
Matrix-free finite-element computations at
extreme scale and for challenging

applications

Kumulative Dissertation
zur Erlangung des akademischen Grades

Dr. rer. nat.

eingereicht an der

Mathematisch-Naturwissenschaftlich-Technischen Fakultät

der Universität Augsburg

von

Peter Münch

Augsburg, August 2023

Erstgutachter: Prof. Dr. Martin Kronbichler
Zweitgutachter: Prof. Dr. Daniel Peterseim
Drittgutachter: Prof. Jed Brown, Ph.D.

Tag der mündlichen Prüfung: 14.11.2023

Abstract
For numerical computations based on finite element methods (FEM), it is com-
mon practice to assemble the system matrix related to the discretized system
and to pass this matrix to an iterative solver. However, the assembly step
can be costly and the matrix might become locally dense, e.g., in the context
of high-order, high-dimensional, or strongly coupled multicomponent FEM,
leading to high costs when applying the matrix due to limited bandwidth on
modern CPU- and GPU-based hardware. Matrix-free algorithms are a means
of accelerating FEM computations on HPC systems, by applying the effect of
the system matrix without assembling it. Despite convincing arguments for
matrix-free computations as a means of improving performance, their usage
still tends to be an exception at the time of writing of this thesis, not least be-
cause they have not yet proven their applicability in all areas of computational
science, e.g., solid mechanics.

In this thesis, we further develop a state-of-the-art matrix-free framework
for high-order FEM computations with focus on the preconditioning and adopt
it in novel application fields. In the context of high-order FEM, we develop
means of improving cache efficiency by interleaving cell loops with vector
updates, which we use to increase the throughput of preconditioned conjugate
gradient methods and of block smoothers based on additive Schwarz methods;
we also propose an algorithm for the fast application of hanging-node con-
straints in 3D for up to 137 refinement configurations. We develop efficient
geometric and polynomial multigrid solvers with optimized transfer operators,
whose performance is experimentally investigated in detail in the context of
locally refined meshes, indicating the superiority of global-coarsening algo-
rithms. We apply the developed solvers in the context of novel stage-parallel
implicit Runge–Kutta methods and demonstrate the benefit of stage–parallel
solvers in decreasing the time to solution at the scaling limit. Novel challeng-
ing application fields of matrix-free computations include high-dimensional
computational plasma physics, solid-state-sintering simulations with a high
and dynamically changing number of strongly coupled components, and cou-
pled multiphysics problems with evaluation and integration at arbitrary points.
In the context of these fields, we detail computational challenges, propose
modified versions of the standard matrix-free algorithms for high-performance
computing, and discuss preconditioning-related topics.

The efficiency of the derived algorithms on the node level and at extreme
scales is demonstrated experimentally on SuperMUC-NG, one of Germany’s
leading supercomputers, with up to 150k processes and by solving systems
of up to 5× 1012 unknowns. Such problem sizes would not be conceivable
for equivalent matrix-based algorithms. The major achievements of this thesis
allow to run larger simulations faster and more efficiently, enabling progress
and new possibilities for a range of application fields in computational science.

Acknowledgments

This PhD thesis has been written at several places. I started at the Institute
for Computational Mechanics at the Technical University of Munich before I
switched to the Helmholtz-Zentrum Geesthacht (HZG). During my time there,
I worked, Covid-related, mostly from home in Hallbergmoos and HZG was re-
named into Helmholtz-Zentrum Hereon. At the end of 2021 and beginning of
2022, I spent in total half a year as a guest researcher at the Division of Sci-
entific Computing of the Department of Information Technology at Uppsala
University, Sweden. In summer 2022, I joined the newly founded Chair for
High-Performance Scientific Computing at the Institute of Mathematics of the
University of Augsburg. Throughout my PhD studies, I met, collaborated with
and benefited from many excellent scientists and worked on many different,
interesting, and challenging topics with them. Listing all names is beyond the
scope of these acknowledgments. I thank all of them.

In particular, I would like to thank my scientific supervisor, Prof. Martin
Kronbichler, and my supervisor at Helmholtz-Zentrum Hereon, Prof. Chris-
tian Cyron. Martin introduced me into matrix-free methods and the deal.II
finite-element library as well as helped with fruitful discussions to improve
the quality of my work. Christian always showed great interest in my work
and gave me full support. Furthermore, I would like to thank my exter-
nal colleagues: Ivo Dravins, Vladimir Ivannikov, and Magdalena Schreter–
Fleischhacker. Working with you on interdisciplinary projects was fun, and I
have learned a lot from you.

I would like to acknowledge the collaboration with the deal.II commu-
nity, particularly, my colleagues in the principal-developer team. It is a special
honor to be part of this team and to be able to discuss challenging scientific
issues at any time. Without the possibility to rely on your previous work in
the library, many results of this thesis would not have been possible or would
have been much harder to achieve. deal.II as a tool to connect researchers
with different scientific background is truly inspiring.

Finally, I would like to thank my family for supporting my work in the last
years.

List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I M. Kronbichler, D. Sashko, and P. Munch, “Enhancing data locality of
the conjugate gradient method for high-order matrix-free finite-element
implementations”, The International Journal of High Performance
Computing Applications, July 2022.

II P. Munch, K. Ljungkvist, and M. Kronbichler, “Efficient application of
hanging-node constraints for matrix-free high-order FEM
computations on CPU and GPU”, in High Performance Computing.
ISC High Performance 2022, (A. L. Varbanescu, A. Bhatele, P.
Luszczek, B. Marc, eds.), pp. 133-152, Cham: Springer, 2022.

III P. Munch, T. Heister, L. Prieto Saavedra, and M. Kronbichler,
“Efficient distributed matrix-free multigrid methods on locally refined
meshes for FEM computations”, ACM Transactions on Parallel
Computing (TOPC), vol. 10, no 1, pp.3:1-38, 2023.

IV P. Munch and M. Kronbichler, “Cache-optimized and low-overhead
implementations of additive Schwarz methods for high-order FEM
multigrid computations”, The International Journal of High
Performance Computing Applications, December 2023.

V P. Munch, I. Dravins, M. Kronbichler, and M. Neytcheva,
“Stage-parallel fully implicit Runge-Kutta implementations with
optimal multilevel preconditioners at the scaling limit”, SIAM Journal
on Scientific Computing (SISC), pp. S71–S96, 2023.

VI P. Munch, K. Kormann, and M. Kronbichler, “hyper.deal: an efficient,
matrix-free finite-element library for high-dimensional partial
differential equations”, ACM Transactions on Mathematical Software,
vol. 47, no. 4, pp. 1–34, 2021.

VII P. Munch, V. Ivannikov, C. Cyron, and M. Kronbichler. “On the
construction of an efficient finite-element solver for phase-field
simulations of many-particle solid-state-sintering processes”,
Computational Materials Science, vol. 231, pp. 112589:1–21, 2024.

Reprints were made with permission from the publishers.

Contents

1 Motivation . 1
1.1 Background . 1
1.2 Matrix-free methods for finite-element computations 1
1.3 Historical overview, state of the art & challenges . 3
1.4 Aim of this thesis . 6

2 Algorithmic aspects of efficient matrix-free computations . 8
2.1 Derivation of the matrix-free algorithm . 8
2.2 Cell loop & vector updates . 14
2.3 Vector access & application of constraints . 15
2.4 Evaluation & application of test function . 17
2.5 Quadrature operation . 22
2.6 Discontinuous Galerkin methods . 23
2.7 Arbitrary shapes: simplex and mixed meshes . 24
2.8 Local refinement . 25
2.9 Example implementation & interface . 26
2.10 Performance aspects . 32
2.11 Variations: interleaving on cell level . 34
2.12 Preconditioning . 35

3 Accomplishments . 39
3.1 Application to high-order FEM . 39

3.1.1 Increasing the data locality . 39
3.1.2 Application of hanging-node constraints . 41
3.1.3 Multigrid: global coarsening for locally refined

meshes . 42
3.1.4 Multigrid: efficient block smoothers . 45
3.1.5 Stage-parallel implicit Runge–Kutta methods 47

3.2 Application to high-dimensional FEM . 49
3.2.1 Motivation: computational plasma physics 49
3.2.2 Software and performance aspects . 50

3.3 Application to multicomponent FEM . 53
3.3.1 Motivation: solid-state sintering . 53
3.3.2 Software and performance aspects . 55
3.3.3 Nonlinear solver and preconditioning . 56

3.4 Coupling via non-matching grids . 56
3.4.1 Motivation: multiphysics applications . 57
3.4.2 Distributed search . 61

3.4.3 Efficient operator evaluation . 63
3.4.4 Software . 63
3.4.5 Black-box coupling via preCICE . 65

4 Additional publications and software . 67
4.1 List of papers . 67
4.2 List of publicly available software . 68

5 Conclusions & Outlook . 70

References . 72

1. Motivation

1.1 Background
This thesis follows a long tradition in numerical analysis in that new mathe-
matical techniques were developed in response to the inability to solve linear
systems or to the requirements by novel computer hardware. Linear systems
arising from partial differential equations (PDE) were first rather small and
were solved by hand, using Gaussian elimination. The advent of computers
allowed to solve larger systems but required, e.g., the development of pivot-
ing strategies [13] and the backward stability analysis for the examination of
the stability of numerical methods. The need to solve even larger systems,
enabled by advances in computer hardware, required the development of algo-
rithms whose computational complexity does not increase as O(N3) with the
number of unknowns. This requirement first led to development of reordering
strategies [14] and banded direct linear solvers and, after that, to development
(or revival) of iterative solvers like the conjugate gradient method [15] or the
generalized minimal residual method (GMRES) [16]. This necessitated the
examination of the convergence behavior based on the matrix properties and
the development of preconditioners, i.e., good and cheap approximations of
the inverse of the system matrix, like multigrid, to make these methods more
efficient. Similarly, the introduction of parallel computers led to a shift to-
wards simpler but easy-to-parallelize algorithms. The matrix-free evaluation
of linear operators arising, e.g., in the context of finite element methods, the
focus of this thesis, is motivated by the observation that, on today’s processors,
the machine balance increases, i.e., one can do much more computations while
accessing the slow memory system. These methods perform redundant com-
putations, e.g., evaluation of integrals, at high arithmetic intensity, however,
are tailored to the given problem and do not allow the application of differ-
ent well-established numerical algorithms. This requires the development of
alternative variants by careful mathematical analysis and hardware-portable
software design that allows for straightforward usage.

1.2 Matrix-free methods for finite-element computations
The established approach of solving partial differential equations with the fi-
nite element method (FEM) consists of two steps: In the first one, a system
matrix and a right-hand-side vector are assembled, making up a system of lin-
ear equations, which needs to be solved in a second step. For the latter, direct

1

2D, k = 1 (NNZ = 7k) 2D, k = 3 (NNZ = 21k)

Figure 1.1. Sparsity patterns with identical number of rows and components (2+1) for
different polynomial degrees k. Such a sparsity pattern might occur in the context of
the solution of stabilized incompressibe Navier–Stokes equations.

matrix-based:

1 A = ∑
K∈{cells}

RT
KAKRK

2 x = A−1b → direct or iterative solver

matrix-free (→ matvec for iterative solver):

v = Au = ∑
K∈{cells}

RT
KAKRKv

... with preconditioner P−1 = A−1.

Figure 1.2. Matrix-based vs. matrix-free FEM

solvers and iterative solvers using preconditioners from well-established and
publicly available linear-algebra packages can be used.

This two-step matrix-based approach is feasible as long as the intermediate
quantity—the system matrix—is not the bottleneck from memory and perfor-
mance points of view. A (locally) dense sparse matrix with a high number
of non-zeroes (NNZ, see Fig. 1.1) implies not only a high memory consump-
tion but also high costs for setup and application, since each entry needs to be
loaded from the slow main memory (random access memory; RAM). Exam-
ples where computing and storing the matrix are inherently expensive are the
high-order computational fluid dynamics (CFD) or other nonlinear problems,
in which the Jacobian matrix is only reused a few times.

This issue motivates the development of alternative approaches that do not
rely on matrices, i.e., are matrix-free by nature. In the following, we con-
sider only methods that return—up to machine precision—the same results as
the equivalent matrix-based algorithms. Such matrix-free operator evaluations

2

are usually applied inside iterative solvers, which do not need the actual ma-
trix but only the effect of the matrix-vector product, and loop over geometric
entities of the mesh (e.g., vertices or cells; Fig. 1.2), while applying stencils or
element stiffness matrices on a vector directly. Exploiting the structure of the
dense local element stiffness matrix allows, e.g., to derive algorithms that are
memory-efficient and use modern processors optimally.

Matrix-free computations imply that one can not or does not want to com-
pute the system matrix for initialization of the linear solver and the precondi-
tioner like incomplete LU factorization (ILU) and algebraic multigrid (AMG).
This does not mean that—given a matrix-free operator—one can not recon-
struct its matrix representation, however, in doing so one would give up the
initial intention of matrix-free algorithms. Not surprisingly, the development
of efficient matrix-free operator evaluations comes hand in hand with the de-
velopment of efficient iterative solvers, in particular, of preconditioners based,
e.g., on domain decomposition methods (DDM) or multigrid methods (MG).
They can be evaluated in a matrix-free way and only need the mesh or reduced
information on the system matrix, like its diagonal, which is straightforward
to obtain.

The term “matrix-free” implies that the standard algorithm uses matrices,
as is often the case in FEM, and circumventing the usage of matrices is an
innovation. However, the algorithms labeled as “matrix-free” are also appli-
cable to compute right-hand-side vectors or nonlinear residuals, for which one
would not assemble matrices. This is not surprising, since the matrix-vector
product is mapped to a residual evaluation, for which the optimizations are
performed.

1.3 Historical overview, state of the art & challenges
The type of matrix-free methods that we study originates in the spectral-
element community [17] in the 1970s. Spectral element methods (SEM),
which consider high-order continuous finite elements, became popular in the
context of (incompressible) computational fluid dynamics in the 1990s and
with those also matrix-free computations, e.g., for solving the pressure Pois-
son problem, which normally consumes the largest portion of the simulation
time. This work was pioneered by Paul Fischer and the NEK5000 project [18–
22].

In the early 2010s, matrix-free approaches have been adopted by the finite-
element community and generalized from a software perspective for the eval-
uation of more general operators. These works include the publications by
Brown et al. [23, 24], Kronbichler and Kormann [25], and Sherwin et al. [26–
28]. In the last few years, there has been considerable interest in matrix-
free computations due to their compliance with current computer-hardware
trends. In particular, the rise in the usage of general-purpose GPUs, which

3

have higher bandwidth and higher performance compared to CPUs and con-
sequently promise higher throughput for the same arithmetic intensity, led
to a growing interest in matrix-free methods [29–31]. By now, matrix-free
computations have been used in the context of different applications of not
only CFD [32–35] but also other branches of science (e.g., computational me-
chanics [36, 37], phase-field simulations [38], density functional theory [39–
41], cardiac electrophysiology [42], fluid-structure interaction [43, 44], acous-
tics [45, 46], geosciences [47, 48]) and are supported by a number of open-
source libraries (e.g., deal.II [25, 49], MFEM [50], DUNE [51], Firedrake [52]).
A special library is libCEED [53], which is solely focused on matrix-free op-
erator evaluations. More details on this will be given below.

Despite their conceptual simplicity and convincing advantages as a means
of improving performance, matrix-free finite-element computations are, at the
time of writing this thesis, not standard yet. This is related to the fact that
matrix-free computations are only viable if efficient representations of the el-
ement stiffness matrix, which do not introduce excessive redundant compu-
tations, are available and a suitable preconditioner can be constructed so that
the overall costs are not higher than the ones in the matrix-based case. For
simple operators, like a Poisson operator on meshes only consisting of tensor-
product-shaped cells, this is the case, as presented multiple times in the lit-
erature [25, 54, 55]. However, application scientists and other users of FEM
libraries usually want to solve more challenging and novel PDEs without deal-
ing with implementation details of the underlying libraries, like representation
of the element stiffness matrix or construction and configuration of the pre-
conditioner. Instead, they wish to concentrate on physical modeling or other
challenging scientific aspects of their research field, relying on the high qual-
ity of the used software package. Working in large, interdisciplinary teams
consisting of mathematicians, computer scientists, and engineers would allow
to tackle all of these issues at once and to develop efficient special-purpose
solvers. However, such teams are currently rather an exception in the aca-
demic and research world. To nevertheless allow any domain expert to take
full advantage of matrix-free computations without too many obstacles, it is
crucial to provide easy-to-use implementations with a clear application pro-
gramming interface (API). Such prototypical implementations are provided by
open-source software packages where a team of mathematicians and computer
scientists can concentrate on maintaining and improving the implementation
via bug fixes or performance optimizations as well as adding features depend-
ing on the needs.

Current research efforts are spearheaded by developers of open-source li-
braries, each with a slightly different focus, and are addressing the change of
this situation by targeting the following issues:

1 user-friendly interface: Providing and improving an API are crucial. Dif-
ferent libraries pursue different strategies in this regard to improve the
usability. The library deal.II, for example, provides helper classes that

4

can be used directly by users, while Dune and Firedrake rely on code
generation [56, 57] from the Unified Form Language (UFL). The latter
approach allows to write a single code that can be optionally converted
to a matrix-based or a matrix-free code.

2 off-the-shelf building blocks & preconditioners: The development of ma-
trix-free off-the-shelf building blocks is crucial, too. These include wi-
dely used preconditioners and operators (e.g., Poisson or mass-matrix
operators), which justify a dedicated holistic performance optimization.
Providing preconditioners that work in all situations is practically im-
possible, however, simple preconditioners can be composed by users to
more complex ones, e.g., in the context of block preconditioners.

3 performance & portability: Matrix-free methods need to be (significant-
ly) faster than their matrix-based equivalents to convince users to switch
to these in existing code bases. This requirement and the fact that matrix-
free operators perform operations over and over (in each iteration, in
contrast to the matrix-based approach, where much of the complex eval-
uations happens only once during the assembly loop) require and jus-
tify extensive performance optimizations, which are normally tailored
to a given hardware. To allow nevertheless hardware portability, special
considerations need to be taken. These might influence the choices re-
garding API, . issue 1 . For instance, users of deal.II work on data
structures built around the most advanced instruction-set architecture of
the given CPU-based hardware and libCEED only allows to write code
that can be dispatched on both CPU- and GPU-based hardware.

4 missing features: Many widely used features of FEM libraries are still
slow or not ported/portable in the context of matrix-free computations.
Such features are the support of simplex/mixed meshes crucial to sim-
ulate complex geometries as well as H(div) and H(curl) elements (e.g.,
Raviart–Thomas and Nedelec elements). The support of these features is
necessitated by many applications, and the lack of it is a major obstacle
for the usage of matrix-free algorithms in these application areas, e.g.,
in electromagnetics.

5 real-world applications: Developers of matrix-free algorithms are gen-
erally closely affiliated with user codes that extensively use the matrix-
free algorithms and are involved in porting of existing or new applica-
tions together with domain experts, e.g., in the context of challenging
multiphysics coupled problems. Such collaborations allow to refine the
interface, . issue 1 , and to identify missing building blocks, . issue 2 .
The focus on the development and porting of missing features, . issue
4 , might receive more attention. Furthermore, algorithms that can not

be ported to matrix-free algorithms can be identified, which allows to de-
rive alternative algorithms that can be expressed suitably for matrix-free
computations by using existing building blocks. The success of port-
ing challenging applications is motivation for other projects to do the

5

same, and lessons learned there can be directly adopted to new applica-
tion fields.

The Center for Efficient Exascale Discretizations (CEED [30, 53, 58, 59]1), a
co-design center within the U.S. Department of Energy (DOE), consisting of
researchers from, i.a., MFEM, NEK5000/nekRS, and PETSc, works on the stan-
dardization of the matrix-free interface with special focus on hardware porta-
bility, . issues 1 and 3 . A unified interface seems to be appealing, partic-
ularly, considering the success of BLAS (Basic Linear Algebra Subprograms),
which allows to easily switch backends provided and optimized by hardware
vendors. This development, however, might be too early, since many of the
issues listed above are still open research. Furthermore, it is not clear how
much interest such a unified interface will generate outside the FEM commu-
nity, justifying the decoupling of FEM and matrix-free operator evaluations,
which possibly does not allow certain domain-specific optimizations.

1.4 Aim of this thesis
The overall aim of this thesis is the development of efficient algorithms and
their implementations for matrix-free computation in the context of FEM at
extreme scale in regard to problem size and hardware usage. The work is mo-
tivated by the challenges of concrete applications: in particular, rather classical
application cases of high-order computational fluid dynamics and novel appli-
cation areas of high-dimensional computational plasma physics and solid-state
sintering with phase-field simulations needing high and dynamically changing
number of components. Furthermore, matrix-free algorithms for multiphysics
applications, e.g., fluid-structure interaction (FSI) and two-phase flow, are in-
vestigated, requiring the adaption of the standard matrix-free algorithm to a
non-matching-grid setting. Within the matrix-free challenges listed in Sec-
tion 1.3, the focus of this thesis lies on the following issues:
• We port challenging real-world applications (. issue 5 ; e.g., in com-

putational plasma physics, solid-state sintering, fluid-structure interac-
tion, and two-phase flow) to the context of matrix-free computations,
for which new algorithms are developed.
• For this, we develop off-the-shelf components and preconditioners, . is-

sue 2 , with emphasis on multigrid and locally refined meshes. The im-
plementations are made publicly available via the open-source general-
purpose finite-element library deal.II.
• We perform node-level and large-scale performance optimizations, . is-

sue 3 , and demonstrate the efficiency of the developed algorithms with
up to 150k processes on 3072 compute nodes on SuperMUC-NG, Ger-
many’s former largest supercomputer.

1https://ceed.exascaleproject.org/

6

https://ceed.exascaleproject.org/

While not being the focus, we also contributed to the issues 1 and 4 . In
this thesis, we concentrate on CPU-based systems due to the current hardware
landscape in Germany. However, some work has been also conducted on GPU
systems, on which we will comment in relevant parts of the thesis. We would
like to note that, while the focus of this thesis is on the matrix-free develop-
ment, we were also involved in other aspects of FEM development, motivated
by the fact that once a finite-element operator has been optimized by matrix-
free algorithms, other parts of the code might become new bottlenecks.

We concentrate on cell-based matrix-free operator evaluations. Interested
readers are referred to, e.g, [48] for details on stencil-based variants, which
have similarities to matrix-free finite difference methods [60].

The structure of the introductory part of this thesis is as follows. Section 2
gives an introduction into efficient matrix-free operator evaluations, which
form the basis of this thesis. In Section 3, we summarize the major accom-
plishments of this work, the application and extension of the basic matrix-free
algorithm in the context of preconditioning, computational plasma physics,
solid-state sintering, and non-matching computations. Section 4 lists addi-
tional publications written in the scope of this thesis and all major software
contributions developed in this time. Section 5 concludes this work by provid-
ing an outlook on future research directions.

7

2. Algorithmic aspects of efficient matrix-free
computations

This section discusses the software aspects of efficient matrix-free finite-ele-
ment computations. For this purpose, we consider different types of PDEs and
finite-element discretizations, which we first introduce.

Note: The following section introduces concepts and implementation details
on matrix-free operator evaluation from the literature, e.g., [34, 61], that
are relevant for this thesis. We use some of the naming conventions from
the deal.II project and present its matrix-free implementation as a possi-
ble high-performance implementation. It was written by Martin Kronbichler,
Katharina Kormann, and others and is described in detail in [25, 49]. The
author of this thesis built upon and benefited from the implementations and
contributed to them in the course of working on the main contribution de-
scribed in Section 3.

2.1 Derivation of the matrix-free algorithm
Poisson equation & Laplace operator
The Poisson equation is given as

−∆u = f in Ω,

where u is the solution variable and f is a source term. The physical domain
Ω is bounded by ∂Ω = Γ, which is partitioned into the Dirichlet part ΓD,
where u = gD, and the Neumann part ΓN, where −nnn ·∇u = gN is prescribed.
The vector nnn donates the outer unit normal vector on the boundary Γ. For
discretization, we assume a tessellation Th of the computational domain Ωh
into cells ΩK . The bilinear forms that are associated with volume and face
integrals are donated by

(v,u)
Ω
=
∫

Ω

v�udΩ and 〈v,u〉
Γ
=
∫

Γ

v�udΓ,

where the operator � symbolizes inner products.
In the context of continuous Galerkin formulation, the final weak form is to

find a function uh ∈V CG
h,gD

such that

(∇vh,∇uh)Ωh = (vh, f)Ωh−〈vh,gN〉ΓN
∀vh ∈V CG

h,0D
. (2.1)

8

We assume a polynomial approximation of the solution of elements from the
space

V CG
h,gD

=
{

uh ∈ H1(Ω) : uh|ΩK ∈Qk(ΩK)∀ΩK ∈ Th ∧ uh|ΓD = gD
}
.

H1 is the space of square integrable functions with square integrable deriva-
tives. Qk(ΩK) donates the spaces spanned by degree-k-polynomials on ΩK ,
where uK

h (x) = ∑
NDoFs
i=1 φi(x)uK,i donates the local FE interpolation associated

to the unknowns (degrees of freedoms; DoFs) restricted to the cell K and to
the set of corresponding basis functions φi. The solution space satisfies the
Dirichlet boundary condition gD on ΓD. On each cell, the left-hand side gives
rise to an element stiffness matrix AK and the right-hand side to an element
vector bK :

AK,i j = (∇φi,∇φ j)ΩK︸ ︷︷ ︸
∗

and bK,i = (φi, f)ΩK − (φi,gN)ΓK∩ΓN︸ ︷︷ ︸
‡

. (2.2)

In standard (matrix-based) finite-element computations, the local quantities
AK and bK are assembled via a local-to-global mapping (restriction operator;
RK) into the global stiffness matrix A=∑K RT

KAKRK and the global load vector
b = ∑K RT

KbK , resulting in a linear system Ax = b.The underbraced terms are
discussed below in more detail.

In the context of symmetric interior-penalty discontinuous Galerkin (DG)
formulation [55, 62], the final weak form, for a single cell, is, e.g., to find a
function uh ∈V DG

h such that

(∇vh, ∇uh)ΩK︸ ︷︷ ︸
∗

−
〈
∇vh, (u−h −{{uh}})nnn

〉
ΓK\(ΓD∪ΓN)︸ ︷︷ ︸

�
−〈vh, {{∇uh}} ·nnn− τJuhK ·nnn〉ΓK\(ΓD∪ΓN)︸ ︷︷ ︸

� (cont.)

−〈∇vh, uhnnn〉
ΓK∩ΓD

−〈vh, ∇uh ·nnn−2τuh〉ΓK∩ΓD︸ ︷︷ ︸
†

= (vh, f)
ΩK
−〈∇vh, gDnnn〉

ΓK∩ΓD
+ 〈vh, 2τgD〉ΓK∩ΓD

(2.3)

−〈vh,gN〉ΓK∩ΓN︸ ︷︷ ︸
‡

∀vh ∈V DG
h ,

with the trial space

V DG
h = {uh ∈ L2(Ω) : uh|ΩK ∈Qk(ΩK)∀ΩK ∈ Th} .

L2 is the space of square integrable functions. The average operator is given as
{{u}} = (u−+u+)/2, and the jump operator is given as JuK = u−nnn−+u+nnn+.
The superscript �+ donates exterior information from the neighbor cell. The

9

face terms are split into inner-face terms Γe \ (ΓD ∪ΓN) and boundary-face
terms (ΓD, ΓN). Inhomogenous boundary conditions are applied weakly.

Now, let us discuss three types of terms in (2.2) and (2.3). Term ∗ cor-
responds to a volume integral. Replacing this integral by a quadrature rule
with Nq quadrature points and introducing a mapping xxx← χ

−1
K (x̂xx), in which

the element (xxx) is the image of a reference element (x̂xx), we get the following
definition of the element stiffness matrix:

(AK)i j = ∑
0≤q<Nq

|JK(x̂xxq)|wq

(
J−T

K (x̂xxq)∇̂φ̂i(x̂xxq)
)T (

J−T
K (x̂xxq)∇̂φ̂ j(x̂xxq)

)
,

where x̂xxq donates the position of the quadrature point q in reference space,
φ̂i(x̂xx) is defined on the reference cell, ∇̂ is the gradient on the reference cell,
(J−T

K (x̂xx))i j = ∂xxxi/∂ x̂xx j = ∂ (χ−1
K (x̂xx))i/∂ x̂xx j, 1 ≤ i, j ≤ dimension d, is the Ja-

cobian, |JK(x̂xxq)| is the determinant of the Jacobian, and wq is the quadrature
weight. After some reformulations, the application of this matrix to a vector
v = AKuK reads as

vK,i = ∑
0≤q<Nq

∇̂φ̂i(x̂xxq)·
︸ ︷︷ ︸

3

[
|JK(x̂xxq)|wqJ−1

K (x̂xxq)J−T
K (x̂xxq)

]

︸ ︷︷ ︸
2

∑
0≤ j<NDoFs

∇̂φ̂ j(x̂xxq)uK, j

︸ ︷︷ ︸
1

,

which implies that the operation can be decomposed into three steps 1 – 3 .
Here, the first term corresponds to the evaluation of the gradient at the quadra-
ture point of the cell, the second term to operations on the quadrature-point
level, and the third term to testing in reference space that includes the summa-
tion over the quadrature points. In the following, we make use of the two-step
notation

1 ∇̂ûK,q = ∇̂φ̂ j(x̂xxq)uK, j ∀q : 0≤ q < Nq

2 + 3 vK,i = ∑
0≤q<Nq

∇̂φ̂i(x̂xxq) · |JK(x̂xxq)|wqJ−1
K (x̂xxq)J−T

K (x̂xxq)∇̂ûK,q

as a generalized notation suitable also for the evaluation of (nonlinear) residu-
als [23].

Term † in (2.3) corresponds to a boundary-face integral and can be rewritten
using a quadrature rule defined on faces as

(
ûK,q

∇̂ûK,q

)
= ∑

0≤ j<NDoFs

(
φ̂ j(x̂xxq)

∇̂φ̂ j(x̂xxq)

)
uK, j ∀q

vK,i = ∑
0≤q<Nq

(
φ̂i(x̂xxq)

∇̂φ̂i(x̂xxq)

)
· |JK(x̂xxq)|wq

(
−(J−T

K ∇̂ûK,q) ·nnn+2τ ûK,q

−J−1
K (x̂xxq)nnn(x̂xxq)ûK,q

)
,

10

which again allows a decomposition in three steps. Similarly, term ‡ in (2.2)
and (2.3) is a boundary-face term, too. It can be written as

vi = ∑
0≤q<Nq

φ̂i(x̂xxq) ·
[
|JK(x̂xxq)|wqJ−1

K (x̂xxq)gN(xq)
]

and only needs the evaluation of the function gN at the real positions of the
quadrature points.

Term � in (2.3) corresponds to an internal-face integral. Here, the values
and gradients of neighboring cells need to be evaluated at quadrature points
given by the faces of cell K. For this purpose, the reference position on the
face of the neighboring cell x̂xx+q has to be determined:

x̂xx+q = χ(xq,Ω
+
K) with xq = χ

−1(x̂xxq,ΩK). (2.4)

Now, the values and gradients can be computed on both sides by
(

ûK,q

∇̂ûK,q

)
= ∑

0≤ j<NDoFs

(
φ̂ j(x̂xxq)

∇̂φ̂ j(x̂xxq)

)
uK, j ∀q, (2.5a)

(
û+K,q

∇̂û+K,q

)
= ∑

0≤ j<NDoFs

(
φ̂
+
j (x̂xx

+
q)

∇̂φ̂
+
j (x̂xx

+
q)

)
u+K, j ∀q, (2.5b)

which corresponds to the first term of the cell integral and, as a consequence,
term � fits well with the decomposition into three steps, allowing to precom-
pute quantities at both sides before proceeding with the loop over quadrature
points:

vK,i = ∑
0≤q<Nq

(
φ̂i(x̂xxq)

∇̂φ̂i(x̂xxq)

)
· |JK(x̂xxq)|wq (2.5c)

(
−0.5(J−T

K (x̂xxq)∇̂ûq + J−T
K (x̂xx+q)∇̂û+q) ·nnn+ τ(ûq− û+q)

−0.5J−1
K (ûq− û+q)nnn

)
.

Mass-matrix operator
The weak form of the mass-matrix operator reads as

(vh, uh)Ωh and (vh, uh)Ωe

for the continuous and the discontinuous Galerkin case, respectively. The ac-
tion of the element stiffness matrix can be expressed on a cell level as

ûK,q = ∑
0≤ j<NDoFs

φ̂ j(x̂xxq)uK, j ∀q (2.6a)

vK,i = (MKuK)i = ∑
0≤q<Nq

φ̂i(x̂xxq) · |JK(x̂xxq)|wqûK,q, (2.6b)

11

which again can be decomposed into three steps.

Note: Due to the importance of the mass matrix for the transfer between
two solution spaces (e.g., V CG

h,gD
or V DG

h in the context of multigrid or non-
nested meshes), we provide some basic information here. An L2-projection
from space 0 to space 1 reads as

(v1,u1)Ω = (v1,u0)Ω (2.7)

and, in matrix notation, M11u1 = M10u0, where M11 needs to be inverted.
Choosing a set of quadrature points allows to adopt (2.6) for both the left-
hand-side and the right-hand-side term. Alternatively to the L2-projection,
one can perform a global pointwise evaluation in the case that space 1 is
nodal. On a cell level, this operation is described by (2.6a). Contributions
from multiple cells need to be weighted, e.g., by the inverse of the valence of
each point.

Advection equation
The skew-symmetric DG discretization of the advection equation

∂u/∂ t +∇ ·aaau = 0 and Ω× [0, tfinal]

reads, for a divergence-free aaa, as follows [63]:

(v,∂u/∂ t)
ΩK

=(v,−β (aaa ·∇u))
ΩK

+(∇v,(1−β)aaau)
ΩK︸ ︷︷ ︸

∗
−
〈
v, nnn · (aaau)∗−βu−(nnn ·aaa)

〉
ΓK︸ ︷︷ ︸

†

, (2.8)

with the element domain ΩK and (aaau)∗ being a numerical flux like a central
(α = 0) or an upwind flux (α = 1):

(aaau)∗ =
1
2
(
(aaau−+aaau+)+α · |nnn ·aaa| · (nnnu−−nnnu+)

)
.

The factor β controls the formulation of the flux (β = 1
2 : skew-symmetric;

β = 0: conservative).

Summary
The previous examples showed that the application of element stiffness matri-
ces related to cell and face integrals can be decomposed into three steps. For
this purpose, we adopt an operator notation:

vK =AKuK = ST
K ◦QK ◦SKuK , (2.9)

12

RK

u

SK

uK

ST
K

QK

RT
K

vK v

Figure 2.1. Matrix-free operator evaluation without the application of constraints.

where ◦ indicates the composition of operators. Here, SK computes optionally
the values, gradients, or Hessians in reference space at the quadrature points.
These quantities are used byQK . The application of element stiffness matrices
is called within a loop over cells/faces:

v =Au = ∑
K
RT

K ◦CT
K ◦AK ◦CK ◦RKu, (2.10)

for which cell-/face-relevant DoFs need to be gathered with RK , constraints
have to be resolved with CK , and the result needs to be added to the result
vector withRT

K . Putting everything together results in the formula [25]:

v =A(u) = ∑
K
RT

K ◦CT
K ◦ST

K ◦QK ◦SK︸ ︷︷ ︸
vK=AK(uK)

◦CK ◦RKu. (2.11)

Fig. 2.1 visualizes this formula for a single cell. As a generalization to cells/-
faces, one can consider (2.10) as a loop over arbitrary objects like patches or
cell pairs, an observation we use in Paper IV (see Section 3.1.4) and Paper VI
(see Section 3.2).

Next, we discuss building blocks (abbr. BB) needed for the efficient imple-
mentation of (2.11) as well as study recurring design patterns. Our ambition
is to design an algorithm that is not only general enough for the presented ex-
amples but also applicable to novel and challenging cases as those discussed
in Section 3. Similarly, building blocks and design choices are discussed in
[49] and [64], respectively.

We conclude this subsection with the first BB.

13

BB1: cell/face loops and integrals
Matrix-free operators loop over cells/faces,

v =A(u) = ∑
K
RT

K ◦CT
K ◦AK ◦CK ◦RKu,

gather/scatter cell-relevant unknowns, optionally resolve constraints,
and apply the effect of the element stiffness matrix to a local vector
uK . The application of the element stiffness matrix can be decomposed
in three phases:

vK =AK(uK) = ST
K ◦QK ◦SKuK .

2.2 Cell loop & vector updates
Matrix-free operators iterate, according to (2.10), over all (Nc) cells,

v = ∑
0≤K<Nc

RT
K ◦AK ◦RKu,

and read the cell-relevant DoFs from the source vector u withRK and write the
result back into the destination vector v withRT

K . Here,RK andRT
K prescribe

the read/write dependency regions of a cell, which might be the same, e.g.,
in the context of continuous elements, or distinct, e.g., in the DG case, where
one needs to read the DoFs from neighboring cells but only modifies cell-local
DoFs.

We would like to note that we operate not on individual cells but on cell
batches and perform the cell operation (2.9) for each of them in one go in a
vectorization-over-cells fashion to increase the throughput, by explicitly ex-
ploiting SIMD (single instruction, multiple data) capabilities of modern pro-
cessors. Without loss of generality, we refer to cell batches simply as cells.
We defer the discussion on vectorization and implementation details ofRK to
Sections 2.3 and 2.9.

Overlapping dependency regions of cells imply that neighboring cells should
be processed in sequence to use temporal-locality properties of caches. In the
following, we assume that cells are well enumerated, e.g., based on a space-
filling curve.

Splitting up the index space of cells [0,Nc[,

v = ∑
r

∑Nr
c≤K<Nr+1

c
RT

K ◦AK ◦RK
︸ ︷︷ ︸

∗

u, (2.12)

and processing the resulting cell ranges (term ∗) with a reasonable granularity
individually make sense for different reasons:

1. In the case of tasking, ranges with independent dependency regions can
be assigned to threads in a way that no race conditions happen, for

14

which a dependency analysis, e.g., based on graph coloring, has to be
performed. In the following, we ignore threading capabilities and refer
interested readers to [65, 66].

2. In the case of distributed computations, cell ranges might depend on
remote processes or influence them, requiring communication with MPI.
Computations on cell ranges without dependency on remote processes
can be, however, overlapped with the communication.1

3. Similarly, vector updates on the source and destination vectors (u and v,
respectively) can be performed before and after cell ranges. In this con-
text, vector entries need to be in a valid state once the first cell (range)
touches them and they are finalized and, as a result, can be used and
modified once the last cell (range) has touched them. We discuss in de-
tail the latter concept and some examples in Paper I (see Section 3.1.1).

BB2: cells, cell batches, cell ranges, and data dependency
The restriction operator RK determines the read/write dependency of
cells. Processing cells in batches and these in ranges is a good fit to
modern SIMD-/cache-based architectures. The dependency regions of
cell ranges determine 1) cells that can be processed by threads indepen-
dently without causing race conditions, 2) cells that do not depend on
values from remote processes and can be processed in parallel to com-
munication, and 3) vector ranges, whose update can be interleaved with
the cell loops.

2.3 Vector access & application of constraints
The gathering operator RK and the scattering operator RT

K are Boolean ma-
trices (DoF maps) representing indirect addressing into the source and desti-
nation vectors. They store the relevant DoF indices for each cell, implying a
memory consumption of O((k+1)d) per cell.

Depending on the discretization and the numbering of DoFs, however, not
all entries of the Boolean matrix need to be stored and the remaining indices
can be reconstructed. For example, in the case of DG, it is enough to store
the index of the first DoF of a cell, since the remaining DoFs are generally
enumerated contiguously. In the context of FEM, the situation is somewhat
more complicated. Nevertheless, one can adopt a similar concept here as well:
one stores the first index of each geometric entity of a cell (see Paper I; Sec-
tion 3.1.1). This implies that one only needs to store 33 = 27 indices for a

1Note that this implies that ranges need to be assigned to three categories. The first category
does not depend on remote processes and is processed, while ghost values are updated. The
second one depends on remote processes and optionally influences them. The third category
does not depend on remote processes again and can be processed, while computations from
different processes are collected.

15

hexahedron (8 vertices, 12 lines, 6 faces, 1 cell) and can, thereby, improve the
data access, since contiguous data can be streamed from the global vector. As
a requirement for this, DoFs have to be enumerated contiguously within each
geometric entity. Furthermore, DoFs might need to be permuted in a postpro-
cessing step in the event that geometric entities are not orientated in the correct
way, as is generally the case for unstructured meshes [67].

In the case of MPI-3.0, processes can access not only their own vector
entries but also the vector entries owned by processes on the same shared-
memory domain. Naturally, indices in the Boolean matrix would correspond
to a pair of the rank and the (local) index within that rank. Obviously, this
is not a feasible approach on a DoF level, however, can be efficiently used if
only the first index (of a cell) has to be stored, to avoid duplicating data during
MPI communication. However, working directly on the data of other pro-
cesses leads to race-condition issues just as in the case of threading, requiring
techniques discussed in Paper VI (see Section 3.2).

Optionally, constraints need to be resolved during the cell loop. They relate
constrained DoFs dependent on constraining DoFs in form of affine combi-
nations xi = Ci jx j + bi with possible inhomogeneity b. This implies that the
Boolean matrix might have multiple entries per row and the weights need to be
stored. The unity CK ◦RK implies a compressed-row-storage (CRS) format,
which can be partly compressed by only storing unique rows [25]. Although
the constraint matrix is generally sparse, it might become locally dense for
certain constraint types. For this purpose, the constraint matrix can be decom-
posed as CK = CSP

K ◦CGP
K and executed as CSP

K ◦ (CGP
K ◦Re), with CSP

K applying
special-purpose (SP) constraints after DoFs have been loaded and general-
purpose (GP) constraints have been applied. This decomposition approach
enables to switch data structures of CSP

K and has been successfully used to ef-
ficiently apply hanging-node constraints. For more details, see the discussion
on locally refined meshes and on an efficient way of applying hanging-node
constraints in Sections 2.8 and 3.1.2 (Paper II).

BB3: restriction and constraints
The restriction operator RK is a Boolean matrix mapping local DoF in-
dices to the global ones. Depending on the enumeration, only a few
indices need to be stored per cell and the rest can be reconstructed.
Constraints require that constraining indices and their weights need to
be stored, implying a CRS format. For hanging-node constraints, this
matrix can be decomposed, which allows to switch the data structures
requiring only an additional single flag per cell.

16

2.4 Evaluation & application of test function
During evaluation with SK , quantities, like values or gradients of uK ,

(ûK)q = ∑
0≤ j<NDoFs

φ̂ j(x̂xxq)uK, j, (2.13a)

(∇̂uK)q = ∑
0≤ j<NDoFs

∇̂φ̂ j(x̂xxq)uK, j (2.13b)

need to be determined in reference space at the quadrature points. The values
and, in each direction, the gradients of the shape functions can be precomputed
and tabulated (N and Dx, Dy, Dz, respectively) at the quadrature points:

ûK = NuK ,

∇̂ûK =




Dx
Dy
Dz


uK .

Testing corresponds to the transpose of the evaluation:

yK = NT ŷK ,

yK =




Dx
Dy
Dz




T 


ŷx
K

ŷy
K

ŷz
K


= DT

x ŷx
K +DT

y ŷy
K +DT

z ŷz
K .

Due to this similarity, we skip the detailed discussion of testing.
In the following, we concentrate on tensor-product elements and quadra-

ture rules. We discuss computations on non-tensor-product-shaped cells in
Section 2.7 and non-tensor-product quadrature rules in Section 3.4.

Fig. 2.2 shows typical support points and evaluation/quadrature points. If
the support points and the evaluation points are identical, they are collocated
and corresponding interpolation steps become no-ops.

Note: In the following, all depictions are shown in 2D and the correspond-
ing equations in 3D, indicating the dimension-independent nature of the al-
gorithms, as exploited in Paper VI (see Section 3.2) to simulate PDEs up to
6D.

17

support points

LGL

cell integral

LGL GL

face integral

GL

internal face integral

GL

Figure 2.2. Illustration of support points and evaluation points during cell and face
integrals on quadrilateral-shaped elements. We consider Legendre–Gauss–Lobatto
(LGL) and Gauss–Legendre (GL) points.

Cell integrals: evaluation
For tensor-product elements, (2.13a) reads as

(ûK)q = ∑
0≤k<N1D

DoFs

∑
0≤ j<N1D

DoFs

∑
0≤i<N1D

DoFs

φ̂
1D
k (x̂xxq̂

2)φ̂
1D
j (x̂xxq̂

1)φ̂
1D
i (x̂xxq̂

0)uK,i jk (2.14a)

(ûK)q = ∑
0≤k<N1D

DoFs

φ̂
1D
k (x̂xxq̂

2) ∑
0≤ j<N1D

DoFs

φ̂
1D
j (x̂xxq̂

1) ∑
0≤i<N1D

DoFs

φ̂
1D
i (x̂xxq̂

0)uK,i jk,

(2.14b)

using multiindices (i, j,k). If the quadrature rule has a tensor-product structure
as well, the equation becomes

(ûK)î ĵk̂ = ∑
0≤k<N1D

DoFs

φ
1D
k (x̂xxk̂

2) ∑
0≤ j<N1D

DoFs

φ
1D
j (x̂xx ĵ

1) ∑
0≤i<N1D

DoFs

φ
1D
i (x̂xxî

0)uK,i jk,

using multiindices (î, ĵ, k̂) for the quadrature points. In tensor-product nota-
tion, the computation of all values can be written as

ûK = Nu = (N1D
z ⊗N1D

y ⊗N1D
x)uK , (2.15)

assuming a lexicographic ordering in uK . This operation can be efficiently
implemented via a sequence of 1D basis changes with the total cost O(d(k+
1)d+1) [17, 26], since

û = (N1D
z ⊗ I1D

y ⊗ I1D
x)(I1D

z ⊗N1D
y ⊗ I1D

x)(I1D
z ⊗ I1D

y ⊗N1D
x)u.

Fig. 2.3 gives a geometric visualization of these basis-change steps. Similarly,
the gradients can be computed as

∇ûK =




Dx
Dy
Dz


uK =




N1D
z ⊗N1D

y ⊗D1D
x

N1D
z ⊗D1D

y ⊗N1D
x

D1D
z ⊗N1D

y ⊗N1D
x


uK

if we exploit the tensor-product structure of the element and the quadrature
rule. This indicates that the gradients can be computed in nine 1D basis-
change steps. However, if a decomposition D1D

� = D̃1D
� N1D

� is possible, one

18

x
y

Iy⊗Nx

normal

Ny⊗ Ix Iy⊗Nx

overintegration

Ny⊗ Ix

Figure 2.3. Evaluation steps for a cell in 2D.

a) Q4 b) 4 × Q1 c) truncated

Figure 2.4. 2D element types with tensor-product structure.

can exploit the fact that (AB)⊗ (CD) = (A⊗C)(B⊗D) [49, 68],

∇ûK =




I1D
z ⊗ I1D

y ⊗ D̃1D
x

I1D
z ⊗ D̃1D

y ⊗ I1D
x

D̃1D
z ⊗ I1D

y ⊗ I1D
x


(N1D

z ⊗N1D
y ⊗N1D

x)uK︸ ︷︷ ︸
Eq. (2.15)

(2.16a)

=




I1D
z ⊗ I1D

y ⊗ D̃1D
x

I1D
z ⊗ D̃1D

y ⊗ I1D
x

D̃1D
z ⊗ I1D

y ⊗ I1D
x


 ûK , (2.16b)

to reduce the number of 1D basis-change steps to 6 or to 3 in the case that
the values are already evaluated at the quadrature points. This can have two
reasons: the support points and the quadrature points are collocated or an
evaluation has been performed with (2.15) beforehand.

The previous discussion has exposed the two-level nature of the evalua-
tion operator SK . On the one hand, one needs efficient means of 1D ba-
sis transformations (2D: I1D

y ⊗A1D
x , A1D

y ⊗ I1D
x ; 3D: I1D

z ⊗ I1D
y ⊗A1D

x , I1D
z ⊗

A1D
y ⊗ I1D

x , A1D
z ⊗ I1D

y ⊗ I1D
x) and, on the other hand, the routines that run

these 1D basis transformations in sequence with the right input/output, de-
pending on what quantities are needed at the quadrature points and which
shape-function/quadrature pair is given. The 1D basis transformation allows
to further reduce the number of operations, depending on the structure of the
1D interpolation matrix, e.g., by an even-odd decomposition [49, 61].

The discussed algorithm works not only for tensor-product elements based
on nodal polynomials, e.g., Lagrange polynomials, but also for piecewise lin-
ear polynomials defined on subcells (see Fig. 2.4b) and for non-nodal polyno-
mials, e.g., Legendre or Hermite polynomials [1]. An extension to truncated
tensor-product spaces (see Fig. 2.4c), e.g., to

{
ξ

i1
1 ξ

i2
2 ξ

i3
3 | 0≤ i1 + i2 + i3 ≤ k

}
⊂
{

ξ
i1
1 ξ

i2
2 ξ

i3
3 | 0≤ i1, i2, i3 ≤ k

}
,

19

Iz⊗ Iy⊗NF
x Iz⊗Ny Nz⊗ Iy

x
z

y

Figure 2.5. Evaluation steps on faces in 3D.

is also possible by zeroing the corresponding entries in the embedding space.

Face integrals: evaluation
For face integrals, values and gradients need to be evaluated at quadrature
points positioned on the faces, and, as a result, they only have a tensor-product
structure on the face. For example, to evaluate values at a quadrature point of
the left or the right face F of a hexahedron, one needs to perform the following
steps:

(ûF
K) ĵ,k̂ = ∑

0≤k<N1D
DoFs

φ̂
1D
k (x̂xxk̂

2) ∑
0≤ j<N1D

DoFs

φ̂
1D
j (x̂xx ĵ

1) ∑
0≤i<N1D

DoFs

φ̂
1D
i (x̂xx0)uK,i, j,k,

with x̂xx0 ∈ {0,1}. Tabulating the shape functions and writing the equation in
tensor-product notation gives:

ûF
K = (N1D

z ⊗N1D
y ⊗NF

x)u = (N1D
z ⊗N1D

y)(I1D
z ⊗ I1D

y ⊗NF
x)uK . (2.17)

The latter notation implies that values are projected first onto the face before
an in-face interpolation is performed (on a reduced data set). Similarly, one
can write for the other directions:

û = (N1D
z ⊗NF

y ⊗N1D
x)u = (N1D

z ⊗N1D
x)(I1D

z ⊗NF
y ⊗ I1D

x)u,

û = (NF
y ⊗N1D

y ⊗N1D
x)u = (N1D

y ⊗N1D
x)(NF

z ⊗ I1D
y ⊗ I1D

x)u.

For the derivative on the left or right face, one gets:

∇ûF
K =




D1D
z ⊗N1D

y ⊗NF
x

N1D
z ⊗D1D

y ⊗NF
x

N1D
z ⊗N1D

y ⊗DF
x


uK =



[

D1D
z ⊗N1D

y
N1D

z ⊗D1D
y

]

N1D
z ⊗N1D

y



[

I1D
z ⊗ I1D

y ⊗NF
x

I1D
z ⊗ I1D

y ⊗DF
x

]
uK .

(2.18)

Again, the number of 1D basis-change steps can be reduced for a nodal basis
and the collocation case (not shown). Furthermore, only the DoFs on the
faces need to be gathered for computing the values, while, for computing the
gradients, all DoFs of a cell. To address the latter issue, we introduced in [1]

20

a Hermite-like basis and showed that, with this basis, only two layers of DoFs
are needed to compute the gradients.

Similarly to (2.16b), there are instances where the values are already com-
puted at the quadrature points of a cell. For this purpose, we use the decom-
position NF

x = ÑF
x N1D

x :

ûF
K = (I1D

z ⊗ I1D
y ⊗ ÑF

x)(N
1D
z ⊗N1D

y ⊗N1D
x)u

︸ ︷︷ ︸
Eq. (2.15)

= (I1D
z ⊗ I1D

y ⊗ ÑF
x)û.

Comparing this equation with (2.17) suggests that interleaving cell and face
integrals allows to reduce the number of 1D interpolations and, as a conse-
quence, the amount of computations.

More details on face integrals are given in Section 2.6 for discontinuous
Galerkin methods.

Multiple components
The extension of the two-level evaluation algorithms to the context of mul-
ticomponent FEM is straightforward if, e.g., vectorial Lagrange elements,
where Nc = Ic⊗N with the identity matrix Ic = Rc×c, are used. Paper VII
(see Section 3.3) discusses the application to very high number of components
that varies over time.

This approach can be applied with slight modifications in the context of
more involved vectorial elements, like H(div) and H(curl) elements, as demon-
strated by Niklas Fehn, Katharina Kormann, Martin Kronbichler, and Niklas
Wik and documented in [69].

BB4: two-level evaluation
The evaluation operator SK computes, i.a., values and gradients at the
quadrature points in reference space. For this purpose, it can exploit the
structures of the finite element and the quadrature rule. For the evalua-
tion of, e.g., values, the following sequence of 1D basis transformations
can be used:

vK = Nu = (N1D
z ⊗N1D

y ⊗N1D
x)uK .

Each 1D basis transformation of type vK = I1D
z ⊗ I1D

y ⊗A1D
x uK can be

further optimized.

BB5: face evaluation
In the case of tensor-product elements, it is beneficial to project values
and gradients to the faces via

vK = (Iz⊗ Iy⊗NF
x)uK

and perform all operations considered in BB4 in face.

21

2.5 Quadrature operation
The quadrature operation QK takes computed values and gradients and pre-
pares the values and gradients to be integrated and tested. In the case of term
∗ of the advection equation (2.8),

(v,−β (aaa ·∇u))
Ω(e) +(∇v,(1−β)aaau)

Ω(e) ,

this looks like
(

ûq
∇ûq

)
=

NDoFs

∑
j=0

(
φ̂ j(xq)

∇φ̂ j(xq)

)
uK, j

︸ ︷︷ ︸
evaluation

∀q

vK,i =
Nq

∑
q=0

(
φ̂i(xq)

∇φ̂i(xq)

)
· [|JK(x̂xxq)|wq]

︸ ︷︷ ︸
integration & testing

(
−βaaa ·∇ûq
(1−β)aaaûq

)

︸ ︷︷ ︸
q-operation

,

with the quadrature operation being the focus of this section. As discussed
before, the evaluation operation SK only works in reference space and, as
a consequence, the derived quantities need to be corrected according to the
mapping by QK :

(
ûq

∇̂ûq

)
=

NDoFs

∑
j=0

(
φ̂ j(x̂xxq)

∇̂φ̂ j(x̂xxq)

)
uK, j

︸ ︷︷ ︸
evaluation→SK

∀q

vK,i =
Nq

∑
q=0

(
φ̂i(x̂xxq)

∇̂φ̂i(x̂xxq)

)

︸ ︷︷ ︸
sum & testing→ST

K

· |JK(x̂xxq)|wq

(
−βaaa · J−T

K (x̂xxq)∇̂ûq

(1−β)J−1
K (x̂xxq)aaaûq

)

︸ ︷︷ ︸
q-operation→QK

.

In the case of Lagrange elements, only the gradient has to be multiplied by
the Jacobian. Note that we moved the multiplication with the term |JK(x̂xxq)|wq,
corresponding to the quadrature and its weighting, inside the quadrature oper-
ation, since ST

K implicitly only performs the summation during testing.
The advection velocity aaa in the equation above might be a constant in the

most basic case. Alternatively, it could be a function of the position of the
quadrature point and/or the solution, aaa(xq, uq,∇uq, ...), implying that also the
real position of the quadrature points needs to be queried. Furthermore, aaa
might be related to a solution vector, which has to be evaluated at the quadra-
ture points. Such a variable/vector is also referred to as passive variable in
the literature [53], since it does not change during the current cell loop. Sim-
ilarly, JK(x̂xxq), |JK(x̂xxq)|, and x̂xxq can be regarded as passive variables as well.
Other examples of passive variables include linearization points in the case of
nonlinear solvers and variable-viscosity terms.

22

Depending on the context, there are different storage formats for such quan-
tities. If the data is related to a solution vector, one can gather the values from
a global vector, followed by a basis change to the quadrature points. Alterna-
tively, the data can be stored cell by cell. For this, there are two options: to
store the data in the original (discontinuous) basis or to precompute them on
the quadrature-point level.

BB6: passive variables
On the quadrature-point level, one needs controlled access to passive
variables, whose data structures might differ. The most prominent pas-
sive variables are the quantities related to mapping, i.a., the Jacobian,
and to the linearization point in the context of a nonlinear setting.

2.6 Discontinuous Galerkin methods
In the context of DG [66, 70–73], one needs to evaluate fluxes at each internal
face of a cell, as shown in Section 2.1. Examples are term � in (2.3) and term †
in (2.5c). The evaluation points on the positive side of inner faces are given
by (2.5b). On unstructured, conformal meshes, this set of evaluation points
still has a tensor-product structure, however, its entries might be located on
any face of the neighboring cell and might have a different ordering compared
to the standard ordering. To be able to use the standard (tensor-product) face
evaluation routines (2.17) and (2.18), one needs to determine, in a preprocess-
ing step, the correct face number and orientation [66], based on the topology
of the mesh, and, in a postprocessing step, one needs to correct the computed
values/gradients at the determined face according to the orientation.

Processing cell by cell [70], i.e., the cell integral and all face integrals of
a cell in one go, seems to be the natural choice. It has multiple advantages.
On the one hand, operations of the cell and face integrals can be reused; e.g.,
for the cell integral, the values have to be computed at the quadrature points,
which can be projected simply onto all faces, as indicated by (2.17). On the
other hand, the destination vector is written only once, making this approach
more cache-efficient and particularly interesting for shared-memory compu-
tations due to the lack of race conditions, as discussed in Paper VI (see Sec-
tion 3.2). A challenge from a software point of view is that cell and face
evaluations need to be interleaved.

As an alternative, one can split up the cell and face integrals into separate
loops [70]. In this case, it is natural to compute the face integral on both sides

23

triangle quadrilateral tetrahedron pyramid wedge hexahedron

Figure 2.6. 2D and 3D reference cells.

of a face in one go, e.g.,

vi = ∑
0≤q<Nq




φ̂i(x̂xxq)

∇̂φ̂i(x̂xxq)

φ̂
+
i (x̂xx+q)

∇̂φ̂
+
i (x̂xx+q)


 · |JK(x̂xxq)|wq




−0.5(J−T
K (x̂xxq)∇̂ûq + J−T

K (x̂xx+q)∇̂û+q) ·nnn+τ(ûq− û+q)
−0.5(ûq− û+q)nnn

+0.5(J−T
K (x̂xxq)∇̂ûq− J−T

K (x̂xx+q)∇̂û+q) ·nnn+τ(ûq− û+q)
−0.5(ûq− û+q)nnn


 ,

extending (2.5c) by testing with the test functions of the cell on the positive
side. As the colors indicate, many of the computations on the quadrature-
point level can be reused due to the symmetry of the fluxes, allowing to reduce
the computational complexity in this case as well. Similarly to the vector-
update operations in (2.12), cell loops and (inner/boundary) face loops can be
interleaved to efficiently exploit caches of modern hardware.

2.7 Arbitrary shapes: simplex and mixed meshes
For non-tensor-product shape function/quadrature pairs, matrix-free operator
evaluation (2.11) is also possible; however, the derivation of efficient eval-
uation kernels (SK) is not straightforward or even not feasible. Such cases
include, i.a., cells with the shape of simplices, wedges, or pyramids (see
Fig. 2.6). In the worst case, matrices, like N, Dx, Dy, Dz, have to be tabu-
lated and applied directly. The costs of application are O(k2d).

Moxey et al. [74] investigated efficient high-order finite-element evaluation
for simplices, pyramids, and wedges. The trick the authors use is 1) to de-
fine tensor-product quadrature rules on [−1,1]d , 2) to map these, via Duffy
mapping, to a simplicial domain (which is mapped in the regular way to real
coordinates, requiring chaining of Jacobians), and 3) to use polynomials that
allow for sum factorization. In the context of tetrahedra, the Duffy map-
ping [75] from a tetrahedral domain to a hexahedral domain for points with

24

a) continuous Galerkin H1

constrained

C

constraining

b) discontinuous Galerkin L2

negative

flux

positivex
z

y

Figure 2.7. Resolving hanging-node constraints in the continuous Galerkin case and
interpolation to subfaces in the discontinuous Galerkin case.

−1 < η1,η2,η3 < 1 is given as

η1(ξ1,ξ2,ξ3) =
2(1+ξ1)

−ξ2−ξ3
−1, η2(ξ2,ξ3) =

2(1+ξ2)

1−ξ3
−1, η3(ξ3) = ξ3

and the polynomial ansatz is

û(η) =
P

∑
p=0

φ
a
p(η1(ξ1,ξ2,ξ3))

Q−p

∑
q=0

φ
b
pq(η2(ξ2,ξ3))

R−p−q

∑
r=0

φ
c
pqr(η3(ξ3))ûpqr,

allowing sum factorization. The presented results are promising, however,
indicate a slowdown by up to a factor of 10 compared to the fully tensor-
product case.

Note: At the time of writing this thesis, deal.II had an experimental sup-
port for simplices, wedges, and pyramids, using full interpolation matrices
limiting the throughput. The implementation was proposed and implemented
by the author of this thesis [7, 9].

2.8 Local refinement
In the following, we are considering locally refined meshes in which quadri-
lateral cells and hexahedral cells are replaced by four or eight children cells,
resulting in hanging nodes. Depending on whether continuous or discontinu-
ous Galerkin methods are applied, different steps are needed to deal with this
issue.

In the case of continuous Galerkin methods, the DoFs constrained on faces
or edges need to be computed by resolving hanging-node constraints [76],
which corresponds to an interpolation of the DoFs on the coarse side to sub-
faces/subedges, as shown in Fig. 2.7a). This operation can be performed as
an inplace interpolation if constrained DoFs are replaced by constraining ones
during gathering. More details on such a special-purpose operator CHN

K , for
which refinement configurations have to be en- and decoded, are given in Pa-
per II (see Section 3.1.2).

In the case of DG, hanging-node constraints do not have to be resolved,
but values need to be evaluated on the coarse (positive) side at the quadrature

25

points prescribed by faces on the fine (negative) side, as shown in Fig. 2.7b).
This can be done in two steps, similarly as in (2.17): first, the values are
projected to the face and, then, interpolated to the quadrature points on the
correct subface.

BB7: local mesh refinement
Locally refined meshes require interpolations to subfaces or subedges.
While, in the case of continuous Galerkin methods, DoFs on subfaces
or subedges are replaced by the computed ones, these are used directly
as values on the positive side for the evaluation of fluxes in the case of
DG.

2.9 Example implementation & interface
In the following, we describe the MatrixFree module of deal.II, version
9.5 [12]. We start with presenting the user interface, continue with discussing
implementation aspects, and list its relevant features. Finally, we compare the
user interface of deal.II to the one of libCEED.

User Interface
Listings 2.1, 2.4, and 2.5 present example codes using the matrix-free module
of deal.II.

In Listing 2.1, the setup of a MatrixFree object is shown. It is initialized
with a mapping, a set of finite-element spaces (defined by a mesh with a finite
element, dof_handlers, and the constraints), and a set of quadratures. This
information is enough to set up cache-friendly loops over cells and the indices
of the restriction operator as well as to precompute the mapping metrics. The
MatrixFree object can be furthermore configured, e.g., with regard to what
types of mapping metric and threading are needed.

The code snippet also shows how a MatrixFree object can be used to loop
over cells as well as over internal and boundary faces. Users provide call-
back functions containing the implementation of the integrals to the functions
cell_loop() or loop(). These functions call, on the one hand, the callback
function and, on the other hand, are responsible for communication and for op-
tional vector updates. Listing 2.2 presents a naive, sequential implementation
of these steps. Listing 2.3 shows a possible implementation of BB2, which
interleaves cell loops with face loops, communication, and vector updates.

Listing 2.4 and 2.5 present the callback functions related to cell integrals
in the case of a Poisson operator (2.1) and an advection operator (2.8). These
callback functions are called on ranges of cell batches to decrease overhead
due to function calls and setup. Within the callback function, the user loops
over the specified cell batches and applies the helper class FEEvaluation
for gathering/scattering (RK /RT

K with application of constraints) and evalua-
tion/testing (SK /ST

K) on cell level as well as for operations on the quadrature-

26

Listing 2.1. Basic setup and loop capabilities of the MatrixFree object.
/ / s e t u p
MatrixFree<dim , Number> matrix_free ;

typename : : MatrixFree<dim , Number> setting ; / / c o n f i g u r a t i o n
settings . mapping_update_flags = update_gradients | update_JxW_values ;

matrix_free . reinit (mapping , dof_handlers , constraints ,
quadratures , setting) ;

/ / l oop ove r c e l l s
matrix_free . cell_loop (cell_op , dst , src) ;

/ / l oop ove r c e l l s and f a c e s
matrix_free . loop (cell_op , face_op , boundary_op , dst , src) ;

Listing 2.2. Naive implementation of MatrixFree::loop(). Integrals, vector up-
dates, and communication are executed in sequence.
/ / p r e o p e r a t i o n
pre_operation (0 , vector_size) ;

/ / communica t ion (u p d a t e g h o s t v a l u e s)
src . update_ghost_values () ;
dst . zero_out_ghost_values () ;

/ / l oop ove r c e l l s and f a c e s
cell_integral (matrix_free , dst , src , {0 , n_cells }) ;
face_integral (matrix_free , dst , src , {0 , n_faces }) ;
boundary_integral (matrix_free , dst , src , {0 , n_boundary_faces }) ;

/ / communica t ion (c o l l e c t p a r t i a l r e s u l t s and c l e a n up)
src . zero_out_ghost_values () ;
dst . compress (VectorOperation : : add) ;

/ / p o s t o p e r a t i o n
post_operation (0 , vector_size) ;

point level (QK). In the case of the latter, the user works in real space with
FEEvaluation being responsible for correcting by metric data the gradients
evaluated in reference space during SK . Here, one can exploit the informa-
tion whether a cell is Cartesian, affine or arbitrarily deformed, to reduce the
number of operations.

For the sake of brevity, we do not show the callback function related to face
integrals. In this case, FEFaceEvaluation, the face equivalent of FEEvalua-
tion, is used, which can be initialized for negative and positive sides of a face
and also works on subfaces.

27

Listing 2.3. Simplified implementation of the optimized version of
MatrixFree::loop() in deal.II.
/ / p r e o p e r a t i o n on DoFs t o be communicated
funct . cell_loop_pre_range (part_index [part_index . size () − 2]) ;

funct . vector_update_ghosts_start () ; / / s t a r t g h o s t u p d a t e

f o r (u n s i g n e d i n t part = 0 ; part < part_index . size () − 2 ; ++part)
{

i f (part == 1)
funct . vector_update_ghosts_finish () ; / / f i n i s h g h o s t u p d a t e

f o r (a u t o i = part_index [part] ; i < part_index [part + 1] ; ++i)
{

funct . cell_loop_pre_range (i) ; / / p r e o p e r a t i o n
funct . cell (i) ; / / c e l l i n t e g r a l
funct . face (i) ; / / f a c e i n t e g r a l
funct . boundary (i) ; / / boundary i n t e g r a l
funct . cell_loop_post_range (i) ; / / p o s t o p e r a t i o n

}

i f (part == 1)
funct . vector_compress_start () ; / / s t a r t c o m p r e s s i o n

}

funct . vector_compress_finish () ; / / f i n i s h c o m p r e s s i o n

/ / p o s t o p e r a t i o n on DoFs on remote d e p e n d e n c i e s
funct . cell_loop_post_range (part_index [part_index . size () − 2]) ;

As a summary, we discuss how the tasks in the matrix-free interface are
structured. The MatrixFree object extracts relevant information from deal.II
data structures, stores it internally for efficient gathering/scattering, evaluation
of constraints, and application of metric data as well as loops over cells/faces
in a parallel and cache-efficient way. The FEEvaluation and FEFaceEval-
uation classes provide structured access to information on the cell and the
quadrature-point levels and, in particular, apply the metric data. Fig. 2.8 sum-
marizes the user interface with a UML diagram.

