switching score slope. This is likely

to reflect the aforementioned relationship to language impairment

in the case of the STG. However in the case of left IFG engage-

ment at baseline, as no significant correlations to colour naming

or word reading scores were identified, this correlation is likely to

reflect a relationship between hyperactivation of the IFG and im-

paired response inhibition, for which the left IFG has previously

been deemed ‘critical’ ( Swick et al., 2008 ). Taken together, these

correlations indicate that those with strong baseline suppression of

the IFG and STG experience a fast progressing form of ALS, while

those who demonstrated higher IFG and STG activation at baseline

may experience a slower progressing form of ALS wherein patho-

logical hyperactivity has time to spread to cognitive and language

regions, driving extramotor impairment. 

4.2. Initial hyperactivation and progressive inactivity of the motor 

and dorsolateral prefrontal cortex 

Our data show that initial hyperactivity occurs in the primary

motor cortex and neighbouring DLPFC, a finding supported by fMRI

and other electrical source imaging studies ( Dukic et al., 2019 ;

McMackin et al., 2019 ; Shen et al., 2015 ). As MMN is a non-

motor task, motor cortex hyperactivity may reflect dysregulated in-

hibitory and/or excitatory input to the upper motor neurons from

networks that are activated by the task ( McMackin et al., 2019b ).

Hyperexcitability of upper motor neurons has also been consis-

tently identified by TMS studies, which demonstrate a reduction

in the stimulation required to elicit a motor response ( Vucic et al.,

2018 ). These studies have attributed motor cortical hyperexcitabil-

ity to loss of GABA A inhibitory interneuron function ( Vucic et al.,

2018 ). It is likely that this dysfunction characterized in the motor

cortex subsequently emerges in the prefrontal and temporal cortex,

driving the longitudinal pattern of progressive cortical hyperactiva-

tion identified here ( Fig. 4 ). 

Given that ALS is characterized by loss of motor neurons, it is

to be expected that early motor hyperexcitability wanes with dis-

ease progression. This was previously supported by TMS studies

which demonstrate elevated motor thresholds or inexcitable mo-

tor cortices in some ALS patients ( Vucic et al., 2018 ). Our EEG
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work has now definitively demonstrated an initial abnormal acti-

vation of the motor cortex which declines longitudinally within in-

dividuals which also occurs in the dorsolateral prefrontal cortex. As

controls show normal inactivity in the motor cortex during MMN,

identification of ‘below normal’ motor activity is unlikely with this

paradigm. The observed changes in ALS patients did not correlate

with ALSFRS-R or survival measures. 

4.3. Distinct prefrontal pathology relates to cognitive and behavioral 

impairment in ALS 

Left DLPFC activity demonstrated distinct relationships with

cognitive and behavioural symptoms. Lower DLPFC activity was as-

sociated with greater behavioral impairment, while greater DLPFC

activity correlated with greater cognitive impairment. These dif-

fering correlations indicate separate cortical pathophysiology un-

derlying ALS with behavioral impairment (ALSbi) and ALS with

cognitive impairment (ALSci), which often present clinically inde-

pendently of one another ( Burke et al., 2017 ). Furthermore, the

strengthening of these correlations for future task performance

measures, compared to measures of performance at the time of

EEG recording, supports our hypothesis that EEG measures of corti-

cal network component dysfunction can predict later symptomatic

changes. 

4.4. Cortical hyperactivity spread in ALS 

The progressive emergence of frontotemporal dementia-like

cortical pathophysiology ( Cash et al., 2018 ) is in keeping with the

consensus that ALS and FTD are extremes of a single disease spec-

trum ( Strong et al., 2017 ), with symptoms of one often emerging

following a primary diagnosis of the other ( Crockford et al., 2018 ;

Hu et al., 2009 ). The IFG and STG specifically have been identified

as predominant areas of grey matter loss in those with frontotem-

poral dementia and a C9orf72 expansion ( Cash et al., 2018 ), which

is associated with both diseases. Our work shows that early mea-

sures of activity in these areas relate to poorer executive and lan-

guage symptom prognoses, indicating that these changes warrant

further investigation as markers of ALS-FTD progression. 