Separation of concerns
Within the MatrixFree object, data is stored 1) regarding efficient restriction
(incl. constraints and information on tasking and efficient interleaving of in-
tegrals with vector updates and communication), 2) regarding tabulated shape
values, 3) regarding mapping at the quadrature points, and 4) optionally, re-
garding face definitions. Each of these concerns is separated in the following
classes: TaskInfo, DoFInfo, ShapeInfo, MappingInfo, and FaceInfo, as

28

Listing 2.4. Cell integral of Poisson operator (2.1).
c o n s t a u t o cell_integral =

[] (c o n s t a u t o &data , a u t o &dst , c o n s t a u t o &src , c o n s t a u t o range) {
FEEvaluation<dim , degree , n_points_1d , 1> phi (data) ;

f o r (a u t o cell = range . first ; cell < range . second ; ++cell)
{

phi . reinit (cell) ;

/ / g a t h e r from s o u r c e v e c t o r and e v a l u a t e g r a d i e n t s
phi . gather_evaluate (src , EvaluationFlags : : gradients) ;

/ / l oop ove r q u a d r a t u r e p o i n t s
f o r (u n s i g n e d i n t q = 0 ; q < phi . n_q_points ; ++q)

{
/ / g e t e v a l u a t e d q u a n t i t i e s i n r e a l s p a c e
c o n s t a u t o gradient = phi . get_gradient (q) ;

/ / p r e p a r a t i o n f o r t e s t i n g
phi . submit_gradient (gradient , q) ;

}

/ / i n t e g r a t e and s c a t t e r back i n t o d e s t i n a t i o n v e c t o r
phi . integrate_scatter (EvaluationFlags : : gradients , dst) ;

}
} ;

shown in Fig. 2.8. The instances of these are stored within MatrixFree and
are accessed via FEEvaluation/FEFaceEvaluation.

The classes FEEvaluation and FEFaceEvaluation give the impression
to be working in real space, by applying the mapping metrics to the reference
cell data during the get and submit functions. The actual evaluation/testing is
forwarded to two internal functions that, optionally, call tensor-product kernels
in a two-level-evaluation way (BB4).

Vectorization
The matrix-free infrastructure vectorizes over cells and faces to increase the
throughput, by explicitly exploiting SIMD (single instruction, multiple data)
capabilities of modern processors. The maximum number of cells processed
together is determined by the SIMD capabilities of the given hardware. Each
lane of a vector register is assigned to one cell/face. This implies, e.g., that, in
the case of double precision and AVX2, 4 cells are processed in one go and, in
the case of AVX-512, 8 cells.

29

Listing 2.5. Cell integral of advection operator (2.8).
c o n s t a u t o cell_integral =

[] (c o n s t a u t o &data , a u t o &dst , c o n s t a u t o &src , c o n s t a u t o range) {
FEEvaluation<dim , degree , n_points_1d , 1> phi (data) ;

f o r (a u t o cell = range . first ; cell < range . second ; ++cell)
{

phi . reinit (cell) ;

/ / g a t h e r from s o u r c e v e c t o r and e v a l u a t e g r a d i e n t s
phi . gather_evaluate (

src , EvaluationFlags : : gradients | EvaluationFlags : : value) ;

/ / l oop ove r q u a d r a t u r e p o i n t s
f o r (u n s i g n e d i n t q = 0 ; q < phi . n_q_points ; ++q)

{
/ / g e t e v a l u a t e d q u a n t i t i e s i n r e a l s p a c e
c o n s t a u t o value = phi . get_value (q) ;
c o n s t a u t o gradient = phi . get_gradient (q) ;

/ / p r e p a r a t i o n f o r t e s t i n g
phi . submit_value (beta * a * gradient , q) ;
phi . submit_gradient ((1 − beta) * a * value , q) ;

}

/ / i n t e g r a t e and s c a t t e r back i n t o d e s t i n a t i o n v e c t o r
phi . integrate_scatter (

EvaluationFlags : : gradients | EvaluationFlags : : value , dst) ;
}

} ;

To ease usage, users do not work with plain numbers but with the wrapper
class VectorizedArray<Number, N>2, which overloads typical arithmetic
functions and passes the function calls to appropriate intrinsics calls.

Working on individual lanes is rarely needed but can be done by accessing
individual vector entries. Alternatively, masked operations or categorization
(see below) are possible to allow diverging code paths.

Templating
The matrix-free infrastructure of deal.II is heavily templated. In particular,
the degrees and the numbers of quadrature points are template arguments to
guarantee fixed loop bounds during basis changes [49]. Dealing with these
template arguments in user codes might be a burden if they are not known at
compilation time or many different template arguments of these are needed,

2This class is conceptually similar to std::simd, which will be introduced as part of the C++23
standard [7]. Preliminary experiments showed that the given wrapper class in deal.II can be
replaced by std::simd in future without any performance degradation.

30

1

1

1

*

1

*

1

1

1

1

1

1

1

1

1

1

1

1

MatrixFree

loop(), cell_loop()

FEEvaluation

gather()/scatter()
evaluate()/integrate()
get_*()/ submit_*()

TaskInfo

ranges

DoFInfo

indices
constraints

ShapeInfo

N, N1D, ...

MappingInfo

J, |J|, n, ...

FaceInfo

orientation
face number

user interface

internal

cell/face callback

pre/post callback

vectors
comm RK

Figure 2.8. Relation of public and internal classes within the matrix-free infrastruc-
ture of deal.II. The MatrixFree object loops over cells/faces, performs commu-
nication, and executes the callback functions for integrals and vector updates. It also
stores data, which can be accessed by users during integrals via FEEvaluation and
FEFaceEvaluation (not shown).

e.g., in the instance of p-multigrid or hp-adaptivity. Therefore, deal.II pro-
vides factory classes that internally convert, with a minimal overhead, non-
templated degrees and numbers of quadrature points to templated ones and
dispatch the work to the right precompiled functions.

Furthermore, the dimension and the number of components are templated.
These two arguments determine the return type of functions of the classes
FEEvaluation and FEFaceEvaluation and, as a consequence, allow object-
orientated programming with function overloads for specialized tensor opera-
tions. Inside the library, the data is stored with plain numbers so that the tem-
plate arguments are not passed too deep into the library, which would make
the compilation too expensive.

Categorization: mixed meshes & hp-adaptivity
The infrastructure supports, in addition to hypercube meshes, both simplex
and mixed meshes. In the latter case, S̃T

K ◦QK ◦ SK differs depending on
the shape of the cell due to different numbers of DoFs, different numbers of
quadrature points, and different tabulated shape functions in SK . In these in-
stances, cells are categorized according to their shape. Only cells with the
same category are assigned to the same cell batch, allowing easy vectoriza-
tion.

Similarly, the cell operations S̃T
K ◦QK ◦SK might differ in the case of hp-

adaptivity [77] even for the same cell shapes but for different degrees. The
categorization approach discussed for mixed meshes also works in this con-
text.

The categorization capabilities can be also applied for user categories if
different operations should be performed on different cells. For very dynamic

31

systems, it is not feasible to setup the internal data structures after each recat-
egorization. In this case, user cell batches can be created from existing ones,
by modifying the gathering/scattering operations. Furthermore, it is possible
to activate or deactivate cells, for which the cell operations would result in
no-ops.

Comparison with libCEED
We conclude this section with a comparison of deal.II’s matrix-free frame-
work with the C-based library libCEED [53]3. Although both have similar
functionalities, they take, conceptually, very different approaches. One of the
focuses of libCEED is the hardware portability, a topic we will ignore in the
following.

The main task of libCEED is:

vvv =A(xxx) =
config.︷ ︸︸ ︷

∑
K
RT

K ◦ ST
K

user︷ ︸︸ ︷
◦ QK ◦

config.︷ ︸︸ ︷
SK ◦ RK xxx

to 1) loop over objects K, 2) provide read/write access to arbitrary number
of (active/passive) vectors via RT , 3) perform evaluation/testing, which can
be configured at runtime, and 4) call user functions that are called on cell
level and are supposed to iterate over the quadrature points. libCEED has no
native support for parallelization; however, it allows to start matrix-free loops
asynchronously. Furthermore, providing mapping data is not of concern of
this library and needs to be treated as a passive variable by the user. Applying
constraints lies also in the responsibility of the user.

Conceptually, it is very interesting that libCEED is not looping over cells
but over arbitrary objects defined by user-provided index sets in RK . This
conceptual separation is quite useful, given that one wants to loop over a subset
of cells or over patches. For such purposes, one needs to use, at the time of
writing this thesis, internal data structures directly in deal.II.

In summary, libCEED misses certain FEM infrastructure (constraints, map-
ping, parallelization) and operates on a much lower abstraction level than
deal.II. Users do not provide to libCEED a discretized system, which is used
to set up internal data structures, like DoFInfo and ShapeInfo in deal.II,
but they themselves set up the “internal” data structures and provide these to
libCEED.

2.10 Performance aspects
Matrix-free computations replace access to slow main memory by redundant
computations on cached data. As a consequence, it is crucial to efficiently use

3https://libceed.org

32

https://libceed.org

the compute units by accessing data close in the memory hierarchy. Different
stages of (2.11) related to cells and faces have different requirements for ac-
tive working sets. For instance, RK accesses data in global vectors. The data
might have been already accessed by neighboring cells, e.g., since they are, in
the continuous case, shared or they have been needed for the computation of
the fluxes. Appropriate cell orders and DoF enumerations increase the proba-
bility that the data is still in the caches. SK operates on the loaded data of the
size O(c(k+1)d), with c being the number of components, and computes de-
rived quantities in reference space of the sizeO(c(d+1)pd), with p being the
number of quadrature points in each direction and under the assumption that
both values and gradients are needed. In the tensor-product case, the derived
quantities are computed by performing 1D basis changes, which correspond
to multiple sweeps through the buffered data of the size O(max(k+ 1, p)d).
During QK , the derived quantities and, additionally, passive variables are ac-
cessed. Obviously, with increasing degree k, increasing number of quadrature
points p (overintegration [35]), increasing dimension d, as discussed in Pa-
per VI (see Section 3.2), and increasing number of components c, as consid-
ered in Paper VII (see Section 3.3), the caching of data on the higher levels of
the caches becomes challenging so that data needs to be loaded from slower
parts of the memory. In the worst case, each sweep of the 1D kernels drops
out of cache. Vectorization over elements increases the pressure on the caches,
since not data of one cell but data of multiple cells need to be cached.

Developments of matrix-free computations mainly focus on the optimiza-
tion of the evaluation step SK , which has the complexity O(d(k+ 1)d+1) for
tensor-product elements, implying an arithmetic intensity of O(k). Less em-
phasis is laid on the operation on the quadrature-point level QK due to a fa-
vorable computation complexity. For Poisson operators on Cartesian meshes,
the number of floating-point operations is rather low and, apart from the Jaco-
bian, no passive variables need to be accessed, while, in other instances, this
is not the case. Davydov et al. [36] investigated, for example, computational
solid mechanics with hyperelastic materials and looked into the trade-off of
recomputing information in comparison to computing wisely chosen infor-
mation once and storing it as passive variable, which is accessed during cell
loops. The results indicate that a compromise between them gave the best
performance by computing intermediate quantities, which allowed to reduce
not only the memory access but also the number of computations. We made
similar observations in Paper VII (see Section 3.3), where the immense costs
of the work on the quadrature-point level required a thorough optimization
by directly applying material kernels to vectors (in a matrix-free way, also on
the quadrature-point level). Such optimizations are very much problem- and
hardware-specific and might be not possible in certain cases.

Communication for updating ghost values and collecting partial results also
influences the performance of matrix-free cell loops. However, since com-
munication is needed independently of whether operators are evaluated in a

33

matrix-based or matrix-free way, we put less emphasis on this topic in the fol-
lowing. Communication can be overlapped with computation, and the amount
of data to be communicated can be reduced by using shared memory (see Sec-
tions 2.2 and 2.3) and exploiting the characteristics of the element type [49].

2.11 Variations: interleaving on cell level
Some of the potential performance issues listed above can be addressed by
variations of the matrix-free implementation discussed till now, by explicitly
exploiting its structure and dependencies on the cell level. In the following,
we drop the subscript K for the sake of simplicity.

In (2.11), gathering and evaluation as well as integration and scattering are
performed in sequence, respectively. However, in the case of tensor-product
elements, it is possible to merge gathering with the interpolation in x-direction:

S◦G = Sz ◦Sy ◦Sx ◦G = Sz ◦Sy ◦ (Sx ◦G).

In this case, the basis change along the line can be performed once its values
have been read:

ṽ(:, j,k) = Nxue(:, j,k).

This allows to overlap slow memory access with computations. However, in
the presence of constraints, particularly hanging-node constraints, this opti-
mization becomes nontrivial, potentially requiring the tagging of cells.

In (2.11), evaluation, loop over the quadrature points, and integration are
performed in sequence. This results in multiple sweeps over data and, po-
tentially, in the generation of non-negligible intermediate data. However, an
interleaving is possible. For a mass-matrix operator (2.6),

ve =Me(ue) = ST
x ◦ST

y ◦ST
z ◦Q◦Sz︸ ︷︷ ︸

z-line

◦Sy ◦Sxue,

the underbraced term can be performed line by line [78]:

ṽ(i, j, :) = NT
z Q(i, j, :)Nzũ(i, j, :).

In the case of a Poisson operator (2.1), one can not interleave on lines but on
planes (Algorithm 3 in [49]):

ve = Le(ue) = ST
x ◦ST

y ◦ST
z ◦



Dx
Dy
Dz




T

◦Q◦



Dx
Dy
Dz


◦Sz ◦Sy ◦Sx

= ST
x ◦ST

y ◦
(
Sz
Dz

)T

◦



(
Dx
Dy

)

Iz




T

◦Q◦



(
Dx
Dy

)

Iz




︸ ︷︷ ︸
xy-plane

◦
(
Sz
Dz

)
◦Sy ◦Sx.

This optimization is also applicable for a Helmholtz operator.

34

line plane subcellx

yz

Figure 2.9. Different non-standard ways to loop over quadrature points in 3D.

In the case of piecewise shape functions on subcells, the latter can be pro-
cessed independently, resulting in a natural 3D blocking. Within each cell,
optimizations presented above can be used depending on the operator.

As a summary, Fig. 2.9 shows how evaluation, loop over quadrature points,
and interpolation can be interleaved. It is clear that one, in none of the cases,
loops over all quadrature points in one go and the sequence of looping is not
guaranteed to be lexicographic. This implies a user interface that only specifies
the operation at a quadrature point, which is called for arbitrary quadrature-
point indices. One should note that we have presented optimizations for com-
monly used operators above. However, one can construct other examples with
arbitrary number of passive variables (e.g., position vectors for mapping on the
fly), which might also need a basis change. Writing variants for all possible
versions by hand is not feasible and, therefore, might require code generation.

BB8: quadrature-point-centric operations
Depending on the weak form, RK , SK , and QK need to be inter-
leaved differently to obtain optimal performance. This might involve
that quadrature points are processed in different orders, favoring a
quadrature-point-centric view,

(v,∇v, ...) ← QK(q,u,∇u, ...),

with an appropriate callback function.

2.12 Preconditioning
There are different ways of constructing a preconditioner P−1≈A−1 for matrix-
free operators. For this purpose, one can exploit 1) the fact that matrix repre-
sentation can be generated from matrix-free operators and 2) the fact that one
has access to the underlying mesh. The development of preconditioners for
matrix-free operators is an active research area, and we discuss our contribu-
tions to this topic in Section 3.

35

Algebraic approaches
The explicit representation of the linear operator in the form of a matrix of a
matrix-free operator A can be obtained column by column by the application
of unit vectors ei: A(:, i) = Aei. To reduce the costs, one can exploit the fact
that the sparsity pattern of the matrix is sparse to compute multiple columns of
the matrix that have distinct non-zero row entries. Alternatively, one can com-
pute the matrices on the cell level, AK(:, i) =AKei, and assemble the results in
the standard FEM way. This approach is applicable to generate blocks (e.g.,
the block diagonal in the case of DG) or the diagonal of the linear operator.
Given these matrix representations, widely used algebraic preconditioners can
be set up, most notably, algebraic multigrid (AMG), incomplete LU factoriza-
tion (ILU), Jacobi and Chebyshev preconditioners.

Furthermore, additive Schwarz methods (ASM) are possible. They have the
structure

v = P−1u = ∑RT
KWKÂ−1

K RKu with ÂK = RKART
K (2.19)

and the weighting matrix WK . One issue with this definition is that it relies on
the assembly of the matrix A, which leads to prohibitive costs in the context
of higher-order methods. Constructing low-rank tensor approximations to A−1

i
is an alternative. These can be constructed without computing the actual ele-
ment stiffness matrices but by applyingAK [79] or geometrically (see below).
Furthermore, element blocks can be inverted iteratively, using, e.g., Krylov
solvers [80] with preconditioners like diagonal or low-rank tensor approxima-
tions.

BB9: matrix representation for preconditioning
For setup of algebraic preconditioners, efficient kernels allow to con-
struct the matrix representation or its blocks and diagonal, based on A
or AK and unit vectors.

Geometric approaches
The mesh can be explicitly used to rediscretize the system and generate a
preconditioner. For example, geometric multigrid rediscretizes the operator
on multiple refinement levels and combines the level results multiplicatively
via intergrid transfer operators.

In the context of high-order FEM, it is possible to create multigrid levels by
decreasing the polynomial degree of the used polynomials (p-multigrid). Al-
ternatively, it is possible to construct a new mesh based on the support points
of the higher-order elements and use linear elements. The resulting matrix
is sparse and spectrally equivalent to the original system and is, as a conse-
quence, an effective preconditioner. This approach is referred to as SEM-FEM
in the literature [81, 82].

In the context of ASM, low-rank tensor approximation of patch matrices ÂK
can be derived from an auxiliary operator defined on an approximate Cartesian

36

mesh [81, 83, 84]. For such meshes, the Laplacian Acart
i can be expressed by

the tensor product of 1D stiffness and mass matrices in 2D:

Acart
i = K1⊗M0 +M1⊗K0.

The fast-diagonalization method [85] gives an explicit formula for the inverse
as

(
Acart

i
)−1

=(T1⊗T0)(Λ1⊗ I + I⊗Λ0)
−1(T T

1 ⊗T T
0), (2.20)

with Ti and Λi, being the (orthonormal) eigenvectors and the diagonal ma-
trix of eigenvalues, obtained from the generalized eigendecomposition KiTi =
ΛiMiTi.

Block preconditioner
The basic preconditioners listed above can be composed to more complex
block preconditioners, most notably, to block-Jacobi preconditioners, Schur-
complement-based approaches,

A =

[
K CT

C 0

]
, P =

[
K CT

0 −S

]
, (2.21)

with the Schur complement S =CK−1CT , and PRESB-based approaches [86],

A =

[
K −M
M K

]
, (2.22a)

P =

[
K −M
M K +2M

]
=

[
I −I
0 I

][
K +M 0

M K +M

][
I I
0 I

]
. (2.22b)

Jacobian-free Newton–Krylov methods
A nonlinear equation of the form

f (x) = 0

is solved with the Newton method by the update iteration

xk+1 = xk− J(xk)
−1 f (xk).

In practice, the Jacobian matrix J is not inverted exactly but can be approxi-
mated by a preconditioned Krylov solver with a few iterations [23]. To avoid
the costly assembly of the Jacobian matrix, one can evaluate its effect in a
matrix-free way or approximate it on a vector by a finite difference,

J′(u)a≈ 1
ε
(F(u+ εa)−F(u)), (2.23)

37

with ε(u,a) being the perturbation factor [87–89]. Note that the Krylov solver
still needs a preconditioner, P−1 ≈ J−1 or P−1 ≈ (J′)−1. It might be based
on the strategies discussed at the beginning of this section, for which matrix
representation would be needed and, as a consequence, the setup might be
costly. However, the preconditioners can be reused for multiple nonlinear
iterations so that the costs might amortize.

Please be aware that Jacobian-free methods are naturally matrix-free meth-
ods, however, they potentially lead to different results compared to the matrix-
based approach and are not robust for all configurations. As noted earlier,
(nonlinear) residuals can be efficiently evaluated with the algorithms discussed
in the context of matrix-free algorithms so that optimizations for the latter are
also beneficial for Jacobian-free methods.

38

3. Accomplishments

This section presents the main accomplishments of this thesis. We start with
discussing the scientific advances achieved in the context of high-order FEM.
We continue with the discussion of novel high-dimensional and high-compo-
nent applications. We conclude this section with presenting an adoption of the
matrix-free operator evaluation in the context of non-matching grids.

3.1 Application to high-order FEM
3.1.1 Increasing the data locality

This subsection is based on Paper I published jointly with Martin Kronbichler
and Dmytro Sashko. The applications were developed with Ivo Dravis (PDE
optimization), Sebastian Proell (explicit time stepping; [11]), and Vladimir
Ivannikov (JFNK for sintering applications; Paper VII).

We propose a software infrastructure that allows to increase data locality by
performing vector updates before and after DoFs of cells have been touched
during cell loops according to BB2. A possible use case is the zeroing of the
destination vector, which is needed to be able to simply add cell contributions
during the cell loop. If users want to efficiently interleave other (custom)
vector-update operations with cell loops, algorithmic adjustments might be
needed on the user side.

The idea of interleaving cell loops and vector updates is based on the fact
that an entry in the source vector u and the destination vector v needs to be
correctly initialized once before the first cell tries to operate on it. An entry
in v is finalized, i.e., ready for further usage, once the last cell has added to
it. At this stage, the entry in u is not needed any more and its value can be
overridden for the next usage. Doing vector updates close to the cell loop is
attractive, since the data is already in cache and does not have to be fetched
again from main memory. However, tracking the state of each entry (first and
last access) is not feasible and would lead to excessively high organizational
overhead. Instead, we propose to track the state of ranges (with sizes of a
multiple of the cache-line size). Due to good cache locality during the cell
loop, we automatically get also good cache locality during the vector updates,
with DoFs staying in the cache from the first access till the last usage, which
allows to load large parts of the source and the destination vector only once.

39

Theoretical reasonings revealed that DoFs shared by multiple cells, particu-
larly the corner DoFs, might have rather long life spans between their first and
last usage (long “liveliness”). In experiments, this results in corresponding
cache lines being evicted from cache in the meantime, even though only one
entry prevents the finalization. We propose DoF-renumbering schemes, which
enumerate the DoFs of different geometric entities according to the touch
count separately, resolving the fragmentation issue and leading to longer con-
tinuous ranges that can be updated. We schedule the vector updates—referred
to pre- or post-operation—and interrupt the cell loop as long as the accumu-
lated data of the cells’ work still fits into the fast L2 cache, to maximize the
L2 hit rate during vector updates.

In different projects, we explored and proposed reformulations of algo-
rithms to be able to interleave cell loops and vector updates. We summarize
these in the following. Use cases in the context of additive Schwarz meth-
ods as well as relaxation and Chebyshev iterations are shown in Paper IV (see
Section 3.1.4).

Preconditioned conjugate gradient methods
We applied the proposed pre-/post-algorithm to accelerate a conjugate gradi-
ent method [90] that is preconditioned by a diagonal matrix. The resulting
reformulated algorithm is presented as Algorithm 5 in Paper I.

Explicit time stepping
A forward Euler time stepper can be written as

Tk+1← Tk +
1
∆t

M−1 f (Tk).

If one replaces the mass matrix M by a lumped version IM, one can rewrite the
algorithm with the pre-operation Tk+1← 0, the right-hand-side evaluation into
Tk+1, and the post-operation Tk+1← Tk +

1
∆t I−1

M Tk+1.

PDE optimization
This example comes from the context of PDE-constrained optimizations. We
solve a Poisson problem, imposing box constraints on the state enforced by the
Moreau–Yosida framework, box constraints on the control and L1-reguralization
on the control. The resulting block system (ignoring the right-hand-side vec-
tor) reads as

[
vs
vc

]
=

[
IM −IEK

KIE IBIM

][
us
uc

]
,

with K being the regular stiffness matrix and IM , IE , and IB being different
diagonal or lumped matrices. For more details on this system, see Section 4.5

40

in [91]. The block system can be decomposed as follows:
[

vs
vc

]
=

[
−IE 0

0 I

]

︸ ︷︷ ︸
post

[
0 K
K 0

]

︸ ︷︷ ︸
matvec

[
IE 0
0 I

][
us

uc

]

︸ ︷︷ ︸
pre

+

[
IM 0
0 IBIM

][
us
uc

]

︸ ︷︷ ︸
post

.

The resulting pre-/post-operations are indicated directly in the equation. The
necessity to perform the vector scaling IEus in the pre-operation, whose result
is used as input of the matrix-vector product with K, implies that a temporal
vector is needed.

Jacobian-free Newton–Krylov method (JFNK)
The Jacobian-free Newton method (2.23) can be efficiently implemented with
the pre-/post-algorithm by perturbing the linearization point in a pre-operation
and taking the finite difference in a post-operation, as demonstrated in Pa-
per VII.

3.1.2 Application of hanging-node constraints

This section is based on Paper II published jointly with Karl Ljungkvist and
Martin Kronbichler.

The need to apply hanging-node constraints in the case of continuous ele-
ments in order to guarantee continuity, i.e., H1 conformity, leads to locally
dense blocks in the constraint matrix (CK), whose application can become
overly expensive compared to efficient cell integrals. Adopting ideas from
[21, 29, 34, 92], one can split up the application of constraints in a general-
purpose and a hanging-node part:

CK ◦RK = CHN
K ◦CGP

K ◦RK = CHN
K ◦ (CGP

K ◦RK).

Here, CHN corresponds to an inplace interpolation based on the refinement
configuration in the case that the constrained DoFs are replaced with the con-
straining ones during gathering.

A major challenge is that there are 137 possible refinement configurations
in 3D. We propose a method to encode these in 8 bits (1 byte) in such a way
that it is easy to decode by basic bit operations. The bit format is as follows:

7 6 5 4 3 2 1 0

quadrant in parent cell
face is constrained
edge is constrained
constrained direction

41

The first entry (3 bits) specifies the quadrant within the parent cell, the second
and third entry determine whether faces or edges are constrained, respectively,
and the last entry (3 bits) specifies the direction of the constrained entities.
The fact that both a face and an edge are constrained implies that a face and
its orthogonal edge are constrained. The decoded information can be used to
schedule a minimal number of in-face and in-line interpolation steps.

The second challenge we tackle is that, in the context of vectorization over
cells, cells might have different refinement configurations requiring different
steps to resolve the constraints. We have investigated strategies to solve this
problem. The two most promising approaches in this regard are:

1. Process each cell individually. This approach leads to the lowest number
of scalar operations and, in our experiments, turned out to be the fastest
for low-order elements.

2. Perform an inplace interpolation on all geometric entities (4 lines and 4
quadrilaterals in each direction in 3D) and enable or disable the effect
on certain cells by masks. Setting up the masks introduces noticeable
overhead so that this approach is only beneficial for higher orders or
multiple components.

Note: In our publication, we concentrate on CPU-based hardware, how-
ever, demonstrate experimentally the benefits of using the algorithms on GPU-
based hardware as well.

3.1.3 Multigrid: global coarsening for locally refined meshes

This section is based on Paper III published jointly with Timo Heister, Laura
Prieto Saavedra, and Martin Kronbichler.

We propose an efficient and generic implementation of multigrid algorithms
for locally refined meshes for distributed compute systems, which can handle
both local-smoothing [93–107] and global-coarsening approaches [103, 108].
The local-smoothing algorithm that we consider uses the refinement levels
as multigrid levels, resulting in levels that do not cover the whole computa-
tional domain. In contrast, global-coarsening algorithms operate on the whole
computational domain on all refinement levels. In the case of geometric global
coarsening, the levels are obtained by combining children cells and, in the case
of polynomial coarsening [23, 109–138], they are obtained by globally reduc-
ing the polynomial order of the underlying solution space. Independently of
the way the levels are constructed, residuals need to be restricted and solution
defects have to be prolongated.

Adopting the algorithms for pointwise interpolation from Section 2.1, we
develop a prolongation operator that injects the solution from the support
points of a coarse grid into the support points of a fine grid via looping over

42

x
y

Iy⊗Px

polynomial

Py⊗ Ix Iy⊗Px

geometric

Py⊗ Ix

Figure 3.1. Evaluation steps of polynomial and geometric prolongation.

coarse cells in a matrix-free way:

x(f) = Px(c) = ∑
K
S(f)

K ◦W
(f)
K ◦P

(f ,c)
K ◦C(c)K ◦R

(c)
K x(c). (3.1)

Here, C(c)K ◦R
(c)
K reads the DoFs of a coarse cell and resolves the constraints.

Important constraint types—in the case of global coarsening—include hanging-
node constraints. They need to be evaluated on all levels, which is in contrast
to local smoothing, where the hanging-node constraints do not have to be ap-
plied within the multigrid cycle, since the multigrid levels are constructed—
per definition—so that they do not have hanging nodes but instead artificial
Dirichlet boundaries. The need for evaluating hanging-node constraints in the
new global-coarsening implementation of deal.II was the motivation to opti-
mize the implementation of their application, which is documented in Paper II
(see Section 3.1.2).
P(f ,c)

K prolongates the solution from a coarse cell to the fine cell(s). We
use an L2-projection. The projection matrix differs in the context of geometric
and polynomial coarsening. In the first case, the projection is defined between
a parent cell and its children cells, while, in the case of p-multigrid, the pro-
jection is defined between a low- and a high-order element. For global coars-
ening, it might also be that the cells are not refined (anymore), implying an
identity matrix as projection matrix. For tensor-product elements, the result-
ing projection matrices also have a tensor-product structure (Pc = Pz⊗Py⊗Px)
so that the tensor-product kernels from Section 2.4 can be easily adopted, as
indicated in Fig. 3.1.

The weighting operatorW(f)
K applies the inverse of the multiplicity of each

DoF, and S(f)
K , finally, adds the result to the global (fine) vector. We choose

the restriction operator as the transpose of the prolongation operator. Both
prolongation (3.1) and restriction can be implemented efficiently in a matrix-
free fashion. In the deal.II implementation, we directly use the internal
building blocks (C(c)K ◦R

(c)
K with advanced hanging-node kernels, S(f)

K , and
tensor-product kernels in P(f ,c)

K) to construct a light-weight transfer operator.
We vectorize over coarse cells, for which we categorize them so that only cells
with the same cell-local prolongation matrices are processed together.

43

The developed transfer operator has been integrated in a parallel multigrid
setting. In parallel multigrid, levels can be partitioned differently among pro-
cesses. The partitioning has an effect not only on the load balance during
smoothing on a level (horizontal communication) but also on the costs of inter-
grid transfer (vertical communication). For instance, repartitioning the mesh
on each level implies low load imbalance but potentially high costs during
transfer. In contrast, the first-child policy implies low transfer costs but poten-
tially high load imbalances. In Paper III, we investigate experimentally—for
the solution of a basic Poisson problem—the influence of partitioning on the
behavior of global coarsening and compare this behavior with that of local
smoothing (with first-child policy). We can not observe a clear advantage
of the choice of the partitioning of the levels, since it is very much mesh-
dependent. However, we observe, throughout the experiments, a significant
advantage of global coarsening over local smoothing [47, 101] in a parallel
setting, even though the former performs more work and is, thus, more ex-
pensive in serial. The main reason for this is that the work can be reduced
more significantly between each multigrid-level pair. Similar observations are
also made while solving a variable viscosity Stokes problem with a Schur-
complement approach (2.21). For this purpose, we integrated the developed
infrastructure into ASPECT [139, 140]1, an advanced deal.II-based code to
simulate the convection in Earth’s mantle.

Note: The proposed concept allows a simple extension not only to DG but
also to an auxiliary-space idea where DG discretization is only applied on the
finest level and continuous discretization is used on coarser multigrid levels.
In the context of DG, the evaluation of hanging-node constraints is not needed
during transfer and is replaced by the evaluation of fluxes on subfaces during
smoothing, and weighting is redundant. Similarly, the transfer from continu-
ous to discontinuous space can be performed by cell-local prolongation and
weighting, based on identity matrices. In [8], we extend the hybrid multigrid
solver in ExaDG [2, 3] for locally refined meshes, using this approach, and
solve incompressible-flow problems on complex lung geometries.

Note: The proposed algorithms also work in the context of hp-adaptive FEM
by extending the cell-local prolongation so that it can handle arbitrary coarse-
fine degree pairs. Preliminary results have been released in tutorial step-75
of deal.II [141], which solves a Poisson problem on a reentrant-corner ge-
ometry, using the matrix-free, the distributed hp [77, 142], and the multigrid
infrastructures of this library. The results are promising and indicate a faster
and more robust solver than AMG. This work was done in collaboration with
Marc Fehling.

1https://github.com/geodynamics/aspect

44

https://github.com/geodynamics/aspect

• •

n = 1 n = 2 n = 2 (face)

cell-centric patches

vertex-star patch

Figure 3.2. Visualization of cell-centric and vertex-star patches, including index stor-
age in 2D for p = 4, with filled circles indicating stored information; the rest is de-
duced by contiguous storage. Adopted from Paper IV.

3.1.4 Multigrid: efficient block smoothers

This section is based on Paper IV authored jointly with Martin Kronbichler.

In Paper III (see Section 3.1.3), we discussed how the construction of the
multigrid levels influences the overall performance, in particular, the resulting
load imbalances and communication costs. We used rather basic smoothers
in form of Chebyshev iterations around a point-Jacobi preconditioner. In Pa-
per IV, we concentrate on the efficient implementation of block smoothers
and propose cache-efficient and low-overhead versions of additive Schwarz
preconditioners built around patches, which we optionally accelerate by re-
laxation sweeps or Chebyshev iterations.

According to (2.19), additive Schwarz methods (ASM) add several contri-
butions to unknowns in the overlapping regions. In order to cope with this
issue, they need to weight, e.g., by the inverse of the valence of unknowns.
Weights can be applied globally or locally. Weighting after the application of
the local inverse results in a non-symmetric preconditioner even if the under-
lying operator is symmetric. This fact motivated the development and inves-
tigation of alternative ways for weighting, e.g., the splitting into parts before
and after the local inverse.

We considered cell-centric patches with overlap n = 1 and n = 2 as well as
vertex-star patches mainly on structured meshes (see Fig. 3.2). Patches on un-
structured meshes may involve arbitrary number of cells, making the develop-
ment of efficient patch smoothers challenging [143]. A remedy for cell-centric
patches is to only consider face neighbors [144]. We propose cache-optimized
and low-overhead implementations of ASM in the context of matrix-free com-
putations. In the following, we summarize the main developments and obser-
vations. We vectorize over patches, apply the tensor-product kernels from
Section 2.4, and treat the eigenvalues and eigenvectors as passive variables.

• The matrix-free cell-loop algorithm (with overlapping of communica-
tion and computation and interleaving with vector updates; BB2) is also
applicable to the ASM case. In contrast to the cell loop in the standard

45

matrix-free algorithm, we loop over patches (defined around cells or ver-
tices) with their own sets of DoFs, i.e., restriction matrices RK . They
influence when DoFs are touched for the first and the last time and, as a
consequence, when pre-/post-operations are executed. Furthermore, the
number of DoFs that need to be communicated during vector updates is
influenced. We would like to note that cell-centric patches with overlap
n = 1 have the same DoF sets as regular elements so that data structures
that have been set up, e.g., for the operator A, can be reused.

• Since the matrix-free algorithm with pre-/post-operation is applicable, it
is a natural choice to perform the global weighting during a pre-/post-
vector update interleaved with a cell loop. In the context of cell-centric
patches with overlap n = 1 and vertex-star patches, one can, however,
adopt, as an alternative, a strategy we also use for prolongation (see Sec-
tion 3.1.3). In these cases, the weight of each geometric entity a patch
is made up from is stored. For hypercubes, only 3d weights need to be
stored in a compressed way, which is independent of the polynomial de-
gree k. For cell-centric patches with larger overlap (n > 1), this strategy
is not applicable. Our experiments show that interleaving vector updates
with cell loops gives the best throughput in this case. In the context of
cell-centric patches with overlap n = 1 and vertex-star patches, the lo-
cal application of the compressed weights gives the highest throughput
and the interleaving strategy with pre-/post-operation is close to the best
option.

• Just like the weights, the indices in RK can also be compressed, in the
case of cell-centric patches with overlap n = 1 and vertex-star patches,
by only storing the first index of each 3d geometric entity and a subse-
quent reorientation of DoFs. For cell-centric patches with n > 1, such a
compression is not trivial.

We accelerate the developed ASM implementation and a point-Jacobi pre-
conditioner by a relaxation scheme or a Chebyshev iteration. Both involve a
sequence of residual computations (r = b−Ax), preconditioner applications,
and vector updates. In order to improve the throughput by using the cache
and reducing the access to the main memory, we propose to exploit the struc-
tures of A (cell loop) and preconditioner P (either diagonal or cell loop) and
perform necessary vector updates during cell/patch loops in the form of pre-
/post-operations (see Section 3.1.1). Novel, reformulated versions of the re-
laxation scheme and Chebyshev iterations are presented in Paper IV.

We include the developed and highly optimized smoothers in the context
of p-multigrid and conduct extensive studies on the multigrid parameters,
e.g., the number of smoothing steps and the type of coarsening of the poly-
nomial degree k. In addition, we consider 4th-kind Chebyshev polynomials
and one-side smoothing, which have been recently developed and investigated
in related studies [54, 145]. Our results indicate that highly optimized ASM
preconditioners can outperform highly optimized point-Jacobi preconditioners

46

even for rather simple configurations, since, generally, less smoothing steps
accumulated are needed to obtain the same tolerances. In addition, we com-
pared the non-symmetric and symmetric types of weighting. For the former,
we obtain—in accordance with the literature [146]—less iterations, but we
need to apply GMRES with expensive orthogonalization steps and an addi-
tional preconditioner application. In our experiments, we could not identify
a clear winner. As a concluding remark, we would like to state that finding
the optimal set of parameters for multigrid (smoothers) is a nontrivial task due
to the large search space and an auto-tuning step—as proposed by [81]—is
unavoidable in large production runs.

3.1.5 Stage-parallel implicit Runge–Kutta methods

This section is based on Paper V published jointly with Ivo Dravins, Martin
Kronbichler, and Maya Neytcheva.

The development of stage-parallel Runge–Kutta methods [147] and parallel-
in-time integration methods is currently particularly popular, since they po-
tentially allow to shift the scaling limit to lower values on future large-scale
compute systems. This is done by performing operations of different stages
or time steps in parallel instead of in sequence. However, potential additional
operations and communication counteract the possible benefits so that these
methods might become actually slower than the sequential counterpart if they
are not implemented thoroughly. As a consequence, they are not widely used
and are rather experimental, as is the case at the time of writing of this thesis.

In Paper V, we develop and investigate multiple stage-parallel implementa-
tions of implicit Runge–Kutta methods. These methods advance the solution
to the next time step by a linear combination of Q intermediate stage-function
values:

un+1 = un + τ ∑
1≤q≤Q

bqkkkq with kkki = f

(
tn + ciτ, un + τ ∑

1≤ j≤Q
ai jkkk j

)
,

using the Butcher tableau
cccQ AQ

bbbT
Q

. For a linear system of equations, the in-

termediate stage-function values can be obtained, expressed using Kronecker
products, via:

(A−1
Q ⊗M+ τIQ⊗K)

︸ ︷︷ ︸
A

kkk = (A−1
Q ⊗ In)ggg− (A−1

Q ⊗K)(eeeQ⊗u0),

with M the mass matrix, K the stiffness matrix, ggg the right-hand-side func-
tion evaluated at different stages, and uuu0 the solution from the last time step.
Following Butcher [148], one can construct the spectral decomposition of

47

part 1 part 2 part 3

stage 4
stage 3
stage 2
stage 1

IQ⊗B

matvec

A⊗ In

Cannon

Figure 3.3. Implementation of vvv = (A⊗ B)uuu = (A⊗ I)(I ⊗ B)uuu with A ∈ RQ×Q,
B ∈Rn×n in the context of stage-parallel Runge–Kutta methods with distributed stage
solutions. In the case that stages are assigned to different process groups, vvv = (A⊗ I)uuu
is efficiently implemented via Cannon’s algorithm [155].

A−1
Q = SΛS−1, with potential complex eigenvectors S and eigenvalues Λ, and

use this to transform the matrix:

A= (A−1
Q ⊗M+ τIQ⊗K) = (S⊗ In)(Λ⊗M+ τIQ⊗K)(S−1⊗ In). (3.2)

The system matrix A can be either explicitly factorized,

A−1 = (S⊗ In)(Λ⊗M+ τIQ⊗K)−1(S−1⊗ In), (3.3)

requiring complex arithmetic, or solved iteratively, e.g., by GMRES with the
help of a real-valued preconditioner [149–151],

P−1 = (S̃⊗ In)(Λ̃⊗M+ τIQ⊗K)
−1
(S̃−1⊗ In), (3.4)

where S̃ and Λ̃ are obtained by the spectral decomposition L = S̃Λ̃S̃−1 of the
lower triangular part L of A−1

Q [152]. Other ways to solve (3.2) in both the
linear and the nonlinear setting are discussed in [153, 154].

In (3.2), (3.3), and (3.4), the inner terms are block-diagonal so that the
blocks can be applied or solved independently once a basis change has been
performed. Different tensor-product operations, particularly the following
ones, which are also shown in Fig. 3.3, can be identified in the equations:

• vvv = (IQ⊗C)uuu ↔ vvvi =Cuuui with 1≤ i≤ Q, C ∈ Rn×n

• vvv = (D⊗ In)uuu ↔ vvvi = ∑
1≤ j≤Q

Di juuu j with 1≤ i≤ Q, D ∈ RQ×Q

• vvv = A⊗Buuu = (D⊗ I)(I⊗C)uuu with C ∈ Rn×n,D ∈ RQ×Q.
We formalize these operations for distributed compute systems where stages
are assigned to process groups and investigate experimentally potential ben-
efits of stage parallelism by applying the derived algorithm to a heat equa-
tion and comparing the results to theoretical performance models. In this
context, we apply (ΛiM + τK) via a matrix-free cell loop and approximate
(Λ̃iM+ τK)

−1 via a single V-cycle of the geometric multigrid solver presented
in Paper III (see Section 3.1.3).

We investigate two ways to run matrix-free loops corresponding to inde-
pendent blocks: 1) run matrix-free loops by independent process groups or

48

2) merge the matrix-free loops and process the cell integrals in a batched way
(multicomponent FEM; see also Sections 2.4 and 3.3). In our experiments,
the first approach achieves the best performance and, indeed, can shift the
scaling limit, which we showed experimentally on up to 150k MPI processes.
However, we believe that the batched approach is competitive for deformed
meshes, where metric terms need to be loaded.

Note: In (3.3), the eigenvalues/eigenvectors are complex and, as a result, the
blocks are complex as well:

λqM+ τK = (ℜ(λq)+ i ·ℑ(λq))M+ τK = (ℜ(λq)M+ τK)︸ ︷︷ ︸
K′q

+i ·ℑ(λq)M︸ ︷︷ ︸
M′q

,

which can be written as a two-by-two block-matrix system:
[

K′q −M′q
M′q Kq

][
ℜ(uq)
ℑ(uq)

]
=

[
ℜ(vq)
ℑ(vq)

]
.

This system is implemented with a single cell loop, and cell integrals are effi-
ciently expressed in the form of two-component FEM. As an appropriate block
preconditioner, we use PRESB (2.22).

3.2 Application to high-dimensional FEM

This section is based on Paper VI published jointly with Katharina Kormann
and Martin Kronbichler.

We show the applicability of matrix-free operator evaluations to higher di-
mensional PDEs. For us, higher dimension is more than the number of di-
mensions that regular general-purpose finite-element libraries support, which
is typically up to 3D. The work is motivated by computational plasma physics,
where higher-dimensional advection-type equations need to be solved.

3.2.1 Motivation: computational plasma physics
The main objective of computational plasma physics is the description of the
evolution of a plasma and its interaction in magnetic fields. A field of applica-
tion is the fusion-energy research, in which the plasma in fusion reactors (e.g.,
tokamak and stellarator) is investigated. Besides the particle model [156],
where the motion of each particle (with mass mi, charge qi, position xxxi, and
velocity vvvi) in an electric field EEE and a magnetic field BBB is described by an
N-body problem of the form

∂ 2 xxxi

∂ t2 =
qi

mi
(EEE(t,xxxi)+ vvvi×BBB(t,xxxi)) ,

49

and fluid models [157], in which the Navier–Stokes equations are coupled to a
system of Maxwell‘s equations (magnetohydrodynamics; MHD), kinetic mod-
els are common. They are described by a distribution function f (t,xxx,vvv), which
evolves according to the Vlasov equation coupled to a system of Maxwell‘s
equations.

The Vlasov equation with a single particle species with charge q and mass
m is

∂ f
∂ t

+ vvv ·∇xxx f +aaa(t, f ,xxx,vvv) ·∇vvv f = 0, (3.5)

which contains derivations in xxx-space and phase (vvv-)space and is coupled to
the Maxwell‘s equations for the self-consistent fields:

aaa(t, f ,xxx,vvv) =
q
m
(EEE(t,xxx)+ vvv×BBB(t,xxx)) .

In the following, we assume q/m = −1 and that the magnetic field can be
neglected:

aaa(t, f ,xxx,vvv) =−EEE(t,xxx).

The electric field can be obtained, e.g., by solving a Poisson equation:

EEE(t,xxx) =−∇xxxφ(t,xxx),

−∇
2
xxxφ(t,x) = ρ(t,xxx),

ρ(t,xxx) = 1−
∫

f (t,xxx,vvv)dv,

which gives together with (3.5) the Vlasov–Poisson equations. They form a
nonlinear, high-dimensional system of PDEs. The discretization suffer from
curse of dimensionality, which is the reason why different numerical schemes
tailored to these equations have been derived: sparse-grid methods [158], ten-
sor compression [159], and semi-Lagrangian methods [160]. In Paper VI,
we investigate an approach based on a discontinuous Galerkin discretization.
Fig. 3.4 shows a possible solution of the Vlasov–Poisson equations for a two-
stream instability.

3.2.2 Software and performance aspects
For the sake of simplicity and without loss of generality, we consider—instead
of the nonlinear Vlasov equation (3.5)—a high-dimensional advection equa-
tion with the DG discretization (2.8), as a prototype. To simplify the following
discussion and to keep the similarity to the actual problem, we define:

aaa :=
(

aaax
aaav

)
and ∇ :=

(
∇x
∇v

)
.

50

t = 0 t = 10 t = 15 t = 20

t = 25 t = 30 t = 35 t = 40

f : 0 0.3

Figure 3.4. Solution of the Vlasov–Poisson equations for a 1D+1D two-stream insta-
bility in phase space.

It is obvious that a matrix-free operator evaluation is also applicable to higher
dimensions. However, there is a lack of finite-element libraries that can tackle
higher dimensions, i.a., due to an increased complexity in the description of
the connectivity of cells in such meshes.

Instead of developing a completely new library or extending an existing one
for a niche application, we propose an approach that allows to reuse existing
building blocks from lower dimensional libraries. For this purpose, we limit
ourselves to tensor-product meshes of the form Ω := Ωxxx⊗Ωvvv, which is mo-
tivated by the application at hand, where the geometry and the phase space
are independent. A natural consequence is to discretize Ωxxx and Ωvvv indepen-
dently such that the cells are given as ΩK := ΩKxxx⊗ΩKvvv and faces accordingly,
implying a block-diagonal structure of the Jacobi matrices. Exploiting this,
Eq. (2.8) finally becomes:
(

g,
∂ f
∂ t

)

ΩKxxx⊗ΩKvvv

=

(
∇̂g,

(
J−1

xxx aaaxxx
J−1

vvv aaavvv

)
f
)

ΩKxxx⊗ΩKvvv

+

(
g, nnnxxx · (aaaxxx f)∗)

)

ΓKxxx⊗ΩKvvv

+

(
g, nnnvvv · (aaavvv f)∗)

)

ΩKxxx⊗ΓKvvv

.

The inspection of this equation reveals that one needs building blocks provid-
ing implementations of the following tasks:

1. loop over pairs of lower-dimensional cells (ΩKxxx ⊗ΩKvvv) and face/cell
pairs (ΓKxxx⊗ΩKvvv and ΩKxxx⊗ΓKvvv);

2. access data in global vectors in high and low dimensions in a controlled
way2, i.e., dealing with ghost-value updates and compression as well as
with race conditions;

2Remember that aaavvv =−EEE(t,xxx) in the Vlasov-Poisson equations.

51

3. perform basis change from the support points to the quadrature points
and vice versa during cell/face integrals;

4. access mapping data at quadrature-point pairs (Jxxx, Jvvv, nnnxxx, nnnvvv).
The mapping data (task 4) can be easily queried, e.g., from two lower-di-
mensional mesh objects. The evaluation and tensor-product kernels (see Sec-
tions 2.4, 2.6, and 2.11) are applicable also to higher dimensions (task 3),
since

N = Nvvv⊗Nxxx = N1D⊗·· ·⊗N1D︸ ︷︷ ︸
×dxxx

⊗N1D⊗·· ·⊗N1D︸ ︷︷ ︸
×dvvv

= N1D⊗·· ·⊗N1D︸ ︷︷ ︸
×dxxx+dvvv

.

For task 1, the algorithm implied by (2.12) can be simply extended such that it
loops over pairs of cells and faces. The data access to the global vector (task 2)
is straightforward given that we use a DG discretization: all one needs is to
convert a pair of cell indices to a constant offset into the vector. In order to
be able to perform operations in x- and v-space independently, we work on
different MPI communicators.

In conclusion, we propose—for high-dimensional applications—to decou-
ple the work done by the matrix-free object (see Section 2.9): 1) looping over
cells and vector access are performed with an object tailored for higher dimen-
sions and 2) mapping is queried from two low-dimensional (matrix-free) ob-
jects. Please note that many low-level building blocks from a low-dimensional
library can also be reused for task 1.

In Paper VI, we have shown that the proposed concept can be efficiently
implemented and applied to solve problems of computational plasma physics.
However, it is needless to say that the curse of dimensionality makes the com-
putations expensive and leads to other corresponding problems, which can
be partly reduced but not completely resolved by thorough performance opti-
mizations. Such issues include (see also Section 2.10):

• unavoidable high computational costs O(dkd+1) during cell integrals;
• memory consumption that increases with O(pd), with p being the num-

ber of DoFs in each direction; we adopt a low-storage Runge–Kutta
method [161] to reduce the memory consumption;

• challenging, rather dense, long-range communications and an increased
amount of ghost DoFs due to ghost faces with (k + 1)d−1 DoFs; for
the latter issue, shared-memory capabilities of MPI-3.0 are used (see
Section 2.3) and the number of ghosted vectors is reduced to a single
one;

• increased working-set sizeO(dkd) during cell/face integrals particularly
if work is vectorized over cells; as a remedy, special-purpose opera-
tors are provided where evaluation/integration and loop over quadrature
points are interleaved.

As a reference, the computational complexity of matrix-based algorithms is
O((k+1)2d); and for 6D: O((k+1)12) in contrast to O(6(k+1)7) using sum
factorization. For special matrices, the tensor-product structure (mass matrix:

52

M = Mvvv⊗Mxxx; stiffness matrix: K = Mvvv⊗Kxxx +Kvvv⊗Mxxx) can be exploited
to reduce the complexity [162]. However, the velocity field in the Vlasov-
Poisson equations is not separable, not allowing this technique.

Note: We discussed a DG implementation. However, the high-dimensional
matrix-free algorithm is also applicable for FEM [162], as shown in a proto-
type on GitHub3. Here, no interface fluxes have to be evaluated, but indices
need to be stored explicitly, making the access to global vectors and the up-
dates of ghost values more expensive.

Note: The algorithms discussed here are interesting and applicable for lower-
dimensional PDEs, too. In many instances, 3D meshes are generated by the
extrusion of 2D meshes, resulting in tensor-product meshes again. Parallel-
in-time integration algorithms also feature tensor-product structures; see also
the discussion on a stage-parallel implicit Runge–Kutta implementation in
Paper V (see Section 3.1.5), which reuses, e.g., the partitioning and shared-
memory infrastructure developed for solving high-dimensional PDEs in the
scope of this thesis.

3.3 Application to multicomponent FEM

This section is based on Paper VII, a work done jointly with Vladimir Ivan-
nikov, Christian Cyron, and Martin Kronbichler.

Solving systems with multiple unknowns (components) is widespread in the
context of FEM, e.g., in solid mechanics (d), incompressible fluid mechanics
(d +1), and compressible fluid mechanics (d +2). Considering more compo-
nents are not that common and, as a result, implementations for such use cases
are not optimized in general-purpose libraries. Examples for such niche appli-
cation areas are the density functional theory (DFT) [39–41] and phase-field
applications like solid-state sintering [38, 163–165]. We investigate the latter
in Paper VII.

3.3.1 Motivation: solid-state sintering
The classical formulation of modeling solid-state-sintering processes of N par-
ticles proposed by Wang [166] is based on a system of Cahn–Hilliard and

3https://github.com/hyperdeal/hyperdeal

53

https://github.com/hyperdeal/hyperdeal

Figure 3.5. Isocontours of a 49-particle simulation at different times. Colors indicate
the order parameters.

Allen–Cahn equations:

∂c
∂ t

= ∇ · [M(c,ηi)∇µ] , (3.6a)

µ =
∂ f (c,ηi)

∂c
−κc∇

2c, (3.6b)

∂ηi

∂ t
=−L

[
∂ f (c,ηi)

∂ηi
−κp∇

2
ηi

]
for 1≤ i≤ N. (3.6c)

Here, the microstructure evolution is described by a conserved variable c and
a set of non-conserved unknowns ηi. µ = δF/δc is the chemical potential.
Variable c can be interpreted as the molar fraction of the given material and has
a magnitude of 1 inside particles and 0 in voids. The unknown ηi describes the
position of particle i within the domain such that ηi = 1 inside the i-th particle
and ηi = 0 everywhere else. Due to the local support of ηi, it is common in
the literature [167–169] to collect non-neighboring particles in groups called
order parameters and describe all particles in such a group by a single ηi. In
practical simulations, numbers of order parameters between 8-12 are common,
leading to 10-14 components in total. f (c,ηi) is a polynomial related to the
free energy of the system and M(c,ηi) is the mobility, leading to a strong
coupling of the unknowns.

54

Fig. 3.5 shows, as an example, the isocontour of a 49-particle packing over
time. The colors indicate the order parameters. It is clear that particles switch
order parameters during simulations when they become too close to each other
due to topological changes. Particles can even disappear. These special fea-
tures can lead to the situation that the number of order parameters, i.e., the
number of components, changes in the course of the simulation, a situation
that is not common in conventional FEM simulations.

The strong coupling between the components results in memory consump-
tion that increases quadratically with the number of components and is inher-
ently expensive, considering that 10–14 components are used in representative
simulations. This requires the investigation of alternatives like the evaluation
of the Jacobian based on the matrix-free algorithm or the approximation via
finite difference (JFNK; see Section 2.12).

3.3.2 Software and performance aspects
The extension of matrix-free operator evaluations to multiple components is
straightforward, as shown in Section 2.4. To cope with the dynamically chang-
ing number of components, we suggest to convert the number to a constant ex-
pression and to precompile the relevant cell integral for all possible numbers
of components. This results in Algorithm 1 in Paper VII. However, experi-
ments revealed that, with increasing number of components, the throughput
decreases. Interleaving evaluation and integration steps, as described in Sec-
tion 2.11, reduces this effect, but keeping the number of components low, e.g.,
via grain tracking [169], is crucial.

Alternatively to Algorithm 1, Algorithm 2 in Paper VII proposes to exploit
the fact that grains (ηi) have local support, in order to process only grains lo-
cally relevant on the cell. This implies that, on each cell, different numbers
of grains need to be processed, resulting in different numbers of components,
each of which needs to be translated to constant expressions, and different
blocks of block vectors need to be accessed. In an optimal implementation,
only DoFs of relevant grains (within a cell batch) are loaded and, only for
these, memory is allocated. However, this implies the use of gather/scatter
operators that can work on sparse block vectors. In [39], such data structures
were investigated in the context of DFT. Although we did not adopt this op-
timization but worked on full block vectors, we observed significant speedup
during operator evaluations despite unavoidable overhead related to commu-
nication and redundant vector update steps. These results are motivations for
future work to investigate sparse block vectors in more detail and to tackle
issues related to these types of vectors, like preconditioning.

55

3.3.3 Nonlinear solver and preconditioning
We discretize (3.6) with BDF2 in time and solve the resulting nonlinear prob-
lem with a Newton solver. The Jacobian is evaluated approximately in a
matrix-free manner, and, then, the linear system is solved iteratively, using
GMRES with a preconditioner. We adopt a block-Jacobi preconditioner based
on ILU: the Cahn-Hilliard block is treated as a single block and we apply a
single ILU instance for each Allen-Cahn block. This preconditioner is, al-
though matrix-based, rather cheap and robust, outperforming the alternative
matrix-free preconditioners we tried. This highlights that the choice of the
preconditioner is very problem-specific and an efficient matrix-free operator
evaluation does not automatically imply the need to use matrix-free precondi-
tioners.

3.4 Coupling via non-matching grids

The following section is based on material mostly not published yet. The im-
plementation was developed jointly with Martin Kronbichler. The applications
were carried out together with Niklas Fehn (fluid-structure interaction), Max-
imilian Bergbauer, Simon Sticko (CutDG/CutFEM), Johannes Heinz (Nitsche-
type mortaring methods for acoustic equations), Magdalena Schreter–Fleisch-
hacker (sharp-interface methods for two-phase flow), and Marco Feder (non-
conformal multigrid).

In the following, we show that the matrix-free operator-evaluation strategies
presented in Section 2 are also applicable in the context of non-matching grids,
where solutions need to be evaluated at arbitrary points. We start with present-
ing application cases that need efficient implementations of such an operator.
This allows us to collect requirements and to formalize an algorithm tailored
for such use cases. We conclude this section by discussing challenges and effi-
cient implementations as well as by comparing this algorithm with a black-box
coupling approach provided by coupling libraries like preCICE [170, 171].

Note: Similar work has been also done in the spectral-element codes Nek5000/
nekRS, where the fluid solution of two Nek5000 instances [172, 173] as well
as particles with fluid [174] can be coupled. In contrast, we aim to provide a
generalized concept that can be used in any FEM-based solvers.

Note: The literature on numerical solution of coupled problems is extensive
and involves the development of many aspects like quasi-Newton methods.
Our aim is not to discuss all ingredients but to concentrate on one of them:
data mapping. For this, we show how to adopt matrix-free algorithms. Publi-
cations on data mapping include [175–182].

56

3.4.1 Motivation: multiphysics applications
In the following, we list application projects which the author has been in-
volved in and used the developed matrix-free non-matching infrastructure.

Point-to-point interpolation and Nitsche-type mortaring
Let us assume we want to solve the advection equation (2.8) with DG on Ω.
Two non-overlapping parts (Ω1, Ω2) of the domain are discretized indepen-
dently, resulting potentially in a nonconformal interface (ΓI = Ω1∩Ω2). Dur-
ing the flux computations in term † of (2.8), the values4 are needed at the
quadrature points from both sides of a face. However, in contrast to con-
forming meshes, quadrature points on the same negative side might belong to
different cells on the positive side. Since the solution, in the FEM context,
is defined by cell-local polynomials and, in the case of DG, by discontinuous
shape functions, contributions coming from different cells imply kinks and
discontinuities, potentially leading to aliasing effects during the face integral
if a simple point-to-point evaluation is performed.

One way to tackle these aliasing effects is to perform the integrals on an
intersected mesh, resulting, for each face, in a set of mortars (Nitsche-type
mortaring). On each of them, a quadrature rule can be defined with the result
that one needs to perform a non-standard (non-tensor-product) quadrature on
such interfaces.

In [10], we consider the point-to-point and the Nitsche-type-mortaring eval-
uation for the conservative formulation of acoustic equations discretized with
DG and show the benefits of the latter for suppressing artificial modes. In addi-
tion, we investigate overlapping meshes, which require intersections between
faces and cells. For generating the intersections, we use the library CGAL [183].
This study is a preparatory work for simulating aeroacoustic problems where
the near field (mesh), which moves with a rotating geometry and is described
by an arbitrary Lagrangian-Eulerian formulation (ALE) [184], is coupled to a
static far field (mesh).

Note: Due to the fact that integrals are only computed on the refined side, the
DG implementation for locally refined meshes in deal.II (see Section 2.8) is
implicitly using a mortar approach.

ALE formulation for fluid-structure interaction
The point-to-point approach described above has been applied to solve fluid-
structure-interaction problems with ALE [44]. In this context, the fluid field is

4Gradients are accessed in the Poisson case as well.

57

described by

∂uuuF

∂ t

∣∣∣∣
χ

+((uuuF −uuuM) ·∇)uuuF −∇ ·Fv(uuuF)+∇pF = fff F , (3.7a)

∇ ·uuuF = 0 (3.7b)

on ΩF with the fluid velocity uuuF and mesh-motion velocity uuuM as well as
appropriate initial and boundary conditions [185]. The solid field is described,
in Lagrangian form, by

ρ0
d2dddS

dt2 −∇0 ·P= bbbS
0 (3.8)

on ΩS with appropriate initial and boundary conditions as well as with P being
the first Piola–Kirchhoff stress tensor, d being the displacement and bS

0 the
body forces. The coupling conditions at ΓI = ΩF ∩ΩS are

uuuF =
ddddS

dt
, (3.9a)

σ
F ·nnnF +σ

S ·nnnS = 0, (3.9b)

with the Cauchy stress tensor σ and the output normal vector nF =−nS. Fur-
thermore, the mesh displacement dM and, as a result, the mesh velocity uM

are obtained by extending the displacement on the solid surface into the fluid
domain.

During coupling, the deformation—as Dirichlet boundary condition of the
fluid field and the mesh motion—and the stresses—as Neumann boundary
condition of the solid field—have to be exchanged on the interface. The ALE
formulation implies that the evaluation points do not change as long as the
mesh is not remeshed so that the setup has to be performed only once. The lat-
ter is needed once the mesh quality has deteriorated significantly and involves
a remapping of the solution and setting up the evaluation points for coupling
again.

Immersed boundaries: CutFEM, CutDG, & XFEM
The methods CutFEM [186], CutDG [187, 188], and XFEM [189] solve PDEs
on an arbitrarily shaped domain Ω by embedding it into a structured computa-
tional domain Ωh. For this purpose, the PDEs are modified to weakly enforce
boundary conditions at arbitrary positions (cuts) and integrals need to be eval-
uated on parts of cells.

In the context of CutFEM, the weak form of the Poisson problem5 is to find
a function uh ∈V h

Ω
such that

ah(uh,vh) = Lh(vh), ∀vh ∈V h
Ω, (3.10a)

5adopted from https://www.dealii.org/developer/doxygen/deal.II/step_85.html

58

https://www.dealii.org/developer/doxygen/deal.II/step_85.html

where

ah(uh,vh) = (∇uh,∇vh)Ω

− (∂nuh,vh)Γ− (uh,∂nvh)Γ +
(

γD

h
uh,vh

)
Γ

, (3.10b)

Lh(vh) = (f ,v)Ω +
(

uD,
γD

h
vh−∂nvh

)
Γ

. (3.10c)

Please note that volume integrals are only performed on cells (ΩK ∩Ω) and
intersections (ΩK ∩ Γ), requiring non-standard quadrature rules. Important
tasks are to identify cells that are cut, to determine the position of the cut
within the cell, and to compute adequate quadrature rules. The first two tasks
can be accomplished, e.g., based on level-set fields [186] or on intersection of
two non-matching grids [190]. High-order quadrature rules can be generated,
e.g., by the algorithm described in [191]. Given the weights and the reference
positions of the quadrature points, the shape functions and the operators of
the form (3.10) can be evaluated in a matrix-free way. Similar reasoning is
also true in the CutDG and XFEM cases. All three approaches can be used to
solve multiphysics problems like two-phase flow [192, 193] or fluid-structure
interaction [194].

Coupling with particles
The motion of a massless particle can be described by the following ordinary
differential equation:

dxxxi

dt
= uuu(xxxi),

where uuu(xxxi) is the current velocity, e.g., from a finite-element solution eval-
uated at the current position xxxi of the particle. Independently of the time-
integration scheme, the background velocity field needs to be evaluated effi-
ciently at arbitrary points, which change after each time step. However, in
many applications, particles do not move far in comparison to the underlying
mesh; this information can be used to accelerate the setup [195].

For details on more involved coupling of particles with flow, we refer in-
terested readers to [196]. Here, particles that are described by the discrete
element method (DEM) [6] are coupled two-way to an incompressible CFD
solver [197] to simulate cases relevant for chemical and process techniques
(e.g., particle sedimentation, fluidized bed). The author of this thesis has been
involved in the development of two tutorials covering the particle infrastruc-
ture of deal.II (step-196, step-687).

6https://www.dealii.org/developer/doxygen/deal.II/step_19.html
7https://www.dealii.org/developer/doxygen/deal.II/step_68.html

59

https://www.dealii.org/developer/doxygen/deal.II/step_19.html
https://www.dealii.org/developer/doxygen/deal.II/step_68.html

Sharp-interface methods/front tracking
Let us assume that the non-dimensional form of the compressible Navier-
Stokes equations [198]

ρ
∗uuut +ρ

∗uuu ·∇uuu =−∇p+
1

Re
∇ · (2µ

∗
∇

suuu)+FFF +FFFS,

∇ ·uuu = 0

with two phases

ρ
∗ =

{
1 in phase 1
ρ2
ρ1

in phase 2 µ
∗ =

{
1 in phase 1
µ2
µ1

in phase 2.

is given. Here, FFFS is the surface-tension force

FFFS =
1

We
κnnnδΓ.

In a finite-element context, the actual surface-tension force is not needed in a
strong form but in a weak sense (vvv,FFFS)Ω. In numerical simulations, this term
is either approximated using a smooth ansatz [198–200],

(vvv,FFFS)Ω ≈
(

vvv,
1

We
κnnn∇H

)

Ω

,

replacing the Dirac delta function by a smooth function ∇H related to a level-
set field, or evaluated sharply (sharp-interface method; SIM):

(vvv,FFFS)Ω =

(
vvv,

1
We

κnnn
)

Γ

≈∑
q

(
vvv(xxxq),

1
We

κ(xxxq)nnn(xxxq)|J(xxxq)|wq

)
. (3.11)

In the case that a level-set description (φ) is available, the quadrature can
be generated as above in the CutFEM/CutDG case. The normal field nnn =
∇φ/|∇φ | and the curvature field κ =−∇nnn might have been computed from the
level-set field φ via an L2-projection. Alternatively, the interface could be op-
tionally described by a codim-1 mesh via a front-tracking approach [201, 202].
In the latter case, J, nnn, and κ would be determined geometrically on the surface
mesh, based on the current deformation of the mesh, for which a Lagrangian
approach—as in the case of the particle motion—can be used. J, nnn, and κ

would need to be transferred to the background mesh.

Closest point projection, extrapolation, & geometric reinitialization
Let us assume that a signed distance function φ and a normal field nnn are given.
In such a setting, finding the closest point xxx∗ on the zero contour of the level-
set field can be explicitly expressed as

xxx∗ = xxx−nnn(xxx)φ(xxx)

60

for a given point xxx. Due to numerical errors and further constraints (e.g.,
orthogonality), this might not be enough and a fix-point iteration including
geometric corrections might be necessary to find the correct point.

Once the point xxx∗ has been identified, we can project values from the inter-
face to a narrow band and determine the distance |xxx∗− xxx| to perform a geo-
metric reinitialization [203].

Multigrid with non-nested levels
In many industrial applications, problems are solved with low-order finite el-
ements on fine meshes generated by external mesh-generation tools. In this
context, geometric multigrid and polynomial multigrid are not applicable, but
AMG and non-nested multigrid methods [204, 205] are a natural choice. Non-
nested multigrid is conceptually very similar to global coarsening, since both
perform smoothing globally. Non-nestedness, however, implies that support
points of the fine cells are arbitrarily positioned in regard to the coarse cells
and parallel partitions. The interpolation is globally given by the pointwise al-
gorithm from Section 2.1 and the L2-projection by (2.7), where the quadrature
points might come from an intersected mesh. The complexity, in the parallel
setting, is that the evaluation happens on the coarse mesh and the results need
to be communicated to the fine mesh before one can proceed with weighting
(in the injection case) or integration and testing (in the L2-projection case).

Summary & requirements
The requirements of the applications listed above can be summarized as fol-
lows:

• Evaluation points might have been generated on a cell or have to be
sorted into cells via a search algorithm.

• Evaluation points might be structured within the donating mesh but un-
structured within the evaluation mesh, not allowing sum factorization.

• Evaluation points might be owned by cells on remote processes, requir-
ing communication during both setup and evaluation.

• At the evaluation points, either the solution is only evaluated or an inte-
gration is also performed, implying the need for mapping particularly to
determine |J(xxxq)|wq.

In the following, we discuss general-purpose implementations that meet these
requirements.

3.4.2 Distributed search
Many of the application cases listed above specify a set of points at which the
solution should be evaluated. For this purpose, the cell K and the reference
position x̂xx within the cell need to be determined for a given point xxx. The
search is made more complicated by the fact that the mesh might be partitioned
between processes and points might fall into a cell of any process.

61

In order to find the cell in a parallel setting, one can take a two-level-search
approach. First, all processes that might possess the point are determined
(coarse search). For this purpose, e.g., a distributed R-tree based on bounding
boxes around locally owned domains could be used. Once the processes have
been determined and the points have been sent to them as a request, one can
start to find the cells among locally owned cells (fine search). In order to
accelerate this search, an R-tree that is built around the vertices of the mesh
can be used. One of the cells connected to the closest vertex is the cell of
interest.8

Once the cell K containing point x has been found, one can find the refer-
ence position, in the general case, by performing the minimization:

min
x̂xx
(|φ̂K(x̂xx)− xxx|) with x̂xx ∈ [0,1]d .

For certain types of mapping (e.g., Cartesian mapping), the roots can be found
explicitly.

Note: The search algorithm discussed above assumes no explicit knowledge of
the position of points regarding cells. However, this is not always the case. For
example, in time-dependent problems (e.g., DEM, SIM, moving meshes), par-
ticles/support points move in space with a specific velocity and are in the next
time step still in the proximity of the last position. If the Courant–Friedrichs–
Lewy (CFL) condition is fulfilled, i.e., u∆t/∆x ≤ 1, they can even only be lo-
cated in directly neighboring cells. In [195], algorithms are presented that
allow to obtain a good initial guess, which neighboring cell is the relevant
one. [207] discusses how to determine cells and reference positions for sliding
interfaces, needed, e.g., for the simulation of rotating machines like turbines.

Note: Alternatively to the distributed R-tree based on bounding boxes around
local domains, one can use other approaches for distributed search. One of
them is, e.g., based on a coarse Cartesian mesh with Cartesian partitioning.
The partition and the corresponding cell can be found trivially. In such a
context, cells are referred to as bins. Example applications can be found in
[208, 209]. Alternatively, there are techniques that allow to determine the
owners of points on locally-refined meshes based on forest-of-trees approaches
and space-filling-curve partitioning [210, 211].

8The coarse search determines, for each point, a list of processes that might own it. The subse-
quent fine search by each process determines whether the processes actually own these points.
The sequence of request (“Does the process own the point?”) and answer (“Yes.”/“No.”) can
be realized efficiently, based on consensus-based algorithms for dynamic sparse communica-
tions [206].

62

3.4.3 Efficient operator evaluation
Once all points within a cell, including their reference position, have been
determined, the actual evaluation can be generally performed, according to
(2.13a), via

ûK,q = ∑
0≤i<NDoFs

φ̂i(x̂xx
q
0, x̂xx

q
1, x̂xx

q
2)uK, j,

or, for tensor-product elements according to (2.14b), via

ûK,q = ∑
0≤k<N1D

DoFs

φ̂k(x̂xx
q
2) ∑

0≤ j<N1D
DoFs

φ̂ j(x̂xx
q
1) ∑

0≤i<N1D
DoFs

φ̂i(x̂xx
q
0)uK,i jk,

which allows sum factoriztion [172]. The shape functions evaluated at the
quadrature points can be tabulated. In tensor-product notation, this implies

ûK,q = ∑Nq,iuK,i = Nq
z (Iz⊗Nq

y)(Iz⊗ Iy⊗Nq
x)uK , (3.12)

with Nq
� ∈ R1×N1D

DoFs containing the tabulated values for point q in a given di-
rection. This implies the computational complexityO((k+1)d) for each eval-
uation point. In the case that the solution has to be evaluated at (k+1)d evalu-
ation points, the computational complexityO(k2d)�O(dkd+1) is quite high,
compared to the sum-factorization case. Computations can be accelerated,
e.g., by vectorization over points. This implies loop unrolling by processing
multiple rows of N at once. Similar reasoning also applies to computation of
gradients and to testing, as needed, e.g., by SIM (3.11), CutFEM (3.10), and
CutDG.

Note: The need to evaluate the solution sequentially at quadrature points im-
plies that a pointwise view—as discussed in Section 2.11—can be adopted
naturally, where evaluation, operation at the quadrature point and integration
are performed in one go before continuing with the next point.

3.4.4 Software
Similarly to the regular case (Section 2 in general and Section 2.9 in detail),
one can derive, in the non-nested case, classes that have similar tasks. In par-
ticular, one needs: 1) to iterate over cells that own points at which evaluation
has to be performed and 2) to perform the actual evaluation on a cell level.
Optionally, 3) processes have to exchange solutions on the point level and 4)
one needs |J(xq)|wq.

Listing 3.1 shows, as an example, a deal.II code that sharply computes
the right-hand-side vector of the Navier–Stokes equations due to surface ten-
sion according to (3.11). The interface is tracked explicitly by a distributed

63

+ + + +

structured unstructured

x-
di

re
ct

io
n

I y
⊗

N
x

I y
⊗

N
q x

y-
di

re
ct

io
n

N
y
⊗

I x

N
q y

x
y

Figure 3.6. Interpolation from Gauss–Lobatto points to Gauss–Legendre points (left)
and to a set of 5 arbitrary points (right).

codim-1 mesh, which predefines the quadrature points including the weights.
The code assumes that the data structures already have been initialized, the
term 1

We κ(xxxqqq)~n(xxxqqq)|J(xxxqqq)|wq has been evaluated locally on the quadrature-
point level of the codim-1 mesh, and the values are stored in forces_codim.
The two relevant classes in the listing are RemotePointEvaluation and FE-
PointEvaluation. On an abstract level, the tasks of the class Remote-
PointEvaluation are similar to those of MarixFree: it is responsible for
the cell loop and the vector communication (exchange of forces_codim →
forces_background). It also provides access to information on the evalu-
ation-point level within the cell, like reference positions, which we directly
use in the example code to initialize FEPointEvaluation. This class is the
unstructured equivalent of FEEvaluation and used here only for testing. Dur-
ing its initialization, the shape functions are tabulated. For tensor-product ele-
ments, only 1D shape functions are tabulated according to (3.12). The opera-
tion is finalized by adding the cell-local results to the global vector, for which
we use basic deal.II infrastructure.

Note: The matrix-free non-matching infrastructure of deal.II is—at the time
of writing this thesis—still a work in progress, and it is not yet as mature as the
implementation of the structured one. A complication is the distinct difference
between the application cases, which allows to reuse the infrastructure but
does not allow to provide a unified workflow. Which building blocks need to
be exposed to the users and what the optimal interface is, is a current research
emphasis.

64

Listing 3.1. Implementation highlighting the interaction of RemotePoint-
Evaluation and FEPointEvaluation. As an example, the testing of forces (on
a background mesh, given a non-matching codim-1 mesh) is shown.
u s i n g value_type = Tensor <1 , dim , Number >; / / d a t a t y p e : f o r c e s

/ / v e c t o r c o n t a i n i n g t h e v a l u e o f f o r c e s e v a l u a t e d a t t h e q u a d r a t u r e
/ / p o i n t s on codim −1 mesh (f i l l i n g o f f o r c e s _ c o d i m : n o t shown)
std : : vector<value_type> forces_codim ;

/ / o p e r a t i o n on background mesh
c o n s t a u t o evaluation_function = [&] (

c o n s t a u t o &forces_background / * s o r t e d a c c o r d i n g t o p o i n t s * / ,
c o n s t a u t o &cell_data / * d a t a needed on p o i n t l e v e l * /) {

FEPointEvaluation<dim , dim , dim , Number> evaluator (
mapping , fe , update_values) ; / / e v a l u a t o r c l a s s

f o r (u n s i g n e d i n t i = 0 ; i < cell_data . cells . size () ; ++i)
{

/ / i n i t i a l i z e e v a l u a t o r wi th t h e c u r r e n t c e l l and t h e
/ / r e f e r e n c e p o s i t i o n s
typename DoFHandler<dim > : : active_cell_iterator cell = {

tria , cell_data . cells [i] . first ,
cell_data . cells [i] . second , &dof_handler_coarse } ;

c o n s t ArrayView< c o n s t Point<dim>> unit_points (
cell_data . reference_point_values . data () + q_begin ,
q_end − q_begin) ;

evaluator . reinit (cell , unit_points) ;

/ / sub mi t v a l u e s
f o r (c o n s t a u t o q : evaluator . quadrature_point_indices ())

evaluator . submit_value (forces_background [q + begin] , q) ;

/ / t e s t and sum i n t o g l o b a l v e c t o r
solution_values . resize (fe . n_dofs_per_cell ()) ;
evaluator . integrate (solution_values , EvaluationFlags : : values) ;
cell−>distribute_local_to_global (solution_values , dst) ;

}
} ;

rpe . t e m p l a t e process_and_evaluate<value_type >(forces_codim , buffer ,
evaluation_function) ;

3.4.5 Black-box coupling via preCICE
So far, this section has proposed a general-purpose framework for computa-
tions on non-matching grids with unstructured evaluation points. For this pur-
pose, we exploited the following characteristics of the structure of elements:
1) a point within a cell is only influenced by DoFs of the cell, which results
in a natural blocking, and 2) the tensor-product structure (of the underlying

65

shape functions) allows for optimizations on the cell level. This approach has
many advantages, e.g., higher-order interpolation is easily possible [175] and
intersections can be created. Such an approach is called white-box coupling in
the literature [175] sometimes.

As an alternative to such a domain-specific approach, it is also possible to
rely purely on point positions and point values in a black-box fashion. For
this, nearest-neighbor and radial-basis-function-based mapping [177] are ap-
plicable [175]. An extension of the nearest-neighbor approach is the nearest-
projection mapping, where the nearest mesh element is used.

These approaches are applicable to any method (e.g., DEM, FEM, finite dif-
ference methods, finite volume methods) and are used, e.g., in the open-source
library preCICE [170, 171] to couple different executables, which potentially
discretize different PDEs with different numerical approaches. Similarly to
the point-to-point interpolation discussed above, these approaches might suf-
fer from aliasing effects, which can be solved, e.g., by subsampling. For this,
[175] proposed the increase of the evaluation points by a factor of three in each
direction. Please note that preCICE is not limited to the task of data mapping
but also provides many useful other features, e.g., quasi-Newton methods and
wavefront relaxations [212, 213].

There exists an interface (wrapper) that allows to use preCICEwith deal.II
applications.9 The task of it, in particular, is the conversion of data structures
(e.g., vector of points to vector of doubles). David Schneider has, jointly with
the author of this thesis, integrated preCICE into the fluid and the structure
modules of ExaDG. This allows to couple these modules to external solvers
like OpenFOAM, as demonstrated in [214]. Furthermore, preCICE can be used
as an alternative to the native ExaDG FSI coupling implementation, which is
based on the above-described modules and couples the fluid and the structure
modules of ExaDG directly via deal.II data structures.

We conclude this section with the comment that the above-described data-
mapping modules are extendible to the nearest-neighbor approach by general-
izing the search algorithm (see Section 3.4.2).

9https://github.com/precice/dealii-adapter

66

https://github.com/precice/dealii-adapter

4. Additional publications and software

4.1 List of papers
Beside the main papers I–VII, the author of this thesis has contributed to fol-
lowing 12 publications (sorted according to the submission date):

[1] M. Kronbichler, K. Kormann, N. Fehn, P. Munch, and J. Witte, “A
Hermite-like basis for faster matrix-free evaluation of interior penalty
discontinuous Galerkin operators,” arXiv:1907.08492, 2019.

[2] D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch,
W. A. Wall, and J. Witte, “ExaDG: High-order discontinuous Galerkin
for the exa-scale,” in Software for Exascale Computing - SPPEXA 2016-
2019. Lecture Notes in Computational Science and Engineering (H.-J.
Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel, eds.),
vol. 136, pp. 189–224, Cham: Springer, 2020.

[3] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler, “Hybrid multigrid
methods for high-order discontinuous Galerkin discretizations,” Journal
of Computational Physics, vol. 415, p. 109538, 2020.

[4] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V.
Grayver, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-
P. Pelteret, R. Rastak, I. Thomas, B. Turcksin, Z. Wang, and D. Wells,
“The deal.II library, version 9.2,” Journal of Numerical Mathematics,
vol. 28, no. 3, pp. 131–146, 2020.

[5] N. Fehn, M. Kronbichler, P. Munch, and W. A. Wall, “Numerical evi-
dence of anomalous energy dissipation in incompressible Euler flows:
Towards grid-converged results for the inviscid Taylor–Green problem,”
Journal of Fluid Mechanics, vol. 932, pp. A40:1–37, 2022.

[6] S. Golshan, P. Munch, R. Gassmöller, M. Kronbichler, and B. Blais,
“Lethe-DEM: an open-source parallel discrete element solver with load
balancing,” Computational Particle Mechanics, vol. 10, no. 1, pp. 77–
96, 2023.

[7] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister,
L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret,
S. Proell, K. Simon, B. Turcksin, D. Wells, and J. Zhang, “The deal.II
library, version 9.3,” Journal of Numerical Mathematics, vol. 29, no. 3,
pp. 171–186, 2021.

[8] M. Kronbichler, N. Fehn, P. Munch, M. Bergbauer, K.-R. Wichmann,
C. Geitner, M. Allalen, M. Schulz, and W. A. Wall, “A next-generation

67

discontinuous Galerkin fluid dynamics solver with application to high-
resolution lung airflow simulations,” in SC’ 21: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (B. R. de Supinski, M. Hall, and T. Gamblin, eds.),
(St. Louis, MO), pp. 21:1–15, Association for Computing Machinery,
2021.

[9] D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister,
L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Sticko,
B. Turcksin, and D. Wells, “The deal.II library, version 9.4,” Journal of
Numerical Mathematics, vol. 30, no. 3, pp. 231–246, 2022.

[10] J. Heinz, P. Munch, and M. Kaltenbacher, “High-order non-conforming
discontinuous Galerkin methods for the acoustic conservation equations,”
International Journal for Numerical Methods in Engineering, vol. 124,
no. 9, pp. 2034–2049, 2022.

[11] S. D. Proell, P. Munch, W. A. Wall, and C. Meier, “A highly efficient
computational framework for fast scan-resolved simulations of metal ad-
ditive manufacturing processes on the scale of real parts,” arXiv:2302.
05164, 2023.

[12] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz,
T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pel-
teret, B. Turcksin, D. Wells, and S. Zampini, “The deal.II library, ver-
sion 9.5,” Journal of Numerical Mathematics, 2023, submitted. https:
//dealii.org/deal95-preprint.pdf.

4.2 List of publicly available software
The author of this thesis made his work available to the public by releasing
the benchmark codes used in the papers on GitHub and by contributing to
open-source projects. In particular, the author worked on the open-source
finite-element library deal.II with the following major contributions:

• simplex and mixed-mesh support including matrix-free evaluation [7, 9],
• global-coarsening multigrid (Paper III, Paper V) and additions to linear-

algebra computations (Paper IV),
• additions to the matrix-free infrastructure (Paper I, Paper II, Paper VI),
• dynamic-sparse communication patterns based on consensus-based al-

gorithms [4, 9],
• additions to the non-matching support [9, 12], and
• distributed vectors using MPI-3.0 features to access data on the same

compute node directly (Paper I, Paper V, Paper VI).
The author was appointed to one of the principal developers of the library in
2020. In this role, he was responsible for organizing user workshops, review-
ing patches, and helping users online. The work is documented in the yearly
deal.II release papers [4, 7, 9, 12].

68

https://dealii.org/deal95-preprint.pdf
https://dealii.org/deal95-preprint.pdf

Furthermore, the author contributed to the following deal.II-based ap-
plication codes directly or indirectly by providing or extending features in
deal.II:

• adaflo [198]1: a two-phase flow solver consisting of a variable-coeffi-
cient incompressible Navier–Stokes solver and level-set and phase-field
solvers for capturing interface motion. The author has restructured that
code in such a way that each module can be used by external packages
to construct user-tailored multiphase solvers, as needed by the project
MeltPoolDG, a multiphysics code targeting the simulation of melt-pool
processes relevant for additive manufacturing. Furthermore, he added
experimental support for simplex meshes and sharp-interface methods.

• ExaDG [2, 33]2: a multiphysics framework with the focus on the solution
of incompressible Navier–Stokes equations with high-order discontinu-
ous Galerkin methods. The author contributed, e.g., the global coarsen-
ing multigrid infrastructure (Paper III), many of the matrix-based algo-
rithms for hybrid multigrid, as well as distributed non-matching search
and communication algorithms.

• HPSint3: a phase-field-based sintering code targeting the simulation of
thousands of grains on supercomputers. The author worked on high-
performance implementations of the nonlinear operators, the derivation
of efficient linear and nonlinear solvers, as well as efficient communica-
tion patterns for grain tracking (Paper VII).

• hyper.deal4: a library providing modules that allow to efficiently sim-
ulate PDEs for higher dimensions, up to 6D. The author developed ap-
propriate interfaces between low- and higher-dimensional libraries, per-
formed node-level and parallel optimizations to allow for simulations
with 5 ·1012 unknowns on half of SuperMUC-NG (Paper VI).

1https://github.com/kronbichler/adaflo
2https://github.com/exadg/exadg
3https://github.com/hpsint/hpsint
4https://github.com/hyperdeal/hyperdeal

69

https://github.com/kronbichler/adaflo
https://github.com/exadg/exadg
https://github.com/hpsint/hpsint
https://github.com/hyperdeal/hyperdeal

5. Conclusions & Outlook

This thesis follows a long tradition in numerical analysis whereby new mathe-
matical techniques are developed in order to solve linear systems of increasing
sizes on newly arising computer hardware. Within this topic, we concentrate
on the development of algorithms for matrix-free finite-element computations
on modern CPU-based hardware, at extreme scale, and for challenging appli-
cations. After analyzing the general matrix-free algorithm from a software
perspective and identifying common building blocks, we discussed perfor-
mance optimizations for high-order finite-element computations and multigrid
methods as well as presented novel use cases of matrix-free computations.

The performance optimizations included software patterns for improving
cache locality by interleaving compute-heavy cell loops with memory-bound
vector updates, which we used to accelerate a preconditioned conjugate gra-
dient solver. We derived an algorithm that allows us to efficiently resolve
hanging-node constraints related to 137 possible refinement configurations
during matrix-free cell loops in 3D by decoupling the hanging-node con-
straints from the remaining constraints and performing inplace interpolations.

Matrix-free algorithms were applied for the construction of fast transfer
operators in the context of h- and p-multigrid. For locally refined meshes, we
investigated how the choice of constructing multigrid levels influences the per-
formance of the transfer operator and the multigrid algorithm in total, pointing
out the advantages of global-coarsening algorithms in a parallel setting. We
developed, for the multigrid algorithm, cache-efficient block preconditioners
based on additive Schwarz methods, fast diagonalization methods, and Cheby-
shev iterations. Furthermore, we applied the multigrid solver in the context of
a stage-parallel implicit Runge–Kutta implementation, for which we demon-
strated the possibility of shifting the scaling limit compared to stage-serial
implementations.

In addition, we used matrix-free algorithms in the context of new appli-
cations, to which we needed to adjust them. Firstly, we solved the six-di-
mensional Vlasov–Poisson equation. The adequate extension of the matrix-
free algorithm is rendered possible by looping over cell pairs in phase space.
Tensor-product cell-evaluation routines are straightforward to apply in any di-
mension; however, large working sets of the intermediate quantities on the cell
level require interleaving of evaluation and quadrature routines. Excellent per-
formance was achieved for up to 5 ·1012 DoFs. Secondly, we simulated many-
particle solid-state sintering processes, using a phase-field description. In such
a context, the number of components is typically higher than ten and varies

70

over time. We presented holistic optimizations, which include the extension
of the matrix-free algorithm and the development of efficient preconditioners.
Thirdly, we adopted the matrix-free algorithm in the context of non-matching
grids, where fast distributed search routines and fast evaluation routines at
arbitrary points are needed. The application of the developed algorithms to
solving coupled multiphysics problems, such as fluid-structure interaction and
two-phase flow, is promising.

Matrix-free algorithms are not new in the field of the spectral element and
finite element methods, and their capability of improving performance of the
solution process has been demonstrated several times in the literature includ-
ing publications by the author of this thesis. Nevertheless, the application of
matrix-free algorithms is not yet common practice. There are multiple rea-
sons for this. For instance, the way of expressing matrix-free operators differs
from the traditional assembly loop taught in basic finite-element courses. Fur-
thermore, the fact that no matrix is assembled does not allow for the applica-
tion of general-purpose linear-algebra packages but requires the development
of problem-specific preconditioners. Moreover, some features that are com-
monly used in the context of traditional finite element methods have not yet
been ported to the matrix-free context. Others are not even portable. For the
latter, alternative methods need to be derived.

Current research efforts by the developers of major open-source finite-ele-
ment libraries try to address this issue by providing user-friendly interfaces as
well as optimized off-the-shelf building blocks and preconditioners. However,
we believe that convincing users to consider matrix-free algorithms in their
scientific work as a toolbox for numerical analysis depends on success stories
in novel application areas, proving that these algorithms are fast and applicable
to challenging problems. Our previous and ongoing work on computations in
plasma physics, material science, and multiphysics points in that direction.

71

References

[1] M. Kronbichler, K. Kormann, N. Fehn, P. Munch, and J. Witte, “A
Hermite-like basis for faster matrix-free evaluation of interior penalty
discontinuous Galerkin operators,” arXiv preprint arXiv:1907.08492, 2019.

[2] D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch,
W. A. Wall, and J. Witte, “ExaDG: High-order discontinuous Galerkin for the
exa-scale,” in Software for Exascale Computing - SPPEXA 2016-2019. Lecture
Notes in Computational Science and Engineering (H.-J. Bungartz, S. Reiz,
B. Uekermann, P. Neumann, and W. E. Nagel, eds.), vol. 136, pp. 189–224,
Cham: Springer, 2020.

[3] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler, “Hybrid multigrid
methods for high-order discontinuous Galerkin discretizations,” Journal of
Computational Physics, vol. 415, p. 109538, 2020.

[4] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver,
T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret,
R. Rastak, I. Thomas, B. Turcksin, Z. Wang, and D. Wells, “The deal.II library,
version 9.2,” Journal of Numerical Mathematics, vol. 28, no. 3, pp. 131–146,
2020.

[5] N. Fehn, M. Kronbichler, P. Munch, and W. A. Wall, “Numerical evidence of
anomalous energy dissipation in incompressible Euler flows: Towards
grid-converged results for the inviscid Taylor–Green problem,” Journal of
Fluid Mechanics, vol. 932, pp. A40:1–37, 2022.

[6] S. Golshan, P. Munch, R. Gassmöller, M. Kronbichler, and B. Blais,
“Lethe-DEM: An open-source parallel discrete element solver with load
balancing,” Computational Particle Mechanics, vol. 10, no. 1, pp. 77–96, 2023.

[7] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister,
L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret,
S. Proell, K. Simon, B. Turcksin, D. Wells, and J. Zhang, “The deal.II library,
version 9.3,” Journal of Numerical Mathematics, vol. 29, no. 3, pp. 171–186,
2021.

[8] M. Kronbichler, N. Fehn, P. Munch, M. Bergbauer, K.-R. Wichmann,
C. Geitner, M. Allalen, M. Schulz, and W. A. Wall, “A next-generation
discontinuous Galerkin fluid dynamics solver with application to
high-resolution lung airflow simulations,” in SC’ 21: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (B. R. de Supinski, M. Hall, and T. Gamblin, eds.), (St.
Louis, MO), pp. 21:1–15, Association for Computing Machinery, 2021.

[9] D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister,
L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Sticko,
B. Turcksin, and D. Wells, “The deal.II library, version 9.4,” Journal of
Numerical Mathematics, vol. 30, no. 3, pp. 231–246, 2022.

72

[10] J. Heinz, P. Munch, and M. Kaltenbacher, “High-order non-conforming
discontinuous Galerkin methods for the acoustic conservation equations,”
International Journal for Numerical Methods in Engineering, vol. 124, no. 9,
pp. 2034–2049, 2022.

[11] S. D. Proell, P. Munch, W. A. Wall, and C. Meier, “A highly efficient
computational framework for fast scan-resolved simulations of metal additive
manufacturing processes on the scale of real parts,” arXiv preprint
arXiv:2302.05164, 2023.

[12] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz,
T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret,
B. Turcksin, D. Wells, and S. Zampini, “The deal.II library, version 9.5,”
Journal of Numerical Mathematics, vol. 31, no. 3, pp. 231–246, 2023.

[13] J. H. Wilkinson, “Error analysis of direct methods of matrix inversion,”
Journal of the ACM (JACM), vol. 8, no. 3, pp. 281–330, 1961.

[14] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th national conference (S. L. Pollack,
ed.), pp. 157–172, Association for Computing Machinery, 1969.

[15] M. R. Hestenes, E. Stiefel, et al., “Methods of conjugate gradients for solving
linear systems,” Journal of research of the National Bureau of Standards,
vol. 49, no. 6, pp. 409–436, 1952.

[16] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM Journal on
scientific and statistical computing, vol. 7, no. 3, pp. 856–869, 1986.

[17] S. A. Orszag, “Spectral methods for problems in complex geometries,” Journal
of Computational Physics, vol. 37, no. 1, pp. 70–92, 1980.

[18] P. F. Fischer, “Analysis and application of a parallel spectral element method
for the solution of the Navier-Stokes equations,” Computer Methods in Applied
Mechanics and Engineering, vol. 80, no. 1-3, pp. 483–491, 1990.

[19] P. F. Fischer and A. T. Patera, “Parallel spectral element solution of the Stokes
problem,” Journal of Computational Physics, vol. 92, no. 2, pp. 380–421,
1991.

[20] P. F. Fischer, L.-W. Ho, G. E. Karniadakis, E. M. Rønquist, and A. T. Patera,
“Recent advances in parallel spectral element simulation of unsteady
incompressible flows,” Computers & Structures, vol. 30, no. 1-2, pp. 217–231,
1988.

[21] P. F. Fischer, G. W. Kruse, and F. Loth, “Spectral element methods for
transitional flows in complex geometries,” Journal of scientific computing,
vol. 17, pp. 81–98, 2002.

[22] H. M. Tufo and P. F. Fischer, “Terascale spectral element algorithms and
implementations,” in SC’ 99: Proceedings of the 1999 ACM/IEEE Conference
on Supercomputing (C. Pancake, ed.), (Portland, OR), pp. 68:1–14,
Association for Computing Machinery, 1999.

[23] J. Brown, “Efficient nonlinear solvers for nodal high-order finite elements in
3D,” Journal of Scientific Computing, vol. 45, pp. 48–63, 2010.

[24] M. G. Knepley, J. Brown, K. Rupp, and B. F. Smith, “Achieving high
performance with unified residual evaluation,” arXiv preprint
arXiv:1309.1204, 2013.

73

[25] M. Kronbichler and K. Kormann, “A generic interface for parallel cell-based
finite element operator application,” Computers & Fluids, vol. 63,
pp. 135–147, 2012.

[26] P. E. Vos, S. J. Sherwin, and R. M. Kirby, “From h to p efficiently:
Implementing finite and spectral/hp element methods to achieve optimal
performance for low- and high-order discretisations,” Journal of
Computational Physics, vol. 229, no. 13, pp. 5161–5181, 2010.

[27] C. D. Cantwell, S. J. Sherwin, R. M. Kirby, and P. H. Kelly, “From h to p
efficiently: Strategy selection for operator evaluation on hexahedral and
tetrahedral elements,” Computers & Fluids, vol. 43, no. 1, pp. 23–28, 2011.

[28] C. D. Cantwell, S. J. Sherwin, R. M. Kirby, and P. H. Kelly, “From h to p
efficiently: Selecting the optimal spectral/hp discretisation in three
dimensions,” Mathematical Modelling of Natural Phenomena, vol. 6, no. 3,
pp. 84–96, 2011.

[29] K. Ljungkvist, “Matrix-free finite-element computations on graphics
processors with adaptively refined unstructured meshes.,” in HPC ’17:
Proceedings of the 25th High Performance Computing Symposium (L. Polok,
M. Sosonkina, W. I. Thacker, and J. Weinbub, eds.), (Virgina Beach, VA),
pp. 1:1–12, Society for Computer Simulation International, 2017.

[30] T. Kolev, P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton,
S. Tomov, M. S. Shephard, et al., “Efficient exascale discretizations:
High-order finite element methods,” The International Journal of High
Performance Computing Applications, vol. 35, no. 6, pp. 527–552, 2021.

[31] N. Chalmers, A. Mishra, D. McDougall, and T. Warburton, “HipBone: A
performance-portable graphics processing unit-accelerated C++ version of the
NekBone benchmark,” The International Journal of High Performance
Computing Applications, 2023.

[32] G. Orlando, A. Della Rocca, P. F. Barbante, L. Bonaventura, and N. Parolini,
“An efficient and accurate implicit DG solver for the incompressible
Navier-Stokes equations,” International Journal for Numerical Methods in
Fluids, vol. 94, pp. 1484–1516, 2021.

[33] B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler, “A high-order
semi-explicit discontinuous Galerkin solver for 3D incompressible flow with
application to DNS and LES of turbulent channel flow,” Journal of
Computational Physics, vol. 348, pp. 634–659, 2017.

[34] M. O. Deville, P. F. Fischer, and E. H. Mund, High-order methods for
incompressible fluid flow. Cambridge: Cambridge University Press, 2002.

[35] N. Fehn, W. A. Wall, and M. Kronbichler, “A matrix-free high-order
discontinuous Galerkin compressible Navier-Stokes solver: A performance
comparison of compressible and incompressible formulations for turbulent
incompressible flows,” International Journal for Numerical Methods in Fluids,
vol. 89, no. 3, pp. 71–102, 2019.

[36] D. Davydov, J.-P. Pelteret, D. Arndt, M. Kronbichler, and P. Steinmann, “A
matrix-free approach for finite-strain hyperelastic problems using geometric
multigrid,” International Journal for Numerical Methods in Engineering,
vol. 121, no. 13, pp. 2874–2895, 2020.

74

[37] J. Brown, V. Barra, N. Beams, L. Ghaffari, M. Knepley, W. Moses, R. Shakeri,
K. Stengel, J. L. Thompson, and J. Zhang, “Performance portable solid
mechanics via matrix-free p-multigrid,” arXiv preprint arXiv:2204.01722,
2022.

[38] S. DeWitt, S. Rudraraju, D. Montiel, W. B. Andrews, and K. Thornton,
“PRISMS-PF: A general framework for phase-field modeling with a
matrix-free finite element method,” npj Computational Materials, vol. 6, no. 1,
pp. 29:1–12, 2020.

[39] D. Davydov and M. Kronbichler, “Algorithms and data structures for
matrix-free finite element operators with MPI-parallel sparse multi-vectors,”
ACM Transactions on Parallel Computing (TOPC), vol. 7, no. 3, pp. 1–30,
2020.

[40] D. Davydov, T. Heister, M. Kronbichler, and P. Steinmann, “Matrix-free
locally adaptive finite element solution of density-functional theory with
nonorthogonal orbitals and multigrid preconditioning,” Physica status solidi
(b), vol. 255, no. 9, pp. 1800069:1–12, 2018.

[41] N. Kodali, G. Panigrahi, D. Panda, and P. Motamarri, “Fast hardware-aware
matrix-free computations of higher-order finite-element discretized matrix
multi-vector products,” arXiv preprint arXiv:2208.07129, 2022.

[42] P. C. Africa, M. Salvador, P. Gervasio, L. Dede, and A. Quarteroni, “A
matrix–free high–order solver for the numerical solution of cardiac
electrophysiology,” Journal of Computational Physics, vol. 478, p. 111984,
2023.

[43] M. Wichrowski, Fluid-structure interaction problems: velocity-based
formulation and monolithic computational methods. PhD thesis, Polish
Academy of Sciences, 2021.

[44] N. Fehn, Robust and efficient discontinuous Galerkin methods for
incompressible flows. PhD thesis, Technische Universität München, 2021.

[45] S. Schoeder, K. Kormann, W. A. Wall, and M. Kronbichler, “Efficient explicit
time stepping of high order discontinuous Galerkin schemes for waves,” SIAM
Journal on Scientific Computing, vol. 40, no. 6, pp. C803–C826, 2018.

[46] S. Schoeder, W. A. Wall, and M. Kronbichler, “ExWave: A high performance
discontinuous Galerkin solver for the acoustic wave equation,” SoftwareX,
vol. 9, pp. 49–54, 2019.

[47] T. C. Clevenger and T. Heister, “Comparison between algebraic and
matrix-free geometric multigrid for a Stokes problem on adaptive meshes with
variable viscosity,” Numerical Linear Algebra with Applications, vol. 28,
no. 5, pp. e2375:1–13, 2021.

[48] N. Kohl, D. Thönnes, D. Drzisga, D. Bartuschat, and U. Rüde, “The HyTeG
finite-element software framework for scalable multigrid solvers,”
International Journal of Parallel, Emergent and Distributed Systems, vol. 34,
no. 5, pp. 477–496, 2019.

[49] M. Kronbichler and K. Kormann, “Fast matrix-free evaluation of
discontinuous Galerkin finite element operators,” ACM Transactions on
Mathematical Software (TOMS), vol. 45, no. 3, pp. 1–40, 2019.

[50] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny,
V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, et al., “MFEM: A modular finite

75

element methods library,” Computers & Mathematics with Applications,
vol. 81, pp. 42–74, 2021.

[51] S. Müthing, M. Piatkowski, and P. Bastian, “High-performance
implementation of matrix-free high-order discontinuous Galerkin methods,”
arXiv preprint arXiv:1711.10885, 2017.

[52] T. Sun, L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. Kelly, “A
study of vectorization for matrix-free finite element methods,” The
International Journal of High Performance Computing Applications, vol. 34,
no. 6, pp. 629–644, 2020.

[53] J. Brown, A. Abdelfattah, V. Barra, N. Beams, J.-S. Camier, V. Dobrev,
Y. Dudouit, L. Ghaffari, T. Kolev, D. Medina, et al., “libCEED: Fast algebra
for high-order element-based discretizations,” Journal of Open Source
Software, vol. 6, no. 63, p. 2945, 2021.

[54] M. Phillips and P. Fischer, “Optimal Chebyshev smoothers and one-sided
v-cycles,” arXiv preprint arXiv:2210.03179, 2022.

[55] M. Kronbichler and W. A. Wall, “A performance comparison of continuous
and discontinuous Galerkin methods with fast multigrid solvers,” SIAM
Journal on Scientific Computing, vol. 40, no. 5, pp. A3423–A3448, 2018.

[56] D. Kempf, R. Heß, S. Müthing, and P. Bastian, “Automatic code generation for
high-performance discontinuous Galerkin methods on modern architectures,”
ACM Transactions on Mathematical Software (TOMS), vol. 47, no. 1,
pp. 1–31, 2020.

[57] A. Klöckner, “Loo.py: transformation-based code generation for GPUs and
CPUs,” in ARRAY ’14: Proceedings of ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming,
(Edinburgh), pp. 82–87, Association for Computing Machinery, 2014.

[58] P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-S. Camier,
M. Kronbichler, T. Warburton, K. Świrydowicz, et al., “Scalability of
high-performance pde solvers,” The International Journal of High
Performance Computing Applications, vol. 34, no. 5, pp. 562–586, 2020.

[59] A. Abdelfattah, V. Barra, N. Beams, R. Bleile, J. Brown, J.-S. Camier,
R. Carson, N. Chalmers, V. Dobrev, Y. Dudouit, et al., “GPU algorithms for
efficient exascale discretizations,” Parallel Computing, vol. 108,
pp. 102841:1–10, 2021.

[60] G. Hager and G. Wellein, Introduction to high performance computing for
scientists and engineers. CRC Press, 2010.

[61] D. A. Kopriva, Implementing spectral methods for partial differential
equations: Algorithms for scientists and engineers. Berlin: Springer Science
& Business Media, 2009.

[62] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of
discontinuous Galerkin methods for elliptic problems,” SIAM journal on
numerical analysis, vol. 39, no. 5, pp. 1749–1779, 2002.

[63] D. A. Kopriva and G. J. Gassner, “An energy stable discontinuous Galerkin
spectral element discretization for variable coefficient advection problems,”
SIAM Journal on Scientific Computing, vol. 36, no. 4, pp. A2076–A2099,
2014.

76

[64] I. Huismann, J. Stiller, and J. Froehlich, “Efficient high-order spectral element
discretizations for building block operators of CFD,” Computers & Fluids,
vol. 197, p. 104386, 2020.

[65] K. Kormann and M. Kronbichler, “Parallel finite element operator application:
Graph partitioning and coloring,” in 2011 IEEE Seventh International
Conference on eScience, (Stockholm), pp. 332–339, IEEE Computer Society,
2011.

[66] M. Kronbichler, K. Kormann, I. Pasichnyk, and M. Allalen, “Fast matrix-free
discontinuous Galerkin kernels on modern computer architectures,” in High
Performance Computing: 32nd International Conference, ISC High
Performance 2017. Lecture Notes in Computer Science (J. M. Kunkel,
R. Yokota, P. Balaji, and D. Keyes, eds.), vol. 10266, pp. 237–255, Cham:
Springer, 2017.

[67] M. W. Scroggs, J. S. Dokken, C. N. Richardson, and G. N. Wells,
“Construction of arbitrary order finite element degree-of-freedom maps on
polygonal and polyhedral cell meshes,” ACM Transactions on Mathematical
Software (TOMS), vol. 48, no. 2, pp. 1–23, 2022.

[68] J. R. Magnus and H. Neudecker, Matrix differential calculus with applications
in statistics and econometrics. John Wiley & Sons, 2019.

[69] N. Wik, “High-performance implementation of h (div)-conforming elements
for incompressible flows,” Master thesis, Uppsala University, 2022.

[70] M. Kronbichler and M. Allalen, “Efficient high-order discontinuous Galerkin
finite elements with matrix-free implementations,” in Advances and New
Trends in Environmental Informatics: Managing Disruption, Big Data and
Open Science (H.-J. Bungartz, D. Kranzlmüller, V. Weinberg, J. Weismüller,
and V. Wohlgemuth, eds.), pp. 89–110, Cham: Springer, 2018.

[71] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven, “Nodal
discontinuous Galerkin methods on graphics processors,” Journal of
Computational Physics, vol. 228, no. 21, pp. 7863–7882, 2009.

[72] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications. New York, NY: Springer Science &
Business Media, 2007.

[73] F. Hindenlang, G. J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, and
C.-D. Munz, “Explicit discontinuous Galerkin methods for unsteady
problems,” Computers & Fluids, vol. 61, pp. 86–93, 2012.

[74] D. Moxey, R. Amici, and M. Kirby, “Efficient matrix-free high-order finite
element evaluation for simplicial elements,” SIAM Journal on Scientific
Computing, vol. 42, no. 3, pp. C97–C123, 2020.

[75] G. Karniadakis and S. Sherwin, Spectral/hp element methods for
computational fluid dynamics. Oxford: Oxford University Press, 2005.

[76] M. S. Shephard, “Linear multipoint constraints applied via transformation as
part of a direct stiffness assembly process,” International Journal for
Numerical Methods in Engineering, vol. 20, no. 11, pp. 2107–2112, 1984.

[77] W. Bangerth and O. Kayser-Herold, “Data structures and requirements for hp
finite element software,” ACM Transactions on Mathematical Software
(TOMS), vol. 36, no. 1, pp. 1–31, 2009.

77

[78] M. Min, J. Brown, V. Dobrev, P. Fischer, T. Kolev, D. Medina, E. Merzari,
A. Obabko, S. Parker, R. Rahaman, S. Tomov, et al., “ECP milestone report
initial integration of CEED software in ECP applications WBS 1.2. 5.3. 04,
milestone CEED-MS8,” 2017.

[79] W. Pazner and P.-O. Persson, “Approximate tensor-product preconditioners for
very high order discontinuous Galerkin methods,” Journal of Computational
Physics, vol. 354, pp. 344–369, 2018.

[80] P. Bastian, E. H. Müller, S. Müthing, and M. Piatkowski, “Matrix-free
multigrid block-preconditioners for higher order discontinuous Galerkin
discretisations,” Journal of Computational Physics, vol. 394, pp. 417–439,
2019.

[81] M. Phillips, S. Kerkemeier, and P. Fischer, “Tuning spectral element
preconditioners for parallel scalability on GPUs,” in Proceedings of the 2022
SIAM Conference on Parallel Processing for Scientific Computing (X. Li and
K. Teranishi, eds.), (Seattle, WA), pp. 37–48, SIAM, 2022.

[82] H. Sundar, G. Stadler, and G. Biros, “Comparison of multigrid algorithms for
high-order continuous finite element discretizations,” Numerical Linear
Algebra with Applications, vol. 22, no. 4, pp. 664–680, 2015.

[83] J. Witte, D. Arndt, and G. Kanschat, “Fast tensor product Schwarz smoothers
for high-order discontinuous Galerkin methods,” Computational Methods in
Applied Mathematics, vol. 21, no. 3, pp. 709–728, 2021.

[84] W. Couzy, “Spectral element discretization of the unsteady Navier-Stokes
equations and its iterative solution on parallel computers,” Thèse no. 1380,
EPFL, 1995.

[85] R. E. Lynch, J. R. Rice, and D. H. Thomas, “Direct solution of partial
difference equations by tensor product methods,” Numerische Mathematik,
vol. 6, no. 1, pp. 185–199, 1964.

[86] O. Axelsson, M. Pourbagher, and D. K. Salkuyeh, “Robust iteration methods
for complex systems with an indefinite matrix term,” arXiv preprint
arXiv:2110.00537, 2021.

[87] M. Pernice and H. F. Walker, “NITSOL: A Newton iterative solver for
nonlinear systems,” SIAM Journal on Scientific Computing, vol. 19, no. 1,
pp. 302–318, 1998.

[88] P. N. Brown and Y. Saad, “Hybrid Krylov methods for nonlinear systems of
equations,” SIAM Journal on Scientific and Statistical Computing, vol. 11,
no. 3, pp. 450–481, 1990.

[89] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, et al., PETSc users manual.
Argonne National Laboratory, 2019.

[90] A. T. Chronopoulos and C. W. Gear, “s-step iterative methods for symmetric
linear systems,” Journal of Computational and Applied Mathematics, vol. 25,
no. 2, pp. 153–168, 1989.

[91] I. Dravins, Preconditioning for block matrices with square blocks. PhD thesis,
Acta Universitatis Upsaliensis, 2023.

[92] M. Kronbichler and K. Ljungkvist, “Multigrid for matrix-free high-order finite
element computations on graphics processors,” ACM Transactions on Parallel
Computing (TOPC), vol. 6, no. 1, pp. 1–32, 2019.

78

[93] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,”
Mathematics of computation, vol. 31, no. 138, pp. 333–390, 1977.

[94] P. Bastian and C. Wieners, “Multigrid methods on adaptively refined grids,”
Computing in Science & Engineering, vol. 8, no. 6, pp. 44–54, 2006.

[95] S. F. McCormick, Multilevel adaptive methods for partial differential
equations. Philadelphia, PA: SIAM, 1989.

[96] M. Storti, N. M. Nigro, and S. Idelsohn, “Multigrid methods and adaptive
refinement techniques in elliptic problems by finite element methods,”
Computer methods in applied mechanics and engineering, vol. 93, no. 1,
pp. 13–30, 1991.

[97] S. Lopez and R. Casciaro, “Algorithmic aspects of adaptive multigrid finite
element analysis,” International journal for numerical methods in engineering,
vol. 40, no. 5, pp. 919–936, 1997.

[98] A. Schüller, Portable Parallelization of Industrial Aerodynamic Applications
(POPINDA): Results of a BMBF Project. Wiesbaden: Vieweg+Teubner
Verlag, 2013.

[99] G. Kanschat, “Multilevel methods for discontinuous Galerkin FEM on locally
refined meshes,” Computers & structures, vol. 82, no. 28, pp. 2437–2445,
2004.

[100] J.-C. Jouhaud, M. Montagnac, and L. P. Tourrette, “A multigrid adaptive mesh
refinement strategy for 3D aerodynamic design,” International journal for
numerical methods in fluids, vol. 47, no. 5, pp. 367–385, 2005.

[101] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler, “A flexible,
parallel, adaptive geometric multigrid method for FEM,” ACM Transactions on
Mathematical Software, vol. 47, no. 1, pp. 7:1–27, 2020.

[102] B. Janssen and G. Kanschat, “Adaptive multilevel methods with local
smoothing for h1-and hcurl-conforming high order finite element methods,”
SIAM Journal on Scientific Computing, vol. 33, no. 4, pp. 2095–2114, 2011.

[103] R. Becker and M. Braack, “Multigrid techniques for finite elements on locally
refined meshes,” Numerical linear algebra with applications, vol. 7, no. 6,
pp. 363–379, 2000.

[104] O. Iliev and D. Stoyanov, “Multigrid-adaptive local refinement solver for
incompressible flows,” in International Conference on Large-Scale Scientific
Computing (S. Margenov, J. Wasniewski, and P. Yalamov, eds.), (Berlin),
pp. 361–368, Springer, 2001.

[105] H. Wu and Z. Chen, “Uniform convergence of multigrid v-cycle on adaptively
refined finite element meshes for second order elliptic problems,” Science in
China Series A: Mathematics, vol. 49, no. 10, pp. 1405–1429, 2006.

[106] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan, M. Day,
B. Friesen, K. Gott, D. Graves, M. Katz, A. Myers, T. Nguyen, A. Nonaka,
M. Rosso, S. Williams, and M. Zingale, “AMReX: A framework for
block-structured adaptive mesh refinement,” Journal of Open Source Software,
vol. 4, no. 37, pp. 1–4, 2019.

[107] M. Adams, P. Colella, D. T. Graves, J. N. Johnson, N. D. Keen, T. J. Ligocki,
D. F. Martin, P. W. McCorquodale, D. Modiano, P. O. Schwartz, T. Sternberg,
and B. Van Straalen, “Chombo software package for AMR applications design
document,” Lawrence Berkeley National Laboratory Technical Report

79

LBNL-6616E, 2014.
[108] R. Becker, M. Braack, and T. Richter, “Parallel multigrid on locally refined

meshes,” in Reactive Flows, Diffusion and Transport (W. Jäger, R. Rannacher,
and J. Warnatz, eds.), pp. 77–92, Berlin: Springer, 2007.

[109] E. M. Rønquist and A. T. Patera, “Spectral element multigrid. I. Formulation
and numerical results,” Journal of Scientific Computing, vol. 2, no. 4,
pp. 389–406, 1987.

[110] Y. Maday and R. Munoz, “Spectral element multigrid. II. Theoretical
justification,” Journal of Scientific Computing, vol. 3, no. 4, pp. 323–353,
1988.

[111] N. Hu and I. N. Katz, “Multi-p methods: Iterative algorithms for the p-version
of the finite element analysis,” SIAM Journal on Scientific Computing, vol. 16,
no. 6, pp. 1308–1332, 1995.

[112] N. Hu, X.-Z. Guo, and I. N. Katz, “Multi-p preconditioners,” SIAM Journal on
Scientific Computing, vol. 18, no. 6, pp. 1676–1697, 1997.

[113] X.-Z. Guo and I. N. Katz, “Performance enhancement of the multi-p
preconditioner,” Computers & Mathematics with Applications, vol. 36, no. 4,
pp. 1–8, 1998.

[114] X.-Z. Guo and I. N. Katz, “A parallel multi-p method,” Computers &
Mathematics with Applications, vol. 39, no. 9-10, pp. 115–123, 2000.

[115] H. L. Atkins and B. T. Helenbrook, “Numerical evaluation of p-multigrid
method for the solution of discontinuous Galerkin discretizations of diffusive
equations,” in 17th AIAA Computational Fluid Dynamics Conference,
(Toronto, Ontario Canada), pp. 5110:1–12, American Institute of Aeronautics
and Astronautics, 2005.

[116] B. T. Helenbrook, D. Mavriplis, and H. L. Atkins, “Analysis of “p”-multigrid
for continuous and discontinuous finite element discretizations,” in 16th AIAA
Computational Fluid Dynamics Conference, (Orlando, Florida), pp. 3989:1–6,
American Institute of Aeronautics and Astronautics, 2003.

[117] B. T. Helenbrook and H. L. Atkins, “Application of p-multigrid to
discontinuous Galerkin formulations of the Poisson equation,” AIAA Journal,
vol. 44, no. 3, pp. 566–575, 2006.

[118] B. T. Helenbrook and H. L. Atkins, “Solving discontinuous Galerkin
formulations of Poisson’s equation using geometric and p multigrid,” AIAA
Journal, vol. 46, no. 4, pp. 894–902, 2008.

[119] B. T. Helenbrook and B. S. Mascarenhas, “Analysis of implicit time-advancing
p-multigrid schemes for discontinuous Galerkin discretizations of the Euler
equations,” in 46th AIAA Fluid Dynamics Conference, (Washington, D.C.),
pp. 3494:1–22, American Institute of Aeronautics and Astronautics, 2016.

[120] B. S. Mascarenhas, B. T. Helenbrook, and H. L. Atkins, “Application of
p-multigrid to discontinuous Galerkin formulations of the Euler equations,”
AIAA Journal, vol. 47, no. 5, pp. 1200–1208, 2009.

[121] B. S. Mascarenhas, B. T. Helenbrook, and H. L. Atkins, “Coupling p-multigrid
to geometric multigrid for discontinuous Galerkin formulations of the
convection-diffusion equation,” Journal of Computational Physics, vol. 229,
no. 10, pp. 3664–3674, 2010.

80

[122] H. Sundar, G. Stadler, and G. Biros, “Comparison of multigrid algorithms for
high-order continuous finite element discretizations,” Numerical Linear
Algebra with Applications, vol. 22, no. 4, pp. 664–680, 2015.

[123] J. Stiller, “Robust multigrid for high-order discontinuous Galerkin methods: A
fast Poisson solver suitable for high-aspect ratio Cartesian grids,” Journal of
Computational Physics, vol. 327, pp. 317–336, 2016.

[124] J. Stiller, “Robust multigrid for Cartesian interior penalty DG formulations of
the Poisson equation in 3D,” in Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2016. Lecture Notes in Computational
Science and Engineering (M. L. Bittencourt, N. A. Dumont, and J. S.
Hesthaven, eds.), vol. 119, pp. 189–201, Cham: Springer, 2017.

[125] B. O’Malley, J. Kópházi, R. P. Smedley-Stevenson, and M. D. Eaton,
“P-multigrid expansion of hybrid multilevel solvers for discontinuous Galerkin
finite element discrete ordinate (DG-FEM-SN) diffusion synthetic acceleration
(DSA) of radiation transport algorithms,” Progress in Nuclear Energy, vol. 98,
pp. 177–186, 2017.

[126] F. Bassi and S. Rebay, “Numerical solution of the Euler equations with a
multiorder discontinuous finite element method,” in Computational Fluid
Dynamics 2002 (S. Armfield, ed.), pp. 199–204, Berlin, Heidelberg: Springer,
2003.

[127] K. Hillewaert, J.-F. Remacle, N. Cheveaugeon, P.-E. Bernard, and P. Geuzaine,
“Analysis of a hybrid p-multigrid method for the discontinuous Galerkin
discretisation of the Euler equations,” in Proceedings of the European
Conference on Computational Fluid Dynamics (P. Wesseling, E. Oñate, and
J. Périaux, eds.), (Egmond aan Zee, Netherlands), ECCOMAS, 2006.

[128] C. C. Liang, R. Kannan, and Z. Wang, “A p-multigrid spectral difference
method with explicit and implicit smoothers on unstructured triangular grids,”
Computers & Fluids, vol. 38, no. 2, pp. 254–265, 2009.

[129] H. Luo, J. D. Baum, and R. Löhner, “Fast p-multigrid discontinuous Galerkin
method for compressible flows at all speeds,” AIAA Journal, vol. 46, no. 3,
pp. 635–652, 2008.

[130] H. Luo, J. D. Baum, and R. Löhner, “A p-multigrid discontinuous Galerkin
method for the Euler equations on unstructured grids,” Journal of
Computational Physics, vol. 211, no. 2, pp. 767–783, 2006.

[131] D. Darmofal and K. Fidkowski, “Development of a higher-order solver for
aerodynamic applications,” in 42nd AIAA Aerospace Sciences Meeting and
Exhibit, (Reston, VA), pp. 0436:1–11, American Institute of Aeronautics and
Astronautics, 2004.

[132] F. Bassi, A. Ghidoni, S. Rebay, and P. Tesini, “High-order accurate p-multigrid
discontinuous Galerkin solution of the Euler equations,” International journal
for numerical methods in fluids, vol. 60, no. 8, pp. 847–865, 2009.

[133] C. R. Nastase and D. J. Mavriplis, “High-order discontinuous Galerkin
methods using an hp-multigrid approach,” Journal of Computational Physics,
vol. 213, no. 1, pp. 330–357, 2006.

[134] S. Premasuthan, C. Liang, A. Jameson, and Z. Wang, “A p-multigrid spectral
difference method for viscous compressible flow using 2D quadrilateral
meshes,” in 47th AIAA Aerospace Sciences Meeting including The New

81

Horizons Forum and Aerospace Exposition, (Orlando, FL), pp. 950:1–18,
American Institute of Aeronautics and Astronautics, 2009.

[135] K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal, “p-multigrid solution
of high-order discontinuous Galerkin discretizations of the compressible
Navier-Stokes equations,” Journal of Computational Physics, vol. 207, no. 1,
pp. 92–113, 2005.

[136] A. Ghidoni, A. Colombo, F. Bassi, and S. Rebay, “Efficient p-multigrid
discontinuous Galerkin solver for complex viscous flows on stretched grids,”
International Journal for Numerical Methods in Fluids, vol. 75, no. 2,
pp. 134–154, 2014.

[137] K. Shahbazi, D. J. Mavriplis, and N. K. Burgess, “Multigrid algorithms for
high-order discontinuous Galerkin discretizations of the compressible
Navier-Stokes equations,” Journal of Computational Physics, vol. 228, no. 21,
pp. 7917–7940, 2009.

[138] Z. Jiang, C. Yan, J. Yu, and W. Yuan, “Practical aspects of p-multigrid
discontinuous Galerkin solver for steady and unsteady RANS simulations,”
International Journal for Numerical Methods in Fluids, vol. 78, no. 11,
pp. 670–690, 2015.

[139] M. Kronbichler, T. Heister, and W. Bangerth, “High accuracy mantle
convection simulation through modern numerical methods,” Geophysical
Journal International, vol. 191, no. 1, pp. 12–29, 2012.

[140] T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth, “High accuracy
mantle convection simulation through modern numerical methods. II: Realistic
models and problems,” Geophysical Journal International, vol. 210, no. 2,
pp. 833–851, 2017.

[141] M. Fehling, P. Munch, and W. Bangerth, “The deal.II tutorial step-75: parallel
hp-adaptive multigrid methods for the Laplace equation,” June 2022.
https://www.dealii.org/current/doxygen/deal.II/step_75.html.

[142] M. Fehling and W. Bangerth, “Algorithms for parallel generic hp-adaptive
finite element software,” ACM Transactions on Mathematical Software
(TOMS), 2023.

[143] P. D. Brubeck and P. E. Farrell, “A scalable and robust vertex-star relaxation
for high-order FEM,” SIAM Journal on Scientific Computing, vol. 44, no. 5,
pp. A2991–A3017, 2022.

[144] P. F. Fischer, H. M. Tufo, and N. Miller, “An overlapping Schwarz method for
spectral element simulation of three-dimensional incompressible flows,” in
Parallel Solution of Partial Differential Equations (P. Bjørstad and M. Luskin,
eds.), pp. 159–180, New York: Springer, 2000.

[145] J. Lottes, “Optimal polynomial smoothers for multigrid v-cycles,” Numerical
Linear Algebra with Applications, pp. e2518:1–27, 2023.

[146] J. W. Lottes and P. F. Fischer, “Hybrid multigrid/Schwarz algorithms for the
spectral element method,” Journal of Scientific Computing, vol. 24, pp. 45–78,
2005.

[147] W. Pazner and P.-O. Persson, “Stage-parallel fully implicit Runge–Kutta
solvers for discontinuous Galerkin fluid simulations,” Journal of
Computational Physics, vol. 335, pp. 700–717, 2017.

82

https://www.dealii.org/current/doxygen/deal.II/step_75.html

[148] J. C. Butcher, “On the implementation of implicit Runge–Kutta methods,” BIT
Numerical Mathematics, vol. 16, no. 3, pp. 237–240, 1976.

[149] O. Axelsson and M. Neytcheva, “Numerical solution methods for implicit
Runge–Kutta methods of arbitrarily high order,” in ALGORITMY 2020: 21st
Conference on Scientific Computing (P. Frolkovič, K. Mikula, and
D. Ševčovič, eds.), (Vysoké Tatry-Podbanské, Slovakia), pp. 11–20,
SPEKTRUM STU, 2020.

[150] O. Axelsson, I. Dravins, and M. Neytcheva, “Stage-parallel preconditioners for
implicit Runge–Kutta methods of arbitrary high order. Linear problems,” 2022.
http://www.it.uu.se/research/publications/reports/2022-004/
2022-004-nc.pdf.

[151] M. Masud Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone, “A new
block preconditioner for implicit Runge–Kutta methods for parabolic PDE
problems,” SIAM Journal on Scientific Computing, vol. 43, no. 5,
pp. S475–S495, 2021.

[152] O. Axelsson, “Global integration of differential equations through Lobatto
quadrature,” BIT – Nordisk Tidskrift for Informationsbehandling, vol. 4,
pp. 69–86, 1964.

[153] B. S. Southworth, O. Krzysik, W. Pazner, and H. D. Sterck, “Fast solution of
fully implicit Runge–Kutta and discontinuous Galerkin in time for numerical
PDEs, part I: the linear setting,” SIAM Journal on Scientific Computing,
vol. 44, no. 1, pp. A416–A443, 2022.

[154] B. S. Southworth, O. Krzysik, and W. Pazner, “Fast solution of fully implicit
Runge–Kutta and discontinuous Galerkin in time for numerical PDEs, part II:
Nonlinearities and DAEs,” SIAM Journal on Scientific Computing, vol. 44,
no. 2, pp. A636–A663, 2022.

[155] L. E. Cannon, A cellular computer to implement the Kalman filter algorithm.
Bozeman (MT): Montana State University, 1969.

[156] F. Hariri, T.-M. Tran, A. Jocksch, E. Lanti, J. Progsch, P. Messmer, S. Brunner,
C. Gheller, and L. Villard, “A portable platform for accelerated PIC codes and
its application to GPUs using OpenACC,” Computer Physics Communications,
vol. 207, pp. 69–82, 2016.

[157] T. A. Dao and M. Nazarov, “A high-order residual-based viscosity finite
element method for the ideal MHD equations,” Journal of Scientific
Computing, vol. 92, no. 3, pp. 77:1–24, 2022.

[158] T. Pollinger, J. Rentrop, D. Pflüger, and K. Kormann, “A mass-conserving
sparse grid combination technique with biorthogonal hierarchical basis
functions for kinetic simulations,” arXiv preprint arXiv:2209.14064, 2022.

[159] K. Kormann, “A semi-Lagrangian Vlasov solver in tensor train format,” SIAM
Journal on Scientific Computing, vol. 37, no. 4, pp. B613–B632, 2015.

[160] K. Kormann, K. Reuter, and M. Rampp, “A massively parallel
semi-Lagrangian solver for the six-dimensional Vlasov–Poisson equation,”
The International Journal of High Performance Computing Applications,
vol. 33, no. 5, pp. 924–947, 2019.

[161] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, “Low-storage, explicit
Runge–Kutta schemes for the compressible Navier–Stokes equations,” Applied
numerical mathematics, vol. 35, no. 3, pp. 177–219, 2000.

83

http://www.it.uu.se/research/publications/reports/2022-004/2022-004-nc.pdf
http://www.it.uu.se/research/publications/reports/2022-004/2022-004-nc.pdf

[162] M. Loveland, E. Valseth, M. Lukac, and C. Dawson, “Extending FEniCS to
work in higher dimensions using tensor product finite elements,” Journal of
Computational Science, vol. 64, p. 101831, 2022.

[163] I. Greenquist, M. R. Tonks, L. K. Aagesen, and Y. Zhang, “Development of a
microstructural grand potential-based sintering model,” Computational
Materials Science, vol. 172, p. 109288, 2020.

[164] S. Ghosh, C. K. Newman, and M. M. Francois, “Tusas: A fully implicit
parallel approach for coupled phase-field equations,” Journal of
Computational Physics, vol. 448, p. 110734, 2022.

[165] V. Ivannikov, F. Thomsen, T. Ebel, and R. Willumeit-Römer, “Capturing
shrinkage and neck growth with phase field simulations of the solid state
sintering,” Modelling and Simulation in Materials Science and Engineering,
vol. 29, no. 7, pp. 075008:1–18, 2021.

[166] Y. U. Wang, “Computer modeling and simulation of solid-state sintering: A
phase field approach,” Acta Materialia, vol. 54, no. 4, pp. 953–961, 2006.

[167] C. Krill III and L.-Q. Chen, “Computer simulation of 3-d grain growth using a
phase-field model,” Acta Materialia, vol. 50, no. 12, pp. 3059–3075, 2002.

[168] S. Vedantam and B. S. V. Patnaik, “Efficient numerical algorithm for
multiphase field simulations,” Physical Review E, vol. 73, no. 1,
pp. 016703:1–8, 2006.

[169] C. J. Permann, M. R. Tonks, B. Fromm, and D. R. Gaston, “Order parameter
re-mapping algorithm for 3D phase field model of grain growth using FEM,”
Computational Materials Science, vol. 115, pp. 18–25, 2016.

[170] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele,
A. Shukaev, and B. Uekermann, “preCICE – a fully parallel library for
multi-physics surface coupling,” Computers & Fluids, vol. 141, pp. 250–258,
2016.

[171] G. Chourdakis, K. Davis, B. Rodenberg, M. Schulte, F. Simonis,
B. Uekermann, G. Abrams, H.-J. Bungartz, L. C. Yau, I. Desai, et al.,
“preCICE v2: A sustainable and user-friendly coupling library,” arXiv preprint
arXiv:2109.14470, 2021.

[172] K. Mittal, S. Dutta, and P. Fischer, “Nonconforming Schwarz-spectral element
methods for incompressible flow,” Computers & Fluids, vol. 191, p. 104237,
2019.

[173] K. Mittal, S. Dutta, and P. Fischer, “Direct numerical simulation of rotating
ellipsoidal particles using moving nonconforming Schwarz-spectral element
method,” Computers & Fluids, vol. 205, p. 104556, 2020.

[174] S. Dutta, M. W. V. Moer, P. Fischer, and M. H. Garcia, “Visualization of the
Bulle-effect at river bifurcations,” in PEARC ’18: Proceedings of the Practice
and Experience on Advanced Research Computing (S. Sanielevici, ed.),
(Pittsburgh, PA), pp. 107:1–4, 2018.

[175] F. Lindner, A. Totounferoush, M. Mehl, B. Uekermann, N. E. Pour, V. Krupp,
S. Roller, T. Reimann, D. C. Sternel, R. Egawa, et al., “ExaFSA: Parallel
fluid-structure-acoustic simulation.,” Software for Exascale Computing,
vol. 136, pp. 271–300, 2020.

[176] A. de Boer, A. H. van Zuijlen, and H. Bijl, “Comparison of conservative and
consistent approaches for the coupling of non-matching meshes,” Computer

84

Methods in Applied Mechanics and Engineering, vol. 197, no. 49-50,
pp. 4284–4297, 2008.

[177] F. Lindner, M. Mehl, and B. Uekermann, “Radial basis function interpolation
for black-box multi-physics simulations,” in Coupled problems VII:
proceedings of the VII International Conference on Coupled Problems in
Science and Engineering (M. Papadrakakis, ed.), (Rhodes Island, Greece),
pp. 50–61, International Center for Numerical Methods in Engineering
(CIMNE), 2017.

[178] M. R. Ross, C. A. Felippa, K. Park, and M. A. Sprague, “Treatment of acoustic
fluid–structure interaction by localized Lagrange multipliers: Formulation,”
Computer methods in applied mechanics and engineering, vol. 197, no. 33-40,
pp. 3057–3079, 2008.

[179] M. R. Ross, M. A. Sprague, C. A. Felippa, and K. Park, “Treatment of acoustic
fluid–structure interaction by localized Lagrange multipliers and comparison
to alternative interface-coupling methods,” Computer Methods in Applied
Mechanics and Engineering, vol. 198, no. 9-12, pp. 986–1005, 2009.

[180] F. Lindner, Data transfer in partitioned multi-physics simulations:
interpolation & communication. PhD thesis, Universität Stuttgart, 2019.

[181] V. Krupp, K. Masilamani, H. Klimach, and S. Roller, “Efficient coupling of
fluid and acoustic interaction on massive parallel systems,” in Sustained
Simulation Performance 2016: Proceedings of the Joint Workshop on
Sustained Simulation Performance, University of Stuttgart (HLRS) and Tohoku
University, 2016 (M. M. Resch, W. Bez, E. Focht, N. Patel, and H. Kobayashi,
eds.), pp. 61–81, Cham: Springer, 2016.

[182] S. Roller, J. Bernsdorf, H. Klimach, M. Hasert, D. Harlacher, M. Cakircali,
S. Zimny, K. Masilamani, L. Didinger, and J. Zudrop, “An adaptable
simulation framework based on a linearized octree,” in High Performance
Computing on Vector Systems 2011 (M. Resch, X. Wang, W. Bez, E. Focht,
H. Kobayashi, and S. Roller, eds.), pp. 93–105, Berlin: Springer, 2012.