4.5. The importance of wider cortical pathology in ALS prognosis 

Taken together, our findings demonstrate that symptomatic de-

terioration in ALS is preceded by changes in indices that capture

the spread of pathology through the cortex, rather than indices

of motor cortex function alone. While motor cortical dysfunction

characterized during this task did not correlate with survival or

motor decline, IFG and STG activation at baseline showed highly

significant correlations with survival, highlighting the importance

of considering pathology beyond the motor cortex in generating

effective prognostic biomarkers of ALS. The absence of correlation

between motor cortical functional decline and survival, in addi-

tion to epidemiological evidence of poorer prognosis in patients

with cognitive ( Elamin et al., 2011 ) or behavioral ( Chiò et al., 2012 )

symptoms, and the much slower progression of the upper motor

neuron-localised primary lateral sclerosis ( Tartaglia et al., 2007 ),

indicates that spread of cortical pathology beyond the motor cortex

has greater relevance to ALS prognosis than primary motor cortex

decline alone. 

We have previously shown that patient subgroups with poorer

prognoses and greater susceptibility to cognitive impairment (i.e.

C9orf72 + and bulbar-onset patients) exhibited greater IFG impair-

ment than the cohort as a whole ( McMackin et al., 2019b ). Us-

ing neuroelectric signal analysis to quantify this more widespread
pathology may therefore not only dramatically improve the devel-

opment of prognostic tools, but also has the potential to provide

more personalized and objective measures of the impacts of novel

therapeutics on disease progression in clinical trials. 

Our study is limited by the availability of psychological task

scores, which restricted our exploration of the relationship be-

tween cognitive symptoms and source activity. Further, due to

small numbers of clinically defined subgroups (e.g., bulbar/thoracic

onset) and the prevalence of C9orf72 expansion-associated ALS in

the Irish population, we were limited to performing group-level

analysis on ALS patients as a single disease group. Disease het-

erogeneity was, however examined via modelling and correlation

analyses. Additional studies of broader cortical networks, risk gene

carriers and larger patient groups, supported by other methods of

characterising hyperexcitability (such as single- and paired-pulse

TMS-based measures in the case of the motor cortex) are now re-

quired to disentangle if patient subcategorization based on spa-

tiotemporal patterns of cortical network malfunction overlap with

genetically/clinically defined patient subphenotypes. As this study

was not designed or intended to interrogate noncontrasted AEPs,

variation in auditory stimulus amplitude was not strictly prohib-

ited to avoid participant discomfort, limiting our ability to use

these data to study auditory sensation. Going forward, stimulus

amplitude should be recorded for each individual or, if possible,

fixed, to facilitate coincident study of early AEP peak character-

istics. Finally, the disease progression-related dropout which oc-

curred between return visits is likely to have inflated the pro-

portion of long surviving patients represented in datasets with

more return visits. This bias is likely to have affected the sign-rank

and Mann-Whitney U test-based group-level longitudinal analy-

sis. Specifically, this bias is likely to have contributed to the lack

of statistically significant differences between controls/baseline pa-

tient power measurements and patient power measurements 16–

19 months or 20–57 months after baseline, despite clear, signifi-

cant differences at all previous follow up times. This bias should

not, however, substantially affect the linear models which were

used to determine the rate of change in power in each individual

for each source for correlation analysis and which also determined

the significant patterns of change longitudinally that were indi-

cated at group level. Should such longitudinal measures be imple-

mented as clinical tools, our modelling indicates that 2–3 record-

ings is sufficient to capture this change. 

Nonetheless, our data demonstrate that the high spatiotempo-

ral resolution of EEG can provide insights into distinct patterns of

dysfunction in specific cortical network nodes in ALS. Using this

approach, we have identified previously unknown dynamic pat-

terns of cortical dysfunction that relate to ALS progression. EEG

with source localization has potential as an inexpensive set of ob-

jective prognostic biomarkers and clinical trial outcome measures

that are feasible for clinical implementation. Going forward, addi-

tional longitudinal investigation is now required to formally quan-

tify the ability of these patterns to predict ALS symptoms as prog-

nostic biomarkers. 
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