[183] A. Fabri and S. Pion, “CGAL: The computational geometry algorithms
library,” in GIS ’09: Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (O. Wolfson,
D. Agrawal, and C.-T. Lu, eds.), (Seattle, WA), pp. 538–539, 2009.

[184] J. Heinz, N. Fehn, and M. Kaltenbacher, “High-order discontinuous Galerkin
methods for the acoustic conservation equations on moving meshes,” in
Fortschritte der Akustik - DAGA 2023: 49. Jahrestagung für Akustik
(O. v. Estorff and S. Lippert, eds.), (Hamburg), pp. 1074–1077, Deutsche
Gesellschaft für Akustik e.V, 2023.

[185] N. Fehn, J. Heinz, W. A. Wall, and M. Kronbichler, “High-order arbitrary
Lagrangian–Eulerian discontinuous Galerkin methods for the incompressible
Navier–Stokes equations,” Journal of Computational Physics, vol. 430,
p. 110040, 2021.

[186] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, “CutFEM:
discretizing geometry and partial differential equations,” International Journal
for Numerical Methods in Engineering, vol. 104, no. 7, pp. 472–501, 2015.

[187] C. Gürkan, S. Sticko, and A. Massing, “Stabilized CutDG methods for
advection-reaction problems,” SIAM Journal on Scientific Computing, vol. 42,

85

no. 5, pp. A2620–A2654, 2020.
[188] T. B. Ulfsby, A. Massing, and S. Sticko, “Stabilized cut discontinuous Galerkin

methods for advection-reaction problems on surfaces,” Computer Methods in
Applied Mechanics and Engineering, vol. 413, pp. 116109:1–31, 2023.

[189] N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack
growth without remeshing,” International journal for numerical methods in
engineering, vol. 46, no. 1, pp. 131–150, 1999.

[190] A. Massing, M. G. Larson, and A. Logg, “Efficient implementation of finite
element methods on nonmatching and overlapping meshes in three
dimensions,” SIAM Journal on Scientific Computing, vol. 35, no. 1,
pp. C23–C47, 2013.

[191] R. I. Saye, “High-order quadrature methods for implicitly defined surfaces and
volumes in hyperrectangles,” SIAM Journal on Scientific Computing, vol. 37,
no. 2, pp. A993–A1019, 2015.

[192] S. Claus and P. Kerfriden, “A CutFEM method for two-phase flow problems,”
Computer Methods in Applied Mechanics and Engineering, vol. 348,
pp. 185–206, 2019.

[193] B. Schott, U. Rasthofer, V. Gravemeier, and W. A. Wall, “A face-oriented
stabilized nitsche-type extended variational multiscale method for
incompressible two-phase flow,” International Journal for Numerical Methods
in Engineering, vol. 104, no. 7, pp. 721–748, 2015.

[194] B. Schott, C. Ager, and W. A. Wall, “Monolithic cut finite element-based
approaches for fluid-structure interaction,” International Journal for
Numerical Methods in Engineering, vol. 119, no. 8, pp. 757–796, 2019.

[195] R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth,
“Flexible and scalable particle-in-cell methods with adaptive mesh refinement
for geodynamic computations,” Geochemistry, Geophysics, Geosystems,
vol. 19, no. 9, pp. 3596–3604, 2018.

[196] T. El Geitani, S. Golshan, and B. Blais, “Toward high-order CFD-DEM:
Development and validation,” Industrial & Engineering Chemistry Research,
vol. 62, no. 2, pp. 1141–1159, 2023.

[197] B. Blais, L. Barbeau, V. Bibeau, S. Gauvin, T. El Geitani, S. Golshan,
R. Kamble, G. Mirakhori, and J. Chaouki, “Lethe: An open-source parallel
high-order adaptative CFD solver for incompressible flows,” SoftwareX,
vol. 12, pp. 100579:1–9, 2020.

[198] M. Kronbichler, A. Diagne, and H. Holmgren, “A fast massively parallel
two-phase flow solver for microfluidic chip simulation,” The International
Journal of High Performance Computing Applications, vol. 32, no. 2,
pp. 266–287, 2018.

[199] J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for
modeling surface tension,” Journal of computational physics, vol. 100, no. 2,
pp. 335–354, 1992.

[200] E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,”
Journal of computational physics, vol. 210, no. 1, pp. 225–246, 2005.

[201] C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of
computational physics, vol. 25, no. 3, pp. 220–252, 1977.

86

[202] S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous,
incompressible, multi-fluid flows,” Journal of computational physics, vol. 100,
no. 1, pp. 25–37, 1992.

[203] F. Henri, M. Coquerelle, and P. Lubin, “Geometrical level set reinitialization
using closest point method and kink detection for thin filaments, topology
changes and two-phase flows,” Journal of Computational Physics, vol. 448,
p. 110704, 2022.

[204] J. H. Bramble, J. E. Pasciak, and J. Xu, “The analysis of multigrid algorithms
with nonnested spaces or noninherited quadratic forms,” Mathematics of
Computation, vol. 56, no. 193, pp. 1–34, 1991.

[205] M. L. Bittencourt, C. C. Douglas, and R. A. Feijóo, “Nonnested multigrid
methods for linear problems,” Numerical Methods for Partial Differential
Equations: An International Journal, vol. 17, no. 4, pp. 313–331, 2001.

[206] T. Hoefler, C. Siebert, and A. Lumsdaine, “Scalable communication protocols
for dynamic sparse data exchange,” ACM Sigplan Notices, vol. 45, no. 5,
pp. 159–168, 2010.

[207] J. Dürrwächter, M. Kurz, P. Kopper, D. Kempf, C.-D. Munz, and A. Beck, “An
efficient sliding mesh interface method for high-order discontinuous Galerkin
schemes,” Computers & Fluids, vol. 217, p. 104825, 2021.

[208] S. L. Fuchs, C. Meier, W. A. Wall, and C. J. Cyron, “A novel smoothed particle
hydrodynamics and finite element coupling scheme for fluid–structure
interaction: The sliding boundary particle approach,” Computer Methods in
Applied Mechanics and Engineering, vol. 383, p. 113922, 2021.

[209] M. Mayr and A. Popp, “Scalable computational kernels for mortar finite
element methods,” Engineering with Computers, 2023.

[210] C. Burstedde, “Parallel tree algorithms for AMR and non-standard data
access,” ACM Transactions on Mathematical Software (TOMS), vol. 46, no. 4,
pp. 1–31, 2020.

[211] M. Mirzadeh, A. Guittet, C. Burstedde, and F. Gibou, “Parallel level-set
methods on adaptive tree-based grids,” Journal of Computational Physics,
vol. 322, pp. 345–364, 2016.

[212] B. Rüth, B. Uekermann, M. Mehl, P. Birken, A. Monge, and H.-J. Bungartz,
“Quasi-Newton waveform iteration for partitioned surface-coupled
multiphysics applications,” International Journal for Numerical Methods in
Engineering, vol. 122, no. 19, pp. 5236–5257, 2021.

[213] P. Meisrimel and P. Birken, “Waveform relaxation with asynchronous
time-integration,” ACM Transactions on Mathematical Software, vol. 48, no. 4,
pp. 1–22, 2022.

[214] G. Chourdakis, D. Schneider, and B. Uekermann, “OpenFOAM-preCICE:
Coupling openfoam with external solvers for multi-physics simulations,”
OpenFOAM® Journal, vol. 3, pp. 1–25, 2023.

87

dummy

Paper I

Research Paper

The International Journal of High
Performance Computing Applications
2022, Vol. 0(0) 1–21
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420221107880
journals.sagepub.com/home/hpc

Enhancing data locality of the conjugate
gradient method for high-order matrix-free
finite-element implementations

Martin Kronbichler1,2, Dmytro Sashko3 and Peter Munch1,4

Abstract
This work investigates a variant of the conjugate gradient (CG) method and embeds it into the context of high-order finite-
element schemes with fast matrix-free operator evaluation and cheap preconditioners like the matrix diagonal. Relying on a
data-dependency analysis and appropriate enumeration of degrees of freedom, we interleave the vector updates and inner
products in a CG iteration with the matrix-vector product with only minor organizational overhead. As a result, around
90% of the vector entries of the three active vectors of the CG method are transferred from slow RAM memory exactly
once per iteration, with all additional access hitting fast cache memory. Node-level performance analyses and scaling studies
on up to 147k cores show that the CG method with the proposed performance optimizations is around two times faster
than a standard CG solver as well as optimized pipelined CG and s-step CG methods for large sizes that exceed processor
caches, and provides similar performance near the strong scaling limit.

Keywords
Conjugate gradient method, data locality, matrix-free implementation, sum factorization, strong scaling

1. Introduction

The conjugate gradient (CG) method is one of the most
popular algorithms for the iterative solution of large sparse
symmetric positive-definite linear systems arising from
discretization of partial differential equations (PDE). While
it needs to be combined with strong preconditioners such as
multigrid when applied to elliptic equations, the conjugate
gradient method with simple preconditioners like the matrix
diagonal can be the most efficient choice for parabolic
partial differential equations with small to moderate time
steps. For example, in computational fluid dynamics, many
splitting schemes eventually lead to a positive definite
Helmholtz-like equation with a mass matrix and a diffusive
operator scaled by the time step and viscosity, see, for
example, Tufo and Fischer (1999), Deville et al. (2002,
Section 6.5), and Fehn et al. (2018) for application in in-
compressible flows as well as Demkowicz et al. (1990) and
Guermond et al. (2021) for compressible flows. Another
important application is the projection with consistent finite-
element mass matrices, possibly including some regulari-
zation through diffusion (Kronbichler et al., 2018).

In the conjugate gradient method with simple precondi-
tioners, the matrix-vector product has traditionally been the
most expensive operation. With the increase in computing

power through parallelism on the one hand and algorithmic
progress on the other hand, the matrix-vector product may in
fact be so cheap that attention must be turned to the other
operations in the CG method.

On large-scale parallel computers, the global reductions
involved in the two inner products in each CG iteration are
generally seen as the main threat to strong scaling, ad-
dressed by the development of lower-synchronization
variants, such as the pipelined conjugate gradient method
(Cornelis et al., 2018; Ghysels and Vanroose, 2014) or s-
step methods (Chronopoulos and Gear, 1989). These al-
ternatives rely on mathematical transformations of the basic

1Institute for Computational Mechanics, Technical University of Munich,
Germany
2Department of Mathematics, University of Augsburg, Germany
3School of Mechanical and Mining Engineering, The University of
Queensland, Saint Lucia, QLD, Australia
4Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon,
Germany

Corresponding author:
Martin Kronbichler, Institute for Computational Mechanics, Technical
University of Munich, Boltzmannstr 15, Garching b, München 85748,
Germany.
Email: martin.kronbichler@uni-a.de

CG algorithm with redundant vector operations that break
some dependencies. The s-step method not only allows to
combine global communication for several CG iterations
into one block, but also to schedule the communication of
several matrix-vector products together through matrix-
power kernels.

The guiding theme of these recent contributions has been
the reduction of the communication latency, see also Eller
et al. (2019) for a broader overview on large-scale methods.
However, less attention has been paid to the throughput of
the memory hierarchy, that is, bandwidth requirements from
and to main memory (RAM). This can be the more severe
performance limit in a number of applications, especially for
solvers that combine different algorithms in tight sequence.
One example is incompressible fluid flow discretized with
splitting methods, where the pressure Poisson equation
solved with multigrid sets the limit for strong scaling, but
the much larger symmetric positive-definite system in the
velocity contributes with 50% or more of the runtime (Fehn
et al., 2018; Krank et al., 2017). As an illustration, Figure 1
shows the share of runtime of different operations in a
preconditioned conjugate gradient solver as a function of
problem size on a single compute node. While the matrix-
vector product indeed dominates the runtime for small sizes
with less than 3 million degrees of freedom, this is not the
case for larger sizes relevant to those fluid dynamics ap-
plications where AXPY-style vector updates, dot products
and the application of the preconditioner take up two thirds
of the total run time.

The aim of the present work is to design a solver with
primary focus on the memory bandwidth behavior of the
CG algorithm in the context of high-order finite-element
methods implemented with matrix-free sum-factorization
algorithms (Deville et al., 2002). The main novelty is a set
of techniques that allow to interleave the vector updates
and inner products in a CG iteration with the matrix-
vector product for a specific pipelined-like CG formu-
lation originally presented as Algorithm 2.2 in
Chronopoulos and Gear (1989). As a result, we are able to
perform the access to the three active vectors in inner
products and vector updates of a complete CG iteration
with a single load from RAM memory for around 90% of
the vector entries, serving all other accesses from the fast
cache memory on contemporary cache-based CPU ar-
chitectures. Our experiments show similar performance
as for pipelined and s-step methods near the strong
scaling limit when all vector entries are hit in the caches,
but we reach a significantly higher throughput when the
vectors spill out of the caches. While not directly re-
ducing the minimum achievable wall time, our contri-
bution allows to reach a predefined throughput already on
a smaller machine.

The proposed techniques rely on introspection of the
matrix-vector product and simple preconditioners. The
idea of using the structure of the operations in the CG
iteration to increase performance is not new and can be
traced back to at least Eisenstat (1981). However, the
context of minimizing data movement for high-order
finite-element solvers within a single iteration appears
to be novel. These developments are necessary, because
the wide stencils from high-order finite-element methods
as well as multi-component systems make traditional
optimizations such as matrix-power kernels and temporal
wavefront blocking (Malas et al., 2017) in the context of s-
step Krylov methods ineffective.

The implementations used for the present study are
available as open-source software on GitHub.1 They build
on the general-purpose finite-element library deal.II (Arndt
et al., 2021) and have been verified on supercomputer scale
(Arndt et al., 2020b). The remainder of this contribution is
structured as follows. Section 2 introduces the state of the art
of fast matrix-free operator evaluation for higher-order
finite-element discretizations. In Section 3, the classical
conjugate gradient algorithm as well as pipelined and s-step
variants are reviewed in terms of the memory access.
Section 4 discusses a variant of CG that avoids the two
synchronization points of the conventional CG algorithm
when using cheap diagonal preconditioning, whereas
Section 5 presents the ingredients necessary to efficiently
embed the vector operations into the matrix-vector product.
In Section 6, large-scale computations are given to show the
effectiveness of the method, before Section 7 summarizes
our results.

Figure 1. Breakdown of times per CG iteration in the Center of
Efficient Exascale Discretizations (CEED) benchmark problem
BP4 (Fischer et al., 2020) with finite elements of degree p = 5 on 2
× 24 cores of Intel Xeon Platinum 8174. See Section 3.1 below for
a more detailed explanation of the steps.

2 The International Journal of High Performance Computing Applications 0(0)

2. Fast matrix-free operator evaluation

We consider a benchmark problem in the context of high-
order finite element methods to investigate the benefits of
the proposed techniques, in comparison to well-studied
optimized CG alternatives from the literature. It involves
the vector-valued Poisson equation in a d = 3 dimensional
domain V � R

3

�=2u ¼ f (1)

with the vector field uðxÞ ¼ ðu1ðxÞ, u2ðxÞ, u3ðxÞÞ 2
ðH1ðVÞÞ3 and a forcing f 2 ðL2ðVÞÞ3. On the domain
boundary ∂V, Dirichlet boundary conditions u = g are set.

The finite-element discretization is derived from the
weak form of equation (1), restricted to a space of poly-
nomials on a mesh of elements Ve of the computational
domain, e = 1, …, ncells. On a hexahedral element Ve, the
solution interpolation is given by

uhðxÞx2Ve
¼

X3ðpþ1Þ3

j¼1

φj

�bxðxÞ�ue, j (2)

Here, ue ¼ ½ue, j�j denotes the vector of unknown coeffi-
cients on Ve in an expansion with a polynomial basis
fφj, j ¼ 1,…, 3ðpþ 1Þ3g. The basis functions are con-
structed as the tensor product of one-dimensional poly-
nomials of degree p for each of the vector components.
Collecting the functions defined on all the elements and
inserting the expansions as tentative solutions and test
functions into the weak form, we arrive at a matrix system

Au ¼ b (3)

with a sparse matrix A2R
n×n, the right-hand-side vector

b2R
n and the discrete solution vector u2R

n. The number
n ∼ 3ncellsp

3 denotes the number of degrees of freedom
(DoFs), counting the unique free coefficients in the ex-
pansion. The solution of this matrix system is the subject of
the present study.

The relatively dense coupling of degrees of freedom in
the matrix stencil makes sparse matrix-vector products in
iterative solvers inefficient for higher-order finite ele-
ments with degree p ≥ 2. Considerable speedups can be
obtained by replacing the sparse matrix-vector product by
a matrix-free evaluation of the action of the matrix on a
vector. Whereas stencil-like approaches are most bene-
ficial for the lowest-order elements on structured meshes
(Bauer et al., 2018), the method of choice for hexahedral
elements with general deformed shapes and higher de-
grees is to compute the integrals underlying the finite-
element method on the fly (Brown, 2010; Deville et al.,
2002; Fischer et al., 2020; Kronbichler and Kormann,
2012). The matrix-vector product is computed as a sum of
cell-wise contributions

v ¼ Au ¼
Xncells
e¼1

PT
eAeðPeuÞ (4)

where Ae is the representation of the operator on elementVe

and Pe denotes the local-to-global mapping of unknowns
such that ue = Peu gives restriction of the global solution
vector u to the element. The local operation Aeue is again
implemented in a matrix-free fashion without building the
element stiffness matrix Ae

½Aeue�i ¼
Z
Ve

ð=φiÞT=uhdx

¼
Xnq
q¼1

�b=φi

�T

J�1
e, q

�
wqdetJ e, q

�
J�T
e, q

X3ðpþ1Þ3

j¼1

b=φjue, j

(5)

The integrals are approximated by numerical quadrature
on nq points. In this work, we consider the BP4 benchmark
problem proposed by Fischer et al. (2020), which selects
the tensor-product Gaussian quadrature formula with nq =
(p + 2)3 points bxq per cell and the associated quadrature
weight wq. The integrals are transformed to reference
coordinates bx via a polynomial mapping xðbxÞ and the
derivatives in real space = are transformed to derivatives
in reference coordinates b= by multiplication with the in-
verse and transpose of the Jacobian ½J eðbxÞ�ij ¼ ∂xi

∂bxj. Thelocal result Aeue is obtained by evaluating equation (5) for
all test functions φi, i ¼ 1, …, 3 (p + 1)3.

The efficiency of the matrix-free algorithm (4)–(5)
crucially depends on evaluating b=uh at the quadrature points
and the multiplication by the test function gradient b=φi
as well as the summation over quadrature points, respectively.
For tensor-product shape functions that are integrated on a
tensor-product quadrature formula, sum factorization allows to
decompose these two steps into a series of one-dimensional
interpolations of total cost Oðpdþ1Þ per element in d di-
mensions (or OðpÞ per unknown), compared to the naive
evaluation cost ofOðp2dÞ. The sum-factorization approach has
been developed in the context of the spectral element method
by Orszag (1980), Patera (1984), and Tufo and Fischer (1999),
see also the book by Deville et al. (2002) as well as recent
implementation and vectorization studies by Kronbichler and
Kormann (2012, 2019), Świrydowicz et al. (2019), Fischer
et al. (2020), Sun et al. (2020),Moxey et al. (2020), andKempf
et al. (2021).

2.1. Experimental setup

Our experiments use the implementation of matrix-free
operator evaluation in the deal.II finite-element library
(Arndt et al., 2020a, 2021), described in Kronbichler and
Kormann (2012, 2019). The main computational kernels are
fully vectorized across elements, that is, operation (5) is

Kronbichler et al. 3

evaluated on several cells for the different lanes in the
single-instruction/multiple-data (SIMD) paradigm, and use
an even-odd decomposition (Solomonoff, 1992) in sum
factorization to further reduce the arithmetic cost. The
solution vectors store unique unknowns, which necessitates
indirect addressing for the access of elemental data, rep-
resented as a matrix Pe in equation (4). Indirect addressing
involves additional instructions compared to duplicating
unknowns shared by several cells as used, for example, in
Nek5000 (Fischer et al., 2021), but avoids redundant
storage and speeds up the other parts of the solver. In our
implementation, the indices describing Pe use a compressed
format of 33 four-byte integers, from which all 3 × (p + 1)3

indices are deduced on the fly. The meshes are partitioned
by space-filling curves according to Bangerth et al. (2011).

The code has been compiled with the GNU compiler g++,
version 9.2, with optimization flags -O3 -march=native
-funroll-loops, which is the compiler with the best performance
among GNU, Intel and clang for our code. The experiments
have been conducted within a pure MPI setting. To reduce the
overhead due to communication between processes within a
single compute node, we perform the exchange of ghost values
manually via memcpy and MPI-3.0 shared-memory features
(Munch et al., 2021), instead of relying on plain MPI_Isend
and MPI_Irecv.

Following the benchmark description by Fischer et al.
(2020), the algorithms are mainly compared in terms of the
throughput, that is, the number of degrees of freedom
processed per second (DoFs/s) for one matrix-vector
product in this section or one iteration of the conjugate
gradient method in the subsequent sections. The throughput
is obtained by the ratio of the number of degrees of freedom
in the linear system and the measured runtime. The runtime
is taken as the minimum of two separate jobs with four
experiments each in order to reduce the noise caused by
other concurrent jobs on the supercomputer. Apart from
isolated outliers, the arithmetic mean of those eight runs is
within 2% of the reported minimum.

Unless noted otherwise, the numerical experiments are
run on a dual-socket Intel Xeon Platinum 8174 (Skylake)
system of the supercomputer SuperMUC-NG.2 The CPU
cores run at a fixed frequency of 2.3 GHz, which gives an
arithmetic peak of 3.5 TFlop/s. The 96 GB of random-
access memory (RAM) are connected through 12 channels
of DDR4-2666 with a theoretical bandwidth of 256 GB/s
and an achieved STREAM triad memory throughput of
205 GB/s.

2.2. Identification of fast matrix-vector product

Contemporary implementations of matrix-free methods
with sum factorization often precompute and store the
metric terms in J�1

e, qðwqdetJe, qÞJ�T
e, q at each quadrature point

and load them during operator evaluation. The precomputed

setup is applicable to deformed (curvilinear) cells and to
variable coefficients. As shown in Kronbichler and Ljungkvist
(2019), the evaluation (4)–(5) is then memory-bound on
modern hardware. For an implementation that aims to
maximize the throughput for cell integrals according to
Kronbichler and Kormann (2019), it might be more economic
to evaluate the metric terms on the fly as well. To identify a
suitable method, we compare the following variants regarding
the terms representing the geometric factors:

· tri-quadratic geometry evaluated on the fly from 33 =
27 points (“quadratic geomet. compute"), loading
27 × 3 doubles per cell, giving a matrix-vector
product with 395 Flops/DoF for p = 5,

· geometry evaluated on the fly from (p + 2)3 points at
the position of the quadrature points (“isoparametric
compute”), loading 3 doubles per quadrature point,
yielding 417 Flops/DoF for p = 5,

· precompute and load the inverse Jacobian J�1
e, q and

the Jacobian determinant times quadrature weight
(“inverse Jacobian load”) at each quadrature point,
loading 10 doubles per quadrature point, yielding 316
Flops/DoF for p = 5,

· precompute and load the final symmetric coefficient
tensor, J�1

e, qðwqdetJ e, qÞJ�T
e, q (“final tensor load”) at

each quadrature point, loading 6 doubles per quad-
rature point, yielding a matrix-vector product with
267 Flops/DoF for p = 5, as done, for example, in
Świrydowicz et al. (2019); Fischer et al. (2020).

Figure 2 compares the computational throughput of these
variants on a single compute node. The operator evaluation

Figure 2. Comparison of different implementations of matrix-
free operator evaluation for polynomial degree p = 5 on 2 × 24
cores of Intel Xeon Platinum 8174.

4 The International Journal of High Performance Computing Applications 0(0)

reaches a maximum for intermediate sizes of around 106

DoFs when most data fits into caches. As the problem size
further increases, data must be fetched from main memory,
leading to a slowdown for the cases that are dominated by
memory access. We note a slight zig-zag pattern in the
reported throughput, which is caused by different costs of
ghost exchange, which changes when the number of cells is
divisible by 48 leading to cube-like subdomains (higher
throughput) or by 64 leading to more irregular MPI sub-
domains (lower throughput). Figure 2 also presents the
throughput of the evaluation on an affine mesh with a
constant inverse Jacobian J�1 throughout the whole mesh
and using nq = (p + 1)d points of Gaussian quadrature, a case
studied in detail in Kronbichler and Kormann (2012, 2019).
This reduces the arithmetic cost to 206 Flops/DoF and the
memory transfer to just the input and output vectors with
performance mainly limited by the vector access with in-
direct addressing.

For large sizes with n > 107, the “load” variants are
memory-limited at slightly more than 200 GB/s, whereas
the two “compute” variants involve a memory transfer of
100 GB/s and 140 GB/s for vector sizes of 100 million
DoFs, all measured from hardware performance counters
with the LIKWID tool (Treibig et al., 2010). Albeit slightly
slower than the “load” variants for the in-cache case with n <
106, this study concentrates on the quadratic geometry
representation evaluated on the fly with polynomial degree
p = 5 for the finite-element expansion (2). The represen-
tation of curved geometries differs from the other three
options in general, but we argue that a tri-quadratic ap-
proximation is nonetheless suitable for many applications.
The bulk of a 3D geometry can often be well-represented in
such a way, leading to a significant reduction of the memory
transfer and cache pressure against the isoparametric high-
order case. By contrast, a tri-linear representation (with
approximately 10% higher throughput) might be unac-
ceptable in a whole region around strongly curved
boundaries. It is conceivable to augment the present strategy
with a high-degree (isoparametric) geometry representation
of one element layer close to the boundary, without sig-
nificantly affecting the throughput.

From the throughput values listed in Figure 2 and the
operation counts mentioned above, it can be deduced that
the matrix-vector product with quadratic geometry runs at
1.1 TFlop/s with 50 million DoFs and at 1.3 TFlop/s with
1.2 million DoFs. While this is clearly below the arithmetic
peak of 3.5 TFlop/s, the value is high for this kind of al-
gorithm; the gap to the peak can be explained by the cost of
the indirect addressing into the vectors u, v, isolated ad-
ditions and multiplications that cannot be merged into fused
multiply-add operations, the throughput of caches, and, for
the larger case, insufficient data prefetching from RAM.

The throughput of 2.82 billion DoFs/s with 50 million
DoFs for a matrix-free operator evaluation (p = 5, quadratic

geometry computation) can be compared to a sparse matrix-
vector product: the lowest order p = 1 can reach a
throughput of between 590 million DoFs/s (separate matrix
entries for all three vector components, perfect caching of
vector entries) and 1.6 billion DoFs/s (same matrix for all
three vector components; only applicable for simple
boundary conditions), or between 50 and 147 million DoFs/
s for the p = 5 case. The effect of high-order matrix-free
algorithms being several times faster than low-order matrix-
based algorithms on a degree of freedom basis has been

examined in detail, for example, in Kronbichler and Wall
(2018).

3. Conjugate gradient algorithm

The high throughput of the matrix-free operator evaluation
has important implications for performance tuning of the
CG iterative method as the matrix-vector product might no
longer be the dominant operation. Despite using an accurate
integration with p + 2 points per direction, the throughput
shown in Figure 2 is around a third of that of simply copying
one vector to the other, which achieves a throughput of 8.5
billion DoFs/s at 205 GB/s due to 24 bytes of access per
unknown with 8 bytes read, 8 bytes write, 8 bytes of read-
for-ownership transfer (Hager and Wellein, 2011) on a dual-
socket Intel Xeon 8174 machine.

For preconditioning, this work considers the case of a
simple point Jacobi preconditioner, that is, the matrix di-
agonal. This preconditioner is representative for problems
including a strong mass matrix contribution besides the

Algorithm 1 Preconditioned conjugate gradient method.

1: r0 ¼ b�Ax0, z0 ¼ M�1r0, p0 ¼ z0, e0 ¼ rT0z0
2: k¼ 0
3: while not converged do
4: vk ¼ APk
5: αk ¼ ek

pTk vk
| 1st region:r:2

6: xkþ1 ¼ xk þ αkpk 2nd region:r:4/w:2
7: rkþ1 ¼ rk � αkvk
8: if ffiffiffiffiffiffiffiffi

γkþ1
p ¼ krkþ1k< ε then

9: break
10: end if
11: zkþ1 ¼ M�1rkþ1

12: ekþ1 ¼ rTkþ1zkþ1 | 3rd region:r:2
13: βk ¼ ekþ1

ek
14: pkþ1 ¼ zkþ1 þ βkpk | 4th region: r:2/w:1
15: k ¼ kþ1
16: end while

Kronbichler et al. 5

Laplacian (1), as argued in Fischer et al. (2020). Since the
same coefficient is used for all 3 vector components of u,
only the diagonal to a scalar Laplacian (computed with
Gauss–Lobatto integration on p + 1 points) is stored and
applied to all three components.

3.1. Breakdown of runtime

Figure 1 shows a breakdown of the runtime per unknown for
one CG iteration, plotted over the number of unknowns for
the basic CG variant presented in Algorithm 1. In this study,
we consider the termination by the unpreconditioned re-
sidual norm krkk, which involves a third global reduction in
each iteration. Other variants exist, and the main perfor-
mance characteristics carry over similarly. The following
kernels are considered:

· The sparse matrix-vector product with matrix-free
operator evaluation,

· AXPY-like vector operations (y = ax + y),
· Dot product computations (including l2 norm), and
· The application of the diagonal preconditioner.

The AXPY-like vector operations and preconditioner
application do not involve any communication, the matrix-
vector product communicates between nearest neighbors in
the mesh (e.g., 26 on a cube geometry with perfect split),
whereas the dot product involves a reduction among all
participating processes. The experiment of Figure 1 has
been conducted on a single compute node with 48 cores.

In the left part of the plot in Figure 1 with fewer than 105

DoFs, the load imbalance of the partitioning of the mesh
elements onto 48 processes as well as the latency of the
communication between the different cores on the node lead
to an approximately constant runtime of 6 × 10�5 seconds
per iteration. This appears as a decrease of time per un-
known as the size increases in the figure. The latency
limitations disappear for n ∼ 106 DoFs, indicating a
throughput limitation instead with a plateau in timings per
unknown. For very large sizes n > 107, the data set of the
conjugate gradient exceeds the caches and most data needs
to be fetched from main memory (RAM). Then, the vector
operations start to contribute significantly to the runtime,
causing a severe slowdown compared to intermediate sizes.

In order to understand the performance limitations of the
CG algorithm, we take a closer look at Algorithm 1.
Treating the matrix-vector product and the preconditioner as
black boxes, there are four separate regions of vector access
in the form of dot products and AXPY-like vector opera-
tions. Within each region, loop fusion leading to a single
loop over the entries of all vectors in the region may im-
prove the locality of reference. Loop fusion can for example
be used to compute the sum needed for the norm krk+1k

already during the computation of rk+1, avoiding an extra
vector load.

Between the regions, however, synchronization points
prevent loop fusion and all vector entries need to be touched
before starting the next region. For instance, the compu-
tation of xk+1 and rk+1 depends on pk, rk, vk, xk, and αk. The
latter itself depends on pk and vk and requires a full vector
sweep through them. If the size of the vectors pk and vk
exceeds the capacity of a particular cache level during the
computation of the dot product for αk and the entries are
already evicted from the cache in the form of capacity
misses, a second load from the upper levels of the memory
hierarchy is inevitable. Similarly, during the computation of
pk+1 in the fourth region, the vector entries of pk and zk+1
would have to be loaded again, despite being touched in the
second region and inside the preconditioner, respectively.
Note that even with an ideal cache replacement strategy this
problem cannot be resolved for vectors considerably larger
than the caches.

Summarizing the number of reads in each region of the
conjugate gradient algorithm, the preconditioned conjugate

Algorithm 2 Pipelined conjugate gradient method.

1: while not converged do
2: qk¼ Awk

3: βk ¼ γk�1=γk�2
4: αk ¼ γk�1=

�ak�1 � βk
γk�1
αk�1

�
5: pk ¼ rk þ βkpk�1 r:7/w:6
6: xk ¼ xk þ αkpk
7: sk ¼ wk þ βksk�1

8: rk ¼ rk�1 � αksk
9: zk ¼ qk þ βkzk�1

10: wk ¼ wk�1 � αkzk
11: γk ¼ rTk rk
12: ak ¼ wT

k rk
13: end while

Algorithm 3 s-step conjugate gradient method with the aliases
Rk ¼ Tkð:,1 : s � 1Þ and Qk ¼ Tkð:,2 : sÞ.

1: while not converged do
2: Tk ¼ ½rk, Ark;…, Asrk�
3: Bk ¼ �W�1

k�1ðQT
kPk�1Þ | r:2s/w:0

4: Pk ¼ Rk þ Pk�1Bk r:2s+1/w:1
5: Wk ¼ QT

k Pk
6: gk ¼ PTk rk
7: ak ¼ W�1

k gk
8: xk ¼ xk�1 þ Pkak | r:s+1/w:1
9: rk ¼ b� Akxk r:2/w:1
10: γk ¼ rTk rk
11: end while

6 The International Journal of High Performance Computing Applications 0(0)

gradient algorithm requires 10 full vector reads in each
iteration besides the access for the matrix-vector product
and preconditioner, despite only 4 vectors participating in
the algorithm (assuming vk and zk+1 use the same memory).
This number can be slightly reduced to 9 by moving the
computation of xk+1 to the 4th region to reuse reads of pk.

3.2. Alternative CG methods

For a simpler comparison, we now consider plain conjugate
gradient algorithms without preconditioner. The basic
version (Algorithm 1 with zk+1 = rk+1 andM

�1 = I) requires
9 full vector reads and 3 vector writes besides the access for
the matrix-vector product.

In the literature, a series of alternative flavors of the CG
algorithm have been developed with the goal to reduce the
number of synchronization points, primarily driven by latency
considerations. However, they naturally also increase the
possibility for loop fusion andmight therefore also improve the
memory transfer (Rupp et al., 2016). As a point of comparison
of the algorithm structure, we present Algorithm 2 for the
pipelined conjugate gradientmethod andAlgorithm 3 for the s-
step conjugate gradient methods, respectively. To simplify the
presentation, hereafter we ignore the algorithms’ initialization
and focus on the structure of the main iteration.

In the pipelined CG method (Ghysels and Vanroose,
2014), the number of synchronization points is reduced to
one by introducing additional global auxiliary vectors.
Apart from the intended ability to overlap global commu-
nication with the matrix-vector product, this also allows
vector operations to be concentrated in one vector access
region. A naive implementation using a separate loop for
each line of Algorithm 2 would yield a total of 15 vector
reads per CG iteration for the 7 participating vectors. Using
loop fusion reduces the number of reads to 7, the number of
involved vectors. It is possible to slightly reduce the
memory transfer further by performing the update of x every
other iteration (before and after the update of p).

In contrast, s-step CG methods (Chronopoulos and Gear,
1989; Naumov, 2016) perform s CG iterations in a single
phase, reducing the number of global reductions to 3 per
phase, that is, to 3/s per CG iteration. This is especially
interesting when the global reductions are the bottleneck of
the CG algorithm. The global reductions are aggregated by
not working simply on vectors but on blocks of s vectors, for
example, Pk instead of pk and Rk instead of rk. Similarly, the
scalar factor αk becomes a vector ðak 2R

sÞ, βk a matrix
ðBk 2R

s×sÞ, and dot products become block dot products.
The communication time of a block operation is similar to
that of a scalar one, since modern networks are latency-
bound for global reductions up to a few dozens of values.

In the literature, the operation [Ark, …, Asrk] is referred
to as a “matrix-power kernel.” It is typically considered to
be uncritical for performance, since it only comprises of s

point-to-point communication steps in the worst case. For
low-order methods, increasing the number of ghost layers
allows to use a single communication step per matrix-power
kernel application (Malas et al., 2017), which might be
useful if the latency is the limiting factor. Furthermore, it can
also enable a higher throughput of the matrix-vector
product, since matrix and vector entries can be held in
caches. For the high-order (FEM) methods investigated
here, however, it does not pay off according to preliminary
investigations: The wide stencils lead to a much larger
dependency region and quickly saturate caches. Already in
the absence of communication, matrix-power kernel ap-
plications consisting of 3 matrix-vector products with the
present high-order FEM for p = 5 yield a lower throughput
than performing three operator evaluations in sequence.
Currently, we are not aware of more sophisticated im-
plementations for this class of algorithms that could exploit
this temporal locality. Furthermore, communication is
negatively affected as additional ghost layers involve all
unknowns on cells with a high surface-to-volume ratio
(MehriDehnavi et al., 2013). As shown in Kronbichler and
Kormann (2019), the cost of communicating all solution
coefficients from a single layer of elements is already
substantial and leads to pronounced slowdown of the
matrix-vector product for p > 3 in 3D.

In total, s + 1 matrix-vector multiplications are per-
formed per iteration and four update regions can be iden-
tified with a total of 5s + 4 reads and s + 2 writes per vector
entry. Finally, we would like to point out that the version of
the s-step CG method investigated in the following is nu-
merically unstable due to the loss of orthogonality of the
monomial Krylov subspace (Naumov, 2016). However, as
alternative formulations, which are numerically more stable
but involve additional steps, are structured similarly, results
obtained for this simple version are generally transferable to
other approaches.

Similarly to the s-step CG methods, enlarged CG methods
(ECG; Grigori and Tissot (2019); Lockhart et al. (2022)) also
work on blocks of vectors to accelerate convergence. The
motivation for the construction and the way to construct the
blocks are somewhat different, but the resulting high-level
algorithms are similar from the performance point of view
to those of s-step CG. Due to this similarity, we will not
consider ECG in the remainder of this work.

4. Minimize data access in standard CG

Inspired by the increased chances to fuse loops over vectors
in the pipelined and s-step conjugate gradient methods, we
now study a version of CG that has been introduced by
(Chronopoulos and Gear, 1989, Algorithm 2.2) and served
as a starting point for the derivation of pipelining methods.
However, in the present work, we do not further modify the
algorithm by Chronopoulos and Gear (1989) and instead

Kronbichler et al. 7

aim to reduce the main memory transfer without introducing
additional auxiliary vectors, that inherently increase the
memory access.

We start our derivation by noting that the number of
synchronization barriers identified in Algorithm 1 can be
reduced by using redundant computations of partial sums,
which is possible in the case the preconditioner is cheap to
apply.

4.1. No preconditioner

We first consider the case of identity preconditioning (zk = rk
and M�1 = I) and aim to perform the computation of
contributions to βk before finalizing the computation of αk
and rk+1. We therefore expand rTkþ1rkþ1 into

rTkþ1rkþ1 ¼ ðrk � αkvkÞT ðrk � αkvkÞ
¼ rTk rk � 2αkr

T
k vk þ α2kv

T
k vk (6)

By computing the three sums for the inner products
rTk rk , r

T
k vk , v

T
k vk , the ingredients for βk can be scheduled in

parallel to the inner product pTk vk needed by αk, as shown in
Algorithm 4. Note that γk ¼ rTk rk is computed explicitly
rather than defined recursively from the previous iteration in
order to avoid detrimental influence of roundoff errors
(Chronopoulos and Gear, 1989; Saad, 1985). While this
scheme adds an additional read to rk during the summation
compared to the computation of vTk pk alone, this is com-
pensated by computing rk+1 at the same time as using the
respective entry for pk+1. In addition, the fused scheduling
uses pk for both xk+1 and pk+1. In the end, the number of
vector access regions is reduced to 2, one before (“pre”) and
one after (“post”) the matrix-vector product.

It is also possible to perform the updates to xk+1 only
every other iteration, reusing the content of the vector pk�1

and rk�1 before they get updated. All together, the number
of vector reads is reduced from 9 in the basic CG iteration to
6.5 in this improved variant.

Rupp et al. (2016) identified possibilities for additional
performance optimizations by the three phases “pre,”
“matrix-vector product,” and “post.” Specifically, that
contribution proposed to merge the matrix-vector product
with the “post” region on graphics processing units (GPUs)
for matrix-vector products through sparse matrix repre-
sentations in order to reduce the number of kernel calls.
Building upon this idea, we aim to merge both regions with
the matrix-vector product, which on the one hand allows to
reduce the memory transfer on the CPU, but is also more
involved in the context of matrix-free FEM.

4.2. Diagonal preconditioner

The ideas of the previous subsection can be extended to the
case of a preconditioner. Under the assumption that the pre-
conditioner is cheap and that there are no long-range de-
pendencies introduced to the computation of zk+1 =M�1rk+1, it
is more economic to apply the preconditioner several times.

Following equation (6), we decompose the computation
of the numerator for βk into several inner products that do
not depend on αk

βk ¼
zTkþ1rkþ1

zTk rk
¼

�
M�1rkþ1

�T
rkþ1

zTk rk

¼ rTkM
�1rk � 2αkrTkM

�1vk þ α2kv
T
kM

�1vk
rTkM

�1rk
(7)

Thus, βk can be obtained only based on the value of rk and vk
from the beginning of the iteration, prior to the update of the
vectors xk+1, rk+1, zk+1.

Similarly, the value of γkþ1 ¼ krkþ1k2 for the conver-
gence criterion can be computed in parallel to the reduction
for αk, using the expansion

Algorithm 4 Conjugate gradient method with merged vector
operations.

1: k ¼ 0, α0 ¼ β0 ¼ 0, r0 ¼ b�Ax0,p0 ¼ v0 ¼ 0
2: while not converged do
3: k ¼ kþ 1
4: if k > 1 odd then “pre” region:r:3.5/w:2.5
5: xk ¼ xk�2 þ αk�1pk�1

6: þ αk�1
βk�2

ðpk�1 � rk�1Þ
7: end if
8: rk ¼ rk�1 � αk�1vk�1

9: pk ¼ rk þ βk�1pk�1

10: vk ¼ Apk

(continued)

(continued)

11: ak ¼ pT
k vk “post” region:r:3/w:0

12: γk ¼ rTk rk
13: ck ¼ rTk vk
14: dk ¼ vTk vk
15: αk ¼ γk

ak
16: γkþ1 ¼ γk�2αkck þ α2kdk
17: if ffiffiffiffiffiffiffiffi

γkþ1
p < ε then

18: if k odd then
19: xkþ1 ¼ xk þ αkpk

20: else
21: xkþ1 ¼ xk�1 þ αkpk þ αk�1

βk�1
ðpk � rkÞ

22: end if
23: break
24: end if
25: βk ¼ γkþ1

γk
26: end while

8 The International Journal of High Performance Computing Applications 0(0)

γkþ1 ¼ rTk rk � 2αkr
T
k vk þ α2kv

T
k vk (8)

Therefore, given the residual rk and the result of the matrix-
vector product vk, all scalars of the current conjugate gra-
dient iteration can be computed using one reduction region.
The vector zk+1 is no longer stored explicitly, since we
assume that the application of the preconditioner is cheaper
than the read and write of zk+1. As a result of this re-
structuring, all vector updates can be clustered in a single
region. Simplifying the notation and combining the ex-
pressions above, we obtain Algorithm 5.

The reformulated algorithm results in two vector access
regions, with loop fusion applicable within each region. As
in Algorithm 4, the xk update can be delayed and performed
only every other iteration. The first fused loop region now
consists of 3.5 full vector loads per iteration, plus the load of
the preconditioner that—under the assumption that a single
diagonal is used for each component of the block PDE system
(1)—consists of 1 =

3 doubles per vector entry. The number of
stores is one for rk and one for pk as well as one for xk every
second iteration. The number of vector loads in the second

region is equal to 3 plus 1 =

3 for the diagonal preconditioner.
The present reformulation results in seven global reductions,
which can be computed by summations local to each MPI
process and a single MPI_Allreduce carrying 7 variables.
Once the seven scalars are available, the coefficients αk and βk
can be computed locally. The presented reformulation also
enables a fusion into the matrix-vector product, as discussed
in the next section.

The proposed algorithm relies on three properties of the
preconditioner M�1:

· The preconditioner, which is applied twice in the first
vector access region and twice in the second vector
access region, is assumed to be cheap to apply, with
arithmetic costs hidden behind the memory transfer of
the involved vectors.

· We assume that there are no long-range dependencies
in the preconditioner, allowing to reuse the respective
entries of rk and vk from caches or registers when
M�1rk and M�1vk are computed.

· The memory access induced by the preconditioner is
assumed to be less expensive than the aggregated
store and load of zk+1 in Algorithm 1.

A diagonal preconditioner obviously fulfills these
properties, whereas, on the other extreme, a multigrid V-
cycle would violate all three requirements. Clearly, it needs
to be examined for each preconditioner whether it fits into
this scheme on a case-by-case basis, with preconditioners
with more global action requiring a separate storage step to
get M�1rk+1 before the reductions for βk.

5. Combining vector updates with
matrix-vector product

In the previous section, the matrix-vector product has been
treated as a black box. In order to further improve the data
reuse between the vector access regions of Algorithms 4
and 5, we propose to embed the vector updates and dot
products into the matrix-free operator evaluation, which
allows to re-use hits of the entries of p, r, v in caches during
the “post” stages, leading to a single memory read of the
vectors p, r, v, and x in the ideal case (3.83 doubles per
unknown).

This is realized by performing the operations identified in
the previous section on subranges of the vectors while
looping over cells according to equation (4) to exploit
temporal locality. In order to produce a valid algorithm, the
data dependencies during the matrix-vector product need to
be identified and translated into subranges, as detailed in the
following three subsections. Note that this approach is more
involved than previously proposed algorithms that fuse
vector operations following the matrix-vector product into

Algorithm 5 Preconditioned conjugate gradient method with
merged vector operations.

1: k¼ 0, α0 ¼ β0¼ 0, r0 ¼ b�Ax0,p0 ¼ v0 ¼ 0
2: while not converged do
3: k ¼ kþ 1
4: if k > 1 odd then “pre” region:r:3.83/w:2.5
5: xk ¼ xk�2 þ αk�1pk�1

6: þ αk�2
βk�2

ðpk�1 �M�1rk�1Þ
7: end if
8: rk ¼ rk�1 � αk�1vk�1

9: pk ¼ M�1rk þ βk�1pk�1

10: vk¼ Apk

11: γk ¼ rTk rk “post” region:r:3. 3/w:0
12: ak ¼ pT

k vk
13: bk ¼ rTk vk
14: ck ¼ vTk vk
15: dk ¼ rTkM

�1rk
16: ek ¼ rTkM

�1vk
17: fk ¼ vTkM

�1vk
18: αk ¼ dk

ak
19: if

ffi
γk�2αkbk þ α2kck

q
< ε then

20: if k odd then
21: xkþ1 ¼ xk þ αkpk

22: else
23: xkþ1 ¼ xk�1 þ αkpk þ αk�1

βk�1
ðpk �M�1rkÞ

24: end if
25: break
26: end if
27: βk ¼ dk�2αkekþα2k fk

dk
28: end while

Kronbichler et al. 9

the loop over unknowns in sparse matrix-vector products
(Rupp et al., 2016) or over cells for discontinuous Galerkin
schemes, for example, in Kronbichler and Allalen (2018),
Charrier et al. (2019) and Munch et al. (2021).

5.1. Data dependencies in matrix-free loops

On a high level, the matrix-vector multiplication depends on
the source vector u and produces the destination vector v.
The cell-wise nature of our matrix-free algorithm, involves a
loop through each cell of the mesh that

· reads all unknowns ue = Peu attached to a cell, which
can be shared with other cells for continuous finite
elements, and

· accumulates integral contributions in the same way
ðPT

e veÞ.

We can hence refine the dependency statement for each
entry of the source and the destination vector: the entry ui, i
2 {1,…, n}, is only needed once the first cell reads its value.
Conversely, entry vi is available as soon as the last cell has
added its contribution. From an implementation point of

view, this means that we can postpone the update of ui until
its first usage and use the value of vi for the dot product as
soon as its value has been finalized. In the following, we are
going to refer to operations happening before the first read
access to u but still within the matrix-free loop—in line with
the region names in Algorithms 4 and 5—as a “pre” op-
eration and to operations happening after the last write
access to v as a “post” operation.

Figure 3 visualizes the data dependencies in a matrix-free
operator evaluation as well as its interplay with “pre” and
“post” operations. In an MPI-parallel context, the ghost
exchange adds additional constraints (Kronbichler and
Kormann, 2012, Algorithm 2.1). More precisely, all un-
knowns owned by a process in the vector u that need to be
sent to remote processes have to perform the “pre” operation
before the ghost exchange is initiated. Furthermore, the part
of integrals accumulated on remote processes needs to be first
sent to owner of the respective entry in the vector v before the
“post” operation can be scheduled on those unknowns. It
should, however, be noted that both communication steps can
be overlapped with computations on inner cells.

We conclude this subsection by discussing the major
differences to matrix-based implementations. The popular
compressed row storage and, similarly, other sparse-matrix
formats update an entry in the destination vector only once by
applying the whole row of the matrix. In such a context, it is
obvious when values in the destination vector are available
and it is straightforward to determine when to schedule the
“post” operation during the matrix-vector product in a
merged way, as was exploited by Rupp et al. (2016).
However, this relation is not given for the dependency region
of the source vector, allowing to embed the “pre” operation
closer to the user of vector entries only based on a depen-
dency analysis similar to the one proposed here.

5.2. Batching work from several cells

Tracking the state of each individual vector entry ui, vi for
scheduling the “pre” and “post” operations would lead to
excessive overhead and inhibit loop optimizations, such as
vectorization and unrolling of the vector operations in CG.
Therefore, the “pre” and “post” operations are tracked on
ranges of vector entries. The length of the range is given in
multiples of 64, a heuristic value that permits full vecto-
rization with typical SIMD lengths today, except for a single
spot at the end of the vectors.

The length of the ranges is crucially influenced by the
number of vector entries processed by the matrix-free inte-
grals in between. The intent is to reach a significant share of
overlap between the “pre” and “post” ranges, enabling to
reuse data read during the “pre” operations even during the
“post” operations from the fast cache memory. The range
lookup and the callback into matrix-free integration functions
come with some overhead in our implementation, which is

Figure 3. Illustration of data dependencies in matrix-free
operator evaluation with degree p = 3 for a lexicographic loop
through the cells starting from the bottom left. Each symbol
represents an unknown. Gray crosses denote unknowns where
the result of the operator evaluation is complete before the
highlighted cell. The 3 × 3 unknowns marked with black crosses
get the final contribution from the highlighted cell and can schedule
the “post” operation afterward together with the unknowns
marked with gray crosses. The 3 × 3 unknowns indicated by black
circles indicate unknowns that have their first access on the
highlighted cell, thus necessitating to be preceded by the “pre”
operation. Black squares denote unknowns with pending
integrals, that is, the “pre” operation has already been done, but
the “post” operation is not yet possible. Gray disks illustrate
unknowns not yet processed.

10 The International Journal of High Performance Computing Applications 0(0)

especially noticeable for low and intermediate polynomial
degrees with small work per cell. We therefore schedule the
“pre” and “post” operations not around every individual cell,
but around batches of cells. The size of the batches is selected as

nbatch ¼ max

�	
1024

3ðpþ 1Þ3

, 2

�
nsimd lanes (9)

The first expression inside the maximum operation ensures
that more cells are grouped together for lower polynomial
degrees, by dividing by the number of unknowns on each
cell. The resulting number of cells is multiplied by the
number of SIMD lanes in the instruction set in order to
employ vectorization across elements (Kronbichler and
Kormann, 2012). For higher degrees (p ≥ 4), at least two
SIMD groups of cells are used.

Depending on the number of SIMD lanes, the number of
vectors accessed in the “pre” and “post” stages, as well as
the additional data access for the matrix-free integrals, the
criterion given by equation (9) leads to a few thousands to
tens of thousands of double-precision values corresponding
to up to few hundreds of kB of data. This fits well within
modern level-2 or level-3 caches, which is why no addi-
tional tuning has been performed.

We have integrated the proposed algorithm into deal.II
(Arndt et al., 2020a). It allows users to perform a “pre” and
“post” operation during any matrix-free loop by
providing—additionally to the cell operation—appropriate
anonymous functions in the style of

vmult(dst, src) := loop(dst, src, op cell, op pre, op post)

Since the operation op_cell, which contains the specifics of
the considered PDE/physics, is interchangeable, our ap-
proach is modular and the proposed algorithms are easily
applicable to other PDEs—not just those considered in this
publication. For CG, we provide off-the-shelf im-
plementations of op_pre and op_post.

5.3. Numbering of unknowns

The second ingredient is to minimize the number of ranges
with a high number of cell batches between the first and last
access in the matrix-free loop. As seen from Figure 3,
unknowns located on shared vertices, edges, and faces all
have the potential to reach over long distances. This effect is
exacerbated when working on blocks of 64 unknowns,
because a single entry out of 64 can lead to a delay of the
“post” operation. It is therefore crucial to develop a suitable
cell traversal and numbering of unknowns. The cell tra-
versal should aim for a high volume-to-surface ratio of the
cell batches, because all unknowns located inside the cell
batch have an optimal pre-post distance. In this work, a
Morton space-filling curve is used for the partitioning of

elements among the processes (Bangerth et al., 2011;
Burstedde et al., 2011) and for the process-local mesh
traversal.

Given the mesh traversal, unknowns are enumerated in
the sequence of the following four steps, see also the il-
lustration in Figure 4:

· In the first step, all unknowns touched only by a
single cell batch are enumerated following the or-
dering of the cells. Except for reaching the next
multiple of 64, this group will have a minimal dis-
tance of one between the “pre” and “post” phase.

· Next, the enumeration is continued on the unknowns
touched by several batches, but not in contact with
remote MPI processes. Here, some ranges will have a
high distance, whereas others can still be completed
reasonably close after the start.

· In the third step, the unknowns owned locally, but re-
quested by remote MPI ranks, are assigned. These un-
knowns will not profit from overlap between the “pre”
and “post” steps, because the “pre” step needs to be done
before the initial MPI_Isend command, whereas the
“post” step comes after the finalMPI_Recv command. A
contiguous numbering reduces the ranges of this unfa-
vorable part of the vector to a minimum, besides also
facilitating the pack/unpack operations.

· Unknowns that are subject to constraints (not shown
in Figure 4), such as Dirichlet boundary conditions,
will not receive contributions from the matrix-free
integrals with matrix A representing a homogeneous
operator. If they are kept in the linear system, like in
the implementation of deal.II, they are appended at

Figure 4. Illustration of the numbering of degrees of freedom for
a 2D setup with polynomial degree p = 3. Cells are grouped
together into batches of 6 cells and the interior unknowns are
numbered first (highlighted by green-shaded boxes). The second
set of numbers are unknowns located on more than one cell
batch (not marked). The third set consists of unknowns that need
to be exchanged with remote MPI processes (orange shades).

Kronbichler et al. 11

the end of the locally owned unknowns and updated
during the last cell batch.

Furthermore, the numbering is set up to ensure contig-
uous numbers of multiple unknowns associated with each
vertex, edge, face, and volume, in order to reduce the
memory for index storage from 3 (p + 1)3 numbers per cell
to 33 numbers (for consistently oriented meshes). This re-
duces the memory requirements of metadata, increases data
locality and effectiveness of prefetching as well as allows
for packed load operations.

Figure 5 visualizes the benefits of the proposed enu-
meration algorithm by plotting the cumulative distribution
function of the liveliness of each subrange. We define
“liveliness” as the number of cell batches processed be-
tween the first and the last access, respectively. As a ref-
erence, we also show the liveliness of the standard
enumeration of degrees of freedom in deal.II (enumeration
in cell order). The reduction of the liveliness is clearly
visible. For the vector Laplacian, around 76%—in contrast
to 54%—of the subranges is processed even in the same
batch of cells. While the possibility to process subranges
within the same batch of cells is not necessary, we can see
similar trends for subranges living less than 10 batches of
cells. This is an important threshold: Each cell batch of 16
cells touches 12 kB of unique data (geometry, indices) for
the matrix-vector product and

16½cells�× 3 � 53
�
unique DoFs

cell

�
× 8

�
byte

double

�
¼ 48½kB�

(10)

of unique data per vector or 208 kB for four vectors and the
preconditioner. For around 10 cell batches, the data thus
reaches the combined size of the L2 and L3 caches per core

on the Intel Skylake architecture. For the scalar Laplacian,
our heuristics use batches of 32 cells instead due to a lower
number of DoFs/cell. This gives slightly better liveliness for
our proposed numbering scheme, whereas the case with
deal.II’s default numbering scheme has even higher live-
liness than in the vector case, as the DoFs with long
liveliness are spread to many blocks of 64 DoFs when the
number of unknowns per cell is lower.

While the consideration of liveliness is a rather theo-
retical approach of quantifying the benefits for combining
the “pre” operation, the matrix-vector product, and the
“post” operation, a clear reduction in the data volume ac-
cessed from RAM can be observed. A cache analysis (see
Figure 6) conducted on the basis of hardware performance
counters using the LIKWID tool (Treibig et al., 2010) re-
veals that the combined version of the PCG algorithm, as
proposed here, only reads 5.7 doubles per degree of freedom
once the capacity of the caches is exceeded. This value is
lower by 4.6 doubles than the value of 10.3 reads for the
naive execution of Algorithm 5. Note that the renumbering
proposed above has further benefits beyond the liveliness
shown in Figure 5, as the proposed scheme leads to a more
linear data access pattern and fewer active streams, im-
proving the effectiveness of hardware prefetching and re-
ducing stress on the translation-lookaside buffers.

5.4. Comparison of CG variants

Since the reduction of the data volume to be transferred
from/to main memory is the key strength of the CG al-
gorithm proposed in this work, we conclude this section by

Figure 5. Liveliness of data in vector ranges for the 3D vector and
scalar Laplacians with polynomial degree p = 5 on 40 MPI
processes. The vector Laplacian involves 297 million DoFs
subdivided into 1229 cell batches on each MPI process, the scalar
Laplacian 99 million DoFs with 615 cell batches.

Figure 6. Comparison of measured memory transfer for 2 × 20
cores of Intel Xeon Gold 6230 for standard and combined
versions of Algorithm 5.

12 The International Journal of High Performance Computing Applications 0(0)

comparing the measured read and write data volumes of
the basic CG, pipelined CG and s-step CG algorithms
(Algorithms 1–3, with loop fusion applied where possible)
with the results of the proposed combined Algorithms 4
and 5.

Table 1 shows the predicted memory read and write
transfer volumes in different regions of the CG versions. In
the proposed combined CG variants, we assume that the
reuse of memory reads allows vectors to be read only once
across the iteration of the algorithm and, as a consequence,
we do not separate estimates of the vector access regions
and of the matrix-vector product.

Figure 7 presents both the estimated and measured
averaged values of a complete iteration, derived from ex-
periments with 100 iterations. The cost of a single matrix-
vector product (“mat-vec”) is 3.0 double data reads and 1.3
double data writes, which is slightly higher than the the-
oretical expectation (2.0/1.0) due to non-perfect caching and
loading of the geometry data. Since the optimization of the
memory transfer of this portion of the algorithm is not the
focus of the current work, we use the measured values of
the matrix-vector multiplication as a baseline transfer also
for the CG algorithms.

In Figure 7, one can see that the measured values
match well with the predicted ones. Furthermore, it is
clear that while the amount of data to be written by the
combined versions is comparable with the s-step version,
they read up to 5 doubles less data from RAM compared
both to the pipelined and the s-step CG schemes. Given
the considerations in the previous subsection, this im-
provement is expected, since a large fraction of the vector
entries accessed during the “pre” operation remains in
caches until they are read again during the “post”
operation.

Compared to the theoretical transfer of 4.8 doubles per
degree of freedom, the excess transfer in the combined
preconditioned method can be explained to a good extent
by the liveliness in Figure 5 and the data-in-flight sug-
gested by equation (10): 13% of vector entries have a
liveliness of 10 or more cell batches, which can be ex-
pected to give 2 additional reads between the “pre” op-
eration and the matrix-vector product as well as a transfer
of 3:3 doubles to the “post” operation for the respective
part of the vector. This explains 0.7 out of the 0.9 excess
reads of doubles per DoF.

Furthermore, it is worth noting that the cost of the non-
preconditioned and of the Jacobi-preconditioned variant of
the proposed CG algorithm is very close, underlining that
the benefit is even clearer in the preconditioned case.

In the next section, we evaluate the influence of the
reduced access to RAM and the reduced number of global
reductions on the throughput of CG algorithms for dif-
ferent scenarios of high-order matrix-free finite-element
methods.

6. Numerical results

In Sections 4–5, we have proposed techniques that reduce
the access to main memory during CG iterations. Since
reducing the memory access is only a means to the

Table 1. Summary of the modeled ideal memory transfer of
vector access regions (see also the annotations in Algorithms 1–5)
and matrix-vector multiplication for different CG variants.

vector access mat-vec

Read Write Read Write

CG 9 3 2 1
Pipelined CG 7 6 2 1
s-step CG 5 + 4/s 1 + 2/s 2 1
Combined CG – – 3.5 3.5
PCG 13 4 2 1
Combined PCG – – 3.83 3.5

Figure 7. Comparison of measured and estimated memory
transfer for various methods on 2 × 20 cores of Intel Xeon Gold
6230 and 108 DoFs, using the measured values of the matrix-
vector multiplication as a baseline transfer.

Kronbichler et al. 13

application goal of increasing the “throughput,” the CG and
PCG variants for different numbers of compute nodes are
evaluated in the following, including some variations of the
benchmark and the behavior for different hardware. Simi-
larly to Section 5.4, basic loop fusion is applied in Algo-
rithms 1–3 during evaluation.

6.1. Node-level performance

Figure 8 shows the throughput on a single compute node for
the different CG variants (no preconditioner) as well as the
preconditioned (PCG) case with a diagonal preconditioner. For
small sizes, the throughput is largely similar between the
methods, given that the matrix-vector product is the domi-
nating cost and fast caches can absorb the various vector access
patterns. As anticipated by the memory transfer analysis from
Section 5.4, the picture changes when going to larger sizes,
where the memory-transfer-efficient combined variants are
significantly faster. The advantage is particularly impressive
considering that the proposed CG and PCG variants, running
at 2.36 and 2.13 billion DoFs/s for the largest sizes, are
separated from any other method by a larger gap than what is
observed between the best and worst of the remaining
schemes, the s-stepCGmethod (s= 6)with 1.46 billionDoFs/s
and the preconditioned CG scheme with 0.98 billion DoFs/s.

The mix of memory-intensive operations on vectors and
the arithmetically heavy matrix-vector product makes the
throughput slightly deviate from the memory-transfer pre-
dictions of Figure 7. For example, the throughput of the
combined CG scheme of 2.36 billion DoFs/s corresponds to
an average memory transfer of around 170 GB/s aggregated
over the whole CG solver, whereas the s-step method with
1.46 billion DoFs/s involves an average transfer of 145 GB/s.
While neither of the two variants saturates the memory

bandwidth on the present architecture, the achieved band-
width demonstrates an additional benefit of our CG im-
plementation besides the lower memory transfer: Fusing
vector operations into an arithmetic-heavy matrix-vector
product allows to use spare memory bandwidth, leading to
a better distribution of the memory transfer.

Figure 8 also shows the throughput of the matrix-vector
product alone as a point of reference. As its throughput is
20–30% higher than that of the proposed merged variants,
without the latter fully saturating the available memory
bandwidth, we suppose that further performance im-
provements could be gained in the proposed algorithms by
suitable data prefetching. Note that the slight oscillations in
throughput are caused by differences in the amount of data
exchange when cells are divisible by 48 or 64 as discussed
before.

6.2. Scalability on up to 3072 nodes

Figure 9 shows the throughput for different CG and PCG
variants on 512 compute nodes. The plot scales the achieved

Figure 8. Throughput over the problem size on a single Intel
Xeon Platinum 8174 node for the different CG variants.

Figure 9. Throughput over the problem size per node (top) and
throughput over latency (bottom) on 512 nodes of Intel Xeon
Platinum 8174 (24,576 MPI ranks) for various formulations.

14 The International Journal of High Performance Computing Applications 0(0)

throughput by the number of nodes, which allows a direct
comparison with Figure 8. It can be seen that the behavior
for large sizes is similar to the single-node case, with a slight
loss of around 5–10% in the parallel efficiency due to inter-
node communication. For intermediate sizes n ∼ 106 per
node, however, there is a pronounced difference. In this
regime, the timings of a single iteration are in the range of
the communication cost in terms of a global reduction,
canceling parts of the cache effect.

The experiments show that the proposed combined CG
variants achieve a similar performance for small sizes as the
pipelined and s-step methods, despite the latency optimi-
zation of the latter methods. This can be explained by the
number of MPI_Allreduce calls per iteration, which are one
for both the combined CG method and the pipelined CG
method (albeit overlapped with the matrix-vector product
for the latter), whereas the s-step method with s = 6 results in
an average of 0.5 global reductions per iteration. The scaling
limit becomes even clearer when plotting the measured
throughput over the time consumed by a single CG iteration
in the lower panel of Figure 9, directly showing the lowest
possible iteration time. While the CG and PCG methods are
slower due to two and three global reductions per iteration,
respectively, all other methods take around 1.3 × 10�4

seconds as a minimum time, which is caused by the global
reduction combined with a scaling limit of around 8 × 10�5

seconds for the matrix-vector product.
In Figure 10, the throughput on 3072 nodes against the

time of a single CG iteration is shown. By comparing with
the result on 512 nodes (dotted lines), a slight loss in
throughput for larger sizes can be seen, corresponding to a
small reduction in parallel efficiency for weak scaling. Near
the strong scaling limit in the left part of the figure, an

increase in the minimal time can be observed, which is due
to the higher cost of the global reductions on a larger scale.
However, the increase is similar between the proposed
combined PCG algorithm and the baseline methods. More
importantly, the combined CG algorithm with precondi-
tioner achieves a throughput that is 35–40% higher than the
unpreconditioned s-step method for large sizes, confirming
the beneficial behavior of the proposed variant.

6.3. Benchmark variations

In the following, we will consider variants of the benchmark
introduced in Section 2. For the sake of simplicity and given the
results from the previous subsection,we concentrate on the basic
PCG algorithm and the proposed combined PCG algorithm.

Figure 11. Throughput over the problem size on four nodes of
Intel Xeon Platinum 8174 (top) and on one node of 2 × 64 core
Advanced Micro Devices Inc. (AMD) Epyc 7742 (bottom) for the
BP4 benchmark for different polynomial degrees p, all with
quadratic geometry representation and nq = (p + 2)3 quadrature
points.

Figure 10. Throughput over the problem size per node (top) and
throughput over latency (bottom) on 3072 nodes of Intel Xeon
Platinum 8174 (147,456 MPI ranks) for various formulations. The
dotted lines show the scaled throughput on 512 nodes (see also
Figure 9).

Kronbichler et al. 15

6.3.1. Variation of the polynomial degree

The results obtained for the polynomial degree p = 5 above are
transferable also to other polynomials degrees, as shown in
Figure 11 (top panel). As examples, p = 1, 3, 5, 7, 9 are
considered. For p = 1, the cost of computations compared to
the number of unknowns is overwhelming, as (p + 2)3 = 27
integration points are used per cell compared to one unique
unknown per cell, leading to a low throughput of 0.4 GDoFs/
sec. This behavior specific to the present matrix-free operator
evaluation behaves as (p + 2)3/p3 and thus gives less work per
unknown for higher degrees, as opposed to sparse matrix-
vector products (Kolev et al., 2021; Kronbichler andKormann,
2012). For higher degrees, we can observe significant
speedups of the proposed PCG variants compared to the basic
PCG, with the highest throughput observed for p = 5. Note that
the maximal achievable throughput decreases for the com-
bined PCG algorithm as the polynomial degree increases
beyond p ≥ 7, as opposed to constant throughput for the basic
PCG scheme. This suggests that the fusion of vector updates
within matrix-vector product as proposed in Section 5 loses its
benefits due to a limited cache size. Caches need not only hold
vector data of increasing size but also larger temporary arrays
for sum factorization (Kronbichler and Kormann, 2019), with
data of 8 elements in flight on the given AVX-512 hardware.
Note that no tuning of the parameters that have been identified
in Section 5 has been performed, relying on simple heuristics.

6.3.2. Variation of the geometric description

According to the discussion in Section 2.2, we have con-
centrated on a tri-quadratic geometry description as a com-
promise between higher-order geometry representation and
high throughput up to now. However, the beneficial behavior
observed is transferable to other geometric descriptions as
well. Figure 12 compares the proposed algorithmwith a basic
PCG scheme on the two extrema of matrix-vector products
from Figure 2, one loading the inverse Jacobian at each
quadrature point and the other using an affine mesh with nq =
p + 1 and constant Jacobians. While we observe a speedup of
2.17 in our base case of a bilinear geometry description, the
solver is 1.57× faster when loading the inverse Jacobians and
even 2.27× faster in the case of an affine mesh. The relatively
low improvement when loading the inverse Jacobians can be
understood by recalling the node-level performance analysis
of Section 6.1 as the matrix-vector product is itself limited by
the memory bandwidth. Therefore, no additional memory
transfer can be hidden behind computations, reducing the
advantage to the reduction in memory transfer only.

6.3.3. Variation of the partial differential equation

As a next set of tests, we consider variants of the benchmark
from Fischer et al. (2020), namely BP1 (scalar mass matrix,

nq = p + 2), BP2 (vectorial mass matrix, nq = p + 2), BP3
(scalar Laplace operator, nq = p + 2), and BP5 (scalar
Laplace operator, nq = p + 1, Gauss–Lobatto quadrature).
Figure 13 compares the throughput of the basic CG algo-
rithm and of the combined version for BP1–BP5. For large

Figure 12. Comparison of throughput of BP4 benchmark with
basic preconditioned CG algorithm and the proposed combined
variant with different implementations of matrix-free operator
evaluation for polynomial degree p = 5 on 2 × 24 cores of Intel
Xeon Platinum 8174.

Figure 13. Throughput over the problem size for the standard
preconditioned CG scheme and the proposed improved version
on #3 nodes of Intel Xeon Platinum 8174 for the CEED
benchmark problems BP1 (scalar mass matrix), BP2 (vector-valued
mass matrix), BP3 (scalar Laplace matrix), BP4 (vector-valued
Laplace matrix), and BP5 (scalar Laplace matrix, collocation
setting with Gauss–Lobatto quadrature on nq = (p + 1)3 points)
according to Fischer et al. (2020).

16 The International Journal of High Performance Computing Applications 0(0)

problem sizes (≥5 × 106 DoFs/node), a clear trend is visible.
While the throughput is limited to 0.8–1.2 GDoFs/sec for
the basic CG scheme, the value is around two times higher
for the proposed algorithms with 1.8–2.3 GDoFs/sec for all
cases. Also note that the BP1, BP2, and BP5 cases with an
arithmetically lighter matrix-vector product saturate the
RAM bandwidth with around 200 GB/s for the combined
CG iteration, whereas BP3 and BP4 reach around 170 GB/s
bandwidth, as seen above.

6.4. Comparison of different hardware

In the following, we present results obtained on a dual-
socket AMD Epyc 7742 CPU and a Nvidia Tesla V100
GPU. The AMD CPU consists of 2 × 64 cores running at
2.25 GHz and uses code compiled for the AVX2 instruction
set extension (4-wide SIMD). This gives an arithmetic peak
performance of 4.61 TFlop/s. The memory configuration
uses 2 × 8 channels of DDR4-3200, resulting in a peak
bandwidth of 410 GB/s and a measured STREAM triad
bandwidth of 290 GB/s. The size of the last-level cache is
4 MB per core or 512 MB in total. The Nvidia V100
provides an arithmetic peak performance of 7.8 TFlop/s, a
peak memory bandwidth of 900 GB/s, and a measured
bandwidth of 720 GB/s. The performance specifications of
the V100 GPU are considerably higher on the GPU com-
pared to the two CPU systems, but with a less sophisticated
cache infrastructure.

6.4.1. Variation of the polynomial degree on Intel
and AMD CPUs

The lower panel of Figure 11 shows the experiment from
Subsection 6.3.1, varying the polynomial degree on an
AMD Epyc 7742 node. Here, we observe a maximal
throughput of 4 GDoFs/sec and maximal speedups of 3×
compared to the baseline CG solver (compared to 2 GDoFs/
sec and 2× speedup in the case of Intel). This difference can
be explained by the higher arithmetic performance of the
AMD system, shifting the performance limit with an
achieved bandwidth of around 270 GB/s closer to the
memory throughput limit of 290 GB/s. An interesting
observation is the fact that the performance does not drop
for the high polynomial degrees p > 5. This can be con-
tributed to larger caches as well as to the AVX2 instruction-
set extension with vectorization aggregating work from only
4 cells together, which increases the benefit of the com-
bination of “pre,” “mat-vec,” and “post” regions.

6.4.2. BP5 on CPU and GPU

As a last experiment, we run Algorithm 5 on a GPU ar-
chitecture. Given the much smaller available cache size

compared to compute units, we have not been able to embed
the vector access regions into the cell-based evaluation of
the matrix-vector product. As a result, we propose to run the
three regions “pre,” “mat-vec,” and “post” each as a separate
kernel with its own kernel call. Furthermore, the matrix-
vector product uses a precomputed final coefficient on the
GPU, due to a different balance between arithmetic per-
formance, available registers, and memory bandwidth
compared to CPUs, see also the analysis in Świrydowicz
et al. (2019). Details on the GPU infrastructure of deal.II can
be found in Ljungkvist (2017) and Kronbichler and
Ljungkvist (2019).

Figure 14 shows the throughput of the regular and the
combined CG method run on a single GPU device on
Summit3 (Nvidia V100). For small problem sizes, a clear
benefit can be observed due to the reduced number of kernel
calls (3). For large problem sizes, a speedup of about 18%
with 2.8 GDoF/s is reached. Note that this represents a
considerably lower improvement, which is due to the
missing overlap between the “pre” and “post” operations.
Nonetheless, Algorithm 5 also improves the throughput for
lower sizes because of fewer kernel launches. Reducing the
number of kernel calls in CG on GPUs has been also the
motivation in Aliaga et al. (2013), Dehnavi et al. (2011),
Rupp et al. (2016), and Chalmers and Warburton (2020).
The contribution by Rupp et al. (2016) was even able to
obtain two kernel calls for vector-matrix-multiplication
implementations based on sparse matrices. However, the
latter concept is not straightforwardly extensible to matrix-
free finite-element computations with contributions to the
result vector being accumulated from computations on
several cells, as discussed in Section 5.1. Since the GPU’s

Figure 14. BP5: Throughput over the problem size on a single
node for the basic preconditioned CG method and the
proposed combined variant.

Kronbichler et al. 17

high-bandwidth memory is limited to 16 GB, the maximum
size of the problem that can be run is considerably smaller
on the GPU.

With the proposed combined CG method, the CPU
results appear more beneficial than the GPU results: Given
that both the memory bandwidth and arithmetic perfor-
mance is considerably higher on a single V100 device than
on the dual-socket Intel and AMD systems, one would
expect best performance on the GPU. However, the Intel
result is only 20% lower than the GPU, and the AMD
result from RAM is 20% better than on the GPU, because
of the reduction of memory transfer between the “pre” and
“post” regions. Furthermore, the CPU reach a higher
throughput for moderate sizes when the data fits into
caches.

7. Conclusions

We have presented an implementation of the conjugate
gradient method that aims to minimize the access to
auxiliary vectors for the case of high-order matrix-free
finite-element implementations with a diagonal pre-
conditioner. The development was motivated by the ob-
servation that matrix-free operator evaluation has become
so fast that AXPY-style vector updates, dot products and
the application of the preconditioner can consume around
two thirds of the total runtime for large problem sizes on
modern hardware, relevant for example for fluid dynamics
applications. The proposed solver relies on interleaving
the vector updates and dot products of the conjugate
gradient iteration with the loop through the mesh elements
of the matrix-vector product, combined with redundant
applications of the preconditioner and summation of
auxiliary quantities to break the dependencies. We have
shown that around 90% of the vector entries in the three
active vectors of a CG iteration can be re-used from fast
cache memory, resulting in a single load and store oper-
ation for each vector.

Both node-level performance analyses and strong/weak-
scaling studies on up to 147,456 CPU cores confirm the
suitability of the proposed algorithm for modern hardware.
Experiments have been conducted on CPU-based (Intel
Xeon Platinum 8174, AMD Epyc 7742) and GPU-based
(Nvidia Tesla V100 GPU) compute nodes for a large variety
of polynomial degrees, geometric descriptions, and PDEs
(scalar/vector-valued mass/Laplace matrix). Compared to a
baseline CG solver as well as optimized pipelined CG and s-
step CG implementations, speedups of 2–3× have been
reported. Besides reducing the memory transfer, the pro-
posed method allows to run memory-heavy vector opera-
tions near the arithmetic-heavy matrix-free operator
evaluation. As a result, new tuning opportunities for im-
plementing matrix-free methods appear, allowing to gain
performance from computing, for example, redundant

geometry information on the fly with reduced memory
transfer, an operation that might not be beneficial for the
matrix-vector product alone.

Future work aims to extend the algorithm towards the
data dependencies imposed by discontinuous Galerkin
discretizations as well as more sophisticated precondi-
tioners with longer-range data dependencies. Further-
more, it would be useful to apply analysis and
transformation tools from compiler constructions to re-
place the current manual dependency management for
interleaving the matrix-vector product with vector up-
dates and inner products by a more automatic approach
based on hardware characteristics, which would make the
application to other algorithms, like BiCGStab or
GMRES, simpler.

Acknowledgments

The authors acknowledge collaboration with Momme Allalen,
Daniel Arndt, Paddy Ó Conbhuı́, Prashanth Kanduri, Karl
Ljungkvist, Alexander Roschlaub, Bruno Turcksin, as well as the
deal. II community.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the Bayerisches Kompetenznetzwerk für
Technisch-Wissenschaftliches Hoch-und Höchstleistungsrechnen
(KONWIHR) through the projects “Performance tuning of high-
order discontinuous Galerkin solvers for SuperMUC-NG” and
“High-order matrix-free finite element implementations with hy-
brid parallelization and improved data locality.” The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing
computing time on the Supercomputer SuperMUC-NG at Leibniz
Supercomputing Centre (LRZ, www.lrz.de) through project id
pr83te.

ORCID iD

Martin Kronbichler  https://orcid.org/0000-0001-8406-835X

Notes

1. https://github.com/kronbichler/mf_data_locality, retrieved on
12 May 2022.

2. https://top500.org/system/179,566/, retrieved on 4 January
2021.

3. https://www.top500.org/system/179,397/, retrieved on 11
February 2021.

18 The International Journal of High Performance Computing Applications 0(0)

References

Aliaga JI, Pérez J, Quintana-Ortı́ ES, et al. (2013) Reformulated
conjugate gradient for the energy-aware solution of linear
systems on GPUs. In: 2013 42nd International Conference on
Parallel Processing. Lyon, France, 01–04 October 2013,
IEEE, pp. 320–329.

Arndt D, Bangerth W, Blais B, et al. (2020a) The deal.II library,
version 9.2. Journal of Numerical Mathematics 28(3):
131–146. DOI:10.1515/jnma-2020-0043. https//dealii.org

Arndt D, Bangerth W, Davydov D, et al. (2021) The deal.II finite
element library: design, features, and insights. Computers &
Mathematics with Applications 81: 407–422. DOI:10.1016/j.
camwa.2020.02.022

Arndt D, Fehn N, Kanschat G, et al. (2020b) ExaDG – high-order
discontinuous Galerkin for the exa-scale. In: Bungartz HJ, Reiz
S, Uekermann B, et al. (eds) Software for Exascale Computing –
SPPEXA 2016–2019, Lecture Notes in Computational Science
and Engineering 136. Cham: Springer International Publishing,
189–224. DOI:10.1007/978-3-030-47956-5_8

Bangerth W, Burstedde C, Heister T, et al. (2011) Algorithms and
data structures for massively parallel generic adaptive finite
element codes. ACM Transactions on Mathematical Software
38: 1–28. DOI:10.1145/2049673.2049678

Bauer S, Drzisga D, Mohr M, et al. (2018) A stencil scaling
approach for accelerating matrix-free finite element im-
plementations. SIAM Journal on Scientific Computing 40(6):
C748–C778. DOI:10.1137/17m1148384

Brown J (2010) Efficient nonlinear solvers for nodal high-order
finite elements in 3D. Journal of Scientific Computing 45(1-
3): 48–63. DOI:10.1007/s10915-010-9396-8

Burstedde C, Wilcox LC and Ghattas O (2011) p4est: scalable
algorithms for parallel adaptive mesh refinement on forests of
octrees. SIAM J. Sci. Comput 33(3): 1103–1133. DOI:10.
1137/10079163. http://p4est.org

Chalmers N and Warburton T (2020) Portable high-order finite
element Kernels I: streaming operations. preprint ArXiv:
2009.10917.

Charrier DE, Hazelwood B, Tutlyaeva E, et al. (2019) Studies on
the energy and deep memory behaviour of a cache-oblivious,
task-based hyperbolic PDE solver. The International Journal
of High Performance Computing Applications 33(5):
973–986. DOI:10.1177/1094342019842645

Chronopoulos AT and Gear CW (1989) S-step iterative methods
for symmetric linear systems. Journal of Computational and
Applied Mathematics 25(2): 153–168. DOI:10.1016/0377-
0427(89)90045-9

Cornelis J, Cools S and Vanroose W (2018) The communication-
hiding conjugate gradient method with deep pipelines. ArXiv
e-prints 1801.4728v3.

Dehnavi MM, Fernández DM and Giannacopoulos D (2011)
Enhancing the performance of conjugate gradient solvers on
graphic processing units. IEEE Transactions on Magnetics
47(5): 1162–1165.

Demkowicz L, Oden J and Rachowicz W (1990) A new finite
element method for solving compressible Navier–Stokes
equations based on an operator splitting method and h-p
adaptivity. Computer Methods in Applied Mechanics and
Engineering 84(3): 275–326. DOI:10.1016/0045-7825(90)
90081-v

Deville MO, Fischer PF and Mund EH (2002) High-Order
Methods For Incompressible Fluid Flow, Vol. 9. Cam-
bridge: Cambridge University Press.

Eisenstat SC (1981) Efficient implementation of a class of pre-
conditioned conjugate gradient methods. SIAM Journal on
Scientific and Statistical Computing 2(1): 1–4. DOI:10.1137/
0902001

Eller PR, Hoefler T and Gropp W (2019) Using performance
models to understand scalable Krylov solver performance at
scale for structured grid problems. In: Proceedings of the
ACM International Conference on Supercomputing. Phoenix,
AZ, June 26-28, 2019: ACM. DOI:10.1145/3330345.
3330358. URL DOI: 10.1145/3330345.3330358

Fehn N, Wall WA and Kronbichler M (2018) Efficiency of high-
performance discontinuous Galerkin spectral element
methods for under-resolved turbulent incompressible flows.
International Journal for Numerical Methods in Fluids 88(1):
32–54. DOI:10.1002/fld.4511

Fischer P, Kerkemeier S, Peplinski A, et al. (2021) Nek5000 Web
page. https://nek5000.mcs.anl.gov

Fischer P, Min M, Rathnayake T, et al (2020) Scalability of high-
performance PDE solvers. The International Journal of High
Performance Computing Applications 34(5): 562–586. DOI:
10.1177/1094342020915762

Ghysels P and Vanroose W (2014) Hiding global synchroni-
zation latency in the preconditioned conjugate gradient
algorithm. Parallel Computing 40(7): 224–238. DOI:10.
1016/j.parco.2013.06.001 7th Workshop on Parallel Ma-
trix Algorithms and Applications.

Grigori L and Tissot O (2019) Scalable linear solvers based on
enlarged krylov subspaces with dynamic reduction of search
directions. SIAM Journal on Scientific Computing 41(5):
C522–C547.

Guermond JL, Maier M, Popov B, et al. (2021) Second-order
invariant domain preserving approximation of the com-
pressible Navier–Stokes equations. Computer Methods in
Applied Mechanics and Engineering 375: 113608. DOI:10.
1016/j.cma.2020.113608

Hager G and Wellein G (2011) Introduction to High Performance
Computing for Scientists and Engineers. Boca Raton: CRC
Press.

Kempf D, Heß R, Müthing S, et al. (2021) Automatic code
generation for high-performance discontinuous Galerkin
methods on modern architectures. ACM Transactions on
Mathematical Software 47(1): 1–31. DOI:10.1145/3424144

Kolev T, Fischer P, Min M, et al. (2021) Efficient exascale
discretizations: High-order finite element methods. The
International Journal of High Performance Computing

Kronbichler et al. 19

Applications 35(6): 527–552. DOI:10.1177/
10943420211020803

Krank B, Fehn N, Wall WA, et al. (2017) A high-order semi-
explicit discontinuous Galerkin solver for 3D incompressible
flow with application to DNS and LES of turbulent channel
flow. Journal of Computational Physics 348: 634–659. DOI:
10.1016/j.jcp.2017.07.039

Kronbichler M and Allalen M (2018) Efficient high-order dis-
continuous Galerkin finite elements with matrix-free im-
plementations. In: Bungartz HJ, Kranzlmüller D, Weinberg V,
et al. (eds) Advances and New Trends in Environmental In-
formatics. Cham: Springer, pp. 89–110. DOI:10.1007/978-3-
319-99654-7_7

Kronbichler M, Diagne A and Holmgren H (2018) A fast mas-
sively parallel two-phase flow solver for microfluidic chip
simulation. The International Journal of High Performance
Computing Applications 32(2): 266–287. DOI:10.1177/
1094342016671790

Kronbichler M and Kormann K (2012) A generic interface for
parallel cell-based finite element operator application.
Computers and Fluids 63: 135–147. DOI:10.1016/j.
compfluid.2012.04.012

Kronbichler M and Kormann K (2019) Fast matrix-free evaluation
of discontinuous Galerkin finite element operators. ACM
Transactions on Mathematical Software 45(3): 1–40. DOI:
10.1145/3325864

Kronbichler M and Ljungkvist K (2019) Multigrid for matrix-free
high-order finite element computations on graphics proces-
sors. ACM Transactions on Parallel Computing 6(1): 1–32.
DOI:10.1145/3322813

Kronbichler M andWall WA (2018) A performance comparison of
continuous and discontinuous Galerkin methods with fast
multigrid solvers. SIAM Journal on Scientific Computing
40(5): A3423–A3448. DOI:10.1137/16M110455X

Ljungkvist K (2017) Matrix-free finite-element computations on
graphics processors with adaptively refined unstructuredmeshes.
In: HPC ’17: Proceedings of the 25th High Performance
Computing Symposium. San Diego, CA, USA, June 26-28,
2019: Society for Computer Simulation International, pp. 1–12.

Lockhart S, Bienz A, Gropp W, et al. (2022) Performance analysis
and optimal node-aware communication for enlarged con-
jugate gradient methods. arXiv preprint arXiv:2203.06144.

Malas TM, Hager G, Ltaief H, et al. (2017) Multidimensional
intratile parallelization for memory-starved stencil compu-
tations. ACM Transactions on Parallel Computing 4(3):
1–32. DOI:10.1145/3155290

MehriDehnavi M, El-Kurdi Y, Demmel J, et al. (2013)
Communication-avoiding Krylov techniques on graphic
processing units. IEEE Transactions on Magnetics 49(5):
1749–1752. DOI:10.1109/TMAG.2013.2244861

Moxey D, Amici R and Kirby M (2020) Efficient matrix-free high-
order finite element evaluation for simplicial elements. SIAM
Journal on Scientific Computing 42(3): C97–C123. DOI:10.
1137/19m1246523

Munch P, Kormann K and Kronbichler M (2021) hyper.deal: an
efficient, matrix-free finite-element library for high-
dimensional partial differential equations. ACM Transac-
tions on Mathematical Software 47(4): 1–34. DOI:10.1145/
3469720

Naumov M (2016) S-step and communication-avoiding iterative
methods. Technical Report NVR-2016-003. Santa Clara, CA:
NVIDIA.

Orszag SA (1980) Spectral methods for problems in complex
geometries. Journal of Computational Physics 37(1): 70–92.
DOI:10.1016/0021-9991(80)90005-4

Patera AT (1984) A spectral element method for fluid dynamics:
laminar flow in a channel expansion. Journal of Computa-
tional Physics 54(3): 468–488. DOI:10.1016/0021-9991(84)
90128-1

Rupp K, Weinbub J, Jüngel A, et al. (2016) Pipelined iterative
solvers with kernel fusion for graphics processing units. ACM
Transactions on Mathematical Software 43(2): 11:1–11:27.
DOI:10.1145/2907944

Saad Y (1985) Practical use of polynomial preconditionings for the
conjugate gradient method. SIAM Journal on Scientific and
Statistical Computing 6(4): 865–881. DOI:10.1137/0906059.

Solomonoff A (1992) A fast algorithm for spectral differentiation.
Journal of Computational Physics 98(1): 174–177. DOI:10.
1016/0021-9991(92)90182-X

Sun T, Mitchell L, Kulkarni K, et al. (2020) A study of vectori-
zation for matrix-free finite element methods. The Interna-
tional Journal of High Performance Computing Applications
34(6): 629–644. DOI:10.1177/1094342020945005

Świrydowicz K, Chalmers N, Karakus A, et al. (2019) Acceler-
ation of tensor-product operations for high-order finite ele-
ment methods. The International Journal of High
Performance Computing Applications 33(4): 735–757. DOI:
10.1177/1094342018816368

Treibig J, Hager G and Wellein G (2010) LIKWID: a light-
weight performance-oriented tool suite for x86 multicore
environments. In: 2010 39th International Conference on
Parallel Processing Workshops. San Diego, CA, USA, 13-
16 September 2010, pp. 207–216. DOI:10.1109/ICPPW.
2010.38

Tufo HM and Fischer PF (1999) Terascale spectral element al-
gorithms and implementations. In: Proceedings of the 1999
ACM/IEEE conference on Supercomputing. Portland, OR,
USA, 13-19 November 1999: ACM, p. 68. DOI:10.1109/SC.
1999.10035

Author biographies

Martin Kronbichler is a Professor at University of Augs-
burg, Germany. He holds a PhD degree in scientific com-
puting with specialization in numerical analysis from
Uppsala University, Sweden (2012). His research interests
include high-order finite element methods for flow problems
with matrix-free implementations, efficient numerical linear

20 The International Journal of High Performance Computing Applications 0(0)

algebra, and their parallel and high-performance im-
plementation on emerging exascale hardware using generic
numerical software.

Dmytro Sashko is a PhD student at The University of
Queensland. His research interests lie in the fields of
computational fluid dynamics, high-performance comput-
ing and software development.

Peter Munch is a research associate and PhD student at
Helmholtz-Zentrum Hereon and University of Augsburg.
He is one of the principal developers of the open-source
finite-element library deal.II. His research interests lie in the
fields of high-performance computing, scientific software
development, computational fluid mechanics, and compu-
tational plasma physics—with a focus on matrix-free
methods, software design, and iterative solvers.

Kronbichler et al. 21

dummy

Paper II

Efficient Application of Hanging-Node
Constraints for Matrix-Free High-Order
FEM Computations on CPU and GPU

Peter Munch1,2(B), Karl Ljungkvist3, and Martin Kronbichler3

1 Helmholtz-Zentrum Hereon, Geesthacht, Germany
peterrmuench@gmail.com

2 Technical University of Munich, Munich, Germany
3 Uppsala University, Uppsala, Sweden

Abstract. This contribution presents an efficient algorithm for resol-
ving hanging-node constraints on the fly for high-order finite-element
computations on adaptively refined meshes, using matrix-free implemen-
tations. We concentrate on unstructured hex-dominated meshes and on
multi-component elements with nodal Lagrange shape functions in at
least one of their components. The application of general constraints is
split up into two distinct operators, one specialized in the hanging-node
part and a generic one for the remaining constraints, such as Dirich-
let boundary conditions. The former implements in-face interpolations
efficiently by a sequence of 1D interpolations with sum factorization
according to the refinement configuration of the cell. We discuss ways
to efficiently encode and decode such refinement configurations. Further-
more, we present distinct differences in the interpolation step on GPU
and CPU, as well as compare different vectorization strategies for the
latter. Experimental comparisons with a state-of-the-art algorithm that
does not exploit the tensor-product structure show that, on CPUs, the
additional costs of cells with hanging-node constraints can be reduced
by a factor of 5–10 for a Laplace operator evaluation with high-order
elements (k ≥ 3) and affine meshes. For non-affine meshes, the costs for
the application of hanging-node constraints can be completely hidden
behind the memory transfer. The algorithm has been integrated into the
open-source finite-element library deal.II.

Keywords: Adaptively refined meshes · Finite element methods ·
High order · Hanging-node constraints · Matrix-free operator
evaluation · Node-level optimization · SIMD vectorization · Manycore
optimizations

This work was supported by the Bayerisches Kompetenznetzwerk für Technisch-
Wissenschaftliches Hoch- und Höchstleistungsrechnen (KONWIHR) through the
projects “Performance tuning of high-order discontinuous Galerkin solvers for
SuperMUC-NG” and “High-order matrix-free finite element implementations with
hybrid parallelization and improved data locality”. The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercomputer SuperMUC-NG at
Leibniz Supercomputing Centre (LRZ, www.lrz.de) through project id pr83te.

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 133–152, 2022.
https://doi.org/10.1007/978-3-031-07312-0_7

134 P. Munch et al.

Fig. 1. The “rising-bubble” benchmark in 2D as an example of a simulation using
AMR: left) velocity contour and zero level-set isoline and right) mesh resolving the
resulting surface-tension forces at the interface accurately. The results have been
obtained with the open-source two-phase solver adaflo [12].

1 Introduction

Matrix-free high-order finite element methods (FEM) are used to efficiently
solve different types of partial differential equations (PDE) with applications
in fluid mechanics [8,11], solid mechanics [7], mesh smoothing [1], or computa-
tional plasma physics [21]. The applicability of matrix-free methods to massively
parallel computers has been demonstrated multiple times in the past [9].

In order to reduce the computational costs, one can adaptively refine meshes
(AMR) to concentrate the work on the most relevant areas of the computa-
tional domain, where, e.g., the solution has high gradients or discontinuities
(see Fig. 1). One of the ways to refine meshes, the non-conforming refinement
strategy, refines cells independently by replacing parent cells by children cells
(octants for hexahedral cells) and results in the occurrence of hanging nodes
(see Fig. 2a). In order to guarantee the continuity, i.e., H1 conformity, of the
tentative solution at these places, hanging-node constraints have to be applied
[25]. Although not strictly needed, many codes limit the difference in refinement
of neighboring cells to one (1-irregular mesh), since a more abrupt transition in
most cases does not lead to a significant reduction of time to solution to justify
the implementation complexity.

Simulations with hanging nodes need iterative solvers that can cope with
these nodes in a robust manner (e.g., geometric multigrid methods [13,20]) and
algorithms to apply hanging-node constraints efficiently. Since matrix-free meth-
ods need to interpolate the constraints in each operator evaluation of each iter-
ation, the efficient application of hanging-node constraints is a crucial HPC
ingredient for the fast solution of PDEs with FEM on adaptively refined meshes
and the core of the present publication.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 135

hanging node

x0

x1

x2 child/octant

parent

(a) Mesh

constrained face

constrained edge

constraining face

constraining edge

constrained DoF

constraining DoF

(b) Degrees of freedom

proc i

compress

proc j

update ghost values

owned DoF not owned DoF

(c) Communication

Fig. 2. Definition of the most important terms of hanging-node constraints on a hex-
ahedral mesh, incl. the communication pattern between two processes i < j, with one
possessing only one unrefined cell and the other all children of a cell.

1.1 Matrix-Free Operator Evaluation

In this work, we consider matrix-free implementations for general meshes, which
compute the integrals underlying a finite-element discretization on the fly. Here,
the operator evaluation performs a loop over all cells and applies the effect of
element stiffness matrices on a vector with the following basic steps [14]:

v = A(u) =
∑

e

GT
e ◦ CT

e ◦ S̃T
e ◦ De ◦ Se ◦ Ce ◦ Ge ◦ u. (1)

In the first step, the degrees of freedom (DoFs) relevant for each cell e are gath-
ered by Ge from the global source vector u. In the remainder of this study, these
unknowns are called cell-relevant DoFs. The application of Ce interpolates from
these cell-relevant DoFs to the cell-local values ue,j in the polynomial expansion

of the finite-element solution uh|e =
∑

j ϕ
(e)
j ue,j , consistent with all constraints

due to hanging nodes and boundary conditions. Subsequently, values and/or
gradients of uh are evaluated at the quadrature points via Se and the computed
quantities are processed on each quadrature point by De. The application of S̃T

e

represents the multiplication by the finite-element test functions and the summa-
tion over quadrature points. For simplicity of notation, we assume a symmetric
(self-adjoint) PDE operator with S̃e = Se in this work. Finally, Ce and Ge are
applied in reverse order during multiplication by the finite-element test functions
and the results are added into the global destination vector v.

The operator Ge is a Boolean matrix (DoF map) representing indirect
addressing into the vectors u and v. In the past decades, significant efforts went
into optimizing the evaluation operator Se. In particular, the exploitation of the
structure of the shape functions and quadrature points allows replacing a gen-
eral dense interpolation matrix by more efficient procedures. For example, sum
factorization [19,22] (see Algorithm 1) performs a sequence of 1D interpolation
steps to evaluate vectors at the quadrature points for tensor-product polynomi-
als, reducing the computational complexity from O(k2d) to O(dkd+1) for scalar
Lagrange elements of degree k. On a per-unknown metric, operation (1) with
sum factorization implies an arithmetic complexity O(k) and a memory access
complexity O(1). This makes the approach the most efficient way to compute the

136 P. Munch et al.

Algorithm 1: Function that performs an inplace interpolation from the
expansion coefficients ue,i to the quadrature points by a sequence of 1D
interpolations. On the GPU, the (thread) indices [i0, i1, i2] are given by the
runtime environment and the synchronization between threads in different
parallel foreach regions can be accomplished by an explicit function call.

1 for direction ← 0 to dim do
2 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do

/* interpolate along line (def. by index & direction) */

3 value ← interp matrix[index[direction]]. ∗ data(index, direction)

4 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do
5 data(index) = value

action of a discretized differential operator on vectors for higher-order finite ele-
ments with degree k ≥ 3 on general (deformed) meshes [9,14]. On today’s hard-
ware, the boost in efficiency is primarily due to the reduction in memory access
by skipping a memory-intensive assembled matrix in favor of on-the-fly compu-
tations on cached data. Implementations specialized for CPUs [1,14,15,21] and
GPUs [1,16,18,26] are available in the literature.

Given the nested loop structures with different strides and data dependencies
when interpolating in different directions with sum factorization, automatic vec-
torization leads to poor performance on modern CPUs and explicit outer-loop
vectorization based on intrinsics either within a cell, i.e., across DoFs/quadrature
points, or across cells, with each vector lane processing another cell, is neces-
sary [15]. The latter is assumed for the CPU implementation, whereas in a GPU
implementation, which runs parallel “threads” in a team, a thread works on an
individual DoF within cells. Note that the algorithms and performance translate
similarly to other alternatives [26], making the conclusions of this publication
generic.

1.2 Application of Constraints

The constraint operator Ce relates cell-local DoFs to cell-relevant DoFs. Cell-
local DoFs can be either constrained or not (◦ vs. • in Fig. 2b). Constrained DoFs
depend on constraining DoFs in the form of affine combinations xi = Cijxj + bi

with possible inhomogeneity b. Examples of constraints are Dirichlet bound-
ary conditions, periodic boundary conditions, and hanging-node constraints.
Although C is generally sparse and can be efficiently stored in compressed row
storage (CRS) format, it becomes locally dense for certain constraint types. For
example, hanging-node constraints on faces relate all ndofs per face constrained
DoFs of the subface on the fine side to the same number of constraining DoFs
on the coarse side, see Fig. 2b. For the sake of brevity, we will call faces with
DoFs with hanging-node constraints “constrained faces”; in a similar way, we will
use the terms “constrained edges” and “constraining faces/edges”. For tensor-

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 137

product elements and scalar polynomial elements of degree k, the naive evalu-
ation by a dense matrix of size O(n2

dofs per face) implies memory and arithmetic

costs of O(k2(d−1)). These costs become the bottleneck of matrix-free algorithms
of complexity O(dkd+1) for higher k.

1.3 Related Work

The interpolation of data to subcells or subfaces is a common operation in the
context of FEM. For example, geometric multigrid methods [20] need to prolon-
gate and restrict between cells and their children. In the case of discontinuous
Galerkin methods and meshes with hanging nodes, data of neighboring cells have
to be interpolated to subfaces for integration of fluxes on faces [15,17].

The development of adaptive solvers is a highly active field, as evidenced
by the recent publication [23], necessitating advances in fast hanging-node algo-
rithms. Recently, Cerveny et al. [6] presented a global operator C that can handle
arbitrary irregular meshes obtained by anisotropic refinement. Kronbichler and
Kormann [14] proposed a general way to process constraints during matrix-free
loops in the context of FEM by a combined operator (C ◦ G)e. Even though
this approach identifies similar rows in the constraint matrix C to reduce mem-
ory access, it suffers from an exceeding complexity of the naive evaluation at
higher orders (O(k2(d−1))). In the context of spectral element methods [8,10] and
FEM [16,18], a special-purpose hanging-node algorithm for 1-irregular meshes
with only hypercube-shaped cells has been used that relies on the update of the
DoF map Ge and efficient inplace interpolations. While the previous publications
provide a clear understanding of the 2D case, this is not yet the case in 3D, in
particular regarding recent advances in modern hardware, such as SIMD vector-
ization. The main difficulty are the 137 refinement configurations, as opposed to
only 13 cases in 2D, and the appearance of constraints along edges.

1.4 Our Contributions

We present an algorithm to efficiently resolve constraints in the form of Ce and
CT

e of Eq. (1) with hanging-node contributions in the context of matrix-free FEM
on CPUs and GPUs. The algorithm is built on the observation that, for Lagrange
elements, the constraint matrix can be factored into a general-purpose operator
and a special-purpose operator that can exploit the most efficient interpolation
routines, e.g., sum factorization for tensor-product elements, and thus reduce the
computational complexity to O((d−1) ·kd), similarly to the operators developed
in [8,10,16,18]. We give a detailed description of the special-purpose operator in
3D, which is crucial for the efficient implementation of our proposed algorithm.
We assume that 1) the mesh has hypercube-shaped cells, 2) these cells have at
most two children in each direction, and 3) the mesh is 1-irregular.

The algorithm presented in this publication has been integrated into the
open-source C++-based FEM library deal.II [2,3]. The implementation is used
by default in its matrix-free infrastructure; the correctness is checked by several
hundreds of tests.

138 P. Munch et al.

The remainder of this publication is structured as follows. In Sects. 2 and
3, we introduce the algorithm and discuss data structures and implementation
details. In Sect. 4, we present performance results for serial runs and discuss the
benefits of the given algorithm for parallel simulations. The results are obtained
on Intel and AMD CPUs as well as on NVIDIA GPUs. Conclusions are given in
Sect. 5.

2 Algorithm

We split (C ◦ G)e into three contributions (CHN ◦ CGP ◦ G)e with CHN dedicated
to the hanging-node constraints and CGP to the remaining (general-purpose)
constraints. The sequence of these contributions can be chosen arbitrarily. Two
sequences have properties suitable for an HPC implementation and will be used
in the following: (i) CHN

e ◦Ga
e ◦ CGP and (ii) CHN

e ◦ CGP
e ◦Gb

e. Approach (i) applies
the general-purpose constraints on the global vectors and then proceeds with
operations on the element level, gathering the cell-relevant DoFs and apply-
ing the hanging-node constraints on the current cell. In practice, this approach
involves a global pre- and postprocessing step (CGP, (CGP)T) before and after
the matrix-free loop (1). In the literature, it is common to use CGP for the appli-
cation of homogeneous Dirichlet boundary conditions, for which it simplifies to
zeroing out the entries constrained by Dirichlet boundary conditions. We use it
also for more complex types of constraints, such as those constraining the nor-
mal or tangential components of a vector-valued solution. On a GPU, one would
perform the preprocessing step, the matrix-free operator application, and the
postprocessing step sequentially by three kernel calls. Approach (ii) applies the
general constraints after gathering the cell-relevant DoFs within the loop (1).
This approach accesses global vectors only once and operates exclusively on the
fixed-size working set of a cell, assuming that caches are large enough to hold
all cell-local values, which is the case on modern CPUs.

The operator CHN
e independently applies the hanging-node constraints on the

element level. The number of constrained and constraining DoFs is the same,
i.e., size(ue) = size(CHN

e ◦ue). By presorting the indices, this operation becomes
a simple inplace line or face interpolation, which can be handled efficiently, e.g.,
by sum factorization. In approach 1), the presort can be accomplished by replac-
ing the global indices of DoFs on constrained edges/faces by the constraining
counterparts in the DoF map Ga

e . For this operation, one needs to consider the
orientation of the edges/faces within unstructured meshes, for which an extended
version of the algorithm proposed in [24] can be used. In the case of approach
(ii), Gb

e can be constructed by replacing the constrained indices in the DoF map
Ga

e by their constraining counterparts in CGP
e .

Our algorithm can treat components of vectorial elements individually. How-
ever, some components might not be able or might not need to be treated by
the proposed algorithm (e.g., non-nodal elements vs. mixed elements with dis-
continuous Galerkin components). The refinement configuration of a cell and
the information on whether our fast hanging-node-constraint algorithm needs to

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 139

be applied for the given component can be efficiently combined on the fly by a
simple Boolean operation.

3 Implementation Details

In the following, we discuss how to encode the refinement configuration of a
hypercube-shaped cell so that the information can be efficiently decoded during
the interpolation phase. Furthermore, different vectorization strategies for the
interpolation step are presented. Note that, at the time of writing, deal.II falls
back to the general-purpose algorithm for non-hypercube cells on mixed meshes,
which also contain cell shapes like simplices.

3.1 Data Structures

In this subsection, we discuss the data structures of CGP, of (CGP ◦ G)e, and of
CHN

e . By moving the hanging-node constraints to a special-purpose data struc-
ture, the global operator CGP is generally sparse so that a matrix-vector mul-
tiplication with a sparse matrix (as provided by cuSPARSE) is applicable. Data
structures of the merged operator CGP

e ◦Ge for CPUs have been proposed in [14].
They consist of an extended DoF map, indicators of constrained DoFs, and
pointers to the rows of the constraint matrix. In order to minimize memory con-
sumption, the value array of the sparse matrix is only stored for unique rows.

The hanging-node-constraint operator CHN
e requires information regarding

the refinement configuration of each cell and appropriate face-subface interpola-
tion matrices. For tensor-product elements, one only needs to store 1D interpo-
lation matrices to the two 1D subfaces. As a result, we were able to derive—by
exploiting the structure of (CHN ◦ CGP ◦ G)e—an efficient and flexible algorithm
whose memory consumption is O(Ncells) and is independent of the degree k.

3.2 Refinement Configuration

The refinement of a cell relative to the neighboring cells can be described as
a pair (subcell, face) in 2D (not considered in the following) and as a triple
(subcell, face, edge) in 3D. The first entry “subcell” indicates the octant within
the parent cell, the second entry “face” the direction along which constrained
faces (i.e., coarser neighboring cells) appear, and the third entry “edge” the
direction of constrained edges. Note that, if a face is constrained, all its boun-
ding edges are also constrained. Furthermore, we utilize the fact that only one of
the faces/edges along a direction can be constrained as the other side necessarily
belongs to the same leaf in the octree. Figure 3 visualizes all possible values of
the entries of the triple. All 137 resulting valid refinement configurations are:

– the unconstrained case ({(0, 0, 0)}),
– 56 cases with at least one constrained face

{(subcell, face, 0) | 0 ≤ subcell < 8 ∧ 1 ≤ face < 8},

140 P. Munch et al.

0 = 000
su

b
ce

ll
1 = 001 2 = 010 3 = 011 4 = 100 5 = 101 6 = 110 7 = 111

fa
ce

ed
ge

Fig. 3. Depiction of 0 ≤ subcell, face, edge < 8. The latter two refinement-configuration
entries are plotted for subcell = 5. The resulting 137 configurations can be described
by a triple (subcell, face, edge) or 8 bits.

– 56 cases with at least one constrained edge

{(subcell, 0, edge) | 0 ≤ subcell < 8 ∧ 1 ≤ edge < 8},

– and 24 cases in which a face and the edge orthogonal to it are constrained

{(subcell, i, i) | 0 ≤ subcell < 8 ∧ i ∈ {1, 2, 4}}.

The triple could be encoded by a 9-bit integer. Alternatively, one could exploit
the observation that the face and edge entries are either identical or one of them
has the value zero to save a bit and to encode the information as a quadruple
(containing: subcell, whether at least one face is constrained, whether at least
one edge is constrained, non-zero entries of face/edge). The corresponding encod-
ing/decoding routines between the triple (a, b, c) and the quadruple (α, β, γ,
δ) are:

(α, β, γ, δ) ← encode(a, b, c) = (a, b > 0, c > 0, max(b, c))

(a, b, c) ← decode(α, β, γ, δ) = (a, β ? δ : 1, γ ? δ : 1)

3.3 GPU Interpolation

On the GPU, we use an extended version of Algorithm 1 for the application of
hanging-node constraints, as presented in Algorithm 3. During the inplace inter-
polation (see Fig. 4a), threads need to determine whether 1) a DoF is constrained
and if so 2) which 1D interpolation matrix should be used. The information can
be extracted simply with bitwise operations from the refinement configuration,
as shown in Algorithms 2 and 3. Our approach results in threads being idle
during the interpolation if the DoFs processed by those threads are not con-
strained. Nevertheless, it turns out that this approach is very competitive, since
it is approximately as expensive as the interpolation step from the nodal coeffi-
cients ue,j to the quadrature points as they have the same sequence of operations
plus an additional instruction to compute the corresponding masks.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 141

(a) Used on GPU with threads associated with unconstrained DoFs being masked out,
i.e., corresponding threads being idle.

(b) Used on CPU. The interpolations in x0- and x1-direction are simply performed as
in-face interpolations. The interpolation in x2-direction is decomposed in three steps.

Fig. 4. Hanging-node-constraint application via sum factorization for 3D and k = 3
on GPU and CPU for a configuration with coarser neighbors at the right and in front
of the highlighted cell.

3.4 CPU Interpolation

On the CPU, we use a different approach to perform the interpolations without
checks on the DoF level. Motivated by the fact that only the pair (face, edge)
determines the interpolation steps and these steps are additive, we can construct
an algorithm that has a minimal number of if-statements (one switch-statement
for face and one for edge, each with 8 specialized cases) and a limited number of
starting points of faces/edges of the subcell, which can be precomputed at com-
pile time. Figure 4b shows, as an example, the interpolation steps for refinement
configuration (5,3,0). The interpolations in x0- and x1-direction are similar to
the GPU version. In contrast, we decompose the interpolation in x2-direction in
three steps in order to prevent interpolating the values along the shared edges
twice.

For the purpose of vectorization, deal.II provides a wrapper class with a
std::simd-like interface, which is built around a fixed-size array and translates
instructions into the right instruction-set extension [14]. In the vectorization stra-
tegy of deal.II, each lane of the array is associated with a distinct cell so that
each operation on the wrapper class is performed with a single instruction for all
cells in parallel. We will call the collection of cells that are processed at the same
time a “cell batch”. Implementations of operations Se and De only operate on
such vectorized data types; in deal.II, the merged operator CGP

e ◦ Ge performs
the laying out of the data in the right (vectorized, struct-of-arrays) format so
that the input to CHN

e already has this format.

142 P. Munch et al.

Algorithm 2: Function is dof constrained(direction, conf, index) →
bool that returns whether a DoF with index [i0, i1, i2] is constrained in the
given direction for a specified refinement configuration.

1 rotate data structures conf and index to the right by (dim − direction − 1)
2 cell has edge constraint ← conf.edge[2]
3 ∀i ∈ {0, 1}.(cell has face constraint i ← conf.face[i])
4 ∀i ∈ {0, 1}.(dof is on face i ← (conf.subcell[i] ? k : 0) = index[i])
5 if ∃i ∈ {0, 1}.(dof is on face i ∧ cell has face constraint i) then
6 return True ; /* DoF is constrained on face */

7 else if (∀i ∈ {0, 1}.(dof is on face i)) and cell has edge constraint then
8 return True ; /* DoF is constrained on edge */

9 else
10 return False ; /* DoF is not constrained */

Algorithm 3: Function that performs an inplace interpolation by a
sequence of 1D interpolations for constrained DoFs, used on GPU. See
also comments in Algorithm 1.

1 for direction ← 0 to dim do
2 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do
3 interp matrix ← interpolation matrices[conf.subcell[direction]]
4 if is dof constrained(direction, conf, index) then
5 value ← interp matrix[index[direction]]. ∗ data(index, direction)

6 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do
7 if is dof constrained(direction, conf, index) then
8 data(index) = value

However, the cells of a cell batch typically have different refinement config-
urations if no extra measures are taken, making vectorization of the considered
algorithms more complicated. We will consider the following vectorization strate-
gies in Subsect. 4.1: 1) auto: Cells with hanging-node constraints are processed
individually. In this way, we completely rely on optimizing compilers, which is
possible, since all if-statements and loop bounds are constant expressions. Data
accesses from individual lanes of the struct-of-arrays storage of DoF values, while
reading and writing, are necessary. 2) grouping: Cells with the refinement con-
figuration are globally grouped together in a preprocessing step. As a result, all
cells of a cell batch have the same refinement configuration. 3) masking: Here,
we keep the sequence of the cells unmodified as in the case of auto, however,
we process all geometric entities (6 faces and 12 edges) sequentially entity by
entity and check whether they are constrained in any of the lanes of the cell
batch. We apply a mask, e.g., using the instruction vblendvpd with x86/AVX
or vblendmpd with x86/AVX-512 instruction-set extension, in order to only alter
the relevant lanes.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 143

3.5 Costs of Interpolation

We conclude this section by summarizing the number of floating-point opera-
tions that are needed to perform the interpolation for an arbitrary refinement
configuration (subcell, face, edge) in 3D:

K((•, face, edge)) = K(face) + K(edge) = O(k3).

This value is bounded by the costs of the interpolation from the support points
to the quadrature points (K(cell) = 3(k + 1)3(1 + 2k)). The terms are defined
(with | • | counting bits) as:

K(face) =

⎧
⎪⎪⎨
⎪⎪⎩

0 for |face| = 0
K(single face) for |face| = 1

2K(single face) − K(single edge) for |face| = 2
3(K(single face) − K(single edge)) for |face| = 3

and K(edge) = |edge|K(single edge) with K(single edge) = (k + 1)(1 + 2k) and
K(single face) = 2(k + 1)2(1 + 2k), being the costs of the inplace interpolation
of a single edge/face. The formulas evaluated for k = 1, 4 are shown in Table 1.

On the contrary, the arithmetic cost of the general-purpose algorithm for
applying the hanging-node constraints on a single face is O(k4). Both the
hanging-node algorithm and the general-purpose algorithm have—under the
assumption that the 1D interpolation matrices and the compressed constraint
matrix are in cache for moderate k—a memory cost of O(1). As a consequence,
the difference in performance is due to a different number of floating-point oper-
ations and differences in code generation. For the latter, the proposed specialized
algorithm can use the polynomial degree and hence loop lengths as a compile-
time constant, whereas the generic implementation can not, which on its own
causes a 2x-3x difference in performance [15].

4 Experiments and Results

In this section, we investigate the suitability of the proposed algorithm on mo-
dern hardware. As a metric, we use the cost η of a cell that is either edge- or
face-constrained. We define the cost as η = (THN − TNO)/TNO, i.e., the ratio of
the additional time to process a cell with hanging-node constraints and the time
to process a cell without hanging-node constraints. For this purpose, we use two
approaches to determine the value of η independently in Subsects. 4.1 and 4.2.
The code of our experiments can be found online.1

Our experiments perform operator evaluations (also referred to as “matrix-
vector product” or “vmult”) of a scalar Laplace operator with homogeneous
Dirichlet boundaries on two classes of locally refined 3D meshes. The meshes

1 https://github.com/peterrum/dealii-matrixfree-hanging-nodes with the deal.II

master branch retrieved on March 26 2022, with small adjustments to disable the
automatic choice of the vectorization type by the library.

144 P. Munch et al.

Table 1. Number of FLOPs for edge (e) and face (f) constraints as well as for interpo-
lation from solution coefficients ue,i to values at quadrature points (cell). The numbers
in the header indicate the count of constrained faces or edges. The numbers of FLOPs
have been verified with hardware counters.

k 1e+0f 2e+0f 3e+0f 0e+1f 1e+1f 0e+2f 0e+3f cell

1 6 12 18 24 30 42 54 72

4 45 90 135 450 495 855 1215 3375

Table 2. Runtime analysis in terms of memory transfer and GFLOP/s, as measured
with the Likwid tool for k = 4 and affine/non-affine shell mesh (L = 7/6). Run on
Intel Cascade Lake Xeon Gold 6230 (2560 GFLOP/s, 202 GB/s).

No constraints General-purpose algo Hanging-node algo

s GB/s GF/s s GB/s GF/s s GB/s GF/s

Affine 0.028 122 437 0.057 86 252 0.034 107 386

Non-affine 0.016 194 174 0.021 162 149 0.016 191 183

are constructed by refining a coarse mesh consisting of a single cell defined by
[−1,+1]3 according to one of the following two solution criteria: 1) shell: after
L − 3 uniform refinements, perform three local refinement steps with all cells
whose center c is |c| ≤ 0.55, 0.3 ≤ |c| ≤ 0.43, and 0.335 ≤ |c| ≤ 0.39 or 2)
octant: refine all mesh cells in the first octant L times. Figure 5 shows, as
an example, the resulting meshes. Simulations are run with polynomial degrees
1 ≤ k ≤ 6 to cover all cases from low- to high-order FEM.

Unless noted otherwise, the numerical experiments are run on a dual-socket
Intel Xeon Platinum 8174 (Skylake) system of the supercomputer SuperMUC-
NG.2 It supports AVX-512 (8-wide SIMD). The 48 CPU cores run at a fixed fre-
quency of 2.3 GHz, which gives an arithmetic peak of 3.5 TFLOP/s. The 96 GB
of random-access memory (RAM) are connected through 12 channels of DDR4-
2666 with a theoretical bandwidth of 256 GB/s and an achieved STREAM triad
memory throughput of 205 GB/s. We use GCC 9.3.0 as compiler with the flags
-march=skylake-avx512 -std=c++17 -O3. Furthermore, the CPU code uses
the vectorization strategy auto by default, computations are run with double-
precision floating-point numbers and results are reported in 64-bit FLOPs.

4.1 Experiment 1: Serial Simulation

In the first experiment, we execute the program serially to rule out influences
of MPI communication and potential load imbalances. In order to nevertheless
obtain a realistic per-core memory bandwidth, we execute an instance of the
program on all cores of a compute node simultaneously.

2 https://top500.org/system/179566/, received on November 15, 2021.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 145

L = 5 L = 7
octant shell

L #cells HN #cells HN

5 4.7E+3 23.0% 1.2E+3 68.9%
6 3.5E+4 12.2% 6.8E+3 78.4%
7 2.7E+5 6.2% 3.7E+4 69.9%
8 2.1E+6 3.1% 2.7E+5 38.3%
9 1.7E+7 1.6% 2.2E+6 19.3%

Fig. 5. Cross section of the octant geometry (left) and of the shell geometry
(right) simulation for specified number of refinements. In addition, the number of
cells (#cells:=NNO + NHN) and the share of cells with hanging-node constraints
(HN:=NHN/(NNO + NHN)) are given for the considered refinement numbers.

In the context of such serial experiments, the total simulation time is the sum
of the time spent on cells with hanging-node constraints and on cells without
hanging-node constraints: T = NHNTHN+NNOTNO = (NNO+(1+η1)NHN)TNO.
From this formula, we derive an experimental definition of the cost:

η1 = (T/TNO − NNO)/NHN − 1. (2)

The cell counts NNO and NHN are given by the geometry (see Fig. 5), the
total simulation time T can be measured, and the time to process a cell with-
out hanging-node constraints TNO can be approximated by running the si-
mulations artificially without hanging-node constraints with runtime T̂ , i.e.,
TNO ≈ T̂ /(NNO + NHN).

Figures 6a and 6b show the throughput of a single operator application (pro-
cessed number of DoFs per time unit) and the cost η1 for different degrees k in
the shell case for the general-purpose algorithm (all constraints, incl. hanging-
node constraints, are processed by CGP

e) and for the specialized hanging-node
algorithm. As a reference, the throughput of the simulation without application
of any hanging-node constraints is presented. One can observe an overall drop
in throughput by 32–63% in the case of the general-purpose algorithm and by
11–34% in the case of the specialized algorithm. This translates into an increase
in runtime for evaluating the discrete PDE operator on a cell with hanging
nodes by 125–215% and 20–136%, respectively. While the costs are increasing in
the case of the general-purpose algorithm, the costs in the specialized case are
decreasing to a value of approx. 20%. This difference in behaviors is related to
the difference in complexities and to the overhead in the low-degree case k = 1.

Furthermore, Figs. 6a and 6b show the results for (high-order) non-affine
meshes (dashed lines). In order to deform the analyzed geometries, the trans-
formation function xi ← xi + Δ sin(π · xi) with Δ = 10−8 is applied. This
transformation makes the matrix-free cell loops memory-bound in the current
implementation, since the code loads a 3×3 Jacobian matrix for each quadrature
point. In such cases, additional work on cached data can be hidden behind the
memory transfer [15], as is verified to be the case for the additional hanging-node
interpolations in our simulations: for linear elements, the costs of the proposed
implementation are reduced from 136% to 58% and, for all higher degrees, no

146 P. Munch et al.

no constraints general-purpose new HN algorithm affine non-affine

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

·108

affine

non-affine

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

(a) Throughput of 1 vmult

1 2 3 4 5 6
0

1

2

degree k

co
st

η
1

(b) Cost η1

1 (8)
2 (56)
3 (44)
4 (427)
5 (322)
6 (1094)
7 (1446)
8 (698)

(c) # cell batches with # HN lanes

1e+0f (4824)
2e+0f (576)
3e+0f (288)
0e+1f (13536)
1e+1f (648)
0e+2f (5016)
0e+3f (952)

(d) Distribution of ref. configurations

Fig. 6. a–b) Experimental results of the shell simulation on the CPU for degrees
1 ≤ k ≤ 6 (for L = 8/8/8/7/7/6 in the affine case and one less for the non-affine
case). c–d) Hanging-node statistics: count of cell batches with the given number of
lanes with hanging-node constraints (L = 7); distribution of refinement-configuration
types (grouped together by the number of edge and face constraints).

overhead can be observed with η1 ≈ 1%. In contrast, one can still observe costs
of up to 34% in the general-purpose case.

Figure 7a presents the results for the octant case. Since the number of han-
ging nodes is significantly less in this case, the penalty of applying the general-
purpose algorithm leads to a throughput reduction of a mere 7–18%, and, in the
case of the specialized algorithm, the throughput is comparable to the case with-
out hanging nodes. The fact that the cost η1 for processing cells with hanging-
node constraints is similar to the one in the shell case makes us confident that
the definition (2) to measure overhead and the experimental results presented
here are transferable to other meshes and other refinement configurations.

We also analyzed the algorithm with hardware counters (for a broad overview
see Table 2). We could observe an increase in scalar operations both in the case
of the special-purpose and the general-purpose algorithm. While, however, the
additional scalar operations per DoF decrease with increasing k in the case of the
special-purpose algorithm, this is not the case for the general-purpose algorithm.
Furthermore, the special-purpose algorithm can be fed with the required data
from the fast L1 cache, while the general-purpose algorithm needs to access
higher memory levels (incl. main memory) for the entries of the matrix C. In
the case of the special-purpose algorithm, the number of branch mispredictions
per operation decreases for increasing k.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 147

no constraint general purpose new HN algorithm
throughput cost

auto grouping masking
throughput cost

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
·108

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

0

0.5

1

1.5

2

co
st

η
1

(a) Octant

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
·108

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

0

0.2

0.4

0.6

0.8

1

throughput

cost co
st

η
1

(b) Vectorization (shell)

Fig. 7. a) Experimental results of the octant simulation for degrees 1 ≤ k ≤ 6 (for L =
7/7/7/6/6/6). See also the comments in Fig. 6. b) Comparison of experimental results
with different vectorization strategies for an affine shell mesh. Setup as in Fig. 6.

Figure 7b shows throughput and cost η1 for the three vectorization strate-
gies presented in Subsect. 3.4 (auto, grouping, and masking) for the shell

case. One can observe that the strategy grouping can significantly reduce the
value of the cost η1: for degrees k ≥ 2, it appears as if cells with hanging-node
constraints would be similar in cost to regular cells. This is not surprising, since
performing one packed operation in contrast to 5–8 scalar operations is signif-
icantly cheaper (see Fig. 6c regarding the number of lanes with hanging-node
constraints). For low degrees, the reduced costs indeed lead to a (slight) increase
in throughput, compared to the (default) auto strategy. For higher degrees, the
strategy grouping reaches a throughput that is 15% lower than the one of the
strategy auto in the shell case. This is related to the fact that the group-
ing results in discontinuous partitions, which lead—in combination with O(kd)
working sets of the cells during cell integrals—to a worse cache-locality behavior
of the whole matrix-free loop (1) and an increase in cell batches, since a growing
number of lanes might not be filled. The vectorization strategy masking adds
costs by setting up the masks for 18 geometric entities and by increasing the
number of conditional branches in contrast to the two switches in auto. While,
for linear and quadratic elements, these additional costs are dominating, leading
to 96% < η1 < 192%, they amortize and higher throughputs than in the case
of auto are reached for higher degrees (k ≥ 4). Our experiments (not presented
here) have shown that, by switching to single-precision computations and hereby
doubling the number of lanes processed by a cell batch, the turning point towards
the vectorization strategy masking is shifted to lower degrees.

148 P. Munch et al.

general-purpose new HN algorithm w. comm wo. comm

0 1 2 3 4 5 6 7 8
2

3

4

5
·109

η2

weight w

th
ro

u
gh

p
u
t
[D

oF
s/

s]

(a) 1 node (48 cores)

0 1 2 3 4 5 6 7 8
3

4

5

6

7
·1010

η2

weight w

th
ro

u
gh

p
u
t
[D

oF
s/

s]

(b) 16 nodes (768 cores)

Fig. 8. Time of an operator application with either the general-purpose or the hanging-
node algorithm and with communication either enabled or disabled. We used octant

with L = 7 and L = 9 number of refinements as geometry and k = 4.

4.2 Experiment 2: Parallel Simulation

In this experiment, we distribute the mesh and the work among all processes
of a compute node. The time spent on the operator evaluation by process i is
proportional to NNO,i +(1+η)NHN,i with NNO,i and NHN,i, being the number of
cells without and with hanging nodes possessed by that process. The overall time
spent by the whole application is ∼ max

i
(NNO,i+(1+η)NHN,i). If the same num-

ber of cells NNO,i+NHN,i is assigned to each process i and additional costs η � 1
are ignored, this leads to load imbalances and to a decreased total throughput.
In such situations, one would not distribute the number of cells but the work by
assigning each cell a user-specified weight, e.g., the weight of 1.0 to cells without
hanging-node constraints and the weight of w+1 ≥ 1 to cells with hanging-node
constraints. Such weights need to be determined by a tuning process. Small costs
are desirable, on the one hand, as the throughput is acceptable without tuning
of additional parameters and, on the other hand, because other code regions in
the same application might have different—contradicting—requirements for the
weights.

The goal of this experiment is to determine a factor η2 that is given as the
weight w for which the execution time is minimal in the octant case for k = 4.
In the optimal case, the value η2 should be comparable to η1 from the first
experiment.

Figure 8 shows the time of an operator application for different weights w on
1 and 16 compute nodes. As expected, the specialized hanging-node treatment
is able to shift η2 from 130% to 60% and from 230% to 90%. At the same time,
it also reaches overall higher throughputs.

Comparing the values η1 and η2, one can observe that η1 < η2. Our investi-
gations have revealed that this is related to the communication. The matrix-free
operator evaluation (1) updates the ghost values during G and collects partial
results from neighboring processes during a “compress” step in GT . The library
deal.II assigns DoFs to cells/processes in the order of a space-filling curve [4,5];

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 149

Intel (2×24 cores) Nvidia (1 device) AMD (2×64 cores)

1 2 3 4 5 6
0

2

4

6

·109

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

new HN algorithm
no constraints

(a) throughput

1 2 3 4 5 6
0

0.5

1

1.5

η′
1 (Nvidia)

η1 (Nvidia)

degree k

co
st

η
1

(b) cost

Fig. 9. Experimental results of the shell simulation for degrees 1 ≤ k ≤ 6.

in particular, all the leaf children of a cell are assigned to the same process. This
leads to communication patterns, as indicated in Fig. 2c, in which only the con-
straining cells need to send data during the update of the ghost values, while
during the compression step only constrained cells are sending data. In many
cases, constraining and constrained cells are well distributed, but not in the
octant case. This can be verified by turning off the communication (dashed
lines in Fig. 8), for which indeed η1 ≈ η2. We defer the development of an
algorithm for smarter assignment of DoFs to future work.

4.3 Experiment 3: Cross-Platform Validation

In the following, we present the results of parallel experiments for affine shell

meshes for 1 ≤ k ≤ 6 additionally on a dual-socket AMD Epyc 7742 CPU com-
pute node and a single GPU device on Summit3 (Nvidia Tesla V100). The AMD
CPU consists of 2 × 64 cores running at 2.25 GHz and uses codes compiled for
the AVX2 instruction-set extension (4-wide SIMD). This gives an arithmetic
peak performance of 4.61 TFlop/s. The memory configuration uses 2 × 8 chan-
nels of DDR4-3200, resulting in a peak bandwidth of 410 GB/s and a measured
STREAM triad bandwidth of 290 GB/s. The performance specifications of the
V100 GPU in terms of GB/s and GFLOP/s are more than twice as high as
the ones of the two CPU systems (arithmetic peak performance of 7.8 TFlop/s,
peak memory bandwidth of 900 GB/s, and measured bandwidth of 720 GB/s),
but with a less sophisticated cache infrastructure. On the AMD CPU, we use
gcc-7.5.0 as compiler with the flags -O3 -march=znver2 -funroll-loops,
and, on the Nvidia GPU, we use nvcc 11.0.3/gcc 9.1.0 as compiler with the
flags -O2. We have chosen the number of refinements to the maximal memory
capacity of the given hardware. We did not perform any tuning of the weight
parameter w (see Subsect. 4.2) and set its value to zero.

Figure 9a presents the obtained throughput. The AMD system reaches the
highest throughput of around 6 GDoFs/s. Nvidia and Intel show similar maximal

3 https://www.top500.org/system/179397/, retrieved on November 15, 2021.

150 P. Munch et al.

throughputs of around 4 GDoFs/s, with Intel having slight advantages at lower
polynomial degrees. The lower performance of the Intel hardware setup compared
to the AMD setup is mainly related to the different memory bandwidths (205
vs. 290 GB/s).

Figure 9b presents the cost η1 for the three processor types. All of them start
with a high value at low degrees, but reach lower costs (6–25%) for higher degrees
(k ≥ 4). For the Nvidia GPU, we present a second set of results (dashed line) in
Fig. 9b. The reason for this is that the hanging-node algorithm is executed—in
contrast to our expectations—on every cell, even if its refinement configuration
(value “0”) indicates that nothing has to be done (by the warp/block). In such
a case, the definition of the cost (2) does not hold and we, therefore, define
η′
1 = (T − T̂)/T̂ , i.e., as the ratio of the additional time to run a simulation with

hanging-node constraints and the time to run the same simulation artificially
without hanging-node constraints. The values 6% ≤ η′

1 ≤ 24% are reasonable,
but implicate that simulations with any number of cells with hanging-node con-
straints have to pay this overall penalty, even if they only have ≈1% such cells,
as is the situation in the octant case.

5 Conclusions and Outlook

We have presented an algorithm for the efficient evaluation of the continuity
constraints at hanging nodes for matrix-free high-order FEM computations on
unstructured, hex-dominated, mixed meshes and for multi-component elements
that contain a Lagrange element in one of their components. The algorithm splits
up the application of constraints into a hanging-node part and a general part,
using efficient inplace interpolations for the former. For this purpose, the DoF
map of the cells has to be updated and the configurations of cell refinements have
to be determined as well as efficiently encoded and decoded. In 3D, we require
8 bits to encode all 137 possible configurations. The algorithm is applicable
for both CPUs and GPUs with two distinct differences: 1) for the GPU, the
application of non-hanging-node constraints, like Dirichlet boundary conditions,
can not be merged into the cell loop, but needs to be applied separately and 2)
specialized interpolation routines have to be used due to different vectorization
strategies.

Experiments have shown that, for high-order finite elements, the costs of cells
with hanging-node constraints can be reduced significantly for affine meshes. For
low-order elements, we also obtain improvements, but the costs remain noticeable
due to conditional branches required for checking the refinement configurations.
For high-order non-affine meshes, the application of hanging-node constraints
can be completely hidden behind memory access. For the CPU, we have discussed
different vectorization strategies and identified that processing cell by cell is the
most efficient approach in the context of matrix-free algorithms that are based
on vectorization across cells for lower degrees k ≤ 3, whereas masking is superior
for k > 3. The benefits of our node-level optimization on parallel applications
are significantly reduced load imbalances and higher throughput with a more
moderate cell-weighting function.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 151

Future work will extend the algorithm towards the support of more cell
shapes (e.g., simplex, wedge, pyramid) in the context of mixed meshes and hp-
adaptive FEM so that one does not need to fall back to a slower general-purpose
algorithm in these cases. Moreover, we intend to perform further performance
optimizations, which will target the reduction of overhead in the case of low-order
elements, alternative vectorization strategies, and improved parallel distribution
of degrees of freedom in order to minimize the communication overhead in the
context of hanging-node constraints.

Acknowledgment. The authors acknowledge collaboration with Momme Allalen,
Daniel Arndt, Magdalena Schreter, Bruno Turcksin as well as the deal.II commu-
nity.

References

1. Anderson, R., et al.: MFEM: a modular finite element methods library. Comp.
Math. Appl. 81, 42–74 (2021)

2. Arndt, D., et al.: The deal.II library, version 9.3. J. Numer. Math. 29(3) (2021)
3. Arndt, D., et al.: The deal.II finite element library: design, features, and insights.

Comp. Math. Appl. 81, 407–422 (2021)
4. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data

structures for massively parallel generic adaptive finite element codes. ACM Trans.
Math. Softw. 38(2), 14/1-28 (2011)

5. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–
1133 (2011)

6. Cerveny, J., Dobrev, V., Kolev, T.: Nonconforming mesh refinement for high-order
finite elements. SIAM J. Sci. Comput. 41(4), C367–C392 (2019)

7. Davydov, D., Pelteret, J.P., Arndt, D., Kronbichler, M., Steinmann, P.: A matrix-
free approach for finite-strain hyperelastic problems using geometric multigrid. Int.
J. Num. Meth. Eng. 121(13), 2874–2895 (2020)

8. Deville, M.O., Fischer, P.F., Mund, E.H.: High-order methods for incompressible
fluid flow. Cambridge University Press (2002)

9. Fischer, P., et al.: Scalability of high-performance PDE solvers. Int. J. High Perf.
Comp. App. 34(5), 562–586 (2020)

10. Fischer, P.F., Kruse, G.W., Loth, F.: Spectral element methods for transitional
flows in complex geometries. J. Sci. Comput. 17(1), 81–98 (2002)

11. Krank, B., Fehn, N., Wall, W.A., Kronbichler, M.: A high-order semi-explicit dis-
continuous Galerkin solver for 3D incompressible flow with application to DNS and
LES of turbulent channel flow. J. Comp. Phy. 348, 634–659 (2017)

12. Kronbichler, M., Diagne, A., Holmgren, H.: A fast massively parallel two-phase
flow solver for microfluidic chip simulation. Int. J. High Perform. Comput. Appl.
32(2), 266–287 (2018)

13. Kronbichler, M., et al.: A next-generation discontinuous Galerkin fluid dynamics
solver with application to high-resolution lung airflow simulations. In: SC 2021
(2021)

14. Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite
element operator application. Comput. Fluids 63, 135–147 (2012)

152 P. Munch et al.

15. Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous
Galerkin finite element operators. ACM Trans. Math. Softw. 45(3), 29/1-40 (2019)

16. Kronbichler, M., Ljungkvist, K.: Multigrid for matrix-free high-order finite element
computations on graphics processors. ACM Trans. Parallel Comput. 6(1), 2/1-32
(2019)

17. Laughton, E., Tabor, G., Moxey, D.: A comparison of interpolation techniques
for non-conformal high-order discontinuous Galerkin methods. Comput. Methods
Appl. Mech. Eng. 381, 113820 (2021)

18. Ljungkvist, K.: Matrix-free finite-element computations on graphics processors
with adaptively refined unstructured meshes. In: SpringSim (HPC), pp. 1–1 (2017)

19. Melenk, J.M., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast
quadrature. Comput. Methods Appl. Mech. Eng. 190(32), 4339–4364 (2001)

20. Munch, P., Heister, T., Prieto Saavedra, L., Kronbichler, M.: Efficient distributed
matrix-free multigrid methods on locally refined meshes for FEM computations.
arXiv preprint arXiv:2203.12292 (2022)

21. Munch, P., Kormann, K., Kronbichler, M.: hyper.deal: an efficient, matrix-free
finite-element library for high-dimensional partial differential equations. ACM
Trans. Math. Softw. 47(4), 33/1–34 (2021)

22. Orszag, S.A.: Spectral methods for problems in complex geometries. Journal of
Computational Physics 37(1), 70–92 (1980)

23. Saurabh, K., et al.: Scalable adaptive PDE solvers in arbitrary domains. In: SC
2021 (2021)

24. Scroggs, M.W., Dokken, J.S., Richardson, C.N., Wells, G.N.: Construction of arbi-
trary order finite element degree-of-freedom maps on polygonal and polyhedral cell
meshes. ACM Trans. Math. Softw. (2022). https://doi.org/10.1145/3524456

25. Shephard, M.S.: Linear multipoint constraints applied via transformation as part
of a direct stiffness assembly process. Int. J. Num. Meth. Eng. 20(11), 2107–2112
(1984)

26. Świrydowicz, K., Chalmers, N., Karakus, A., Warburton, T.: Acceleration of
tensor-product operations for high-order finite element methods. Int. J. High Perf.
Comput. Appl. 33(4), 735–757 (2019)

dummy

Paper III

111

Efficient distributed matrix-free multigrid methods on locally
refined meshes for FEM computations

PETER MUNCH, Institute of Mathematics, University of Augsburg, Germany, Institute of Material Systems
Modeling, Helmholtz-Zentrum Hereon, Germany, and Institute for Computational Mechanics, Technical
University of Munich, Germany
TIMO HEISTER, Mathematical and Statistical Sciences, Clemson University, USA
LAURA PRIETO SAAVEDRA, Department of Chemical Engineering, Polytechnique Montréal, Canada
MARTIN KRONBICHLER, Institute of Mathematics, University of Augsburg and Department of Infor-
mation Technology, Uppsala University, Sweden

This work studies three multigrid variants for matrix-free finite-element computations on locally refined
meshes: geometric local smoothing, geometric global coarsening (both ℎ-multigrid), and polynomial global
coarsening (a variant of 𝑝-multigrid). We have integrated the algorithms into the same framework—the
open-source finite-element library deal.II—, which allows us to make fair comparisons regarding their
implementation complexity, computational efficiency, and parallel scalability as well as to compare the
measurements with theoretically derived performance metrics. Serial simulations and parallel weak and strong
scaling on up to 147,456 CPU cores on 3,072 compute nodes are presented. The results obtained indicate that
global-coarsening algorithms show a better parallel behavior for comparable smoothers due to the better
load balance, particularly on the expensive fine levels. In the serial case, the costs of applying hanging-node
constraints might be significant, leading to advantages of local smoothing, even though the number of solver
iterations needed is slightly higher. When using 𝑝- and ℎ-multigrid in sequence (ℎ𝑝-multigrid), the results
indicate that it makes sense to decrease the degree of the elements first from a performance point of view due
to the cheaper transfer.

CCS Concepts: • Mathematics of computing → Solvers; Mathematical software performance;
• Computer systems organization → Multicore architectures.

Additional Key Words and Phrases: multigrid, finite-element computations, linear solvers, matrix-free
methods
ACM Reference Format:
Peter Munch, Timo Heister, Laura Prieto Saavedra, and Martin Kronbichler. 2022. Efficient distributed matrix-
free multigrid methods on locally refined meshes for FEM computations. ACM Trans. Parallel Comput. 1, 1,
Article 111 (April 2022), 39 pages. https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Peter Munch, peter.muench@uni-a.de, Institute of Mathematics, University of Augsburg, Univer-
sitätsstraße 12a, 86159 Augsburg, Germany, Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-
Str. 1, 21502 Geesthacht, Germany, Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15,
85748 Garching b. München, Germany; Timo Heister, heister@clemson.edu, Mathematical and Statistical Sciences, Clemson
University, O-110 Martin Hall, Clemson, SC, USA; Laura Prieto Saavedra, laura.prieto-saavedra@polymtl.ca, Department of
Chemical Engineering, Polytechnique Montréal, PO Box 6079, Stn Centre-Ville, H3C 3A7, Montreal, QC, Canada; Martin
Kronbichler, martin.kronbichler@uni-a.de, Institute of Mathematics, University of Augsburg, Department of Information
Technology, Uppsala University, Box 337, 75105 Uppsala, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1539-9087/2022/4-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:2 Munch, et al.

1 INTRODUCTION
Many solvers for finite element methods (FEM) rely on efficient solution methods for second-order
partial differential equations (PDEs), e.g., for the Poisson equation:

−Δ𝑢 = 𝑓 , (1)
where 𝑢 is the solution variable and 𝑓 is the source term. Poisson-like problems also frequently
occur as subproblems, e.g., in computational fluid dynamics [10, 30, 59] or in computational plasma
physics [80]. Efficient realizations often rely on adaptively refined meshes to resolve geometries or
features in the solution.

Multigrid methods are among the most competitive solvers for such problems [36]. The three
basic steps of a two-level algorithm are 1) presmoothing, in which the high-frequency error
components in the initial guess are removed with a smoother, 2) coarse-grid correction, in which a
related problem on a coarser grid is solved, requiring intergrid transfer operators and a coarse-grid
solver, and 3) postsmoothing, in which the high-frequency error components introduced during
interpolation are removed. Nesting two-level algorithms recursively gives a multigrid algorithm.
In library implementations, these steps are generally expressed as operators. The operations can
be generally chosen and/or configured by the user and strongly depend on the multigrid variant
selected. This publication discusses massively parallel multigrid variants for locally refined meshes,
including the efficient implementation of their operators, compares them with each other, and gives
recommendations regarding optimal configurations.

1.1 Multigrid variants
Which multigrid approach to choose depends on the way the mesh is generated and on the
underlying finite-element space. If the mesh is generated by globally refining each cell of a coarse
grid recursively, it is a natural choice to apply geometric multigrid (abbreviated here as ℎ-multigrid),
which uses the levels of the resulting mesh hierarchy as multigrid levels. Alternatively, in the
context of high-order finite elements, it is possible to create levels by reducing the polynomial
order of the shape functions 𝑝 of the elements, while keeping the mesh the same, as done by
polynomial multigrid (abbreviated as 𝑝-multigrid). For a very fine, unstructured mesh with low-
order elements, it is not as trivial to explicitly construct enough multigrid levels and one might
need to fall back to non-nested multilevel algorithms [1, 22, 23] or algebraic multigrid (AMG; see
the review by Stüben [97]). These basic multigrid strategies can be nested in hybrid multigrid
solvers [32, 71, 84, 85, 89, 93, 98] and, in doing so, one can exploit the advantages of all of them
regarding robustness. Most common are ℎ𝑝-multigrid, which combines ℎ- and 𝑝-multigrid, and
AMG as black-box coarse-grid solver of geometric or polynomial multigrid solvers.

All the above-mentioned multigrid variants are applicable to locally refined meshes. However,
local refinement comes with additional options (local vs. global definition of the multigrid levels,
resulting in local(-smoothing) and global(-coarsening) versions of geometric/polynomial multigrid)
and with additional challenges, which are particularly connected with the presence of hanging-node
constraints, as indicated in Figure 1.

1.2 Related work
Some authors of this study have been involved in previous contributions to the research field of
multigrid methods. Their implementations are used and extended in this work.

In [27, 28, 64, 66], matrix-free and parallel implementations of geometric local-smoothing al-
gorithms from the deal.II finite-element library were investigated and compared with AMG,
demonstrating the benefits of using matrix-free implementations for both CPU and GPU, but also
non-optimal scalability due to load imbalance for simple partitioning strategies. Local-smoothing

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:3

mg level 2 mg level 1 mg level 0

64 cells 64 cells 16 cells

112 cells 28 cells 16 cells

“active” mesh

∑
=144 cells

∑
=156 cells

global coarsening:

local smoothing:
refinement edge

hanging node

Fig. 1. Visual comparison of geometric multigrid methods for locally refined meshes. Top: (geometric) local
smoothing; bottom: (geometric) global coarsening. Local smoothing only considers cells strictly on the same
refinement level. This typically introduces an internal boundary (at the refinement edge) when the cells
do not cover the whole computational domain. Only if they do (here, for level 1 and 0, not for level 2), one
can switch to a coarse-grid solver. Instead, global coarsening considers the whole domain and typically
introduces hanging nodes on the multigrid levels. Global coarsening tends to involve work on more cells
in total compared to local-smoothing algorithms, but often reduces the number of cells per multigrid level
quicker on the finer levels. The gray shading indicates active cells.

algorithms have been a core module of deal.II for many years, however, they gained much
maturity, flexibility, and performance due to the above-mentioned thorough studies. In [66], their
performance was compared to a state-of-the-art implementation of a Poisson solver from the litera-
ture [36]: a speedup of 30% for quadratic elements and a speedup of a factor of 8 for fourth-degree
elements on comparable hardware underline the high node-level performance of the code.

Independently of local smoothing, an efficient hybrid multigrid solver for discontinuous Galerkin
methods (DG) for globally refined meshes was developed and presented in [32]. It is part of the
deal.II-based incompressible Navier–Stokes solver ExaDG [10] and relies on auxiliary-space
approximation [5], i.e., on the transfer into a continuous space, as well as on subsequent execution
of 𝑝-multigrid, ℎ-multigrid, and AMG. That solver was extended to leverage locally refined meshes,
using a geometric/polynomial global-coarsening algorithm after the transfer into the continuous
space, in order to simulate the flow through a lung geometry [60]. Its functionalities have been
generalized and are the foundations of the new global-coarsening implementation in deal.II [7,
9], targeting both ℎ- and 𝑝-multigrid, in addition to the established geometric local-smoothing
implementation.

1.3 Our contribution
In this publication, we consider three well-known multigrid algorithms for locally refined meshes
for continuous higher-order matrix-free FEM: geometric local smoothing, geometric global coars-
ening (both ℎ-multigrid), and polynomial global coarsening (a variant of 𝑝-multigrid). We have
implemented them into the same framework, which allows us to compare their implementation
complexity and performance for a large variety of problem sizes. This has not been done in an exten-
sive way in the literature, often using only one of them [28, 99]. Furthermore, we rely on matrix-free

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:4 Munch, et al.

Algorithm 1: Multigrid V-cycle called recursively on each level 𝑙 to solve 𝑨𝒙 = 𝒃 . It operates
on vectors [𝒃 (0) , . . . , 𝒃 (𝐿)] and [𝒙 (0) , . . . , 𝒙 (𝐿)], which are filled/read on the finest level 𝐿,
and uses the level operators 𝑨(𝑙) , smoothers, intergrid operators, and coarse-grid solvers. In
the case of local smoothing, we distinguish between interior DoFs (not labeled specially) and
DoFs on the internal boundaries (𝒙 (𝑙)𝐸) as well as decompose the level operator 𝑨(𝑙) into 𝑨(𝑙)𝑆𝑆 ,
𝑨(𝑙)𝑆𝐸 , 𝑨(𝑙)𝐸𝑆 , and 𝑨(𝑙)𝐸𝐸 (see the explanation in Subsection 2.1). For global coarsening, 𝑨(𝑙) = 𝑨(𝑙)𝑆𝑆 .
The arrows in braces on the right indicate the type of communication at each step: (⇕)
involves vertical communication between levels; (⇔) involves horizontal communication on
the same level. Additional steps needed by local smoothing are highlighted in gray.

1 if l = L then
2 [𝒃 (0) , . . . ,𝒃 (𝐿)] ← 𝒃 ; /* copy to multigrid level(s) */

3 if l = 0 then
4 𝒙 (0) ← CoarseGridSolver(𝑨(0) , 𝒃 (0)) ; /* coarse-grid solver: 𝑨(0) !

= 𝑨(0)𝑆𝑆 (⇔/⇕) */

5 else
6 𝒙 (𝑙) ← Smoother(𝑨(𝑙)𝑆𝑆 , 0, 0, 𝒃 (𝑙)) ; /* presmoothing with 𝒙 (𝑙)𝐸 = 0 (⇔) */

7
(
𝒓 (𝑙) , 𝒓 (𝑙)𝐸

)
←

(
𝒃 (𝑙) −𝑨(𝑙)𝑆𝑆𝒙 (𝑙) , −𝑨

(𝑙)
𝐸𝑆𝒙

(𝑙)
)

; /* compute residual (⇔) */

8 𝒃 (𝑙−1) ← 𝒃 (𝑙−1)+ Restrictor
(
𝒓 (𝑙) , 𝒓 (𝑙)𝐸

)
; /* restrict residual (⇕) */

9 VCycleLevel(𝑙 − 1) ; /* recursion */

10
(
𝒙 (𝑙) , 𝒙 (𝑙)𝐸

)
← 𝒙 (𝑙) + Prolongator

(
𝒙 (𝑙−1)

)
; /* prolongation (⇕) */

11 𝒙 (𝑙) ← Smoother(𝑨(𝑙)𝑆𝑆 , 𝒙 (𝑙) , 𝒙
(𝑙)
𝐸 , 𝒃 (𝑙)) ; /* postsmoothing with 𝒙 (𝑙)𝐸 ≠ 0 (⇔) */

12 if l = L then
13 𝒙 ← [𝒙 (0) , . . . ,𝒙 (𝐿)] ; /* copy from multigrid level(s) */

operator evaluation, which provides optimal, state-of-the-art implementations in terms of node-
level performance on modern hardware [66], and hence exercise the methods in a challenging
context in terms of communication costs and workload differences.

The algorithms presented in this publication have been integrated into the open-source finite-
element library deal.II [8] and are part of its 9.4 release [9]. All experimental results have
been obtained with small benchmark programs leveraging on the infrastructure of deal.II. The
programs are available on GitHub under https://github.com/peterrum/dealii-multigrid.

The results obtained in this publication for continuous FEM are transferable to the DG case,
where one does not have to consider hanging-node constraints but fluxes between differently
refined cells. In the case of auxiliary-space approximation [60], this difference only involves the
finest level and the rest of the multigrid algorithm could be as described in this publication.

The remainder of this work is organized as follows. In Section 2, we give a short overview of
multigrid variants applicable to locally refined meshes. Section 3 presents implementation details
of our solver, and Section 4 discusses relevant performance metrics. Sections 5 and 6 demonstrate
performance results for geometric multigrid and polynomial multigrid, and, in Section 7, the solver
is applied to a challenging Stokes problem. Finally, Section 8 summarizes our conclusions and
points to further research directions.

2 MULTIGRID METHODS FOR LOCALLY REFINED MESHES
Algorithm 1 presents the basic multigrid algorithm to solve an equation system of the form 𝑨𝒙 = 𝒃
arising from the FEM discretization of (1) (𝑨 is the system matrix, 𝒃 is the right-hand-side vector
containing the source term 𝑓 and the boundary conditions, and 𝒙 is the solution vector). In the
first step, data is transferred to the multigrid levels, after which a multigrid cycle (in this study,

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:5

mg level 2 mg level 1 mg level 0“active” mesh

0 1 2 3 4 5 6ranks:

(a) First-child policy in the context of (geometric) local smoothing.

(b) Repartitioning of each level in the context of (geometric) global coarsening.

Fig. 2. Visual comparison of two possible strategies for partitioning of the multigrid levels of the mesh shown
in Fig. 1 for 7 processes. Colors indicate the ranks of the subdomains. The active level is partitioned uniformly
along a space-filling curve, according to a sum of weights for each cell. If a color does not appear (e.g., ranks
4-6 on level 2 in (a)), it means that a process does not have any work on that level, leading to load imbalance
during smoothing. If subdomains with the same color do not overlap (e.g., ranks 1-5 on level 0 and 1 in (b)),
this leads to more expensive intergrid transfer operators.

a V-cycle with the steps: presmoothing, computation of the residual, restriction, solution on the
coarser grid, prolongation, and postsmoothing) is performed. Then, the result is copied back from
the multigrid levels. The steps to copy data from and to the multigrid levels are not strictly needed
in all cases; however, these steps are required by local smoothing and can be used to switch from
double to single precision in order to reduce the costs of multigrid if it is used as a mixed-precision
preconditioner [64]. The multigrid algorithm is complemented with the algorithms of a smoother
(e.g., Chebyshev smoother [2]) and of a coarse-grid solver once the recursion is terminated. Instead
of using multigrid as a solver, we choose to precondition a conjugate-gradient solver [45] with one
multigrid cycle per iteration as this is often more robust. These algorithms are not presented here.

The parallelization of multigrid, e.g., based on domain decomposition (see Fig. 2), involves the
parallelization of each step of Algorithm 1. Here, two types of communication patterns arise:
1) horizontal communication on the same multigrid level during smoothing and residual evaluation,
which involves point-to-point ghost-value data exchange between neighboring subdomains and
2) vertical communication between multigrid levels during intergrid transfer. In the best case, vertical
communication is also a point-to-point communication of some “lower-dimensional” (surface-
induced) share of a vector, but it can imply the transfer of essentially the full vector if the levels are
partitioned independently and/or the numbers of processes on the levels are reduced extremely
(e.g., to one). The communication pattern within the coarse-grid solver depends on the solver
chosen and oftentimes also involves vertical and horizontal communication. Global reductions are
also common on the coarse grid. We would like to point out that the outer (conjugate-gradient)
solver also involves global reductions to compute, e.g., the residual norm once per iteration, needed
to determine termination. However, these global reductions are generally negligible due to the
dominating costs of multigrid.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:6 Munch, et al.

The various multigrid algorithms for locally refined meshes differ in the construction of the
levels and the concrete details in the implementation of the multigrid steps. We consider two types
of geometric multigrid methods: geometric local smoothing in Subsection 2.1 and geometric global
coarsening in Subsection 2.2. Figure 1 gives a visual comparison of them and points out the issues
resulting from the local or global definition of the levels, which will be discussed extensively in
the following. Furthermore, we will detail polynomial global coarsening in Subsection 2.3. In the
case of these multigrid variants, the level operator 𝑨(𝑐) can be obtained either recursively via the
Galerkin operator 𝑨(𝑐) := 𝑹 (𝑐,𝑓)𝑨(𝑓)𝑷 (𝑓 ,𝑐) with restriction matrix 𝑹 (𝑐,𝑓) and prolongation matrix
𝑷 (𝑓 ,𝑐) constructed geometrically or by rediscretization. While rediscretization is not optimal in all
cases, it is sufficient for the present experiments, allowing us to benefit from the fact that level
operators are independent of each other as, for matrix-free computations, one wants to construct
neither 𝑨(𝑐) /𝑨(𝑓) nor 𝑹 (𝑐,𝑓) /𝑷 (𝑓 ,𝑐) explicitly.

AMG can be used for the solution on locally refined meshes as well. Since the levels are con-
structed recursively via the Galerkin operator with the restriction and prolongation matrices
constructed algebraically, no distinction regarding the local or global definition of the levels is
possible. Since we use AMG in the following only as a coarse-grid solver, we refer to the literature
for more details: Clevenger et al. [28] present a scaling comparison between AMG and a matrix-free
version of local smoothing for a Laplace problem with Q2 basis functions, showing a clear advantage
of matrix-free multigrid methods on modern computing systems.

2.1 Geometric local smoothing
Geometric local-smoothing algorithms [19, 24, 28, 51, 53, 54, 70, 77, 90, 96] use the refinement
hierarchy also for multigrid levels and perform smoothing refinement level by refinement level:
cells of less refined parts of the mesh are skipped (see the top part of Figure 1) so that hanging-node
constraints do not need to be considered during smoothing. Authors in [3, 20, 50, 77, 100, 102]
investigate a version of local smoothing in which smoothing is also performed on a halo of a
single coarse cell, which includes hanging-node constraints. We will not consider this form of local
smoothing in the following.

The fact that domains on each level might not cover the whole computational domain results
in multiple issues. Data needs to be transferred in lines 2 and 13 in Algorithm 1 to and from all
multigrid levels that are active, i.e., have cells that are not refined further. Moreover, internal
interfaces (also known as “refinement edges”), can appear with the need for special treatment.
For details, interested readers are referred to [51, 64]. In the following, we summarize key aspects
relevant for our investigations.

For the purpose of explanation, let us split the degrees of freedom (DoFs) associated with the
cells on an arbitrary level 𝑙 into the interior ones 𝒙 (𝑙)𝑆 and the ones at the refinement edges 𝒙 (𝑙)𝐸 ,
leading to the following block structure in the associated matrix system 𝑨(𝑙)𝒙 (𝑙) = 𝒃 (𝑙) :

(
𝑨(𝑙)𝑆𝑆 𝑨(𝑙)𝑆𝐸
𝑨(𝑙)𝐸𝑆 𝑨(𝑙)𝐸𝐸

) (
𝒙 (𝑙)𝑆
𝒙 (𝑙)𝐸

)
=

(
𝒃 (𝑙)𝑆

𝒃 (𝑙)𝐸

)
.

For presmoothing on level 𝑙 , homogeneous Dirichlet boundary conditions are applied at the
refinement edges (𝒙 (𝑙)𝐸 = 0), allowing to skip the coupling matrices. However, when switching to a
coarser or finer level, the coupling matrices need to be considered. The residual to be restricted

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:7

becomes:(
𝒓 (𝑙)𝑆

𝒓 (𝑙)𝐸

)
=

(
𝒃 (𝑙)𝑆

𝒃 (𝑙)𝐸

)
−

(
𝑨(𝑙)𝑆𝑆 𝑨(𝑙)𝑆𝐸
𝑨(𝑙)𝐸𝑆 𝑨(𝑙)𝐸𝐸

) (
𝒙 (𝑙)𝑆
𝒙 (𝑙)𝐸

)
𝒙 (𝑙)𝐸 =0
=

(
0

𝒃 (𝑙)𝐸

)
+

(
𝒃 (𝑙)𝑆
0

)
−

(
𝑨(𝑙)𝑆𝑆
𝑨(𝑙)𝐸𝑆

)
𝒙 (𝑙)𝑆

︸ ︷︷ ︸
∗

. (2)

Since 𝒃 (𝑙)𝐸 has already been transferred to the coarser level by line 2 in Algorithm 1, one only has to
restrict and add the result of term ∗ to the coarser level. During postsmoothing, an inhomogeneous
Dirichlet boundary condition is applied with boundary values prescribed by the coarser level. This
can be achieved, e.g., by modifying the right-hand side (𝒃 (𝑙)𝑆 ← 𝒃 (𝑙)𝑆 −𝑨

(𝑙)
𝑆𝐸𝒙

(𝑙)
𝐸).

A natural choice to partition the multigrid levels for local-smoothing algorithms is to partition
the active level and let cells on lower refinement levels inherit the rank of their children. A simple
variant of it is the “first-child policy” (see Fig. 2a or [28]): it recursively assigns the parent cell
the rank of its first child cell. Since in adaptive FEM codes the parents of locally owned and
ghost cells are generally already available on processes due to tree-like data-structure storage of
adaptively refined meshes [15, 26], no additional data structures need to be constructed and saved,
but the storage of an additional flag (multigrid rank of the cell) is enough, leading to low memory
consumption. Furthermore, intergrid transfer operations are potentially cheap as data is mainly
transferred locally. A disadvantage—besides of having to consider the edge constraints—is the
potential load imbalance on the levels, as discussed in [28]. This load imbalance could be alleviated
by partitioning each level for itself. Such alternative partitioning algorithm would lead to similar
problems as in the case of global-coarsening algorithms (discussed next) and, as a result, the needed
data structures would become more complex. This would counter the claimed simplicity of the data
structures of this method; hence, we will consider geometric local smoothing only with “first-child
policy” in this publication.

Furthermore, the fact that the transfer to and from the multigrid levels involves all active levels
prevents an early switch to a coarse-grid solver on levels finer than those that are indeed not locally
refined anymore, i.e., 𝑨(𝑙)𝑆𝑆 = 𝑨(𝑙) . On the other hand, the absence of hanging nodes allows the
usage of smoothers that have been developed for uniformly refined meshes, e.g., patch smoothers
[11, 55], which are superior for anisotropic meshes.

Since geometric local smoothing is the only local-smoothing approach we will consider here, we
will call it simply—as common in the literature—local smoothing in the following.

2.2 Geometric global coarsening
Geometric global-coarsening algorithms [20, 21] coarsen all cells simultaneously, translating to
meshes with hanging nodes also on coarser levels of the multigrid hierarchy (see the bottom part of
Figure 1). The computational complexity—i.e., the total number of cells to be processed—is slightly
higher than in the case of local smoothing and might be non-optimal for some extreme examples
of meshes [19, 54].

The fact that all levels cover the whole computational domain has the advantage that no internal
interfaces need to be considered and the transfer to/from the multigrid levels becomes a simple
copy operation to/from the finest level. However, hanging nodes have to be considered during the
application of the smoothers on the levels. While this typically does not require new algorithms
for basic smoothers as the infrastructure to support adaptive meshes can be simply applied to
coarser representations, the operator evaluation and the applicable smoothers might become more
expensive per cell by the need to resolve hanging-node constraints [81]. On the other hand, global-
coarsening approaches show—for comparable smoothers—a better convergence behavior, which
improves with the number of smoothing iterations [13, 14].

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:8 Munch, et al.

As the work on the levels generally increases compared to local smoothing, it is a valid option to
repartition each level separately (see Fig. 2b). On the one hand, this implies a higher pressure on
the transfer operators, since they need to transfer data between independent meshes,1 requiring
potentially complex internal data structures, which describe the connectivities, and involved setup
routines.2 On the other hand, it opens the possibility to control the load balance between processes
and the minimal granularity of work per process (by removing processes on the coarse level in a
controlled way, allowing to switch to subcommunicators [99]) as well as to apply a coarse-grid
solver on any level. For the same reason, the construction of full multigrid solvers (FMG), which
visit the finest level only a few times, is easier, since any level can be used as a starting point for
the recursion. Not selecting the actual coarsest grid but some more refined level allows to relax the
unfavorable complexity of FMG in terms of O(𝐿2) by reducing the time spent on the coarse levels.

2.3 Polynomial global coarsening
Polynomial global-coarsening algorithms [12, 17, 18, 25, 29, 33, 35, 37, 38, 40, 41, 43, 44, 46, 48, 49,
52, 67, 72–76, 83, 85, 87, 88, 91, 94, 95, 99] are based on keeping the mesh size ℎ constant on all
levels, but reducing the polynomial degree 𝑝 of shape functions, e.g., to 𝑝 = 1. Hence, the multigrid
levels in this case have the same mesh but different polynomial orders. There are various strategies
to reduce the order of the polynomial degree [32, 42]: the most common is the bisection strategy,
which repeatedly halves the degree 𝑝 (𝑐) = ⌊𝑝 (𝑓)/2⌋. This strategy reduces the number of DoFs in
the case of a globally refined mesh similarly to the geometric multigrid strategies and provides
a compromise between the number of V-cycles necessary to reduce the residual norm below a
desired threshold and the cost of a single V-cycle [32].

The statements made in Section 2.2 about geometric global coarsening are also valid for polyno-
mial global coarsening. However, the number of unknowns is reduced uniformly on each subdomain
in contrast to geometric global coarsening, which obviates repartitioning of the level grids. This
leads to a transfer operation that mainly works on locally owned DoFs.

In the following, we call geometric global coarsening simply global coarsening and polynomial
global coarsening polynomial coarsening. As a reference, polynomial local smoothing arises, e.g., in
the context of 𝑝- or ℎ𝑝-refinement, where only cells with the finest degree are smoothened [79].

3 IMPLEMENTATION DETAILS
In this section, we detail efficient implementations of the multigrid ingredients for locally refined
meshes used by Algorithm 1. We start with the handling of constraints. Then, we proceed with
the matrix-free evaluation of operator 𝑨, which is needed on the active and the multigrid levels,
as well as with smoothers and coarse-grid solvers. This section is concluded with an algorithmic
framework to efficiently realize all considered kinds of matrix-free transfer operators.

3.1 Handling constraints
Constraints need to be considered—with slight differences—in the case of both local-smoothing
and global-coarsening algorithms. First, we impose Dirichlet boundary conditions in a strong form
and express them as constraints. Secondly, hanging-node constraints, which force the solution
of the refined side to match the polynomial expansion on the coarse side, need to be considered
to maintain 𝐻 1 regularity of the tentative solution [92]. In a general way, these constraints can
1In deal.II, one needs to create a sequence of grids for global coarsening (each with its own hierarchical description). This
is generally acceptable, since repartitioning of each level often leads to non-overlapping trees so that a single data structure
containing all geometric multigrid levels would have little benefit for reducing memory consumption.
2Sundar et al. [99] present a two-step setup routine: the original fine mesh is coarsened and the resulting “surrogate mesh”
is repartitioned. For space-filling-curve-based partitioning, this approach turns out to be highly efficient.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:9

C𝑒 ◦ G𝑒 S𝑒

Q𝑒

S̃𝑇𝑒 G𝑇𝑒 ◦ C𝑇𝑒

C (𝑐)𝑒 ◦ G (𝑐)𝑒 P (𝑓 ,𝑐)𝑒 S (𝑓)𝑒

W (𝑓)
𝑒

evaluation integration

coarse (c) fine (f)

Fig. 5

Fig. 4

op
.e

va
lu

at
io

n
po

ly
.p

ro
lo

ng
at

io
n

[81]

[81]

gather scatter

Fig. 3. Basic steps of a matrix-free operator evaluation according to (3) and of a matrix-free polynomial
prolongation according to (8) for a single cell 𝑒 .

be expressed as 𝑥𝑖 =
∑

𝑗 𝑐𝑖 𝑗𝑥 𝑗 + 𝑏𝑖 , where 𝑥𝑖 is a constrained DoF, 𝑥 𝑗 a constraining DoF, 𝑐𝑖 𝑗 the
coefficient relating the DoFs, and 𝑏𝑖 a real value, which can be used to consider inhomogeneities.
We do not eliminate constraints, but use a condensation approach [16, 101].

3.2 Matrix-free operator evaluation
Instead of assembling the system matrix 𝑨 and performing matrix-vector multiplications of the
form 𝑨𝒙 , the matrix-free operator evaluation computes the underlying finite-element integrals
to represent A(𝒙). This is motivated by the fact that many iterative solvers and smoothers do
not need the matrix 𝑨 explicitly, but only its action on a vector. On a high level, matrix-free
operator evaluation can be derived in two steps: 1) loop switching 𝒗 = 𝑨𝒖 =

(∑
𝑒 𝑹

𝑇
𝑒 𝑨𝑒𝑹𝑒

)
𝒖 =∑

𝑒 𝑹
𝑇
𝑒 (𝑨𝑒 (𝑹𝑒𝒖)) =

∑
𝑒 𝑹

𝑇
𝑒 (𝑨𝑒𝒖𝑒), i.e., replacing the sequence “assembly–mat-vec” by a loop over

cells with the three steps “gathering–application of the element stiffness matrix–scattering”, and 2)
exploitation of the structure of the element stiffness matrix. The element stiffness matrix, e.g., of a
Laplace operator, is given by A(𝑒)𝑖 𝑗 =

∑
𝑞
(∇𝜉𝑁𝑖𝑞, (𝐽−1

𝑞 |𝐽𝑞 |𝐽−𝑇𝑞 𝑤𝑞)∇𝜉𝑁 𝑗𝑞)Ω𝑒 . Exploiting again the fact

that the action of this local matrix on a vector is needed enables to interpret 𝑵𝒖𝑒 as the interpolation
of values associated with polynomial basis functions 𝒖𝑒 to quantities at the quadrature points,
which implies that ∇𝜉𝑵𝒖𝑒 computes the gradients at these points. The expression (𝐽−1

𝑞 |𝐽𝑞 |𝐽−𝑇𝑞 𝑤𝑞)
is then simply a factor applied to the derived quantities at the quadrature points. The final structure
of a matrix-free operator evaluation in the context of continuous finite elements in operator form
is:

𝒗 = A(𝒙) =
∑︁
𝑒

G𝑇𝑒 ◦ C𝑇𝑒 ◦ S̃𝑇𝑒 ◦ Q𝑒 ◦ S𝑒 ◦ C𝑒 ◦ G𝑒𝒙 . (3)

This structure is depicted in Figure 3. For each cell 𝑒 , cell-relevant values are gathered with operator
G𝑒 , constraints are—as discussed in Subsection 3.1—applied with C𝑒 , and values, gradients, or
Hessians are computed at the quadrature points with S𝑒 . These quantities are processed by a
quadrature-point operation Q𝑒 ; the result is integrated and summed into the result vector 𝒗 by
applying S̃𝑇𝑒 , C𝑇𝑒 , and G𝑇𝑒 . In this publication, we consider symmetric (self-adjoint) PDE operators
with S̃𝑒 = S𝑒 .

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:10 Munch, et al.

In the literature, specialized implementations for GPUs [4, 57, 64, 68, 69] and CPUs [4, 62, 63,
80, 82] for operations as expressed in (3) have been presented. For tensor-product (quadrilateral
and hexahedral) elements, a technique known as sum factorization [78, 86] is often applied, which
allows to replace full interpolations from the local solution values to the quadrature points by a
sequence of 1D steps. In the context of CPUs, it is an option to vectorize across elements [62, 63],
i.e., perform (S𝑇 ◦ Q ◦ S)𝑒 for multiple cells in different lanes of the same instructions. This
necessitates the data to be laid out in a struct-of-arrays fashion. The reshuffling of the data from
array-of-structs format to struct-of-arrays format and back can be done, e.g., by G𝑒 , while looping
through all elements [62]. Note that our implementation performs C𝑒 ◦ G𝑒𝒙 for a single SIMD batch
of cells at a time in order to keep intermediate results in caches and reduce global memory traffic.
For the application of hanging-node constraints, we use the special-purpose algorithm presented
in [69, 81], which is based on updating the DoF map G𝑒 and applying in-place sum factorization for
the interpolation during the application of edge and face constraints. Even though this algorithm is
highly optimized and comes with only a small overhead for high-order finite elements (< 20% per
cell with hanging nodes), the additional steps are not for free particularly for linear elements. This
might lead to load imbalances in a parallel setting when some processes have a disproportionately
high number of cells with hanging nodes, see the quantitative analysis in [81].

Despite relying on matrix-free algorithms overall, some of the multigrid ingredients (e.g.,
smoother and coarse-grid solver) need an explicit representation of the linear operator in the
form of a matrix or a part of it (e.g., its diagonal). Based on the matrix-free algorithm (3) applied to
the local unit vector 𝑒𝑖 , the local matrix can be computed column by column:

𝐴𝑒 (:, 𝑖) = S𝑇𝑒 ◦ Q𝑒 ◦ S𝑒𝑒𝑖 . (4)

The resulting element matrix can be assembled as usual, including the resolution of the constraints.
Computing the diagonal is slightly more complex when attempting to immediately write into a
vector for the diagonal without complete matrix assembly. In our code, we choose to compute the
j-th entry of the locally relevant diagonal contribution via

𝑑𝑒 (𝑗) =
∑︁
𝑖

[
𝑪𝑇
𝑒 𝑨𝑒 (:, 𝑖)

]
𝑪𝑒 (𝑖, 𝑗) ∀𝑗 ∈ { 𝑗 | 𝑪𝑒,𝑗𝑖 ≠ 0}, (5)

i.e., we apply the local constraint matrix 𝑪𝑒 from the left to the i-th column of the element matrix
(computed via (4)) and apply 𝑪𝑒 again from the right. This approach needs as many basis vector
applications as there are shape functions per cell. The local result can be simply added to the global
diagonal via 𝑑 =

∑︁
𝑒

G𝑇𝑒 𝑑𝑒 . For cells without constrained DoFs, (5) simplifies to 𝑑𝑒 (𝑖) = 𝑨𝑒 (𝑖, 𝑖).

3.3 Smoother
As the derivation of good matrix-free smoothers is an active research topic, we use Chebyshev
iterations around a point-Jacobi method for smoothing [2]. This setup needs an operator evaluation
and its diagonal representation according to Subsection 3.2. It is run on the levels defined by either
the global-coarsening or the local-smoothing multigrid algorithm. In the case of local smoothing,
refinement edges can be treated as homogeneous Dirichlet boundaries under the assumption that
the right-hand-side vector is suitably modified.

3.4 Coarse-grid solver
The algorithms described in Subsection 3.2 allow to set up traditional coarse-grid solvers, e.g., a
Jacobi solver, a Chebyshev solver, direct solvers, but also AMG. In this publication, we mostly apply
AMG as a coarse-grid solver, since we use it either on very coarse meshes (in this case, it falls back

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:11

to a direct solver) or for problems discretized with linear elements, for which AMG solvers are
competitive [66].

3.5 Transfer operator
The prolongation operator P (𝑓 ,𝑐) prolongates the result 𝒙 from a coarse space 𝑐 to a fine space 𝑓
(between either different geometric grids or different polynomial degrees):

𝒙 (𝑓) = P (𝑓 ,𝑐)𝒙 (𝑐)

According to the literature [14, 99], this can be done in three steps:

𝒙 (𝑓) =W (𝑓) ◦ P̃ (𝑓 ,𝑐) ◦ C (𝑐)𝒙 (𝑐) (6)

with C (𝑐) setting the values of constrained DoFs on the coarse mesh, particularly resolving the
hanging-node constraints, P̃ (𝑓 ,𝑐) performing the prolongation on the discontinuous space as if no
hanging nodes were present, and the weighting operatorW (𝑓) zeroing out the DoFs constrained
on the fine mesh.

In order to derive a matrix-free implementation, one can express (6) for nested meshes as loops
over all (coarse) cells (see also Figure 3):

𝒙 (𝑓) =
∑︁

𝑒∈{𝑐𝑒𝑙𝑙𝑠 }
S (𝑓)𝑒 ◦W (𝑓)

𝑒 ◦ P (𝑓 ,𝑐)𝑒 ◦ C (𝑐)𝑒 ◦ G (𝑐)𝑒 𝒙 (𝑐) (7)

Here, C (𝑐)𝑒 ◦G (𝑐)𝑒 gathers the cell-relevant coarse DoFs and applies the constraints just as in the case
of the matrix-free operator evaluation (3). The operator P (𝑓 ,𝑐)𝑒 embeds the coarse-space solution
into the fine space, whereas S (𝑓)𝑒 sums the result back to a global vector. Since multiple cells could
add to the same global entry of the vector 𝒙 (𝑓) during the cell loop, the values to be added have to
be weighted with the inverse of the valence of the corresponding DoF. This is done byW (𝑓)

𝑒 , which
also ignores constrained DoFs (zero valence) in order to be consistent with (6). Figure 4 shows, as an
example, the values ofW (𝑓) for a simple mesh for a scalar Lagrange element of degree 1 ≤ 𝑝 ≤ 3.

We construct the element prolongation matrices as(
𝑷 (𝑓 ,𝑐)𝑒

)
𝑖 𝑗
=

(
𝑴 (𝑓)𝑒

)−1 (
𝜙
(𝑓)
𝑖 , 𝜙 (𝑐)𝑗

)
Ω𝑒

with
(
𝑴 (𝑓)𝑒

)
𝑖 𝑗
=

(
𝜙
(𝑓)
𝑖 , 𝜙

(𝑓)
𝑗

)
Ω𝑒

,

where 𝜙 (𝑐) are the shape functions on the coarse cell and 𝜙 (𝑓) on the fine cell. Instead of treating
each “fine cell” on its own, we group direct children of the coarse cells together and define the
fine shape functions on the appropriate subregions. As a consequence, the “finite element” on
the fine mesh depends both on the actual finite-element type (like on the polynomial degree and
continuity) and on the refinement type, as indicated in Figure 5. For local smoothing, there is only
one refinement configuration, since all cells on a finer level are children of cells on the coarser level.
In the case of polynomial global coarsening, the mesh stays the same and only the polynomial
degree is uniformly changed for all cells. In the case of geometric global coarsening, cells on a finer
level are either identical to the cells or direct children of cells on the coarser level, but the element
and its polynomial degree stay the same. This necessitates two prolongation cases, an identity
matrix for non-refined cells and the coarse-to-fine embedding. We define the set of all coarse-fine
cell pairs connected via the same element prolongation matrix as category C.

Since P (𝑓 ,𝑐)𝑒 = P (𝑓 ,𝑐)C (𝑒) , i.e., all cells of the same category C(𝑒) have the same element prolongation
matrix, and in order to be able to apply them for multiple elements in one go in a vectorization-
over-elements fashion [62] as in the case of matrix-free loops (3), we loop over the cells type by

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:12 Munch, et al.

𝑝 = 1 𝑝 = 2 𝑝 = 3

0 1 1/2 1/4W (𝑓)
𝑖 :

Fig. 4. Example for entries 𝑖 ofW (𝑓) for a simple mesh configuration with Dirichlet boundary at the left
face for a scalar continuous Lagrange element of degree 1 ≤ 𝑝 ≤ 3. In our implementation, constrained
DoFs do not contribute to the valence of constraining DoFs, which results in valences of one for DoFs inside
constraining (coarse) edges/faces. To reduce overhead byW (𝑓) , our implementation utilizes that, for 𝑝 > 2,
all DoFs of a geometric entity (vertex, edge, . . .) have the same valence (stored per cell as 9 integers in 2D and
27 in 3D).

without refinement

with refinement Q1 Q1 Q1 Q2

FE𝑐 FE𝑓

local smoothing

global coarsening polynomial coarsening

refinement type element types example 1: example 2:

Fig. 5. Left: Construction of the element prolongation P (𝑓 ,𝑐)𝑒 , based on the refinement-type (with/without
refinement) and element-types pair (coarse and fine FE). Right: Examples for prolongation with and without
refinement for equal-degree and different-degree finite elements (𝑝 (𝑐) = 𝑝 (𝑓) = 1 vs. 𝑝 (𝑐) = 1, 𝑝 (𝑓) = 2).
Relevant prolongation types for local smoothing, global coarsening, and polynomial coarsening are highlighted.
Note that, in the case of global coarsening, two types of prolongation (categories) are needed.

type so that (7) becomes:

𝒙 (𝑓) =
∑︁
𝑐

∑︁
𝑒∈{𝑒 |C (𝑒)=𝑐 }

S (𝑓)𝑒 ◦W (𝑓)
𝑒 ◦ P (𝑓 ,𝑐)𝑐 ◦ C (𝑐)𝑒 ◦ G (𝑐)𝑒 𝒙 (𝑐) . (8)

We choose the restriction operator as the transpose of the prolongation operator

R (𝑐,𝑓) =
(
P (𝑓 ,𝑐)

)𝑇
using locally R (𝑐,𝑓)𝑒 =

(
P (𝑓 ,𝑐)𝑒

)𝑇
.

We conclude this subsection with discussing the appropriate data structures for transfer operators,
beginning with the ones needed for both global geometric and polynomial coarsening. Since global-
coarsening algorithms smoothen on the complete computational domain, data structures only need
to be able to perform two-level transfers (8) independently between arbitrary fine (f) and coarse (c)
grids. C (𝑐)𝑒 ◦G (𝑐)𝑒 is identical to C𝑒 ◦G𝑒 in the matrix-free loop (3) so that specialized algorithms and

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:13

data structures [81] can be applied and reused. S (𝑓)𝑒 needs the indices of DoFs for the given element
𝑒 in order to be able to scatter the values, andW (𝑓)

𝑒 stores the weights of DoFs (or of geometric
entities - see also Figure 4) for the given element 𝑒 . P (𝑓 ,𝑐)C (𝑒) (and R (𝑐,𝑓)C (𝑒)) need to be available for each
category. We regard them as general operators and choose the most efficient way of evaluation
based on the element types: simple dense-matrix representation vs. some substructure with sum
factorization based on smaller 1D prolongation matrices. The category of each cell has to be known
for each cell.

Alongside these process-local data structures, one needs access to all constraining DoFs on the
coarse level required during C (𝑐)𝑒 ◦ G (𝑐)𝑒 and to the DoFs of all child cells on the fine level during the
process-local part of S (𝑓)𝑒 , which is concluded by a data exchange. If external vectors do not allow
access to the required DoFs, we copy data to/from internal temporal global vectors with appropriate
ghosting [62]. We choose the coarse-side identification of cells due to its implementation simplicity
and structured data access at the price of more ghost transfer.3 For setting up the communication
pattern, we use consensus-based sparse dynamic algorithms [6, 47].

For the sake of separation of concerns, one might create three classes to implement a global-
coarsening transfer operator as we have done in deal.II. The relation of these classes is shown
in Figure 6: the multigrid transfer class (MGTransferGlobalCoarsening) delegates the actual
transfer tasks to the right two-level implementation (MGTwoLevelTransfer), which performs
communications needed as well as evaluates (8) for each category and cell by using category-
specific information from the third class (MGTransferSchemes).

The discussed data structures are applicable also to local smoothing. The fact that only a single
category is available in this case allows to simplify many code paths. However, one needs data
structures that match DoF indices on the active level and on all multigrid levels that share a
part of the mesh with the active level in addition to the two-level data structures. For further
details on implementation aspects of transfer operators for local smoothing, see [28, 64] and the
documentation of MGTransferMatrixFree class in deal.II.

4 PERFORMANCE METRICS
In Section 3, we have presented efficient implementations of the operators in Algorithm 1 for local
smoothing, global coarsening, and polynomial coarsening. Most of the discussion was independent
of the multigrid variant chosen, highlighting the similarities from the implementation point of view.
The main differences arise naturally from the local or global definition of levels: e.g., one might
need to consider hanging-node constraints during matrix-free loops when doing global coarsening
or polynomial coarsening. Local smoothing, on the other hand, has the disadvantage of performing
additional steps: 1) global transfer to/from multigrid levels and 2) special treatment of refinement
edges. In the following sections, we quantify the influence of the costs of the potentially more
expensive operator evaluations and of the additional operator evaluations, related to the choice of
the multigrid level definition.

Our primary goal is to minimize the time to solution. It consists of setup costs and the actual
solve time, which is the product of the number of iterations and the time per iteration. We will
disregard the setup costs, since they normally amortize in time-dependent simulations, where one

3Sundar et al. [99] showed that, by assigning all children of a cell to the same process, one can easily derive an algorithm
that allows to perform the cell-local prolongation/restriction on the fine side, potentially reducing the amount of data to be
communicated during the transfer. Since we allow levels to be partitioned arbitrarily in our implementation, we do not use
this approach. Furthermore, one should note that the algorithm proposed there does not allow to apply the constraints C (𝑐)𝑒

during a single cell loop as in (8), but needs a global preprocessing step as in (6), potentially requiring additional sweeps
through the whole data with access to the slow main memory.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:14 Munch, et al.

𝐿 #𝐶

MGTransferMatrixFree

/** not shown **/

prolongate_and_add(level, dst, src)
restrict_and_add(level, dst, src)

copy_to_mg(dst, src)
copy_from_mg(dst, src)
interpolate_to_mg(dst, src)

≪interface≫
MGTransferBase

prolongate_and_add(level, dst, src) = 0
restrict_and_add(level, dst, src) = 0

copy_to_mg(dst, src) = 0
copy_from_mg(dst, src) = 0
interpolate_to_mg(dst, src) = 0

MGTransferGlobalCoarsening

prolongate_and_add(level, dst, src)
restrict_and_add(level, dst, src)

copy_to_mg(dst, src)
copy_from_mg(dst, src)
interpolate_to_mg(dst, src)

MGTwoLevelTransfer

category_ptrs
level_dof_indices_coarse (G)
constraints_coarse (C)
weights_fine (W)
level_dof_indices_fine (S)

ghosted_vector_coarse (G - optional)
ghosted_vector_fine (S - optional)

prolongate_and_add(vec_fine, vec_coarse)
restrict_and_add(vec_coarse, vec_fine)
interpolate(vec_coarse, vec_fine)

MGTransferScheme

prolongation_matrix
prolongation_matrix_1D

interpolation_matrix
interpolation_matrix_1D

Fig. 6. UML diagram of the global-coarsening transfer operator MGTransferGlobalCoarsening in deal.II.
It implements the base class MGTransferBase, which is also the base class of MGTransferMatrixFree (local
smoothing), and delegates its prolongation/restriction/interpolation tasks to the right MGTwoLevelTransfer
instance. Each of these instances is defined between two levels and loops over categories/cells in order to
evaluate (8) by using the prolongation matrices from the correct MGTransferScheme object. Furthermore,
it is responsible for the communication, for which it has two optional internal vectors with appropriate
ghosting. MGTwoLevelTransfer objects can be initialized for geometric or polynomial global coarsening,
enabling support for (global) ℎ-, 𝑝-, and ℎ𝑝-multigrid in MGTransferGlobalCoarsening.

does not remesh every time step, and ways to optimize the setup of global-coarsening algorithms
are known in the literature [99]. The time of the solution process strongly depends on the choice of
the smoother, which influences the number of iterations and, as a result, also the time to solution.
Since different iteration numbers might distort the view on the performance of the actual multigrid
algorithm, we will also consider the value of the time per iteration as an important indicator of the
computational performance of multigrid algorithms particularly to quantify the additional costs in
an iteration.

In order to get a first estimate of the benefits of an algorithm compared to another, one can
derive following metrics purely from geometrical information:
• The serial workload can be estimated as the sum of the number of cells on all levels
𝑊𝑠 =

∑
𝑙 𝐶𝑙 , with𝐶𝑙 being the number of cells on level 𝑙 . This metric is based on the assumption

that all cells have the same costs, which is not necessarily true in the context of hanging
nodes [81].
• The parallel workload can be estimated as the sum of the maximum number of cells owned

by any process 𝑝 on each level:𝑊𝑝 =
∑

𝑙 max𝑝 𝐶𝑝
𝑙
, i.e., the critical path of the cells. In the

ideal case, one would expect that 𝐶𝑝
𝑙
= 𝐶𝑙/𝑃 with 𝑃 being the number of processes and

therefore𝑊𝑝 =𝑊𝑠/𝑃 . However, due to potential load imbalances, the work might not be well
distributed on the levels, i.e., max𝑝 (𝐶𝑝

𝑙
) > 𝐶𝑠/𝑃 . Since one can theoretically only proceed

to the next level once all processes have finished processing a level, load imbalances will
result in some processes waiting at imaginary barriers. We say “imaginary barriers” as level
operators only involve point-to-point communication between neighboring processes in
the grid for our implementation. Nevertheless, this simplified point of view is acceptable,
since multigrid algorithms are multiplicative Schwarz methods between levels, inherently
leading to a sequential execution of the levels. We define parallel workload efficiency as
𝑊𝑠/(𝑊𝑝 · 𝑃), as has been also done in [28].
• We define horizontal communication efficiency as 50% of the number of ghost cells

accumulated over all ranks and divided by the total number of cells. The division by two is
necessary to take into account that only one neighbor is updating the ghost values. As such,
this ratio can be seen as a proxy of how much information needs to be communicated when

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:15

computing residuals and updating ghost values. As this number counts cells, it is independent
of the polynomial degree of the element chosen. The element degree used determines the
absolute amount of communication necessary. Note that, in reality, only degrees of freedom
located at the interface have to be exchanged such that the fraction of the solution that needs
to be communicated is less than the fraction of those cells.
• Vertical communication efficiency is the share of fine cells that have the same owning

process as their corresponding coarse cell (parent). This quantity gives an indication on
the efficiency of the transfer operator and on how much data has to be exchanged. A small
number indicates that most of the data has to be completely permuted, involving a large
volume of communication. This metric has been considered in [28] as well.
• Increasing the number of (multigrid) levels leads to additional synchronization points and

communication steps and, as a result, might lead to increased latency. The absolute value of
the minimum time per V-cycle can be roughly approximated by

Δ𝑡V-CycleLatency = 𝐿((𝑘 − 1)︸ ︷︷ ︸
Spre

+ 1︸︷︷︸
residual

+ 1︸︷︷︸
R

+ 1︸︷︷︸
P

+ 𝑘︸︷︷︸
Spost

)Δ𝑡vmult
latency = 2𝐿(𝑘 + 1)Δ𝑡vmult

latency (9)

as the product of 𝑡vmult
latency (the latency of an operator evaluation consisting of one update

to the ghost values in the source vector and one step to send integral contributions in the
destination vector back to the owner) and the sum of all communication steps accumulated
over presmoothing, residuum evaluation, restriction, prolongation, and postsmoothing on all
levels. In this approximation, we assume that the coarse-grid solver does not perform any
communication and has negligible latency. Furthermore, the smoother is assumed to have
the same communication cost as one matrix-vector product in each of the 𝑘 iterations, which
is the case for simple Chebyshev iterations around point-Jacobi preconditioners [58, 65].

The metrics “parallel workload efficiency”, “horizontal communication efficiency”, and “vertical
communication efficiency” as well as “latency” (at the scaling limit) all influence the experimentally
measurable “parallel (strong-scaling) efficiency” of a multigrid solver.

Furthermore, memory consumption of the grid class is a secondary metric.4 A common
argument supporting the usage of local-smoothing algorithms is that no space is needed for
potentially differently partitioned meshes and complex data structures providing the connectivity
between them, since the multigrid algorithm can simply reuse the already existing mesh hierarchy
also for the multigrid levels [28].

Examples
In the experimental sections 5 and 6, we consider two types of static 3D meshes, as has been also
done in [28]. They are obtained by refining a coarse mesh consisting of a single cell defined by
[−1, 1]3 according to one of the following two solution criteria:
• octant: refine all mesh cells in the first octant [−1, 0]3 𝐿 times and
• shell: after 𝐿 − 3 uniform refinements, perform three local refinement steps with all cells

whose center 𝒄 is |𝒄 | ≤ 0.55, 0.3 ≤ |𝒄 | ≤ 0.43, and 0.335 ≤ |𝒄 | ≤ 0.39.
These two meshes are relevant in practice, since similar meshes occur in simulations of flows with
far fields and of multi-phase flows with bubbles [59] or any kind of interfaces. All the refinement
procedures are completed by a closure after each step, ensuring one-irregularity in the sense that
two leaf cells may only differ by one level if they share a vertex. Figure 7 shows the considered
4We use the memory-consumption output provided by deal.II. No particular efforts have been put in reducing the memory
consumption of the triangulations in the case of global coarsening.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:16 Munch, et al.

𝐿 = 4 𝐿 = 5

𝐿 = 6 𝐿 = 7

octant shell
#cells %HN #dofs #cells %HN #dofs

𝐿 𝑝 = 1 𝑝 = 4 𝑝 = 1 𝑝 = 4

3 1.2e+2 31% 2.2e+2 9.3e+3 - - - -
4 7.0e+2 37% 1.0e+3 5.1e+4 - - - -
5 4.7e+3 23% 5.7e+3 3.2e+5 1.2e+3 69% 2.0e+3 9.3e+4
6 3.5e+4 12% 3.8e+4 2.3e+6 6.8e+3 78% 9.8e+3 5.1e+5
7 2.7e+5 6.2% 2.8e+5 1.8e+7 3.7e+4 70% 4.8e+4 2.6e+6
8 2.1e+6 3.1% 2.2e+6 1.4e+8 2.7e+5 38% 3.2e+5 1.9e+7
9 1.7e+7 1.6% 1.7e+7 1.1e+9 2.2e+6 19% 2.3e+6 1.4e+8
10 1.3e+8 0.8% 1.4e+8 8.6e+9 1.7e+7 10% 1.8e+7 1.1e+9
11 1.1e+9 0.4% 1.1e+9 6.9e+10 1.4e+8 4.8% 1.4e+8 8.9e+9
12 8.6e+9 0.2% 8.9e+9 - 1.1e+9 2.4% 1.1e+9 7.1e+10
13 - - - - 8.9e+9 1.2% 8.9e+9 5.7e+11

Fig. 7. Cross section at the center of the geometries of the octant (top) and the shell (bottom) simulation.
Additionally, the number of cells, the share of cells with hanging-node constraints, and the number of DoFs
(for a scalar Lagrange element with 𝑝 = 1 and 𝑝 = 4) are given for each refinement case.

meshes and provides numbers regarding the cell count for 3 ≤ 𝐿 ≤ 13. All meshes are partitioned
along space-filling curves [15, 26] with the option to assign cells weights.

Tables 1 and 2 give—as examples—evaluated numbers for geometrical metrics of the two consid-
ered meshes for a single process and for 192 processes with cells constrained by hanging nodes
weighted with the factor of 2 for partitioning, compared to the rest of the cells. For a single process,
only workload and memory consumption are shown. In the tables, a bold face indicates the most
beneficial behavior among the listed variants.

Starting with the octant case, one can see that the serial workload in the case of local smoothing
and global coarsening is similar, with local smoothing having consistently less work. The workload
of each level is depicted in Figure 8. The behavior of the memory consumption is similar to the one of
the workload: global coarsening has a slightly higher memory consumption, since it explicitly needs
to store the coarser meshes as well; however, the second finest mesh has already approximately one
eighth of the size of the coarsest triangulation so that the overhead is small. In the parallel case, the
memory consumption differences are higher: this is related to the fact that—in the case of global
coarsening—overlapping ghosted forests of trees need to be saved. In contrast, the workload in
the parallel case is much lower in the case of global coarsening: while global coarsening is able to
reach efficiencies higher than 90%, the efficiency is only approximately 50–60% in the case of local
smoothing. The high value in the global-coarsening case was to be expected, since we repartition
each level during construction. The low value in the case of local smoothing can be seen in Figure 9,
where the minimum, maximum, and average workload are shown for each level. The workload
on the finest level is optimally distributed between processes with cells, however, there are some
processes without any cells, i.e., any work, on that level. On the second level, most processes can
reduce the number of cells nearly optimally by a factor of 8, but processes idle on the finest level
start to participate in the smoothing process with a much higher number of cells, similarly to what
other processes process on the finest level. This pattern of discrepancy between the minimum and
the maximum number of cells on the lower levels continues and, as a consequence, the maximum
workload per level is higher, increasing the overall parallel workload. Figure 9 might also give the
impression of a load imbalance in the case of global coarsening, since the minimum workload on
the finest level is the half of the maximum value. This is related to the way we partition—penalizing
cells that have hanging nodes with a weight of 2—and to the fact that a lot of cells with hanging
nodes are clustered locally. The actual resulting load imbalance is small, as shown in Figure 12.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:17

Table 1. Geometrical multigrid statistics for the octant test case for different numbers of refinements (wl:
serial/parallel workload, wl-eff: parallel workload efficiency, v-eff: vertical communication efficiency; h-eff:
horizontal communication efficiency; mem: memory consumption in bytes). Figures 8 (serial) and 9 (parallel)
give a detailed breakdown of the workload of each multigrid level for 𝐿 = 8.

1 process 192 processes
local smoothing global coarsening local smoothing global coarsening

𝐿 wl mem wl mem wl wl-eff v-eff h-eff mem wl wl-eff v-eff h-eff mem

3 1.4e+2 6.6e+4 1.4e+2 8.7e+4 1.8e+1 3% 89% 60% 1.3e+6 2.5e+1 3% 17% 1.0e+5 2.7e+6
4 8.0e+2 3.3e+5 8.4e+2 4.2e+5 2.2e+1 18% 85% 56% 1.2e+7 3.3e+1 13% 4% 1.0e+5 1.5e+7
5 5.4e+3 2.0e+6 5.6e+3 2.5e+6 7.2e+1 38% 88% 58% 5.3e+7 6.7e+1 43% 1% 59% 6.8e+7
6 4.0e+4 1.4e+7 4.0e+4 1.7e+7 4.0e+2 51% 96% 65% 1.3e+8 2.8e+2 76% 6% 66% 2.0e+8
7 3.1e+5 1.1e+8 3.1e+5 1.3e+8 2.7e+3 58% 99% 75% 4.2e+8 1.7e+3 92% 13% 75% 6.2e+8
8 2.4e+6 8.6e+8 2.4e+6 9.9e+8 2.0e+4 62% 99% 84% 1.8e+9 1.3e+4 96% 23% 84% 2.4e+9
9 1.9e+7 6.8e+9 1.9e+7 7.8e+9 1.6e+5 64% 99% 91% 1.0e+10 1.0e+5 98% 38% 91% 1.3e+10

Table 2. Geometrical multigrid statistics for the shell test case for different numbers of refinements. The
label “-” indicates that the simulation ran out of memory.

1 process 192 processes
local smoothing global coarsening local smoothing global coarsening

𝐿 wl mem wl mem wl wl-eff v-eff h-eff mem wl wl-eff v-eff h-eff mem

5 1.4e+3 6.0e+5 1.8e+3 9.5e+5 3.1e+1 22% 80% 55% 3.2e+7 4.5e+1 21% 2% 56% 4.7e+7
6 7.8e+3 3.2e+6 9.2e+3 4.4e+6 1.6e+2 26% 89% 59% 7.7e+7 1.0e+2 47% 12% 59% 1.3e+8
7 4.2e+4 1.7e+7 4.9e+4 2.2e+7 7.6e+2 28% 96% 66% 1.5e+8 4.3e+2 58% 36% 65% 3.0e+8
8 3.1e+5 1.2e+8 3.4e+5 1.4e+8 4.7e+3 34% 99% 76% 4.4e+8 2.3e+3 75% 78% 75% 7.7e+8
9 2.5e+6 8.9e+8 2.5e+6 1.1e+9 3.5e+4 36% 99% 85% 1.8e+9 1.5e+4 86% 93% 84% 2.7e+9
10 - - - - 2.7e+5 38% 99% 91% 1.0e+10 1.1e+5 92% 97% 91% 1.3e+10

0 1 2 3 4 5 6 7 80.0

1.0

2.0

·106

0.04
0.29

2.1

7.
3×

Level

W
or

kl
oa

d

Local smoothing

0 1 2 3 4 5 6 7 80.0

1.0

2.0

·106

0.03
0.27

2.1

7.
9×

Level

Global coarsening

Fig. 8. Workload of each multigrid level of an octant simulation with a single process for 𝐿 = 8.

0 1 2 3 4 5 6 7 80.0

0.5

1.0

·104

0.02 0.05
0.2

0.64

1.1

7.
3×

Level

W
or

kl
oa

d

Local smoothing

min max avg

0 1 2 3 4 5 6 7 80.0

0.5

1.0

·104

0.02
0.12

1.1

7.
9×

Level

Global coarsening

min max avg

Fig. 9. Workload of each multigrid level of an octant simulation with 192 processes for 𝐿 = 8.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:18 Munch, et al.

The difference between local smoothing and global coarsening in the parallel workload comes at a
price. While the vertical communication efficiency is—by construction—high in the local-smoothing
case, this is not true in the case of global coarsening: 20% or less is not uncommon, requiring the
permutation of data during transfer. The horizontal communication costs are similar in the case
of local smoothing and global coarsening. Assuming that 1) pre- and postsmoothing are the most
time-consuming steps, 2) the parallel workload is the relevant metric, and 3) the transfer between
levels is not dominant in this case, the values indicate that global coarsening might be twice as fast
as local smoothing. However, if the transfer is the bottleneck, the picture might look differently so
that a conclusive statement only based on geometrical metrics is not possible in this case.

The observations for the octant case are also made, in a more pronounced form, in the shell
case. Here, the vertical communication is more favorable in the case of global coarsening and the
workload efficiency is significantly worse in the local-smoothing case so that one can expect a
noticeable speedup when using global coarsening.

In summary, one can state the following: in the serial case, global coarsening has to process at
least as many cells as local smoothing so that one can expect that the latter has—with the assumption
that the number of iterations is the same—an advantage regarding throughput, particularly since no
hanging-node constraints have to be applied. With an increasing number of processes, the workload
might not be well distributed in the case of local smoothing, leading to a drop in parallel efficiency.
In contrast, this is—by construction—not an issue in the global-coarsening case, since the work is
explicitly redistributed between the levels. The price is that one might need to send around a lot
of data during restriction and prolongation. The number of levels in the case of local smoothing
and global coarsening is the same, leading to potentially same scaling limits O(𝐿). However, with
appropriate partitioning of the levels, one could decrease the number of participating processes on
the coarser levels and switch to a coarse-grid solver at an earlier stage in the global-coarsening case,
leading to a better scaling limit due to lower latency. In the following, we show experimentally that
the above statements can be verified and take a more detailed look at the influence of the mutually
contradicting requirements “good workload balance” and “cheap transfer” on the parallel efficiency.

Making definite general conclusions is difficult as they depend on the number of processes as
well as on the type of the coarse mesh and of the refinement. While the two meshes considered here
are prototypical for many problems we have encountered in practice, it is clear that the statements
made in this publication can not hold in all cases, since it is easy to construct examples that favor
one multigrid variant over the other. However, the two meshes clearly demonstrate the dominating
aspects at various problem sizes; the actual crossover point, however, might be problem- and
hardware-specific.

5 PERFORMANCE ANALYSIS: H-MULTIGRID
In the following, we solve a 3D Poisson problem with homogeneous Dirichlet boundary conditions
and a constant right-hand side in order to compare the performance of local-smoothing and global-
coarsening algorithms for the octant and shell test cases, as introduced in Section 4. The results
for a more complex setup with non-homogeneous Dirichlet boundary conditions are shown in
Table 6 in Appendix A.

We will use a continuous Lagrange finite element, whose shape functions are defined as the
tensor products of 1D shape functions with degree 𝑝 . For quadrature, we consider the consistent
Gauss–Legendre quadrature rule with (𝑝 + 1)3 points.

We start with investigating the serial performance, proceed with parallel execution with mod-
erate numbers of processes, and finally analyze the parallel behavior on the large scale (150k
processes). We conclude this section with investigation of an alternative partitioning scheme for
global coarsening.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:19

In order to obtain the best performance, the experiments are configured in the following way:
• Cells with hanging-node constraints are weighted by the factor of 2.
• The conjugate-gradient solver is run until a reduction of the 𝑙2-norm of the unpreconditioned

residual by 104 is obtained. We choose a rather coarse tolerance, since this is a common
value for the solution of time-dependent problems, such as the Navier–Stokes equations,
where good initial guesses can be obtained by projection and extrapolation without the need
to converge multigrid to many digits. Similarly, coarse tolerances also indicate the costs of
solving in a full-multigrid scenario with the finest level only correcting against the next
coarser one.
• The conjugate-gradient solver is preconditioned by a single V-cycle of either a local-smoothing

or a global-coarsening multigrid algorithm.
• To increase the throughput, all operations in the multigrid V-cycle are run with single-

precision floating-point numbers, while the conjugate-gradient solver is run in double preci-
sion [64].
• We use a Chebyshev/point-Jacobi smoother of degree 3 on all levels.
• As coarse-grid solver, we use two V-cycles of AMG (double-precision, ML [34] with parameters

shown in Appendix C).
The results of performance studies leading to the decision on the configuration described above are
presented in Tables 7–11 in Appendix A. All experiments have been conducted on the SuperMUC-
NG supercomputer. Its compute nodes have 2 sockets (each with 24 cores of Intel Xeon Skylake)
and the AVX-512 ISA extension so that 8 doubles or 16 floats can be processed per instruction. A
detailed specification of the hardware is given in Table 3. The parallel network is organized into
islands of 792 compute nodes each. The maximum network bandwidth per node within an island
is 100GBit/s=12.5GB/s5 via a fat-tree network topology. Islands are connected via a pruned-tree
network architecture (pruning factor 1:4). We have run all experiments six times and report the
best timings of the last five runs. We would like to note that executions on SuperMUC-NG are
relatively noisy even for small-scale simulations with hundreds of processes, which results in
performance degeneration by up to 50%. Our investigations revealed that this has only a minor
effect on the execution times of the multigrid variants in comparison. Nevertheless, to rule out any
source of inconsistency in the results, we report timings for all multigrid variants from the same
job execution in each table and figure. Apart from these machine-caused outliers, the statistical
distribution is within a few percent of the minimum and not explicitly reported in the following
figures.

For local smoothing and global coarsening, we use different implementations of the transfer
operator from deal.II (see Subsection 3.5). In order to demonstrate that they are equivalent and
results shown in the following are indeed related to the definition of multigrid levels and the
resulting different algorithms, Table 12 in Appendix A presents a performance comparison of these
implementations for uniformly refined meshes of a cube, for which both algorithms are equivalent.

For global coarsening, we have also investigated the possibility to decrease the number of
participating processes and to switch to the coarse-grid solver earlier. For our test problems, we
could not see any obvious benefits for the time to solution so that we do not use these features of
global coarsening in this publication, but defer their investigation to future work.

5.1 Serial runs: overview
Figure 10 gives an overview of the time shares during the solution process in a serial shell
simulation for local smoothing and global coarsening. Without going into details of the actual
5https://doku.lrz.de/display/PUBLIC/SuperMUC-NG, retrieved on February 26, 2022.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:20 Munch, et al.

Table 3. Specification of the hardware system used for evaluation. Memory bandwidth is according to the
STREAM triad benchmark (optimized variant without read for ownership transfer involving two reads and one
write), and GFLOP/s are based on the theoretical maximum at the AVX-512 frequency. The dgemm performance
is measured for𝑚 = 𝑛 = 𝑘 = 12,000 with Intel MKL 18.0.2. We measured a frequency of 2.5 GHz with AVX-512
dense code for the current experiments. The empirical machine balance is computed as the ratio of measured
dgemm performance and STREAM bandwidth from RAM memory.

Intel Skylake Xeon Platinum 8174
cores 2 × 24
frequency base (max AVX-512 frequency) 2.7 GHz
SIMD width 512 bit
arithmetic peak (dgemm performance) 4147 GFLOP/s (3318 GFLOP/s)
memory interface DDR4-2666, 12 channels
STREAM memory bandwidth 205 GB/s
empirical machine balance 14.3 FLOP/Byte
L1-/L2-/L3-/MEM size 32kB (per core)/1MB (per core)/66MB (shared)/96GB(shared)
compiler + compiler flags g++, version 9.1.0, -O3 -funroll-loops -march=skylake-avx512

CG (2.91s)
MG (10.1s)
CG↔MG (0.93s)

(a) Local smoothing (per it.: 13.94s).

CG (2.92s)
MG (10.1s)
CG↔MG (0.32s)

(b) Global coarsening (per it.: 13.34s).

Fig. 10. Time per iteration spent for conjugate-gradient solver (CG), multigrid preconditioner (MG), as well
as transfer between solver and preconditioner (CG↔MG) in a serial shell simulation with 𝑘 = 4 and 𝐿 = 9.

numbers, one can see that most of the time is spent in the multigrid preconditioner in the case of
both local smoothing and global coarsening (72%/76%). It is followed by the other operations in the
outer conjugate-gradient solver (21%/22%). The least time is spent for transferring data between
preconditioner and solver (7%/2%). The higher time of the transfer in the local-smoothing case is
not surprising, since the transfer involves all multigrid levels sharing cells with the active level.
Since the overwhelming share of solution time is taken by the multigrid preconditioner, all detailed
analysis in the remainder of this work concentrates on the multigrid V-cycle.

One should note that spending 72%/76% of the solution time within the multigrid preconditioner is
already low, particularly taking into account that the outer conjugate-gradient solver also performs
its operator evaluations (1 matrix-vector multiplication per iteration) in an efficient matrix-free
fashion. The low costs are related to the usage of single-precision floating-point numbers and
to the low number of pre-/postsmoothing steps, which results in a total of 6–7 matrix-vector
multiplications per level and iteration.

5.2 Serial run
Tables 4 and 5 show the number of iterations and the time to solution for the octant and the shell
test cases run serially with local smoothing and global coarsening as well as with the polynomial
degrees 𝑝 = 1 and 𝑝 = 4.

It is well visible that local smoothing has to perform at least as many iterations as global
coarsening, with the difference in iterations limited to 1 in the examples considered. This difference

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:21

Table 4. Number of iterations and time to solution for local smoothing (LS) and global coarsening (GC) with
1 process and 192 processes for the octant simulation case. Figures 11 (serial) and 12 (parallel) give a detailed
breakdown of the times of one V-cycle for the case shaded in gray, 𝐿 = 8 and 𝑝 = 4.

1 process 192 processes (4 nodes)
𝑝 = 1 𝑝 = 4 𝑝 = 1 𝑝 = 4

LS GC LS GC LS GC LS GC

𝐿 #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

3 4 5.0e-4 4 6.0e-4 4 3.8e-3 4 4.3e-3 4 1.2e-3 4 1.0e-3 4 2.5e-3 4 2.5e-3
4 4 1.8e-3 4 2.5e-3 4 1.8e-2 4 2.0e-2 4 2.6e-3 4 1.7e-3 4 4.3e-3 4 4.1e-3
5 4 8.6e-3 4 1.2e-2 4 1.1e-1 3 8.7e-2 4 5.3e-3 4 2.6e-3 4 6.9e-3 3 5.0e-3
6 4 5.1e-2 4 6.5e-2 4 8.8e-1 3 6.5e-1 4 5.6e-3 4 4.1e-3 4 1.7e-2 3 1.0e-2
7 4 3.6e-1 3 3.2e-1 4 6.9e+0 3 5.0e+0 4 1.3e-2 3 5.7e-3 4 8.4e-2 3 5.0e-2
8 4 2.8e+0 3 2.3e+0 4 5.3e+1 3 3.8e+1 4 3.9e-2 3 2.1e-2 4 7.2e-1 3 4.3e-1
9 4 2.2e+1 3 1.8e+1 - - - - 4 2.3e-1 3 1.3e-1 - - - -

Table 5. Number of iterations and time to solution for local smoothing (LS) and global coarsening (GC) with
1 process and 192 processes for the shell simulation case.

1 process 192 processes (4 nodes)
𝑝 = 1 𝑝 = 4 𝑝 = 1 𝑝 = 4

LS GC LS GC LS GC LS GC

𝐿 #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

5 5 3.6e-3 4 7.1e-3 4 3.1e-2 4 4.5e-2 5 6.6e-3 4 3.1e-3 4 6.4e-3 4 6.3e-3
6 5 1.5e-2 4 2.8e-2 4 1.9e-1 4 2.2e-1 5 6.8e-3 4 4.1e-3 4 1.0e-2 4 9.2e-3
7 5 7.3e-2 4 1.3e-1 4 1.0e+0 4 1.2e+0 5 9.2e-3 4 5.6e-3 4 2.3e-2 4 1.8e-2
8 5 5.1e-1 4 7.3e-1 4 7.8e+0 4 7.9e+0 5 1.7e-2 4 1.2e-2 4 1.1e-1 4 6.9e-2
9 5 3.7e+0 4 4.3e+0 4 5.8e+1 4 5.6e+1 5 6.3e-2 4 3.5e-2 4 8.5e-1 4 5.2e-1
10 - - - - - - - - 5 3.9e-1 4 1.9e-1 - - - -

is due to the additional smoothening applied to certain cells in the course of global coarsening.
Note that global coarsening also benefits from the simple setup of a smooth solution with artificial
refinement, see Table 6 in the appendix for a somewhat more realistic test case. This comes with a
higher serial workload for global coarsening, which is also visible in the times of a single V-cycle
(not shown). Nevertheless, the lower number of iterations leads to a smaller time to solution in the
case of global coarsening in some instances. Generally, the global-coarsening V-cycle is relatively
more expensive in the case of the shell simulation with linear elements: This is not surprising
due to the higher number of cells with hanging-node constraints (see also Figure 7) in the shell
case and the higher overhead of linear elements for application of hanging-node constraints, as
analyzed by [81].

Figure 11 shows the distribution of times spent on each multigrid level and in each multigrid
stage for the octant case with 𝐿 = 8 and 𝑝 = 4. While the overall runtimes are similar for local
smoothing and global coarsening, distinct (and expected) differences are visible for the individual
ingredients: The restriction and prolongation steps take about the same time in both cases.
The presmoothing, residual, and postsmoothing steps are slightly more expensive in the global-
coarsening case, which is related to the observation that the evaluation of the level operator 𝑨(𝑙)
(2/1/3-times) is the dominating factor. For local smoothing, the computation of 𝑨(𝑙)𝐸𝑆𝒙

(𝑙)
𝑆 is realized

as a side product of the application of 𝑨(𝑙) , hence limiting its impact on the residual step. The only
visible additional cost of local smoothing is 𝑨(𝑙)𝑆𝐸𝒙

(𝑙)
𝐸 for the modification of the right-hand-side

vector for postsmoothing to incorporate inhomogenous Dirichlet boundary conditions (edge step).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:22 Munch, et al.

0 1 2 3 4 5 6 7 80

2

4

6

8

0.16
1.2

8.3

6.
9×

Level

Ex
cl

us
iv

e
tim

e
[s

]
Local smoothing

0 1 2 3 4 5 6 7 80

2

4

6

8

0.14
1.1

8.3

7.
5×

Level

Global coarsening

pre
sm

oo
thing

res
idu

al

res
tric

tio
n

coa
rse

-gr
id

sol
ver

pro
lon

gat
ion edg

e

po
sts

moo
thing0

2

4

2.9

1.2

0.53 0.42 0.52

4.1

Ti
m

e
[s

]

pre
sm

oo
thing

res
idu

al

res
tric

tio
n

coa
rse

-gr
id

sol
ver

pro
lon

gat
ion edg

e

po
sts

moo
thing0

2

4

3.0

1.3

0.54 0.47

4.3

Fig. 11. Profile of one V-cycle of an octant simulation with a single process for 𝐿 = 8 and 𝑝 = 4

0 1 2 3 4 5 6 7 80

2

4

6

8

10
·10−2

0.30
1.04

6.7

8.3

2.
3×

Level

Ex
cl

us
iv

e
tim

e
[s

]

Local smoothing

min max avg

0 1 2 3 4 5 6 7 80

2

4

6

8

10
·10−2

0.12 0.21
1.5

9.2
7.

8×

Level

Global coarsening

min max avg

pre
sm

oo
thing

res
idu

al

res
tric

tio
n

coa
rse

-gr
id

sol
ver

pro
lon

gat
ion edg

e

po
sts

moo
thing0

2

4

6
·10−2

4.5

1.2 1.3 1.2 1.3

5.2

Ti
m

e
[s

]

min max avg

pre
sm

oo
thing

res
idu

al

res
tric

tio
n

coa
rse

-gr
id

sol
ver

pro
lon

gat
ion edg

e

po
sts

moo
thing0

2

4

6
·10−2

2.9

1.2 1.5 1.7

4.5

min max avg

Fig. 12. Profile of one V-cycle of an octant simulation with 192 processes for 𝐿 = 8 and 𝑝 = 4

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:23

However, its evaluation is less expensive than the application of 𝑨(𝑙) , since only DoFs in proximity
to the interface are updated.

5.3 Moderately parallel runs
We report our findings of simulations with 192 processes on 4 compute nodes. Tables 4 and 5
confirm the significance of a good workload balance for the time to solution, as indicated by Tables 1
and 2. The number of processes does not influence the number of iterations due to the chosen
smoother. Speedups—compared to local smoothing—are reached: up to 2.3/1.7 for the octant
(𝑝 = 1/𝑝 = 4) and up to 2.1/1.6 for the shell case if the different iteration numbers are considered.
Normalized per solver iteration, the advantage of global coarsening in these four cases is 2.0, 1.3,
1.7 and 1.6, respectively. Figure 12 illustrates this behavior by showing the distribution of the
minimum/maximum/average times spent on each multigrid level and each multigrid stage for the
octant case with 𝐿 = 8. In the case of global coarsening, it is well visible that the load is equally
distributed and the time spent on the levels is significantly reduced level by level for the higher
levels. For the finest ones, local smoothing shows a completely different picture. On the finest
level, there are processes with hardly any work, but nevertheless the average work is close to
the maximum value, indicating that the load is well-balanced among the processes with work.
However, on the second finest level, a significant workload imbalance—by a factor of 2.8—is visible
also among the processes with work. This leads to the situation that the maximum time spent
on the second finest level is just slightly less than the one on the finest level, contradicting our
expectation of a geometric series and leading to the observed increase in the total runtime.

5.4 Large-scale parallel run
Figures 13 and 14 show results of scaling experiments starting with 1 compute node (48 processes)
up to 3,072 nodes (147,456 processes). Besides the times of a single V-cycle, we plot the normalized
throughput (DoFs per process and time per iteration) against the time per iteration. The plot can be
read in the following way: far from the scaling limit (right top corner of the plot), simulations take
longer, but are more efficient (parallel efficiency of one); at the scaling limit (left bottom corner
of the plots), simulations reach shorter times at the cost of lower efficiencies. Here, a horizontal
behavior from the right to the left corresponds to ideal strong scaling. If different lines coincide, we
observe ideal weak scaling. Based on this plot, one can judge the resource utilization and parallel
efficiency of a simulation if a certain time to solution should be obtained.

The throughput for the polynomial degree 𝑝 = 4 is higher by a factor of 3 than for 𝑝 = 1. This is
expected and related to the used matrix-free algorithms and their node-level performance, which
improves with the polynomial order [66]. Just as in the moderately parallel case (see Subsection 5.3),
we can observe better timings in the case of global coarsening for a large range of configurations
(max. speedup: octant 1.9/1.4 for 𝑝 = 1/𝑝 = 4, shell: 2.4/2.4). The number of iterations of local
smoothing is 4 for both cases and all refinement numbers. For global coarsening, it is 4 for the
sphere case and decreases from 4 to 2 with increasing number of refinements in the case of
quadrant so that the actual speedups reported above are even higher. The high speedup numbers
of global coarsening in the shell simulation case are particularly related to its high workload and
vertical efficiency, as shown in Table 5.

The normalized plots give additional insights. Apart from the obvious observation that the
minimal time to solution increases with increasing number of refinements (left bottom corner
of the plots in Figures 13 and 14) and global coarsening starts with higher throughputs, one can
also see that the decrease in parallel efficiency is more moderate in the case of global coarsening.
For the example of the octant case with 𝑝 = 1/𝐿 = 10, one can increase the number of processes
by a factor of 16 and still obtain a throughput per process that is higher than the one in the case

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:24 Munch, et al.

𝐿 = 7 𝐿 = 8 𝐿 = 9 𝐿 = 10 𝐿 = 11 LS GC

1 4 16 64 256 1k 3k
10−3

10−2

10−1

100 ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

𝑝 = 1

1 4 16 64 256 1k 3k
10−3

10−2

10−1

100 ideal

Nodes (× 48 CPUs)

𝑝 = 4

10−2 10−1
0

1

2

·106

3.
6m

s

sec / it

[D
oF

s×
it]

/[p
ro

c×
se

c]

10−2 10−1 100
0

2

4

6

·106

3.
6m

s

sec / it

Fig. 13. Strong-scaling comparison of local smoothing (LS) and global coarsening (GC) for octant for 𝑝 = 1
and 𝑝 = 4. The label “3.6ms” indicates the theoretical scaling limit for 𝐿 = 9.

of single-node computations of local smoothing, which normally shows a kink in efficiency at
early stages (particularly visible in the shell case, which matches the findings made in [28]). A
further observation is that the lines for global coarsening overlap far from the scaling limit, i.e,
the throughput is independent of the number of processes and the number of refinements. This
is not the case for local smoothing, where the throughput deteriorates with the number of levels,
indicating load-balance problems. The simulations with 𝑝 = 4 show similar trends, but the lines are
not as smooth, possibly due to the decreased granularity for higher orders.

With (9), one can approximate a latency Δ𝑡V-CycleLatency = 3.6ms for 𝐿 = 9 and Δ𝑡vmultLatency = 50 𝜇s. This
value is visualized with vertical lines in the diagrams. One can see that the approximation indeed
matches well for 𝑝 = 1, indicating that the solvers are limited by the latency in these ranges. Due
to the similarity between the numbers of communication steps in the case of local smoothing and
global coarsening, the minimal times reached are similar. For 𝑝 = 4, the discrepancy between the
approximated limit and the measurements is higher; the minimal times reached by global coarsening
are smaller, indicating that the latency limit has not been reached yet and load imbalances still have
a noticeable effect. For less refinements, e.g., 𝐿 = 7, better correspondence can be observed. Apart
from these observations, we would like to emphasize that, in practice, one would run at higher
efficiencies (left-top corner in the normalized plot), for which both 𝑝 = 1 and 𝑝 = 4 are dominated
by load-imbalance effects.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:25

𝐿 = 7 𝐿 = 8 𝐿 = 9 𝐿 = 10 𝐿 = 11 𝐿 = 12 LS GC

1 4 16 64 256 1k 3k
10−3

10−2

10−1

100 ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

𝑝 = 1

1 4 16 64 256 1k 3k
10−3

10−2

10−1

100
ideal

Nodes (× 48 CPUs)

𝑝 = 4

10−2 10−1
0

1

2

·106

3.
6m

s

sec / it

[D
oF

s×
it]

/[p
ro

c×
se

c]

10−2 10−1 100
0

2

4

6

·106

3.
6m

s

sec / it

Fig. 14. Strong-scaling comparison of local smoothing (LS) and global coarsening (GC) for shell for 𝑝 = 1
and 𝑝 = 4. The label “3.6ms” indicates the theoretical scaling limit for 𝐿 = 9.

5.5 First-child policy as alternative partitioning strategy for global coarsening
Subsection 5.3 indicates that local smoothing with first-child policy might suffer from deteriorated
reduction rates of the maximum number of cells on each level; in particular, there might be processes
without any cells, i.e., any work, increasing the critical path, although the vertical efficiency is
optimal. In this section, we consider the first-child policy as an alternative for partitioning of the
levels for global coarsening.

Figure 15 presents the timings of large-scale octant simulations for 1) local smoothing, 2) global
coarsening with default partitioning, and 3) global coarsening with first-child policy for 𝑝 = 1/𝑝 = 4.
The timings of the latter show similar trends as global coarsening with default partitioning and
are lower than the ones of local smoothing. In order to explain this counterintuitive observation,
Figure 15 provides the maximum number of cells on each multigrid level of the three approaches
for 𝐿 = 11 on 256 nodes. Since global coarsening with first-child policy does not perform any
repartitioning, better reduction trends as in the local-smoothing case on all levels can not be
expected, however, one can observe that, for the local section of the refinement tree, the number
of cells on the finest levels is reduced nearly as well as in the case of the default partitioner, i.e.,
the parallel workload and the parallel efficiency are not much worse, nonetheless, with higher
vertical efficiency. This is not possible for the lower levels, but the behavior of the finest levels
dominates the overall trends, since they take the largest time of the computation. One should note
that local smoothing has access to the same cells, but simply skips them during smoothing of a

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:26 Munch, et al.

LS GC (default) GC (fcp) 𝐿 = 8 𝐿 = 9 𝐿 = 10 𝐿 = 11 LS/GC (default) GC (fcp)

0 2 4 6 8 10
100

101

102

103

104

105

÷8

÷2

Level

M
ax

.c
el

ls
pe

rl
ev

el

1 4 16 64 256 512
10−3

10−2

10−1

100 ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

𝑝 = 1

1 4 16 64 256 512
10−3

10−2

10−1

100 ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

𝑝 = 4

Fig. 15. Left: Maximum number of cells per level (𝐿 = 11, 256 nodes) and right: strong scaling of global
coarsening with first-child policy (fcp) in comparison to local smoothing (LS) and geometric global coarsening
(GC) with default policy for octant.

LS GC (default) GC (fcp) 𝐿 = 9 𝐿 = 10 𝐿 = 11 𝐿 = 12 LS/GC (default) GC (fcp)

0 2 4 6 8 10 12
100

102

104

106

÷8

÷8

const

Level

M
ax

.c
el

ls
pe

rl
ev

el

1 4 16 64 256 512
10−3

10−2

10−1

100 ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

𝑝 = 1

1 4 16 64 256 512
10−3

10−2

10−1

100
ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

𝑝 = 4

Fig. 16. Left: Maximum number of cells per level (𝐿 = 12, 256 nodes) and right: strong scaling of global
coarsening with first-child policy (fcp) in comparison to local smoothing (LS) and geometric global coarsening
(GC) with default policy for shell.

given level, missing the opportunity to reduce the problem size locally. In our experiments, it is
not clear whether an optimal reduction of cells is crucial for all configurations: for 𝑝 = 1, global
coarsening with default partitioning is faster for most configurations (up to 20%) and, for 𝑝 = 4,
global coarsening with first-child policy is faster (up to 10%). We could trace this difference back
to the different costs of the transfer, where, for 𝑝 = 4, a reduced data transfer (both within the
compute node and across the network) and, for 𝑝 = 1, a better load balance is beneficial.

In the shell case (Figure 16), we observe that both global-coarsening partitioning strategies
result in very similar reduction rates, which can be traced back to the fact that both strategies lead to
comparable partitionings of the levels (see also Table 5, which shows a very high vertical efficiency
of the default partitioning) and—as a consequence—to very similar solution times (±10%). Local
smoothing only reduces the maximum number of cells per level optimally once all locally refined
cells have been processed and the levels that had been constructed via global refinement have been
reached. This case stresses the issue of load imbalances related to reduction rates significantly
differing between processes.

6 PERFORMANCE ANALYSIS: P-MULTIGRID
In this section, we consider 𝑝-multigrid. The settings are as described in Section 5. The degrees on
the levels are obtained by a bisection strategy. On the coarsest level (𝑝 = 1, fine mesh with hanging
nodes), we run a single V-cycle of either a local-smoothing or a global-coarsening geometric

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:27

𝐿 = 7 𝐿 = 8 𝐿 = 9 𝐿 = 10 LS/GC 𝑝-mg 𝐿 = 8, 𝑝-mg 𝐿 = 9, 𝑝-mg 𝐿 = 8, GC part 𝐿 = 9, GC part

1 4 16 64 25610−3

10−2

10−1

100
ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

1 4 16 64 25610−3

10−2

10−1

100
ideal

Nodes (× 48 CPUs)

Ti
m

e
pe

ri
te

ra
tio

n
[s

]

Fig. 17. Strong scaling of 𝑝-multigrid for octant for 𝑝 = 4. 𝑝-multigrid switches to a global-coarsening coarse-
grid solver immediately once linear elements have been reached. Left: Comparison with local smoothing (LS)
and geometric global coarsening (GC) for 𝑝 = 4. Right: Comparison with geometric global coarsening (GC)
for 𝑝 = 1 (coarse-grid problem of 𝑝-multigrid).

multigrid solver in an ℎ𝑝 context. In Appendix B, we present a comparison with state-of-the-art
AMG solvers [31, 34] as coarse-grid solvers of 𝑝-multigrid on 16 nodes. The results show better
timings in favor of geometric multigrid, which also turned out to be more robust with a single
V-cycle.

Figure 17 presents a strong-scaling comparison of the 𝑝-multigrid version of the global-coarsening
algorithm with local-smoothing and global-coarsening variants of ℎ-multigrid for the octant case
for 𝑝 = 4.6 As we use a bisection strategy in the context of 𝑝-multigrid, the overall (ℎ𝑝-)multigrid
algorithm has two additional levels compared to pure ℎ-multigrid, given the same fine mesh,
but with additional levels for 𝑝 = 1 and 𝑝 = 2. In our experiments, we observe that 𝑝-multigrid
needs at least as many iterations as the pure (global-coarsening) ℎ-multigrid algorithm (with small
differences of at most 1). Since this might be related to the chosen problem and might be different
on unstructured meshes as well as for problems with high-contrast coefficients and boundary
layers, we consider “time per iteration” in the following.

One can see that one cycle of 𝑝-multigrid is 10–15% faster than ℎ-multigrid for moderate numbers
of processes. The reason for this is that the smoother application on the finest level is equally expen-
sive, however, the transfer between the two finest levels is cheaper: due to the same partitioning of
these levels, the data is mainly transferred between cells that are locally owned on both the coarse
and the fine level. At the scaling limit (not shown), 𝑝-multigrid falls behind ℎ-multigrid regarding
performance. This is related to the increased latency due to a higher number of levels.

For the sake of completeness, Figure 17 includes the times spent in the geometric global-
coarsening part, i.e., the timings for the V-cycle for 𝑝 = 1 for 𝐿 = 8/𝐿 = 9 as the coarse-grid
problem of the 𝑝-multigrid solver. Due to the ∼ 64× smaller size, its share is negligible for a wide
range of nodes, but it becomes noticeable at the scaling limit.

7 APPLICATION: VARIABLE-VISCOSITY STOKES FLOW
We conclude this publication by presenting preliminary results of a practical application from
geosciences by integrating the global-coarsening framework into the mantle convection code
ASPECT [39, 61] and comparing it against the existing local-smoothing implementation [27].

6The raw data for 𝐿 = 9 is provided in Appendix B.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:28 Munch, et al.

We consider the variable-viscosity Stokes problem

−∇ · (2𝜂𝜀 (u)) + ∇𝑝 = 𝑓

∇ · u = 0

with a Q2-Q1 Taylor-Hood discretization of velocity ®𝑢, pressure 𝑝 , and a given viscosity 𝜂 (𝑥) > 0,
the symmetric gradient 𝜀 (u) = 1/2∇u + 1/2(∇u)𝑇 , and forcing 𝑓 . The resulting linear system(

𝐴 𝐵𝑇

𝐵 0

) (
𝑈
𝑃

)
=

(
𝐹
0

)

is solved with a Krylov method (in our tests using IDR(2), see [27]) preconditioned using a block
preconditioner

𝑃−1 =

(
𝐴 𝐵𝑇

0 −𝑆
)−1

where the Schur complement 𝑆 = 𝐵𝐴−1𝐵𝑇 is approximated using a mass matrix weighted by the
viscosity. The inverses of the diagonal blocks of 𝐴 and the Schur complement approximation 𝑆
are each approximated by applying a single V-cycle of geometric multigrid using a Chebyshev
smoother of degree 4 and implemented in a matrix-free fashion. Each IDR(2) iteration consists of
3 matrix-vector products and 3 preconditioner applications. Operator and preconditioner are set
up to act on the complement of the nullspace containing the constant pressures. For a detailed
description of the preconditioner see [27].

We consider a 3D spherical shell benchmark problem called “nsinker_spherical_shell” that is part
of ASPECT. A set of 7 heavy sinkers is placed in a spherical shell with inner radius 0.54, outer radius
1.0, and no-flow boundary conditions. The flow is driven by the density difference of the sinkers
(𝛽 = 10) and the gravity of magnitude 1 as follows, where 𝑐𝑖 are the centers of the 𝑛 sinkers7:

Φ(𝑥) =
𝑛∏
𝑖=1

[
1 − exp

(
−𝛿 max

[
0, |𝑐𝑖 − 𝑥 | − 𝜔

2

]2
)]

,

𝜂 (𝑥) = Φ(𝑥)𝜂min + (1 − Φ(𝑥))𝜂max,

𝑓 (𝑥) = (0, 0, 𝛽 (Φ(𝑥) − 1)) ,
with 𝛿 = 200, 𝜔 = 0.1, 𝜂min = 0.1, and 𝜂max = 10. The viscosity is evaluated at the quadrature
points of each cell on the finest level, averaged using harmonic averaging on each cell, and then
interpolated to the coarser multigrid levels using the multigrid transfer operators (see also the
function interpolate_to_mg() in Figure 6) for use in the multigrid preconditioner.

The initial mesh (consisting of 96 coarse cells, 4 initial refinement steps and a high-order manifold
description) is refined adaptively using a gradient jump error estimator (see [56]) of the velocity
field roughly doubling the number of unknowns in each step, see Figure 18.

In the following, we compare local smoothing and global coarsening regarding number of
iterations, time to solution, and time for a single V-cycle of the 𝐴 block in Figure 19. Computations
are done on TACC Frontera8 on 7168 processes (128 nodes with 56 cores each). While iteration
numbers are very similar, the simulation with global coarsening is about twice as fast in total. Each
V-cycle is up to four times faster, which is not surprising, since the mesh has—for a high number of
refinements—a workload efficiency of approximately 20%. The results suggest that the findings
regarding iteration numbers and performance obtained in Section 5 for a simple Poisson problem
are also applicable for this non-trivial vector-valued problem.
7Their locations are given in https://github.com/peterrum/dealii-multigrid/mantle-convection.
8Using deal.II v9.4.0 with 64bit indices, Intel 19.1.0.20200306 with -O3 and -march=native

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:29

Fig. 18. Visualization of Stokes flow in a spherical shell: Adaptively refined mesh with two global and four
additional local refinements (left); Solution shown together with the high-viscosity sinkers (red) and velocity
vector field in purple (right).

local smoothing global coarsening
𝐿 #DoFs [1e6] wl-eff v-eff h-eff #it solve [s] V-cycle [s] wl-eff v-eff h-eff #it solve [s] V-cycle [s]

5 10.0 95% 93% 60% 24 1.11 0.011 77% 67% 61% 25 0.50 0.002
6 20.7 52% 96% 62% 25 1.54 0.006 77% 4% 63% 25 1.47 0.004
7 43.2 35% 97% 66% 27 3.20 0.010 86% 1% 66% 25 1.55 0.006
8 88.0 27% 98% 69% 27 4.94 0.021 91% 1% 69% 27 3.22 0.015
9 178.0 22% 99% 73% 28 9.81 0.046 95% 3% 73% 24 3.60 0.019
10 355.0 20% 100% 77% 29 15.36 0.104 97% 1% 76% 26 7.84 0.035
11 715.7 21% 100% 80% 27 26.38 0.217 99% 2% 80% 25 11.97 0.068
12 1441.4 20% 100% 83% 27 49.37 0.447 99% 2% 83% 26 21.77 0.140
13 2896.7 19% 100% 86% 27 107.24 0.980 100% 4% 86% 25 35.49 0.262
14 5861.9 21% 100% 89% 25 181.42 1.821 100% 5% 88% 30 78.46 0.518

Fig. 19. Performance for the Stokes-flow problem with 7168 processes with number of iterations (#it), time of
a single multigrid V-cycle of the velocity block, total solution time, and efficiency metrics.

8 SUMMARY AND OUTLOOK
We have compared geometric local-smoothing and geometric global-coarsening multigrid im-
plementations for locally refined meshes. They are based on optimal node-level performance
through matrix-free operator evaluation and have been integrated into the same finite-element
library (deal.II) in order to enable a fair comparison regarding implementation complexity and
performance.

From the implementation point of view, the two multigrid versions are—except for some subtle
differences—similar, requiring special treatment of either refinement edges or hanging-node con-
straints during the application of the smoother and the transfer operator. For the latter, one can
usually rely on existing infrastructure for the application of constraints [62, 81]. During transfer,
global coarsening needs to transfer between cells that might be refined or not. In order to be able
to vectorize the cell-local transfer, we categorize cells within the transfer operator and process
categories in one go. In the case of local smoothing, it is possible but not common to repartition
the multigrid levels; instead, one uses local strategies for partitioning. For global coarsening, we
investigated two partitioning strategies: one that optimally balances workload during smoothing
via repartitioning each level and one that minimizes the data to be communicated during the
transfer phase.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:30 Munch, et al.

In a large number of experiments, we have made the observation that, for serial simulations,
geometric local smoothing is faster than geometric global coarsening (if the number of iterations
is the same), since the total number of cells to perform smoothing on is less and the need for
evaluating hanging-node constraints on each level might be noticeable. For parallel simulations, an
equally distributed reduction of cells is beneficial. If this is not given, load imbalance is introduced
and the critical path of cells, i.e., the time to solution, is increased. In the case of local smoothing,
there might be a non-negligible number of processes without cells, naturally introducing load
imbalance already on the finest—computationally most expensive—levels. Global coarsening with
repartitioning alleviates this problem and reaches optimal parallel workload. It comes, however,
with the disadvantage of expensive transfer steps due to permutation of the data. We made the
observation that global coarsening with non-optimal partitions for smoothing but with local transfer
allows—for the examples considered—to reduce the number of cells on the finest levels surprisingly
well, introducing only a small load imbalance. We could not make a definite statement on the choice
of partitioning strategies for global coarsening, since it very much depends on whether the transfer
or the load imbalance is the bottleneck for the given problem. Regardless of the type of partitioning
of the levels, we have shown that global coarsening outperforms local smoothing by up a factor of
2.4 in terms of time to solution for both moderately large and large-scale simulations.

We have also considered polynomial global coarsening (𝑝-multigrid). Its implementation is
conceptually analogous to the one of geometric global coarsening with similar involved algorithms.
Far from the scaling limit, 𝑝-multigrid shows better timings per iteration, which can be explained
by the cheaper intergrid transfer. At the scaling limit, the introduction of additional multigrid
levels (when combining ℎ and 𝑝 multigrid) is noticeable and leads to slower times due to latency.
Generally, when 𝑝- and ℎ-multigrid are used in sequence (ℎ𝑝-multigrid), reducing the degree 𝑝 first
makes sense from a performance point of view due to cheaper transfer as long as the number of
iterations does not increase.

Global-coarsening algorithms also give the possibility to easily remove ranks from MPI commu-
nicators, allowing to increase the granularity of the problem on each level. Once the problem size
can not be reduced by a sufficient factor anymore, one can switch to the coarse-grid solver even
on a level with hanging nodes. Furthermore, ℎ and 𝑝 global coarsening could be done in one go:
while this might lead to an overly aggressive coarsening with a consequential deterioration of the
convergence rate, the reduced number of levels could result in an improved strong-scaling behavior
due to a reduced latency in some cases. The investigation of these topics is deferred to future work.

In this publication, we focused on geometrically refined meshes consisting only of hexahedral
shaped cells, where all cells have the same polynomial degree 𝑝 . However, the presented algorithms
work for 𝑝- and ℎ𝑝-adaptive problems, where the polynomial degree varies for each cell, as well as
for simplex and mixed meshes as the implementation in deal.II [7] shows. Moreover, they are—as
demonstrated in [60]—applicable also for auxiliary-space approximation for DG.

ACKNOWLEDGMENTS
The authors acknowledge collaboration with Maximilian Bergbauer, Thomas C. Clevenger, Ivo
Dravins, Niklas Fehn, Marc Fehling, and Magdalena Schreter as well as the deal.II community.

This work was supported by the Bayerisches Kompetenznetzwerk für Technisch-Wissenschaftliches
Hoch- und Höchstleistungsrechnen (KONWIHR) through the projects “Performance tuning of
high-order discontinuous Galerkin solvers for SuperMUC-NG” and “High-order matrix-free finite
element implementations with hybrid parallelization and improved data locality”. The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for fund-
ing this project by providing computing time on the GCS Supercomputer SuperMUC-NG at Leibniz
Supercomputing Centre (LRZ, www.lrz.de) through project id pr83te.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:31

Timo Heister was partially supported by the National Science Foundation (NSF) Award DMS-
2028346, OAC-2015848, EAR-1925575, by the Computational Infrastructure in Geodynamics ini-
tiative (CIG), through the NSF under Award EAR-0949446 and EAR-1550901 and The University
of California – Davis, and by Technical Data Analysis, Inc. through US Navy STTR Contract
N68335-18-C-0011. Clemson University is acknowledged for generous allotment of compute time
on Palmetto cluster.

This research is part of the Frontera computing project at the Texas Advanced Computing Center.
Frontera is made possible by National Science Foundation award OAC-1818253.

A APPENDIX TO SECTION 5

Table 6. Number of iterations and time to solution for local smoothing (LS) and global coarsening (GC)
for the octant simulation case with 768 processes (16 nodes) with given analytical solution: 𝑢 (®𝑥) =(

1
𝛼
√

2𝜋

)3
exp

(−|| ®𝑥 − ®𝑥0 | |/𝛼2) with ®𝑥0 = (−0.5,−0.5,−0.5)𝑇 and 𝛼 = 0.1. Right-hand-side function 𝑓 (®𝑥)
and inhomogeneous Dirichlet boundary conditions have been selected appropriately.

𝑝 = 1 𝑝 = 4
LS GC LS GC

𝐿 #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

3 4 1.4e-3 4 1.0e-3 4 2.9e-3 4 2.9e-3
4 4 2.8e-3 4 1.7e-3 4 4.7e-3 4 4.2e-3
5 4 4.0e-3 4 2.7e-3 4 6.9e-3 4 6.5e-3
6 4 5.7e-3 4 4.2e-3 4 1.2e-2 4 1.0e-2
7 4 8.2e-3 4 6.1e-3 4 2.8e-2 4 2.4e-2
8 5 2.2e-2 4 1.2e-2 5 2.8e-1 4 1.7e-1
9 5 8.8e-2 4 5.2e-2 5 2.5e+0 4 1.6e+0
10 5 6.1e-1 4 3.8e-1 - - - -

Table 7. Number of iterations and time to solution for local smoothing, global coarsening, and AMG (ML [34])
for the octant simulation case with 768 processes (16 nodes). For local smoothing and global coarsening,
results are shown for Chebyshev smoothing degrees of 𝑘 = 3 and 𝑘 = 6.

𝑝 = 1 𝑝 = 4
local smoothing global coarsening AMG (ML) local smoothing global coarsening

𝑘 = 3 𝑘 = 6 𝑘 = 3 𝑘 = 6 𝑘 = 3 𝑘 = 6 𝑘 = 3 𝑘 = 6

𝐿 #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

3 4 1.3e-3 3 1.4e-3 4 1.0e-3 2 7.0e-4 1 6.0e-3 4 2.6e-3 3 2.5e-3 4 2.5e-3 2 1.9e-3
4 4 2.8e-3 3 2.9e-3 4 1.7e-3 2 1.3e-3 1 2.5e-2 4 4.3e-3 3 4.6e-3 4 4.0e-3 2 3.0e-3
5 4 4.3e-3 3 4.6e-3 4 2.6e-3 2 2.3e-3 5 4.2e-3 4 6.1e-3 3 6.6e-3 3 4.9e-3 2 5.1e-3
6 4 5.8e-3 3 6.4e-3 4 4.3e-3 2 3.4e-3 8 1.5e-2 4 9.9e-3 3 1.1e-2 3 7.2e-3 2 7.1e-3
7 4 8.2e-3 3 9.3e-3 3 4.5e-3 2 4.9e-3 6 1.2e-2 4 2.7e-2 3 3.0e-2 3 1.8e-2 2 1.7e-2
8 4 1.7e-2 3 2.1e-2 3 9.1e-3 2 1.0e-2 6 3.0e-2 4 2.3e-1 3 2.6e-1 3 1.4e-1 2 1.4e-1
9 4 7.1e-2 3 8.6e-2 3 3.8e-2 2 4.3e-2 7 2.1e-1 4 2.0e+0 3 2.3e+0 3 1.2e+0 2 1.3e+0
10 4 5.0e-1 3 6.1e-1 2 1.9e-1 2 3.0e-1 7 1.6e+0 - - - - - - - -

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:32 Munch, et al.

Table 8. Number of iterations and time to solution for local smoothing (LS) and global coarsening (GC) for
the octant simulation case with 768 processes (16 nodes). All operations in the outer CG solver are run with
double-precision floating-point numbers and in the multigrid V-cycle with the following multigrid number
types: single- or double-precision floating-point numbers.

double float
𝑝 = 1 𝑝 = 4 𝑝 = 1 𝑝 = 4

LS GC LS GC LS GC LS GC

𝐿 #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

3 4 1.3e-3 4 9.0e-4 4 2.6e-3 4 2.7e-3 4 1.3e-3 4 1.0e-3 4 2.4e-3 4 2.4e-3
4 4 2.8e-3 4 1.6e-3 4 4.5e-3 4 4.1e-3 4 2.7e-3 4 1.7e-3 4 4.1e-3 4 4.1e-3
5 4 4.0e-3 4 2.6e-3 4 6.6e-3 3 5.1e-3 4 4.0e-3 4 2.6e-3 4 6.1e-3 3 4.8e-3
6 4 7.8e-3 4 4.0e-3 4 1.1e-2 3 9.6e-3 4 6.0e-3 4 4.1e-3 4 1.1e-2 3 7.3e-3
7 4 8.9e-3 3 4.9e-3 4 3.8e-2 3 2.7e-2 4 8.3e-3 3 4.8e-3 4 2.7e-2 3 1.8e-2
8 4 2.1e-2 3 1.0e-2 4 4.0e-1 3 2.4e-1 4 1.7e-2 3 9.2e-3 4 2.3e-1 3 1.4e-1
9 4 9.9e-2 3 5.1e-2 4 3.2e+0 3 1.9e+0 4 7.1e-2 3 3.9e-2 4 2.0e+0 3 1.2e+0
10 4 7.7e-1 2 2.8e-1 - - - - 4 5.0e-1 2 1.9e-1 - - - -

Table 9. Number of iterations for local smoothing (LS) and global coarsening (GC) for the octant simulation
with 768 processes (16 nodes) and for different global relative solver tolerances.

10−4 10−6 10−8 10−10

𝑝 = 1 𝑝 = 4 𝑝 = 1 𝑝 = 4 𝑝 = 1 𝑝 = 4 𝑝 = 1 𝑝 = 4

𝐿 LS GC LS GC LS GC LS GC LS GC LS GC LS GC LS GC

3 4 4 4 4 6 5 6 6 7 6 8 7 9 8 10 9
4 4 4 4 4 6 6 6 5 8 7 8 7 10 9 10 9
5 4 4 4 3 6 5 6 5 8 7 8 7 10 8 10 8
6 4 4 4 3 6 5 6 5 8 7 8 6 10 8 10 8
7 4 3 4 3 6 5 6 4 8 6 8 6 10 8 10 8
8 4 3 4 3 6 4 6 4 8 6 8 6 9 8 10 7
9 4 3 4 3 6 4 6 4 8 6 8 6 9 7 10 7
10 4 2 - - 6 4 - - 8 6 - - 9 7 - -

Table 10. Time to solution for global coarsening for the octant simulation with 768 processes (16 nodes)
and different cell weights for cells near hanging nodes compared to regular cells.

𝑝 = 1 𝑝 = 4
𝐿/𝑤 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

3 1.1e-3 1.0e-3 1.0e-3 1.0e-3 1.0e-3 2.7e-3 2.6e-3 2.6e-3 2.5e-3 2.5e-3
4 1.8e-3 1.8e-3 1.8e-3 1.7e-3 1.7e-3 3.9e-3 3.9e-3 3.9e-3 3.9e-3 3.9e-3
5 2.5e-3 2.7e-3 2.7e-3 2.6e-3 2.8e-3 4.4e-3 4.7e-3 4.6e-3 4.5e-3 4.6e-3
6 4.0e-3 4.1e-3 4.1e-3 4.2e-3 4.1e-3 7.3e-3 7.1e-3 7.0e-3 7.1e-3 7.0e-3
7 4.8e-3 4.8e-3 4.7e-3 4.4e-3 5.4e-3 1.8e-2 1.7e-2 1.6e-2 1.7e-2 1.8e-2
8 1.1e-2 1.0e-2 9.1e-3 8.5e-3 8.2e-3 1.1e-1 1.0e-1 1.0e-1 1.0e-1 1.0e-1
9 5.3e-2 4.4e-2 3.8e-2 3.5e-2 3.5e-2 9.0e-1 8.2e-1 7.9e-1 7.8e-1 7.9e-1
10 2.3e-1 1.9e-1 1.7e-1 1.5e-1 1.5e-1 - - - - -

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:33

Table 11. Time to solution for global coarsening for the octant simulation with 24,576 processes (512 nodes)
and different cell weights for cells near hanging nodes compared to regular cells.

𝑝 = 1 𝑝 = 4
𝐿/𝑤 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

3 1.4e-3 1.3e-3 1.4e-3 1.6e-3 1.4e-3 3.1e-3 3.0e-3 3.0e-3 2.9e-3 2.9e-3
4 2.1e-3 2.2e-3 2.1e-3 2.0e-3 2.1e-3 4.3e-3 4.4e-3 4.3e-3 4.3e-3 4.3e-3
5 2.9e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 4.6e-3 5.0e-3 4.6e-3 5.1e-3 4.7e-3
6 4.5e-3 4.1e-3 4.1e-3 4.2e-3 4.1e-3 7.0e-3 7.0e-3 7.1e-3 6.9e-3 6.6e-3
7 5.9e-3 4.8e-3 5.7e-3 5.1e-3 5.6e-3 1.1e-2 1.1e-2 1.1e-2 1.1e-2 1.0e-2
8 7.6e-3 9.0e-3 7.9e-3 9.2e-3 8.9e-3 1.5e-2 1.5e-2 1.6e-2 1.5e-2 1.4e-2
9 1.2e-2 1.1e-2 1.1e-2 1.1e-2 1.0e-2 4.9e-2 4.2e-2 4.3e-2 4.2e-2 4.2e-2
10 1.8e-2 1.5e-2 1.4e-2 1.3e-2 1.3e-2 3.7e-1 3.4e-1 3.4e-1 3.4e-1 3.4e-1
11 7.6e-2 6.8e-2 5.7e-2 5.4e-2 5.3e-2 - - - - -

Table 12. Number of iterations and time to solution for local smoothing (LS) and global coarsening (GC) for a
uniformly refined mesh of a cube (without hanging nodes) with 768 processes (16 nodes).

𝑝 = 1 𝑝 = 4
LS GC LS GC

𝐿 #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

3 4 1.80e-3 4 1.80e-3 4 2.90e-3 4 3.20e-3
4 4 2.50e-3 4 2.40e-3 4 3.90e-3 4 4.00e-3
5 4 3.30e-3 4 3.20e-3 4 5.90e-3 4 6.40e-3
6 4 4.60e-3 4 5.40e-3 4 1.61e-2 4 1.69e-2
7 4 9.00e-3 4 9.00e-3 4 1.29e-1 4 1.29e-1
8 4 4.18e-2 4 4.21e-2 4 1.11e+0 4 1.10e+0
9 4 3.00e-1 4 2.98e-1 - - - -

B APPENDIX TO SECTION 6

Table 13. Number of iterations and time to solution for local smoothing (LS), global coarsening (GC), and
AMG (ML [34] and BoomerAMG [31]) as coarse-grid solver of 𝑝-multigrid for the octant simulation
with 768 processes (16 nodes) for 𝑝 = 4. For AMG, different numbers of V-cycles #𝑣 are investigated. AMG
parameters used are shown in Appendix C.

LS GC AMG (ML) AMG (BoomerAMG)
#𝑣=1 #𝑣=2 #𝑣=3 #𝑣=4 #𝑣=1

𝐿 #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

3 4 2.60e-3 4 2.20e-3 4 1.70e-3 4 2.00e-3 4 2.20e-3 4 2.50e-3 4 1.70e-3
4 4 5.10e-3 4 3.90e-3 4 5.40e-3 4 8.30e-3 4 1.11e-2 4 1.39e-2 4 4.90e-3
5 4 7.60e-3 4 6.10e-3 4 1.17e-2 4 1.95e-2 4 2.74e-2 4 3.52e-2 4 1.17e-2
6 4 1.11e-2 4 9.20e-3 5 2.37e-2 4 3.24e-2 4 4.45e-2 4 5.96e-2 5 3.60e-2
7 4 2.35e-2 4 2.11e-2 6 4.70e-2 5 5.47e-2 4 5.59e-2 4 6.72e-2 6 1.04e-1
8 4 1.81e-1 4 1.72e-1 7 3.26e-1 5 2.65e-1 4 2.37e-1 4 2.63e-1 7 4.76e-1
9 4 1.53e+0 4 1.51e+0 9 3.54e+0 7 2.97e+0 6 2.75e+0 5 2.46e+0 8 3.83e+0

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:34 Munch, et al.

Table 14. Number of iterations and time of a single iteration for ℎ-multigrid (local smoothing (LS), global
coarsening (GC)) and 𝑝-multigrid (local smoothing or global coarsening as coarse-grid solver) for 𝐿 = 9 and
𝑝 = 4.

ℎ-mg 𝑝-mg
LS GC LS GC

#nodes #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s] #𝑖 𝑡[s]

8 4 6.30e-1 3 4.95e-1 4 4.75e-1 4 4.66e-1
16 4 4.99e-1 3 4.03e-1 4 3.83e-1 4 3.77e-1
32 4 2.40e-1 3 2.03e-1 4 1.87e-1 4 1.84e-1
64 4 1.39e-1 3 1.05e-1 4 9.57e-2 4 9.25e-2
128 4 5.97e-2 3 4.90e-2 4 4.49e-2 4 4.37e-2
256 4 3.17e-2 3 2.57e-2 4 2.35e-2 4 2.05e-2
512 4 1.54e-2 3 1.37e-2 4 1.38e-2 4 1.24e-2

C AMG PARAMETERS

Listing 1. ML [34] (Trilinos 12.12.1)
Teuchos : : ParameterList parameter_list ;
ML_Epetra : : SetDefaults (" SA " , parameter_list) ;

parameter_list . set (" smoother : type " , " ILU ") ;
parameter_list . set (" c o a r s e : type " , coarse_type) ;
parameter_list . set (" i n i t i a l i z e random seed " , t r u e) ;
parameter_list . set (" smoother : sweeps " , 1) ;
parameter_list . set (" c y c l e a p p l i c a t i o n s " , 2) ;
parameter_list . set (" p r e c type " , "MGV") ;
parameter_list . set (" smoother : Chebyshev a l p h a " , 1 0 .) ;
parameter_list . set (" smoother : i f p a c k o v e r l a p " , 0) ;
parameter_list . set (" a g g r e g a t i o n : t h r e s h o l d " , 1e −4) ;
parameter_list . set (" c o a r s e : max s i z e " , 2 0 0 0) ;

Listing 2. BoomerAMG [31] (PETSc 3.14.5)
PCHYPRESetType (pc , " boomeramg ") ;

set_option_value (" −pc_hypre_boomeramg_agg_nl " , " 2 ") ;
set_option_value (" −pc_hypre_boomeramg_max_row_sum " , " 0 . 9 ") ;
set_option_value (" − pc_hypre_boomeramg_s t rong_ thresho ld " , " 0 . 5 ") ;
set_option_value (" − pc_hypre_boomeramg_re lax_type_up " , " SOR / J a c o b i ") ;
set_option_value (" −pc_hypre_boomeramg_relax_type_down " , " SOR / J a c o b i ") ;
set_option_value (" − pc_hypre_boomeramg_re l ax_ type_coar se " , " Gauss ian − e l i m i n a t i o n ") ;
set_option_value (" − pc_hypre_boomeramg_gr id_sweeps_coarse " , " 1 ") ;
set_option_value (" −pc_hypre_boomeramg_tol " , " 0 . 0 ") ;
set_option_value (" −pc_hypre_boomeramg_max_iter " , " 2 ")) ;

REFERENCES
[1] Mark Adams. 2002. Evaluation of three unstructured multigrid methods on 3D finite element problems in solid

mechanics. Internat. J. Numer. Methods Engrg. 55, 5 (2002), 519–534.
[2] Mark Adams, Marian Brezina, Jonathan Hu, and Ray Tuminaro. 2003. Parallel multigrid smoothing: polynomial versus

Gauss–Seidel. J. Comput. Phys. 188, 2 (2003), 593–610.
[3] Mark Adams, Phillip Colella, Daniel T. Graves, Jeff N. Johnson, Noel D. Keen, Terry J. Ligocki, Daniel F. Martin, Peter W.

McCorquodale, David Modiano, Peter O. Schwartz, T.D. Sternberg, and Brian Van Straalen. 2014. Chombo software
package for AMR applications design document. Lawrence Berkeley National Laboratory Technical Report LBNL-6616E
(2014).

[4] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub Cerveny, Veselin Dobrev,
Yohann Dudouit, Aaron Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido Akkerman, Johann
Dahm, David Medina, and Stefano Zampini. 2021. MFEM: A modular finite element methods library. Computers &
Mathematics with Applications 81 (2021), 42–74. DOI:http://dx.doi.org/10.1016/j.camwa.2020.06.009

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:35

[5] Paola F. Antonietti, Marco Sarti, Marco Verani, and Ludmil T. Zikatanov. 2017. A uniform additive Schwarz precondi-
tioner for high-order discontinuous Galerkin approximations of elliptic problems. Journal of Scientific Computing 70, 2
(2017), 608–630.

[6] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Thomas C. Clevenger, Marc Fehling, Alexander V. Grayver, Timo
Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Reza Rastak, Ignacio
Tomas, Bruno Turcksin, Zhuoran Wang, and David Wells. 2020. The deal.II library, Version 9.2. Journal of Numerical
Mathematics 28, 3 (2020), 131–146. DOI:http://dx.doi.org/10.1515/jnma-2020-0043

[7] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Marc Fehling, Rene Gassmöller, Timo Heister, Luca Heltai, Uwe Köcher,
Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Sebastian Proell, Konrad Simon, Bruno Turcksin,
David Wells, and Jiaqi Zhang. 2021a. The deal.II library, Version 9.3. Journal of Numerical Mathematics 29, 3 (2021),
171–186. DOI:http://dx.doi.org/10.1515/jnma-2021-0081

[8] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Jean-
Paul Pelteret, Bruno Turcksin, and David Wells. 2021b. The deal.II finite element library: Design, features, and insights.
Computers & Mathematics with Applications 81 (2021), 407–422. DOI:http://dx.doi.org/10.1016/j.camwa.2020.02.022

[9] Daniel Arndt, Wolfgang Bangerth, Marco Feder, Marc Fehling, Rene Gassmöller, Timo Heister, Luca Heltai, Martin
Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Simon Sticko, Bruno Turcksin, and David Wells. 2022. The
deal.II Library, Version 9.4. Journal of Numerical Mathematics in press (2022). DOI:http://dx.doi.org/10.1515/jnma-
2022-0054

[10] Daniel Arndt, Niklas Fehn, Guido Kanschat, Katharina Kormann, Martin Kronbichler, Peter Munch, Wolfgang A.
Wall, and Julius Witte. 2020. ExaDG: High-Order Discontinuous Galerkin for the Exa-Scale. In Software for Exascale
Computing - SPPEXA 2016-2019, Hans-Joachim Bungartz, Severin Reiz, Benjamin Uekermann, Philipp Neumann, and
Wolfgang E. Nagel (Eds.). Springer International Publishing, Cham, 189–224.

[11] Douglas Arnold, Richard Falk, and Ragnar Winther. 1997. Preconditioning in H(div) and applications. Mathematics of
computation 66, 219 (1997), 957–984.

[12] Harold L. Atkins and Brian T. Helenbrook. 2005. Numerical Evaluation of P-Multigrid Method for the Solution of
Discontinuous Galerkin Discretizations of Diffusive Equations. In 17th AIAA Computational Fluid Dynamics Confer-
ence. 17th AIAA Computational Fluid Dynamics Conference; 6-9 Jun. 2005, American Institute of Aeronautics and
Astronautics, Toronto, Ontario Canada, 1–11. DOI:http://dx.doi.org/10.2514/6.2005-5110

[13] Eugenio Aulisa, Sara Calandrini, and Giacomo Capodaglio. 2018. An improved multigrid algorithm for n-irregular
meshes with subspace correction smoother. Computers & Mathematics with Applications 76, 3 (2018), 620–632.

[14] Eugenio Aulisa, Giacomo Capodaglio, and Guoyi Ke. 2019. Construction of h-refined continuous finite element spaces
with arbitrary hanging node configurations and applications to multigrid algorithms. SIAM Journal on Scientific
Computing 41, 1 (2019), A480–A507.

[15] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. 2011. Algorithms and data structures
for massively parallel generic adaptive finite element codes. ACM Trans. Math. Software 38, 2 (2011), 14:1–28. DOI:
http://dx.doi.org/10.1145/2049673.2049678

[16] Wolfgang Bangerth and Oliver Kayser-Herold. 2009. Data structures and requirements for hp finite element software.
ACM Trans. Math. Software 36, 1 (2009), 4:1–31.

[17] Francesco Bassi, Antonio Ghidoni, Stefano Rebay, and P Tesini. 2009. High-order accurate p-multigrid discontinuous
Galerkin solution of the Euler equations. International journal for numerical methods in fluids 60, 8 (2009), 847–865.

[18] Francesco Bassi and Stefano Rebay. 2003. Numerical Solution of the Euler Equations with a Multiorder Discontinuous
Finite Element Method. In Computational Fluid Dynamics 2002, S.W. Armfield (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 199–204. DOI:http://dx.doi.org/10.1007/978-3-642-59334-5_27

[19] Peter Bastian and Christian Wieners. 2006. Multigrid methods on adaptively refined grids. Computing in Science &
Engineering 8, 6 (2006), 44–54.

[20] Roland Becker and Malte Braack. 2000. Multigrid techniques for finite elements on locally refined meshes. Numerical
linear algebra with applications 7, 6 (2000), 363–379.

[21] Roland Becker, Malte Braack, and Thomas Richter. 2007. Parallel multigrid on locally refined meshes. In Reactive
Flows, Diffusion and Transport. Springer, 77–92.

[22] Marco L. Bittencourt, Craig C. Douglas, and Raúl A. Feijóo. 2001. Nonnested multigrid methods for linear problems.
Numerical Methods for Partial Differential Equations: An International Journal 17, 4 (2001), 313–331.

[23] James H. Bramble, Joseph E. Pasciak, and Jinchao Xu. 1991. The analysis of multigrid algorithms with nonnested
spaces or noninherited quadratic forms. Math. Comp. 56, 193 (1991), 1–34.

[24] Achi Brandt. 1977. Multi-level adaptive solutions to boundary-value problems. Mathematics of computation 31, 138
(1977), 333–390.

[25] Jed Brown. 2010. Efficient nonlinear solvers for nodal high-order finite elements in 3D. Journal of Scientific Computing
45, 1-3 (2010), 48–63. DOI:http://dx.doi.org/10.1007/s10915-010-9396-8

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:36 Munch, et al.

[26] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2011. p4est : Scalable Algorithms for Parallel Adaptive
Mesh Refinement on Forests of Octrees. SIAM Journal on Scientific Computing 33, 3 (2011), 1103–1133. DOI:http:
//dx.doi.org/10.1137/100791634

[27] Thomas C. Clevenger and Timo Heister. 2021. Comparison between algebraic and matrix-free geometric multigrid for
a Stokes problem on adaptive meshes with variable viscosity. Numerical Linear Algebra with Applications 28, 5 (2021),
e2375. DOI:http://dx.doi.org/10.1002/nla.2375

[28] Thomas C. Clevenger, Timo Heister, Guido Kanschat, and Martin Kronbichler. 2020. A flexible, parallel, adaptive
geometric multigrid method for FEM. ACM Trans. Math. Software 47, 1 (2020), 7:1–27.

[29] David Darmofal and Krzysztof Fidkowski. 2004. Development of a Higher-Order Solver for Aerodynamic Applications.
In 42nd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reston,
Virigina, 1–12. DOI:http://dx.doi.org/10.2514/6.2004-436

[30] Michel O. Deville, Paul F. Fischer, and Ernest H. Mund. 2002. High-order methods for incompressible fluid flow. Vol. 9.
Cambridge University Press.

[31] Robert D Falgout, Jim E Jones, and Ulrike Meier Yang. 2006. The design and implementation of hypre, a library of
parallel high performance preconditioners. In Numerical solution of partial differential equations on parallel computers.
Springer, 267–294.

[32] Niklas Fehn, Peter Munch, Wolfgang A. Wall, and Martin Kronbichler. 2020. Hybrid multigrid methods for high-order
discontinuous Galerkin discretizations. J. Comput. Phys. 415 (2020), 109538. DOI:http://dx.doi.org/10.1016/j.jcp.2020.
109538

[33] Krzysztof J. Fidkowski, Todd A. Oliver, James Lu, and David L. Darmofal. 2005. p-Multigrid solution of high-order
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 207, 1 (2005),
92–113. DOI:http://dx.doi.org/10.1016/j.jcp.2005.01.005

[34] Michael W Gee, Christopher M Siefert, Jonathan J Hu, Ray S Tuminaro, and Marzio G Sala. 2006. ML 5.0 smoothed
aggregation user’s guide. Technical Report. Technical Report SAND2006-2649, Sandia National Laboratories.

[35] A. Ghidoni, A. Colombo, F. Bassi, and S. Rebay. 2014. Efficient p -multigrid discontinuous Galerkin solver for complex
viscous flows on stretched grids. International Journal for Numerical Methods in Fluids 75, 2 (2014), 134–154. DOI:
http://dx.doi.org/10.1002/fld.3888

[36] Amir Gholami, Dhairya Malhotra, Hari Sundar, and George Biros. 2016. FFT, FMM, or Multigrid? A comparative Study
of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube. SIAM Journal on Scientific
Computing 38, 3 (2016), C280–C306. DOI:http://dx.doi.org/10.1137/15M1010798

[37] Xian-Zhong Guo and I. Norman Katz. 1998. Performance enhancement of the multi-p preconditioner. Computers &
Mathematics with Applications 36, 4 (1998), 1–8.

[38] Xian-Zhong Guo and I. Norman Katz. 2000. A Parallel Multi-p Method. Computers & Mathematics with Applications 39,
9-10 (2000), 115–123.

[39] Timo Heister, Juliane Dannberg, Rene Gassmöller, and Wolfgang Bangerth. 2017. High Accuracy Mantle Convection
Simulation through Modern Numerical Methods. II: Realistic Models and Problems. Geophysical Journal International
210, 2 (2017), 833–851. DOI:http://dx.doi.org/10.1093/gji/ggx195

[40] Brian T. Helenbrook and Harold L. Atkins. 2006. Application of p-Multigrid to Discontinuous Galerkin Formulations
of the Poisson Equation. AIAA Journal 44, 3 (2006), 566–575. DOI:http://dx.doi.org/10.2514/1.15497

[41] Brian T. Helenbrook and Harold L. Atkins. 2008a. Solving Discontinuous Galerkin Formulations of Poisson’s Equation
using Geometric and p Multigrid. AIAA Journal 46, 4 (2008), 894–902. DOI:http://dx.doi.org/10.2514/1.31163

[42] Brian T Helenbrook and Harold L. Atkins. 2008b. Solving discontinuous Galerkin formulations of Poisson’s equation
using geometric and p multigrid. AIAA journal 46, 4 (2008), 894–902.

[43] Brian T. Helenbrook and Brendan S. Mascarenhas. 2016. Analysis of Implicit Time-Advancing p-Multigrid Schemes for
Discontinuous Galerkin Discretizations of the Euler Equations. In 46th AIAA Fluid Dynamics Conference. American
Institute of Aeronautics and Astronautics, Washington, D.C. DOI:http://dx.doi.org/10.2514/6.2016-3494

[44] Brian T. Helenbrook, Dimitri Mavriplis, and Harold L. Atkins. 2003. Analysis of “p”-Multigrid for Continuous and
Discontinuous Finite Element Discretizations. In 16th AIAA Computational Fluid Dynamics Conference. American
Institute of Aeronautics and Astronautics, Orlando, Florida. DOI:http://dx.doi.org/10.2514/6.2003-3989

[45] Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of conjugate gradients for solving linear systems. Vol. 49.
NBS Washington, DC.

[46] Koen Hillewaert, P Wesseling, E Oñate, J Périaux, Jean-François Remacle, Nicolas Cheveaugeon, Paul-Emile Bernard,
and Philippe Geuzaine. 2006. Analysis of a hybrid p-multigrid method for the discontinuous Galerkin discretisation of
the Euler equations. In Proceedings of the European Conference on Computational Fluid Dynamics, Pieter Wesseling
(Ed.). ECCOMAS CFD 2006, Egmond aan Zee, Netherlands. DOI:http://dx.doi.org/90-9020970-0

[47] Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. 2010. Scalable communication protocols for dynamic
sparse data exchange. ACM Sigplan Notices 45, 5 (2010), 159–168.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:37

[48] Ning Hu, Xian-Zhong Guo, and I. Norman Katz. 1997. Multi-p Preconditioners. SIAM Journal on Scientific Computing
18, 6 (1997), 1676–1697.

[49] Ning Hu and I. Norman Katz. 1995. Multi-P Methods: Iterative Algorithms for the P-Version of the Finite Element
Analysis. SIAM Journal on Scientific Computing 16, 6 (1995), 1308–1332.

[50] Oleg Iliev and Dimitar Stoyanov. 2001. Multigrid-adaptive local refinement solver for incompressible flows. In
International Conference on Large-Scale Scientific Computing. Springer, 361–368.

[51] Bärbel Janssen and Guido Kanschat. 2011. Adaptive multilevel methods with local smoothing for Hˆ1-and Hˆcurl-
conforming high order finite element methods. SIAM Journal on Scientific Computing 33, 4 (2011), 2095–2114.

[52] Zhenhua Jiang, Chao Yan, Jian Yu, and Wu Yuan. 2015. Practical aspects of p-multigrid discontinuous Galerkin solver
for steady and unsteady RANS simulations. International Journal for Numerical Methods in Fluids 78, 11 (2015), 670–690.
DOI:http://dx.doi.org/10.1002/fld.4035

[53] Jean-Christophe Jouhaud, Marc Montagnac, and Loïc P. Tourrette. 2005. A multigrid adaptive mesh refinement strategy
for 3D aerodynamic design. International journal for numerical methods in fluids 47, 5 (2005), 367–385.

[54] Guido Kanschat. 2004. Multilevel methods for discontinuous Galerkin FEM on locally refined meshes. Computers &
structures 82, 28 (2004), 2437–2445.

[55] Guido Kanschat and Youli Mao. 2015. Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for
the Stokes equations. Journal of Numerical Mathematics 23, 1 (2015), 51–66.

[56] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz, and I. Babuska. 1983. A posteriori error analysis and adaptive
processes in the finite element method: Part I—error analysis. Internat. J. Numer. Methods Engrg. 19, 11 (1983), 1593–1619.
DOI:http://dx.doi.org/https://doi.org/10.1002/nme.1620191103

[57] Tzanio Kolev, Paul Fischer, Misun Min, Jack Dongarra, Jed Brown, Veselin Dobrev, Tim Warburton, Stanimire Tomov,
Mark S Shephard, Valeria Abdelfattah, Ahmad Barra, Natalie Beams, Jean-Sylvain Camier, Noel Chalmers, Yohann
Dudouit, Ali Karakus, Ian Karlin, Stefan Kerkemeier, Yu-Hsiang Lan, David Medina, Elia Merzari, Aleksandr Obabko,
Will Pazner, Thilina Rathnayake, Cameron W Smith, Lukas Spies, Kasia Swirydowicz, Jeremy Thompson, Ananias
Tomboulides, and Vladimir Tomov. 2021. Efficient exascale discretizations: High-order finite element methods. The
International Journal of High Performance Computing Applications 35, 6 (2021), 527–552.

[58] Martin Kronbichler and Momme Allalen. 2018. Efficient high-order discontinuous Galerkin finite elements with
matrix-free implementations. In Advances and new trends in environmental informatics. Springer, 89–110.

[59] Martin Kronbichler, Ababacar Diagne, and Hanna Holmgren. 2018. A fast massively parallel two-phase flow solver for
microfluidic chip simulation. International Journal of High Performance Computing Applications 32, 2 (2018), 266–287.
DOI:http://dx.doi.org/10.1177/1094342016671790

[60] Martin Kronbichler, Niklas Fehn, Peter Munch, Maximilian Bergbauer, Karl-Robert Wichmann, Carolin Geitner,
Momme Allalen, Martin Schulz, and Wolfgang A Wall. 2021. A next-generation discontinuous Galerkin fluid dynamics
solver with application to high-resolution lung airflow simulations. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC’21. Association for Computing Machinery (ACM),
St. Louis, MO, USA, 1–15.

[61] M. Kronbichler, T. Heister, and W. Bangerth. 2012. High Accuracy Mantle Convection Simulation through Modern
Numerical Methods. Geophysical Journal International 191 (2012), 12–29. DOI:http://dx.doi.org/10.1111/j.1365-
246X.2012.05609.x

[62] Martin Kronbichler and Katharina Kormann. 2012. A generic interface for parallel cell-based finite element operator
application. Computers & Fluids 63 (2012), 135–147. DOI:http://dx.doi.org/10.1016/j.compfluid.2012.04.012

[63] Martin Kronbichler and Katharina Kormann. 2019. Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite
Element Operators. ACM Trans. Math. Software 45, 3 (2019), 28:1–40. DOI:http://dx.doi.org/10.1145/3325864

[64] Martin Kronbichler and Karl Ljungkvist. 2019. Multigrid for matrix-free high-order finite element computations on
graphics processors. ACM Transactions on Parallel Computing 6, 1 (2019), 2:1–32.

[65] Martin Kronbichler, Dmytro Sashko, and Peter Munch. 2022. Enhancing data locality of the conjugate gradient method
for high-order matrix-free finite-element implementations. International Journal of High Performance Computing
Applications in press (2022). DOI:http://dx.doi.org/10.1177/10943420221107880

[66] Martin Kronbichler and Wolfgang A. Wall. 2018. A performance comparison of continuous and discontinuous Galerkin
methods with fast multigrid solvers. SIAM Journal on Scientific Computing 40, 5 (2018), A3423–A3448.

[67] Chunlei C. Liang, Ravishekar Kannan, and Z.J. Wang. 2009. A p-multigrid spectral difference method with explicit
and implicit smoothers on unstructured triangular grids. Computers & Fluids 38, 2 (2009), 254–265. DOI:http:
//dx.doi.org/10.1016/j.compfluid.2008.02.004

[68] Karl Ljungkvist. 2014. Matrix-free finite-element operator application on graphics processing units. In European
Conference on Parallel Processing. Springer, 450–461.

[69] Karl Ljungkvist. 2017. Matrix-free finite-element computations on graphics processors with adaptively refined
unstructured meshes.. In SpringSim (HPC).

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

111:38 Munch, et al.

[70] S Lopez and Raffaele Casciaro. 1997. Algorithmic aspects of adaptive multigrid finite element analysis. International
journal for numerical methods in engineering 40, 5 (1997), 919–936.

[71] Cao Lu, Xiangmin Jiao, and Nikolaos Missirlis. 2014. A Hybrid Geometric+Algebraic Multigrid Method with Semi-
Iterative Smoothers. Numerical Linear Algebra with Applications 21, 2 (2014), 221–238. DOI:http://dx.doi.org/10.1002/
nla.1925

[72] Hong Luo, Joseph D. Baum, and Rainald Löhner. 2006. A p-multigrid discontinuous Galerkin method for the Euler
equations on unstructured grids. J. Comput. Phys. 211, 2 (2006), 767–783. DOI:http://dx.doi.org/10.1016/j.jcp.2005.06.019

[73] Hong Luo, Joseph D. Baum, and Rainald Löhner. 2008. Fast p-Multigrid Discontinuous Galerkin Method for Compress-
ible Flows at All Speeds. AIAA Journal 46, 3 (2008), 635–652. DOI:http://dx.doi.org/10.2514/1.28314

[74] Yvon Maday and Rafael Munoz. 1988. Spectral element multigrid. II. Theoretical justification. Journal of Scientific
Computing 3, 4 (1988), 323–353. DOI:http://dx.doi.org/10.1007/BF01065177

[75] Brendan S. Mascarenhas, Brian T. Helenbrook, and Harold L. Atkins. 2009. Application of p-Multigrid to Discontinuous
Galerkin Formulations of the Euler Equations. AIAA Journal 47, 5 (2009), 1200–1208. DOI:http://dx.doi.org/10.2514/1.
39765

[76] Brendan S. Mascarenhas, Brian T. Helenbrook, and Harold L. Atkins. 2010. Coupling p-multigrid to geometric
multigrid for discontinuous Galerkin formulations of the convection-diffusion equation. J. Comput. Phys. 229, 10
(2010), 3664–3674. DOI:http://dx.doi.org/10.1016/j.jcp.2010.01.020

[77] Stephen F. McCormick. 1989. Multilevel adaptive methods for partial differential equations. SIAM.
[78] J. Markus Melenk, Klaus Gerdes, and Christoph Schwab. 2001. Fully discrete hp-finite elements: fast quadrature.

Computer Methods in Applied Mechanics and Engineering 190, 32 (2001), 4339–4364. DOI:http://dx.doi.org/10.1016/S0045-
7825(00)00322-4

[79] William F. Mitchell. 2010. The hp-multigrid method applied to hp-adaptive refinement of triangular grids. Numerical
Linear Algebra with Applications 17, 2-3 (2010), 211–228.

[80] Peter Munch, Katharina Kormann, and Martin Kronbichler. 2021. hyper.deal: An Efficient, Matrix-free Finite-element
Library for High-dimensional Partial Differential Equations. ACM Trans. Math. Software 47, 4 (2021), 33:1–34. DOI:
http://dx.doi.org/10.1145/3469720

[81] Peter Munch, Karl Ljungkvist, and Martin Kronbichler. 2022. Efficient application of hanging-node constraints for
matrix-free high-order FEM computations on CPU and GPU. In High Performance Computing. Springer International
Publishing, Cham, 133–152.

[82] Steffen Müthing, Marian Piatkowski, and Peter Bastian. 2017. High-performance implementation of matrix-free
high-order discontinuous Galerkin methods. arXiv preprint arXiv:1711.10885 (2017).

[83] Cristian R. Nastase and Dimitri J. Mavriplis. 2006. High-order discontinuous Galerkin methods using an hp-multigrid
approach. J. Comput. Phys. 213, 1 (2006), 330–357. DOI:http://dx.doi.org/10.1016/j.jcp.2005.08.022

[84] Benedict O’Malley, József Kópházi, Richard P. Smedley-Stevenson, and Monroe D. Eaton. 2017a. Hybrid Multi-level
solvers for discontinuous Galerkin finite element discrete ordinate diffusion synthetic acceleration of radiation transport
algorithms. Annals of Nuclear Energy 102, April (2017), 134–147. DOI:http://dx.doi.org/10.1016/j.anucene.2016.11.048

[85] Benedict O’Malley, József Kópházi, Richard P. Smedley-Stevenson, and Monroe D. Eaton. 2017b. P-multigrid expansion
of hybrid multilevel solvers for discontinuous Galerkin finite element discrete ordinate (DG-FEM-SN) diffusion
synthetic acceleration (DSA) of radiation transport algorithms. Progress in Nuclear Energy 98 (2017), 177–186. DOI:
http://dx.doi.org/10.1016/j.pnucene.2017.03.014

[86] Steven A. Orszag. 1980. Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 1 (1980), 70–92.
DOI:http://dx.doi.org/10.1016/0021-9991(80)90005-4

[87] Sachin Premasuthan, Chunlei Liang, Antony Jameson, and Zhi Wang. 2009. A p-Multigrid Spectral Difference Method
For Viscous Compressible Flow Using 2D Quadrilateral Meshes. In 47th AIAA Aerospace Sciences Meeting including The
New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Orlando, Florida.
DOI:http://dx.doi.org/10.2514/6.2009-950

[88] Einar M. Rønquist and Anthony T. Patera. 1987. Spectral element multigrid. I. Formulation and numerical results.
Journal of Scientific Computing 2, 4 (1987), 389–406. DOI:http://dx.doi.org/10.1007/BF01061297

[89] Johann Rudi, Omar Ghattas, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gurnis, Peter W. J. Staar,
Yves Ineichen, Costas Bekas, and Alessandro Curioni. 2015. An extreme-scale implicit solver for complex PDEs. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC
’15. ACM Press, New York, USA, 1–12. DOI:http://dx.doi.org/10.1145/2807591.2807675

[90] Anton Schüller. 2013. Portable Parallelization of Industrial Aerodynamic Applications (POPINDA): Results of a BMBF
Project. Vol. 71. Springer Science & Business Media.

[91] Khosro Shahbazi, Dimitri J. Mavriplis, and Nicholas K. Burgess. 2009. Multigrid algorithms for high-order discontinuous
Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 228, 21 (2009), 7917–7940. DOI:
http://dx.doi.org/10.1016/j.jcp.2009.07.013

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations 111:39

[92] Mark S Shephard. 1984. Linear multipoint constraints applied via transformation as part of a direct stiffness assembly
process. Internat. J. Numer. Methods Engrg. 20, 11 (1984), 2107–2112.

[93] Jörg Stiller. 2016a. Nonuniformly weighted Schwarz smoothers for spectral element multigrid. Journal of Scientific
Computing 72 (2016), 81–96. DOI:http://dx.doi.org/10.1007/s10915-016-0345-z

[94] Jörg Stiller. 2016b. Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson solver suitable for
high-aspect ratio Cartesian grids. J. Comput. Phys. 327 (2016), 317–336. DOI:http://dx.doi.org/10.1016/j.jcp.2016.09.041

[95] Jörg Stiller. 2017. Robust Multigrid for Cartesian Interior Penalty DG Formulations of the Poisson Equation in 3D. In
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational
Science and Engineering, M. Bittencourt (Ed.). Vol. 119. Springer, Cham, 189–201. DOI:http://dx.doi.org/10.1007/978-3-
319-65870-4_12

[96] Mario Storti, N. Nigro, and Sergio Idelsohn. 1991. Multigrid methods and adaptive refinement techniques in elliptic
problems by finite element methods. Computer methods in applied mechanics and engineering 93, 1 (1991), 13–30.

[97] Klaus Stüben. 2001. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 1-2 (2001), 281–309. DOI:http:
//dx.doi.org/10.1016/S0377-0427(00)00516-1

[98] Hari Sundar, George Biros, Carsten Burstedde, Johann Rudi, Omar Ghattas, and Georg Stadler. 2012. Parallel geometric-
algebraic multigrid on unstructured forests of octrees. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC’12. IEEE Computer Society Press, Salt Lake City, UT, USA, 1–11.

[99] Hari Sundar, Georg Stadler, and George Biros. 2015. Comparison of multigrid algorithms for high-order continuous
finite element discretizations. Numerical Linear Algebra with Applications 22, 4 (2015), 664–680. DOI:http://dx.doi.org/
10.1002/nla.1979

[100] Haijun Wu and Zhiming Chen. 2006. Uniform convergence of multigrid V-cycle on adaptively refined finite element
meshes for second order elliptic problems. Science in China Series A: Mathematics 49, 10 (2006), 1405–1429.

[101] Pamela Zave and Werner C. Rheinboldt. 1979. Design of an adaptive, parallel finite-element system. ACM Trans.
Math. Software 5, 1 (1979), 1–17.

[102] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy Chan, Marcus Day, Brian Friesen,
Kevin Gott, Daniel Graves, Max Katz, Andrew Myers, Tan Nguyen, Andrew Nonaka, Michele Rosso, Samuel Williams,
and Michael Zingale. 2019. AMReX: a framework for block-structured adaptive mesh refinement. Journal of Open
Source Software 4, 37 (May 2019), 1370. DOI:http://dx.doi.org/10.21105/joss.01370

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 111. Publication date: April 2022.

dummy

Paper IV

Research Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 0(0) 1–18
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231217221
journals.sagepub.com/home/hpc

Cache-optimized and low-overhead
implementations of additive Schwarz
methods for high-order FEM multigrid
computations

Peter Munch1 and Martin Kronbichler1,2

Abstract
This contribution presents data-locality optimizations of the additive Schwarz method (ASM) based on the fast-
diagonalization method defined on overlapping cell-centric and vertex-star patches in the context of high-order
matrix-free finite-element computations on modern CPU-based hardware. The developments are guided by detailed
performance models of the ASM in the context of Chebyshev iterations when used as smoothers for p-multigrid. The
proposed efficient implementation of ASM adopts concepts known from cell-loop infrastructures for efficient operator
evaluation, in particular, the storage of information per geometric entity and the cache-friendly interleaving of cell loops and
vector updates as a means to increase data locality. We use the latter concept for both applying the weights required by
ASM and performing the vector updates required by the Chebyshev iteration, which are memory-bound operations with
non-negligible costs in comparison to efficient operator evaluation. Furthermore, the solution of a scalar Poisson problem
on a highly anisotropic and an unstructured mesh with p-multigrid using the developed smoothers indicates that efficient
implementations of the additive Schwarz method can outperform optimized point-Jacobi preconditioners already for
simple problems despite being more than twice as expensive per iteration. Even though ASM introduces additional
communication steps per smoother application, the reduced number of iterations can lead to improved parallel scalability
for intermediate problem sizes. At the scaling limit, the results are inconclusive due to these two opposing effects.

Keywords
High-order finite-element methods, multigrid smoothers, matrix-free operator evaluation, node-level optimization

1. Introduction

Multigrid methods are among the most competitive solvers
for the linear systems arising upon discretization of second-
order partial differential equations (PDEs) (Gholami et al.,
2016), for example, for the Poisson equation�Δu = f, where
u is the solution variable and f is the source term. Poisson-
like problems occur as subproblems in many application
fields, for example, in computational fluid dynamics (cf.
Arndt et al. (2020); Deville et al. (2002); Fischer et al.
(2022)) or in computational plasma physics (Munch et al.,
2021), making the detailed investigation of the performance
of the multigrid methods for solving Ax = b on state-of-the-
art hardware highly relevant.

Multigrid algorithms use smoothers to reduce different
frequencies in the iteration error on a hierarchy of levels
of different numerical resolution. During presmoothing,
the high-frequency error components in the initial guess
are removed, whereas postsmoothing aims to damp the

high-frequency error components introduced when inter-
polating corrections from a coarse to a fine level. Smoothers
govern the number of multigrid cycles needed to obtain
convergence, determine the allowable factor of coarsening
from one level to the next, and are, as a consequence, critical
for the total multigrid efficiency.

A widely used smoother for high-order finite-element
methods (FEM) is the iterated point-Jacobi method applying
the inverse diagonal, which has a low cost per iteration

1High-Performance Scientific Computing, University of Augsburg,
Augsburg, Germany
2Applied Numerics, Faculty of Mathematics, Ruhr University Bochum,
Bochum, Germany

Corresponding author:
Peter Munch, High-Performance Scientific Computing, University of
Augsburg, Universitätsstraße 12a, Augsburg 86159, Germany.
Email: peter.muench@uni-a.de

(Kronbichler and Wall, 2018) and necessitates intermediate
levels, when used in a p-multigrid setting (Fehn et al.,
2020). As an alternative, smoothers built around a more
expensive additive Schwarz method (ASM; also known as
“hybrid Schwarz method”; cf. Lottes and Fischer (2005))
potentially allow to skip intermediate levels and to perform
fewer smoother iterations. ASM performs independent
approximate solves on sub-blocks of the global operator,
whose results are then combined. The fast-diagonalization
method allows for very efficient local solution, which, in
turn, necessitates to consider the cost of the rest of the
solution chain, for example, due to memory access for
indices and weights. In this publication, we propose an
efficient novel implementation of ASM, which reduces the
organizational overhead and interleaves arithmetically in-
tensive steps, like the evaluation of integrals or matrix
inversion, with vector updates in a single sweep through
data. The proposed algorithms increase the cache hit rates.
We investigate the performance in the context of a state-of-
the-art matrix-free infrastructure not only with focus on the
node-level performance but also for strong scaling on large-
scale supercomputers and compare the results to optimized
point-Jacobi-based smoothers. Despite a wide range of
previous contributions, the topics of data locality and
possible performance optimizations of the different algo-
rithms have not been studied before. On a related aspect,
recent works in NekRS (Phillips et al., 2022; Phillips and
Fischer, 2022) also compare these two smoothers but using
a more basic implementation with several sweeps
through data.

The algorithms presented in this publication have been
integrated into the open-source finite-element library deal.II
(Arndt et al., 2021, 2022). All experimental results have
been obtained with small benchmark programs, which are
available on GitHub.1

The remainder of this work is organized as follows. First,
we provide an overview of the considered smoothers and
detail our high-performance implementations. Next, we
introduce the other components of a multigrid solver,
present a simplified performance model aiming to incor-
porate the costs of the smoothers, and demonstrate per-
formance results for different meshes. Finally, we
summarize our conclusions and point to further research
directions.

2. Preconditioners and smoothers

In the following, we introduce the ASM as a pre-
conditioner and then embed it into Chebyshev iterations,
which allow to execute the preconditioner multiple
times, as common in the context of smoothers for
multigrid.

2.1. Additive Schwarz method

The additive Schwarz method has the structure

v ¼ P�1u ¼
X
i

Ru
i
bA�1

i Riu w: bAi ¼ RiAR
u
i : (1)

It solves a subproblem on each block bAi of the matrix A
and combines the results of the independent solves. The
blocks are given by the application of a restriction matrix Ri

and might overlap. In the literature, there are different ways
to define the blocks. In this publication, we consider variants
of cell-centric patches and vertex-star patches. Figure 1
shows—for a structured and an unstructured mesh—cell-
centric patches with different overlap n with neighboring
cells and vertex-star patches. In the case of a cell-centric
patch with n = 1 (minimal overlap), all the unknowns as-
sociated with a cell constitute a block. Both cell-centric
patches with n > 1 and vertex-star patches may involve an
arbitrary number of cells on unstructured meshes. This
makes the development of an efficient implementation of
the inverse bA�1

i for such meshes challenging, since tensor-
product structures are typically used to create high-quality
yet cheap-to-apply approximations of the inverse (Brubeck
and Farrell, 2022; Lynch et al., 1964). A potential remedy in
the case of cell-centric patches is to only consider face
neighbors (Fischer et al., 2000), as illustrated in Figure 1(c).

Unknowns located in the overlapping region receive
several contributions in the ASM algorithm (1). While the
multiplicative Schwarz method makes use of this ambiguity
in the algorithm definition by considering an updated re-
sidual after each loop iteration i, ASM needs to introduce a
weighting in order to obtain a partition of unity or, alter-
natively, apply a global damping parameter in the multigrid
iteration (Loisel et al., 2008). Table 1 shows possible
weighting strategies. Weights can be applied locally cell by
cell (left part of the table) where the most natural strategy is
to apply them after the local inverse (post). The weighting
can also be split into parts before and after the local inverse,
preserving the symmetry of P�1 (labeled symm in the table).
In the literature, different approaches to define the weighting
(diagonal) matrix Wi have been used. For instance, Stiller
(2017) proposed a smooth function defined between 0 and
one on a cell and a small overlap. In many instances, the
weights are the inverse of the valence of the unknowns. In
this case, the local weights are Wi = RiW, which enables to
apply W globally on the entries in the final vector, as in-
dicated in Table 1 (right). A third option is to define the
value of each entry in v in equation (1) only from a single
patch solve (cf. Cai and Sarkis (1999)). This implies thatWi

becomes a Boolean matrix, which can be considered by a
modified scatter operator (RiWi), and also allows to skip a
communication step, which is the main motivation to use
this strategy in the context of high-performance computing.

2 The International Journal of High Performance Computing Applications 0(0)

We will call this approach restricted additive Schwarz
method (RAS) as some authors do. In the literature, the term
“RAS” is used inconsistently and often refers generally to
ASM with weighting.

One issue with the definition (1) is that it relies on the
assembly of the matrix A, which leads to prohibitive costs in
the context of higher-order methods. As indicated above,
low-rank approximations to bA�1

i are common, typically
derived from an auxiliary operator defined on a nearby
Cartesian mesh (Couzy, 1995; Phillips et al., 2022; Witte
et al., 2021). This choice relies on the representation of the
Laplacian Acart

i on a Cartesian mesh as the tensor product of
1D stiffness and mass matrices. For example, the fast-
diagonalization method (FDM; cf. Lynch et al. (1964))
gives an explicit formula for the inverse in 2D as

�
Acart
i

��1 ¼ T1ÄT0ðΛ1ÄI þ IÄΛ0Þ�1Tu
1 ÄTu

0 ,

with Ti 2R
n×n and Λi 2R

n being the (orthonormal) ei-
genvectors and the diagonal matrix of eigenvalues, obtained
on a patch level from a generalized eigendecomposition
KiTi = MiTiΛi.

2.2. Chebyshev iteration

The Chebyshev iteration (Adams et al., 2003) of degree k is
given by a three-term recurrence. For matrix A and a base
preconditioner P (e.g., point Jacobi or ASM), it reads

x1 ¼ α1P
�1b, (2a)

x2 ¼ ð1þ α2Þx1 þ β2P
�1r1, (2b)

xnþ1 ¼ 1þ αnð Þxn � αnxn�1 þ βnP
�1rn , (2c)

for n < k with the residual rn = b � Axn. We set the
coefficients according to the 1st-kind and the recently
proposed 4th-kind Chebyshev polynomials (Lottes, 2022;
Phillips and Fischer, 2022) and estimate the maximal ei-
genvalue by a power iteration. The 1st-kind Chebyshev
polynomials set a lower eigenvalue bound as a range for
damping the spectrum to λmin = λmax/20 (Kronbichler and
Wall, 2018). This is in accordance with Adams et al. (2003),
which also shared the observation that the convergence is
not particularly sensitive to the actual factor.

3. Implementation

In the case that the preconditioner P�1 is applied several times
within the smoother, the residual (r = b � Ax) needs to be
computed after each iteration. An efficient smoother therefore
aims to quickly evaluate Ax and P�1r, including data-locality
considerations across these steps and the vector updates. In this
publication, we concentrate on the two challenges of ASM,
restriction Ri and vector updates corresponding to weighting
and Chebyshev iterations, and assume that the block solvers
are optimally implemented. Before discussing these chal-
lenges, we shortly revisit cell-loop-based matrix-free operator
evaluation, from which we can adopt building blocks.

In the following, all experiments are run, unless stated
otherwise, on a dual-socket Intel Cascade Lake Xeon Gold
6230 system: 40 cores, 5.1 single-precision TFLOP/s with
AVX-512 SIMD instructions, 180 GB/s of memory band-
width measured by the STREAM triad benchmark, 32 kB
L1-cache (private), 1 MB L2-cache (private), and 14 MB
L3-cache shared between 10 cores. We run all experiments
at least 10 times and report the best timings of these runs.
The statistical distribution is close to the minimal time
within a few percent. The code is parallelized via MPI, and
all cores of the compute node are used to saturate the
memory bandwidth. All experiments are run with single-
precision floating-point-number arithmetic (FP32)
due to our intention to use the implementations within a

Figure 1. Examples of cell-centric patches (CCP) and vertex-star patches (VSP) on structured and unstructured meshes. Red crosses
indicate the location of unknowns. Lightning bolt symbols indicate patch types that lack geometric structure needed for tensor-product
evaluation and, therefore, will not be considered. In the case of cell-centric patches with n > 1, one can consider all neighbors or just face
neighbors (c, g).

Table 1. Four ways to apply weights in the case of ASM: local
versus global and postprocessing (post) versus symmetric
decomposition (symm) with bWi :¼

ffiffiffiffiffiffi
Wi

p
and bW :¼

ffiffiffiffiffi
W

p
.

Local Global

post v¼
P

Rui WiA�1
i Riu v ¼ Wð

P
Rui A�1

i RiuÞ
symm v¼

P
Rui bWiA�1

i
bWiRiu v ¼ bWð

P
Rui A�1

i Rið bWuÞÞ

Munch and Kronbichler 3

mixed-precision multigrid preconditioner. However, the
implementations developed and the results obtained are also
valid for double-precision numbers (FP64).

3.1. Matrix-free operator evaluation

In this work, we consider a matrix-free evaluation of the op-
erator action v = Au for general meshes, which computes the
integrals underlying a finite-element discretization on the fly.
Here, a loop over all cells is performed, applying the element
stiffness matrix on a vector restricted to the unknowns (degrees
of freedom;DoFs) of the cell (Kronbichler andKormann, 2012)

v ¼ AðuÞ ¼
X
i

Ru
i AiRiu: (3)

In practice, Ai needs not be computed explicitly but can be
expressed as the action of the constituents from trial solution
and test functions in a quadrature approach Ai ¼ Sui DiSi.
For a Laplace operator, Dc is represented by applying
wqjJqjJ�1

q J�u
q to the gradient at each quadrature point and

Si evaluates the gradients at the quadrature points, for
which—in the case of tensor-product elements—a tech-
nique known as sum factorization (Orszag, 1980; Melenk
et al., 2001) can be applied. There is an extensive literature
on optimizing (3) for CPUs (Anderson et al., 2021;
Kronbichler and Kormann, 2012, 2019; Munch et al., 2021)
and GPUs (Chalmers et al., 2023; Kolev et al., 2021;
Ljungkvist, 2017). In the following, we shortly discuss
CPU-specific optimizations adopted in the context of ASM.

Vectorization across elements (Kronbichler and
Kormann, 2012, 2019) performs multiplication by Ai for
several cells in different lanes of the same SIMD instruction
and gives the highest throughput under the assumption that
the operations between lanes do not diverge too much. This
is an outer-loop vectorization compared to the typical FEM
workflow, necessitating a data rearrangement in a struct-of-
arrays fashion during gathering/scattering with Ri.

At each quadrature point, the mapping metrics J�u
q and

jJqj are needed. Storing and loading the information for each
quadrature point gives a memory-bound algorithm
(Kronbichler and Kormann, 2019). In our experiments, we
use, on affine meshes, compression that is applicable as Jq is
the same on several quadrature points and compute the
metric terms from a triquadratic representation of a de-
formed cell geometry (Kronbichler et al., 2022).

3.2. Restriction and data locality in cell loops

The restriction matrix Ri maps local indices to vector indices
in both the ASM loop case (1) and the matrix-free loop case
(3). Note that Ri might also resolve constraints of type xi =P

cijxj + bi, for example, hanging-node constraints, implying
a non-pure Boolean matrix. Without loss of generality, we

consider here only homogeneous Dirichlet constraints (xi = 0)
and refer the reader to Kronbichler and Kormann (2012);
Munch et al. (2022). For the sake of simplicity, we first
discuss implementation details on Ri for the cells of a FEM
mesh and study the adoption to patches subsequently.

In the worst case, Ri has to store all indices. This implies
an indirect vector access with each entry of the vector read
individually. In the context of, for example, discontinuous
Galerkin methods, it is possible to store only the index of an
unknown of a cell, assuming that all DoFs related to a cell
are enumerated contiguously. A similar strategy can be also
adopted to standard high-order FEM in the case that DoFs
are contiguous on each geometric entity, as proposed by
Kronbichler et al. (2022). Here, one needs to store only the
first index of each entity of a cell (3d). Based on this in-
formation, we load vector entries directly into the part of a
local buffer dedicated to the geometric entity. For un-
structured meshes, one needs to reorient entries on lines and
faces Scroggs et al. (2022), which correspond to an in-place
permutation for Lagrange elements. The information can be
encoded with 1 bit per line and 3 bits per face, that is, with
4 bits (1 Byte) in 2D and 30 bits (4 Bytes) in 3D. This
efficient index storage is visualized in Figure 2(a).

Furthermore, the restriction matrix Ri defines the read-/
write-access dependency of a cell. This information can be
used to derive algorithms with improved data locality,
needed because many implementations of matrix-free high-
order finite-element algorithms with sum factorization are
limited by the bandwidth from main memory (RAM) on
modern hardware. As a result, performance optimizations
aim at improving the data locality, especially on CPU ar-
chitectures with their limited RAM bandwidth. A simple
strategy to utilize different levels of the cache within matrix-
free operator evaluation is to apply an iteration sequence
over cells with a high reuse of data from previous cells. This
is the case, for example, for the Morton order chosen here
(Bangerth et al., 2011). In addition, in order to increase the
throughput of algorithms that consist of compute-intensive
cell loops and memory-bound vector updates operating on
the same set of vectors, these two steps can be interleaved.

To derive a strategy for interleaving cell loops and vector
updates, we exploit the facts (1) that a vector entry only has
to be in a valid state once the first cell accesses the cor-
responding index j, that is, the cell with index min({i|j 2
Ri}), and (2) that a vector entry has received all contribu-
tions or is not needed anymore, that is, can be overridden,
once the last cell with the corresponding dependency re-
gion, that is, the cell with index max({i|j 2 Ri}), has pro-
cessed it. For the sake of simplicity and without loss of
generality, we assume that cells are processed sequentially
according to their index i. Naturally, tracking the state of
individual vector entries and performing vector updates
before and after each cell operation introduces an excessive
overhead.

4 The International Journal of High Performance Computing Applications 0(0)

In Kronbichler et al. (2022), a suitable generic software
infrastructure for arbitrary vector operations on the desti-
nation vector and the source vector was proposed. A user-
defined pre-operation is run on a range of vector entries just
before these are touched by the cell loop the first time. Upon
exit of the pre-operation, the entries in the source vector are
ready for being read by the cell integrals Ai and the des-
tination vector is in a state to receive contributions of cell
integrals at the respective indices. Furthermore, a user-
defined post-operation is run on a range of entries just
after the last access in the cell loop. Here, both source and
destination vector can be modified, since the cell integrals
do not access these entries again. As a heuristic when to
interrupt the cell loop for working on the vector-update
operations, we require that the accumulated data of the cells’
work fits into the fast L2 cache to maximize the L2 hit rate
during vector updates, which implies a partitioning of the
cell index space [1, Nc]

v ¼ AðuÞ ¼
X
c

X
rc ≤ i< rcþ1

Ru
i AiRi

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
*

u,

where the inner sum * is interleaved with vector updates on
appropriate index ranges.

In a parallel setting, Ri also specifies the needed ghosting
of the vectors. Furthermore, the set of cells with remote
dependencies can be treated as an own partition so that
communication can be performed asynchronously with the
loop over cells inside the domain.

Instead of tracking the state of individual entries for vector
operations, we track the state of cache lines. In consequence,
cache lines can remain active over long periods if individual
entries are accessed at different times.We define the liveliness
of a cache line as the difference of the indices of the last and
the first cell range accessing a cache line (cmax� cmin + 1). To
minimize the overall liveliness, we enumerate the DoFs with

the strategy proposed in Kronbichler et al. (2022): in a
preprocessing step, we determine, for each DoF, a tuple
containing an index it would get in touch order of the cell
loop, the number of cell ranges modifying the entry, and the
information whether the values depend on remote processes;
sorting according the tuple gives the new ordering.

Expressing algorithms in a way that they fit the pre/post-
concept needs to respect the dependency region of thematrix-
vector product in terms of the overlap of unknowns andmight
involve algorithmic transformations. In Kronbichler et al.
(2022), such a process was shown for preconditioned
conjugate-gradient solvers. In the current work, we propose
novel operations for ASM and Chebyshev iterations and
analyze their advantages against established software con-
cepts in the finite-element community.

In the present publication, we focus on CPU-type hard-
ware, where dependency regions associated with a moderate
number of compute units can be explicitly defined. However,
Kronbichler et al. (2022) indicate that expressing algorithms in
the form of pre/post-operations also benefits GPU im-
plementations, since the associated loop fusion allows to re-
duce the latency due to the reduced number of kernel launches.

3.3. Low-overhead additive Schwarz method

The structure of the ASM loop (1) is the same as in the case
of (3). In the case of minimal overlap (n = 1), the restriction
operator Ri is even identical to the one of the matrix-free cell
loop, allowing to reuse existing implementations of (3). The
index sets for the other patch types are distinct, necessitating
the setup of an additional set of restriction operators. Note
that the overlapping nature of these types of patches leads to
challenges, since more indices might need to be stored.

The Cartesian auxiliary mesh of cell-centric patches
needed for FDM is generated by the extents of the cell under
consideration and of its face neighbors. The extensions are
determined based on the harmonic weight of the distances of

Figure 2. Visualization of index storage in 2D for p = 4 with filled circles indicating stored information; the rest is deduced by contiguous
storage, indicated by arrows (exemplarily shown for a few geometric entities). (a) cell-centric patch with n = 1, (b) cell-centric patch
with n = 2, (c) vertex-star patch.

Munch and Kronbichler 5

opposing faces. The grid sizes are used to scale 1D reference
mass and stiffness matrices, which are locally assembled
and decomposed for FDM. Boundary conditions are applied
according the underlying PDE problem. The algorithm
adopted from NekRS (Fischer et al., 2022) is visualized in
Figure 3. In the same way as in the operator evaluation (3),
we vectorize across elements. However, the transformation
matrices (Ti) might differ for each cell. In order to minimize
the memory consumption, we reuse the 1D matrices be-
tween cell batches if possible.

3.3.1. Cell-centric patches with n = 1. Patches centered around
cells with minimal overlap (n = 1) consist of all (p + 1)d

unknowns of a cell, including the efficient index storage
(see Figure 2(a)).

For the application of the weights, we have multiple
options (Table 1). If we apply the weights locally during the
cell loop, we can store them cell-wise. Furthermore, the
weights allow for a similar compression as the indices of
unknowns, leading to 3d stored weights per cell (see
Figure 4(a)). The variants of post/symm only differ in when
the weights are applied to the local buffers. If the weights are
applied globally, we propose to interleave the operation with
the cell loop. An issue of the global application of the weights
in the context of symm is that the source vector might be
immutable, requiring an additional vector.

A rough estimate indicates that the compressed storage is
the most efficient variant (∼(3/p)d overhead per unknown),
followed by the global application ð∼ 1Þ. Table 2 confirms
these expectations experimentally for p = 4. Nonetheless,
applying the weights globally in an interleaved way is close to
be the best option of cell-wise weights; in both cases, the cost
of weighting is nearly negligible. As a reference, the costs of
global sequential application of weights are 35%–45% higher.

3.3.2. Cell-centric patches with n > 1. Patches centered around
cells with n > 1 consist of unknowns inside of neighboring
cells. For structured meshes, it is straightforward to consider
all neighbors with (p + n � 1)d unknowns. In the case of
unstructured meshes, we skip neighbors that are not connected

via a face in order to preserve the tensor-product structure,
leading to a slight reduction in the number of unknowns.

The increased overlap results in less data access and
smaller transformation matrices in certain directions for
cells located at the boundary. For the sake of simplicity, we
embed these small matrices in the full ones with a negligible
impact on the computational work.

The set of ghost indices for n > 1 is a superset of the ones
of (3). This allows us to set up ghosted vectors for the
preconditioner and use them also in the operator evaluation
(3), without copying between vector layouts.

In order to access the vectors, one cannot use the com-
pressed gather approach from Ri, since unknowns on up to 5

d

geometric entities are accessed. A 5d-compression scheme is
conceivable, however, would only benefit very high orders.

Similarly, weights cannot be compressed, since they can
already differ within the same geometric entity. As a result,
one can only store the weights either globally with overhead
1 or locally with overhead ((p + n� 1)/p)d (see Figure 4(b)).
Table 2 shows timing comparisons. The increased overlap
renders the operation > 4 × more expensive. Not surpris-
ingly, a global interleaved application of the weights is the
most efficient approach in this case, benefiting from the fast
cache. As symm has to modify the source vector or a
temporary copy of it, the costs are higher than those of the
post-weight application for most settings. Sequential ap-
plication of the weights is ≈8% slower. This is a smaller
value than the one in the case of minimal overlap, which is
not surprising due to the higher base costs.

3.3.3. Vertex-star patches. We consider vertex-star patches
only in the case of structured meshes consisting of precisely 2d

cells, that is, do not build patches at the boundary. Vertex-star
patches consist of (2p � 1)d unknowns from 3d geometric
entities, namely, one vertex, six lines, 12 quadrilaterals, and
eight hexahedra. One can regard this as a shifted view on the
entities. Hence, the compression approaches of cell-centric
patches with n = 1 can be adopted (see Figures 2(c) and 4(c)),
reducing the organizational overhead. It is a natural choice to
apply them locally on the patch. Indeed, our experiments

Figure 3. Visualization of the setup process of FDM for a 2D cell: (1) determine extension of a cell and its face neighbors; use them (2) to
construct an auxiliary Cartesian mesh and (3) to set up auxiliary 1D meshes; (4) discretize the latter with FEM, which gives Ki/Mi and Ti/Λi.

6 The International Journal of High Performance Computing Applications 0(0)

confirm the efficiency of this choice (see Table 2). Global
weighting with interleaving is close to the best option again.

3.3.4. Liveliness analysis. From the previous experiments, we
can deduce that the global application of the weights, in-
terleaved with the vector updates, is an attractive alternative,
especially for cell-centric patches with n > 1. Furthermore, it
is observable that the benefit of interleaving cell loops and
vector updates decreases slightly for n > 1 and vertex-star
patches. To support this observation, we compare the

liveliness of cache lines for the different methods in
Figure 5(a)). Cache lines live longer for the latter two
options, resulting in increased probability of cache spills,
particularly due to increased work-set sizes for the cell-local
operations. Note that, for enumerating unknowns, we used
the strategy that is designed for cell loops and, as a con-
sequence, favors cell-centric patches with n = 1.

We also consider other enumeration strategies by using
patch ranges instead of cell ranges in the enumeration
algorithm presented above. Figure 5(b) illustrates an

Figure 4. Visualization of cell-local weight storage in 2D for p = 4 with filled circles indicating stored information; weights labeled with
hollow circles are not needed to be stored. (a) cell-centric patch with n = 1, (b) cell-centric patch with n = 2, (c) vertex-star patch.

Table 2. Hardware-performance counter measurements of different ways to apply weights in the context of FDM (float, p = 4, d = 3,
67 MDoFs, Cartesian mesh), using LIKWID (Treibig et al., 2010). The nomenclature, for example, 1-g-s-i, is as follows: the first
identifier indicates the overlap (n = 1, 2 or v: vertex); the second specifies how the weights are applied (c: locally compressed, l: locally
cell-wise, g: globally); the third identifies the sequence of the global application (s: sequential, p: pre-post interleaved with the loop
over cells/vertices); and the last identifier specifies whether the source vector is constant (i) or mutable (m). In the case that no weighting
is applied (1), “*-g-s-m” and “*-g-p-m” indicate whether the destination vector is zeroed out before or during the cell loop in form of a
pre-operation. Measured quantities are data volume per DoF read/written from/to RAM (r/w) and the time of 10 operator applications.
Values highlighted in bold face indicate the fastest setting for a given configuration.

No weights (1) post symm

r w t(s) r w t(s) r w t(s)

1-c 3.4 1.3 0.11 3.4 1.3 0.12
1-l 6.3 1.3 0.15 6.3 1.3 0.16
1-g-s-i 8.8 4.2 0.25
1-g-s-m 3.8 2.1 0.14 5.8 3.1 0.19 7.8 4.2 0.24
1-g-p-i 5.3 2.3 0.14
1-g-p-m 2.9 1.3 0.11 4.1 1.3 0.12 4.2 2.3 0.13

2-l 16.6 3.1 0.60 16.6 3.1 0.62
2-g-s-i 18.5 5.5 0.57
2-g-s-m 13.6 3.5 0.46 15.5 4.5 0.51 17.5 5.5 0.56
2-g-p-i 18.9 4.5 0.53
2-g-p-m 13.3 3.0 0.45 15.4 3.4 0.47 17.3 4.5 0.51
v-c 6.0 2.5 0.35 6.0 2.5 0.35

v-l 13.5 2.6 0.48 13.5 2.7 0.48
v-g-s-i 11.1 5.1 0.46
v-g-s-m 6.2 3.2 0.35 8.1 4.1 0.40 10.1 5.1 0.45
v-g-p-i 9.8 3.8 0.39
v-g-p-m 5.5 2.5 0.33 7.2 2.7 0.35 8.3 3.8 0.37

Munch and Kronbichler 7

increased number of entities with low liveliness. This
increases the interleavable data by 14% in the case of
vertex-star patches and doubles their amount for cell-
centric patches. Tables 3 and 4 show the influence of
the optimized enumeration on the run times. As expected,
the effect on the times in the vertex-star case is not large
despite a clearly reduced memory access, indicating in-
core bottlenecks. In the cell-centric case with n = 2, the
time is reduced by 8%.

Note that A and P�1 might favor different enumeration
strategies. However, the cost of copies between vectors with
additional global vector access makes this inferior to
choosing one enumeration scheme, although it might de-
crease the throughput of other code parts (see Tables 3 and
4). Supported by these observations, we use a cell-centric
enumeration throughout the remainder of this work.

3.3.5. Conclusions. In order to conclude the discussion on the
different patch types for ASM, we present a comparison of
their memory consumption and computational complexity
in Table 5. The numbers are shown for both Cartesian and
general meshes and have been verified with hardware
counters (Treibig et al., 2010). The patch type also deter-
mines the requirements regarding communication: while
cell-centric patches need n layers of ghost unknowns,
vertex-star patches need p layers. In the latter case, however,
the extension is needed in a single direction. Patch
smoothers generally communicate twice during both
gathering and scattering in order to collect partial results. In
the case of RAS, the latter communication step can be
skipped by definition. Furthermore, Figure 6 gives a
throughput and memory-access analysis comparison for the
different approaches. One can see that the cost of applying
the cell-centric patch smoothers with n = 1 is comparable to

the one of the operator evaluation (3). Larger overlaps due to
n > 1 or vertex-star patches lead to a drop in throughput by a
factor of 4.2 and 2.9, respectively. Consequently, they are
only beneficial if the number of smoothing steps and/or
outer iterations can be reduced substantially. ASM with
vertex-star patches tends to have a higher throughput than
ASM with cell-centric patches (n ≥ 2) up to p = 6. After that
point, the throughput decreases due to increased work per
unknown. In Figure 7, the performance is summarized by
means of a roofline model (Williams et al., 2009) using
measurements from performance counters. There are two
main reasons why the performance limit (bandwidth) is not
reached on the Intel system: on the one hand, indirect access

Figure 5. Cumulative distribution function of liveliness of cache lines in a vector for a 3D scalar Laplacian with polynomial degree p =
4 on 40 MPI processes. The Laplacian involves 67 million DoFs subdivided into 208 batches on each MPI process. The cell loop is
interrupted after eight batches. Left: throughput of cell-centric patches with n = 1 for different enumeration schemes. Right: throughput
of cell-centric patches with n = 2 and vertex-star patches with an enumeration enforced by cell-centric patches with n = 1 or an optimal
enumeration. (a) cell-centric patch n = 1, (b) cell-centric patch n = 2 and vertex-star patch.

Table 3. Measurements of different ways to apply weights in the
context of FDM with renumbering favoring cell-centric patches
with n = 2. For the setup, see Table 2.

No weights (1) post symm

r w t(s) r w t(s) r w t(s)

1-g-p-m 4.8 1.3 0.12 6.1 1.4 0.13 6.3 2.4 0.15
2-g-p-m 12.0 2.7 0.42 14.0 3.1 0.45 15.5 4.1 0.47

Table 4. Measurements of different ways to apply weights in the
context of FDM with renumbering favoring vertex-star patches.
For the setup, see Table 2.

No weights (1) post symm

r w t(s) r w t(s) r w t(s)

1-g-p-m 3.4 1.3 0.12 4.9 1.5 0.14 5.1 2.5 0.16
v-g-p-m 5.2 2.4 0.33 6.8 2.6 0.35 7.8 3.7 0.37

8 The International Journal of High Performance Computing Applications 0(0)

makes the load/store operations from/to main memory more
expensive and, on the other hand, memory-intensive and
compute-intensive sections are not completely overlapped
by the hardware. A remedy to the last point would be to
process matrix-free integral computations within a cell layer
by layer, as proposed by Kronbichler and Kormann (2019).

3.4. Data locality in Chebyshev iterations

As a next algorithmic development, we explore the efficient
evaluation of the Chebyshev iteration (2a)–(2c), which al-
ternatingly executes A and P�1 together with vector updates.
We propose different levels of optimizations, depending on
the structure of A and P�1. Figure 9(a) shows the read and
write operations needed if both A and P�1 are considered as a
black-box operation in terms of a BLAS level-2 interface,
with the source vector ready in its entirety before the product
is executed and similarly for the destination vector. The
accumulated numbers of ideal read and write operations for
sizes larger than the caches are r ∼ 9k and w ∼ 4k. Note that
only vector data are counted and the coefficient data of A and
P�1 as well as non-perfect caching are ignored.

Since A and ASM are local operators on cells or around
vertices, their evaluation can be interleaved with vector

updates. Furthermore, a point-Jacobi method applies the in-
verse diagonal of the system matrix A without any commu-
nication, which allows further optimizations.We use the point-
Jacobi method as a reference, for which we shortly discuss an
efficient implementation in the following. Figure 9(b)–(c)
present two types of optimizations. We start with discussing
optimization 2, which assumes that a diagonal preconditioner
is given and A relies on a loop over cells with access to a
compact set of unknowns. Here, all vector updates, including
scaling by the diagonal matrix, can be performed in a post-
operation (with zeroing during pre), which is comparable to the
strategy of Kronbichler and Allalen (2018). The theoretical
read/write data volume can be significantly reduced: r ∼ 4k,
w ∼ k.

Completely merging A and P�1, as in the case of a diagonal
matrix, is not straightforward in the case of ASM: it requires
nesting of two cell loops (also known as “power kernel”, see
e.g., Malas et al. (2017) and the related work of Akkurt et al.
(2022) for DG-type discretizations). Our preliminary inves-
tigations have shown that running the two cell loops in se-
quence is faster for higher-order elements, because the nested
loops increase the active working set, resulting in the dete-
rioration of the data locality of the outer loop particularly due
to the MPI communication requirements. As a result, the

Table 5. Comparison of memory consumption and number of floating-point operations of cell integral and the considered patch
smoothers. Values are given per cell, which correspond to pd unique DoFs. For the sake of brevity, we introduce q, the size of the patch in
each direction ((p + 1) or (p + 2n � 1) or (2p � 1)).

Figure 6. Comparison of throughput, read/write data per DoF, floating-point operations for operator evaluation, cell-centric patches,
and vertex-star patches for different degrees p. Single node.

Munch and Kronbichler 9

preferred algorithm is to let A write into a temporary vector,
which is subsequently read by P�1, requiring one write and
three read operations in addition. One of the three additional
read operations is related to the fact that x has to be read during
A and P�1. Nevertheless, since all other vector updates can be
interleaved with the cell loops, the overall complexity can be
reduced to r ∼ 7k, w ∼ 2k.

In addition to the theoretically derived quantities, we show
experimentally measured data transfer and the obtained
throughputs for k = 3 in Figure 8. A clear speedup is visible by
using one of the optimizations from Figure 9: in the case of the
point-Jacobi preconditioner, one smoothing step has the cost of
about one operator evaluation, which corresponds to a speedup
of 90%. In the case of ASM with n = 1, the speedup is more

moderate (20%–25%): the cost is bounded by the costs of two
operator evaluations, since two cell loops are run in sequence.
Not surprisingly for n > 1 and vertex-star patches, the cost of
smoothing is dominated by ASM and the benefit of merging
the vector updates decreases to 10%.

Figure 10 shows the benefits of the optimizations by
varying k and the mesh type. It is clear that the cost of
smoothing increases linearly in all cases. However, in the
case of cheap smoothers, more iterations can be executed at
the same costs. Figure 7 presents the performance of the
optimized code in a roofline model, indicating a slight
decrease in arithmetic intensity.

We conclude this section with some remarks on the
cache-friendly global application of weights in ASM. As

Figure 7. Roofline model of the application of the operator evaluation A, different P�1, and Chebyshev iterations of degree k = 3 with
different P�1 for the measurement data from Figures 6 and 8. Different points of the same category correspond to different
polynomial degrees (2 ≤ p ≤ 7). Cell-centric patches with overlap n = 2 are not shown due to similar performance characteristics to
the application of A. On the Intel system, the bandwidth and the number of floating-point operations are extracted from hardware-
performance counters. On the AMD system, where direct measurements have not been possible, the memory access of the Intel
system is assumed as a model.

Figure 8. Comparison of throughput and read/write data of Chebyshev iterations of degree k = 3 for point Jacobi, cell-centric patches,
and vertex-star patches for different degrees p and optimizations (base vs optimization 1 for patch smoothers and optimization 2 for
point Jacobi). Dashed lines indicate the naive base algorithm, and solid lines indicate the best possible optimization. Single node. FDM
with symm.

10 The International Journal of High Performance Computing Applications 0(0)

discussed above, we can interleave this application with the
matrix-vector multiplication. The resulting pre/post-oper-
ations are merged—as indicated in Figure 11—with the
ones resulting from optimization 1 from Figure 9.

Note that the optimizations presented are also applicable
to relaxation schemes with the update formula x1 = ωP�1b
and xn+1 = xn + ωP�1rn. The resulting pseudo code is shown
in the appendix.

4. Application: Multigrid

In this section, we embed the developed and optimized
smoothers into a p-multigrid solver with optimizations for
large scales according to Munch et al. (2023).

The three basic steps of a two-level algorithm are (1)
presmoothing, (2) coarse-grid correction, in which a related
problem on a coarser grid is solved, and (3) postsmoothing.
For the coarse-grid problem, the residual b� Ax is computed
and restricted. After the coarse solution, which might in turn
invoke the two-level algorithm recursively, the resulting
solution is prolongated and added to the fine solution. Nesting
two-level algorithms recursively gives a multigrid algorithm.
We use multigrid as preconditioner for a conjugate-gradient
(CG) or GMRES(15) iterative solver, which implies that the
initial guess on the levels is zero, allowing to skip the
computation of the residual during the first iteration of
presmoothing.We use the CGmethod for point Jacobi as well
as for ASM with symmetric application of weights and
GMRESwith iterated classical Gram-Schmidt algorithm else.

In the setting of p-multigrid, the levels are defined by
coarsening the polynomial degrees of the elements. The
most common approach is to halve the polynomial degree
(bisect), which reduces the number of unknowns per level
by approximately 2d. However, one can also decrease the

Figure 9. Pseudo code of different versions of Chebyshev
iteration, including vector read/write estimates. The
values have been verified with hardware counters. The
vector x contains xi at the beginning and xi+1 at the end of a
step. In the case of a Chebyshev iteration, the vector y
contains xi�1 at the beginning of a step and xi at the end of a
step. The vectors t and u are temporary vectors. For the sake
of simplicity, we skipped the indices of the Chebyshev
coefficients α and β. (a) Base, (b) Optimization 1 (matrix-free
P�1, matrix-free A), and (c) Optimization 2 (matrix-free P�1,
matrix-free A).

Figure 10. Time of 10 postsmoothing steps for different Chebyshev degrees, p = 4 and 68 MDoFs for Cartesian and deformed
structured meshes. Dashed lines indicate the naive base algorithm, whereas solid lines indicate the best possible optimization. Single
node. FDM with symm.

Munch and Kronbichler 11

polynomial degree one by one (by-one) or skip refinement
levels and jump to linear elements directly (to-one).

The cost of the multigrid solver can be modeled as the
sum of the cost of each component

T ¼ Nit

�
T CG=GMRESðNitÞ þ T V

�
(4a)

T V ¼ T preðkÞ þ T r þ T rest þ T coarse þ T pro þ T postðkÞ
(4b)

Here, the cost of pre- and postsmoothing ðT pre þ T postÞ
increases—as discussed previously—linearly with the
number of the smoothing steps, since (2k � 1) matrix-
vector products with A and 2k preconditioner appli-
cations have to be performed. The cost of the evaluation

of the residual is similar to the one of a matrix-vector
product with A. The cost of the intergrid-transfer op-
erators is influenced by the way the levels are con-
structed, however, again related to the cost of A, since
they can be evaluated on the fly during a cell loop
(Kronbichler and Wall, 2018; Munch et al., 2023). In the
ideal case, the cost of the coarse grid decreases by

ðpf =pcÞd .
Phillips and Fischer (2022) recently advocated the usage

of one-sided V-cycles that apply all smoothing steps during
presmoothing. The cost of the V-cycle of this approach is
also described by (4b), since then T 0

pre ¼ T pre þ T post and

T 0

post¼ 0. As this approach makes the overall multigrid

preconditioner non-symmetric, we will only consider it for
ASM with the weight application post.

As a conclusion of this introduction into multigrid,
Figure 12 presents the profile of a single iteration of the
solution process for ASM (symm and post application of the
weights, n = 1, k = 2) for a regular (two-sided) V-cycle and a
one-sided V-cycle. It is well visible that the main additional
cost in the case of post is the increased cost of the outer
solver (GMRES), which could be compensated by less it-
erations and coarse-grid solves, as will be investigated next.

In the following, we solve the Poisson equation with
constant right-hand side and homogeneous Dirichlet
boundary conditions, using three challenging meshes
shown in Figure 13. We terminate after a relative residual
reduction of 10�5 is reached. To increase the throughput,
all operations in the multigrid V-cycle are run with FP32,
while the outer solver is run with FP64 (Kronbichler and
Ljungkvist 2019). We have performed extensive exper-
iments varying (1) the Chebyshev degree k, (2) the type of
decreasing p, (3) point Jacobi or ASM (cell-centric
patches with n = 1 and n = 2, vertex-star patches) as
preconditioner for the Chebyshev iteration, (4) first or
fourth kind of Chebyshev polynomials, and (5) one-sided

Figure 12. Profile of the finest multigrid level and the outer solver. The timings of GMRES include the orthogonalization step with the
classical Gram-Schmidt algorithm and an additional preconditioner application to recover the solution.

Figure 11. Optimization 1 for a Chebyshev iteration with FDM
and global weighting. Expressions with a tuple as result need to
use a temporary vector. (a) Optimization 1 (FDM with global
post, matrix-free A), (b) Optimization 1 (FDM with global symm,
matrix-free A).

12 The International Journal of High Performance Computing Applications 0(0)

versus two-sided V-cycles. In the following, we sum-
marize the results and pick out some challenging mesh
configurations. Detailed tables with all results can be
found in the companion material, which is available in the
accompanying GitHub repository.

As coarse-grid solver, we use geometric multigrid with
the same smoothers as for p-multigrid. This implies that, in
the case of n = 2, the smoother is built around FDMwith n =
1 and, in the case of vertex-star patches, around the inverse
diagonal of A. In the latter instance, we additionally increase
the number of smoothing steps by 2. As coarse-grid solver
of geometric multigrid, we use AMG from the ML (cf. Gee
et al. (2006)) package, which, in the presented experiments,
falls back to a direct solver due to the small coarse-grid
sizes. We note that switching directly to AMG as coarse-
grid solver of p-multigrid, instead of GMG, would be
possible and would enable the application of the solver to
more general unstructured meshes. However, this requires
domain-specific parameter tuning, which we defer to future
work. Figure 14 summarizes the structure of the solver.

4.1. Anisotropic Cartesian mesh

In the first experiment, we solve the Poisson equation on an
anisotropic Cartesian mesh, which is uniform in x0 and x1

directions but stretched in x2 direction by a factor of 50. The
companion material also contains results for x2/x0 2 {1, 2, 5,
10, 20}. Tables 6–7 present, for p = 4 and p = 7, the best
configurations we have identified by parameter tuning.
Furthermore, run times are shown for a simulation without
stretch in the last two table columns. The following ob-
servations can be made. Solving the anisotropic problem is
at least 10× more expensive. The reason for this is two-fold:
on the one hand, the number of iterations needed increases
and, on the other hand, the optimal preconditioner is more
expensive due to the need to choose more expensive
smoothers (higher overlap, more smoothing steps). Overall,
overlap n = 1 and the coarsening sequence by-one are the
most beneficial. In our experiments, the application of
weights as postprocessing step with one-sided V-cycles and
4th-kind Chebyshev polynomial turned out to be the fastest.
Overall, the sequence to-one requires the highest number of
iterations, resulting in the lowest throughput.

Note: In the literature, semi-coarsening or line smoothers
have been proposed to ensure robustness for anisotropic
problems Trottenberg et al. (2000). These approaches are
more robust for anisotropic meshes than the proposed patch
smoothers, but their implementation in general finite-
element methods and with high-order bases is not trivial,
especially regarding the concept of line smoothers.

4.2. Anisotropic structured Kershaw mesh

In this subsection, we consider a Kershaw mesh (cf.
Kershaw (1981)), the basis of the BPS benchmarks

Figure 14. Diagram of the proposed solver.

Table 6. Best configurations for anisotropic Cartesian mesh: p =
4. The triple in the parentheses specifies the number of pre- and
postsmoothing steps as well as the kind of the Chebyshev
polynomial used. Values highlighted in bold face indicate the fastest
setting for a given configuration.

x0 = x2

Type Fastest configuration #it t(s) #it t(s)

Diagonal (5, 5, 4), by-one 60 6.52 3 0.22
FDM (symm) (3, 3, 1), by-one, CCP1 34 3.89 4 0.23
FDM (post) (8, 0, 4), by-one, CCP1 23 3.68 4 0.22

Table 7. Anisotropic Cartesian mesh: p = 7.

x0 = x2

Type Fastest configuration #it t(s) #it t(s)

Diagonal (4, 4, 1), by-one 58 4.31 4 0.17
FDM (symm) (4, 4, 1), by-one, CCP1 20 2.21 4 0.15
FDM (post) (10, 0, 4), by-one, CCP1 13 1.88 4 0.18

Figure 13. Considered 3D meshes: coarse version of (a)
anisotropic Cartesian mesh (x2/x0 = 10), (b) Kershaw mesh for ϵ =
0.3, and (c) a ball.

Munch and Kronbichler 13

proposed by the Center for Efficient Exascale Discretization
(CEED) within the DOE Exascale Computing Project
(ECP) (cf. Kolev et al., 2021a) in order to fairly compare
high-order finite-element implementations and libraries. On
the coarsest level, it has six subdivisions in each direction
and the parameter 0 < ϵ ≤ 1 determines the local aspect ratios
and makes the solution increasingly challenging as ϵ de-
creases. We analyze the cases with L = 5 for p = 4 and
L = 4 for p = 7, for ϵ = 0.3. The companion material also
contains results for ϵ 2 {0.5, 0.7, 0.9, 0.99, 1.0}. The local
anisotropy is 146/144. A coarse version of the mesh is
shown in Figure 13(b).

Tables 8–9 present the results for p = 4 and p = 7. As a
reference, we again show the timings on a mesh with ϵ = 1
(Cartesian mesh). While the times in the Cartesian case are
similar for the optimal point-Jacobi and FDM setups, we
see, for deformed meshes, a speedup of 53% and 56% in
favor of FDM. In the simulation, the combination of bisect,
two-sided V-cycle, and n = 1 turned out to be the fastest. For
p = 7, similar observations can be made.

Table 10 shows, for p = 4, the best configurations for cell-
centric FDM with n = 1 and n = 2 as well as for vertex-star
FDM. Overall, one can observe that cheaper smoothers
(diagonal, cell-centric FDM with n = 1) need more itera-
tions, and vertex-star patches are somewhat slower than the
cell-centric variants, despite being more efficient per iter-
ation (n > 1). The increase in linear iterations might be
related to how we construct the Cartesian surrogate meshes,
to the skip of the boundary patches and to the coarse-grid
solver (h-multigrid with Chebyshev/diagonal); neverthe-
less, our observations are consistent with those from the
literature (cf. Witte et al. (2021)).

4.2.1. Cross-platform validation. As cross-platform valida-
tion, we present timings obtained on a dual-socket AMD

EPYC 7713 compute node. The AMD CPU consists of
2 × 64 cores running at 2.2 GHz and uses codes compiled
for the AVX2 instruction-set extension (8-wide SIMD for
FP32). This gives an arithmetic peak performance of
9.0 TFlop/s. It has a measured STREAM triad bandwidth
of 320–340 GB/s. Table 11 shows timings for p = 4 for the
best configurations identified for the Intel processor in
Table 10. Compared to the Intel system, one can observe
speedup factors of 2.4–2.5 for patch smoothers and a 3.0×
speedup in the case of the diagonal. These values are
somewhat better than what one would expect from in-
creased bandwidth and compute performance (1.8× each)
and indicate that non-arithmetic parts of the code are
executed more quickly, leading to a better use of the
memory bandwidth. The results also show that the AMD
system favors the diagonal preconditioner with its lower
arithmetic intensity, resulting in times that are slightly
lower than the ones for cell-centric patches with n = 2 and
for vertex-star patches. This observation can be explained
by a more balanced cache system on the AMD node, with
higher L3 bandwidth (but lower L2 bandwidth). This is
also underlined by the roofline model in Figure 7, where
the performance limit (bandwidth) is reached for most
data points of operator evaluation and cell-centric ASM.

4.2.2. Comparison with NekRS. A similar setup (36 cells in
each direction, p = 7, linear mapping, RAS, GMRES(30)
+ p-multigrid + AMG, overlap n = 2) was recently also
run with NekRS (cf. Phillips and Fischer (2022)) on six
GPUs on Summit. The comparison with our im-
plementation run on six compute nodes on SuperMUC
NG is as follows:

Table 8. Kershaw mesh: p = 4.

ϵ = 1

Type Fastest configuration #it t(s) #it t(s)

Diagonal (3, 3, 1), bisect 75 3.41 3 0.10
FDM (symm) (2, 2, 1), bisect, CCP1 51 2.27 4 0.10
FDM (post) (3, 3, 1), bisect, CCP1 36 2.23 4 0.10

Table 9. Kershaw mesh: p = 7.

ϵ = 1

Type Fastest configuration #it t(s) #it t(s)

Diagonal (4, 4, 1), bisect 94 2.13 4 0.07
FDM (symm) (3, 3, 1), bisect, CCP1 53 1.36 4 0.07
FDM (post) (4, 4, 1), bisect, CCP1 40 1.37 3 0.07

Table 10. Kershaw mesh: p = 4; alternative categorization.

ϵ = 1

Type Fastest configuration #it t(s) #it t(s)

Diagonal (3, 3, 1), bisect 75 3.41 3 0.10
FDM (CCP1) (3, 3, 1), bisect, post 36 2.23 4 0.10
FDM (CCP2) (2, 2, 1), bisect, post 40 2.77 5 0.15
FDM (VSP) (2, 2, 1), bisect, symm 49 2.82 4 0.13

Table 11. Kershawmesh: p = 4; alternative categorization; AMD.

ϵ = 1

Type configuration #it t(s) #it t(s)

Diagonal (3, 3, 1), bisect 75 1.13 3 0.035
FDM (CCP1) (3, 3, 1), bisect, post 36 0.90 4 0.038
FDM (CCP2) (2, 2, 1), bisect, post 40 1.14 5 0.068
FDM (VSP) (2, 2, 1), bisect, symm 49 1.18 4 0.051

14 The International Journal of High Performance Computing Applications 0(0)

NekRS Present code

ϵ config. it t(s) t/it(s) it t(s) t/it(s)

1.0 (2, 2, 1) 8 0.09 0.011 13 0.19 0.014
0.3 (5, 5, 1) 28 0.67 0.024 47 1.57 0.033
0.05 (12, 0, 4) 88 2.40 0.027 67 2.61 0.037

Even though the number of iterations is different, pos-
sibly due to different Chebyshev weights and AMG im-
plementations (BoomerAMG vs ML), one can see that the
times per iteration are comparable, underlying the high
quality of our implementation. The higher throughput on the
GPU (30%) is expected, since overlap n = 2 benefits from
the higher bandwidth of the GPU > 3:5 ×ð Þ .

4.2.3. Parallel scaling. The focus of this publication is the
node-level optimization of smoothers. In this subsection, we
shortly investigate their parallel scalability. The numerical
experiments are run on a dual-socket 24-core Intel Xeon
Platinum 8174 (Skylake) system of the supercomputer
SuperMUC-NG (measured STREAM triad memory
throughput of 205 GB/s) with up to 1024 compute nodes
(49k processes).

For p = 4, we compare the best configurations of point
Jacobi, cell-centric patches with n = 1 and n = 2 as well as
vertex-star patches, which we have identified on a single
node for a given mesh configuration (Table 10).

Figure 15 shows the time to solution, the time of each
iteration, and the number of iterations. One can see that cell-
centric patch smoothing with n = 1 is the most competitive
option overall despite the higher cost per iteration, com-
pared to point Jacobi in terms of communication steps. This
is due to a lower iteration count. Cell-centric smoothing
with n = 2 has the lowest throughput both on a single node
and in terms of scaling. Overall, we reach excellent strong

scalability: we get more than 66/83% parallel efficiency
upon an increase in the number of nodes by a factor of 64/
16.

However, it is visible that the solver is not robust for
increasing number of refinements. This is particularly the
case for cell-centric (n > 1) and vertex-star patches, for which
we use weaker smoothers on the coarser levels. A remedy
would be to increase the number of smoothing steps on the
coarser levels or to apply h-multigrid (before coarsening p).
Using p-multigrid and switching to AMG directly is less
robust without adjusting the AMG parameters. Detailed
investigations on these topics are deferred to future work.

We conclude this subsection by discussing RAS. In our
simulations, RAS requires fewer iterations in certain cases,
whereas in other cases, normal (postprocessing) averaging
needs fewer iterations. This observation is consistent with the
literature (Phillips and Fischer, 2022). Nevertheless, RAS
allows to skip one communication step. We observed—in
comparison to post for n = 2 and 64 compute nodes—a
speedup of up to 20% at the scaling limit. Further speedup

Figure 15. Strong-scaling comparison of different smoothers for the Kershaw geometry with ϵ = 0.3, L = 6/L = 8, p = 4. (a) Time to
solution, (b) Time per iteration. (c) Number of cells, DoFs, and iterations; aspect ratio (defined as the ratio of max. and min. eigenvalues
of Jq at the quadrature points).

Table 12. Unstructured mesh of a 3D ball: p = 4.

Type Fastest configuration #it t(s)

Diagonal (2, 2, 4), bisect 6 0.27
FDM (symm) (2, 2, 4), bisect, CCP1 4 0.22
FDM (post) (1, 1, 1), bisect, CCP1 6 0.26

Table 13. Unstructured mesh of a 3D ball: p = 7.

Type Fastest configuration #it t(s)

Diagonal (4, 4, 4), by-one 3 0.20
FDM (symm) (2, 2, 4), bisect, CCP1 5 0.14
FDM (post) (1, 1, 1), bisect, CCP1 7 0.16

Munch and Kronbichler 15

might be possible, taking into consideration that we do not
specialize the weighting infrastructure and only disable
communication. However, we would like to note that using
RAS on the levels of the coarse (h-multigrid) solver increases
the number of iterations so that we apply the post-strategy on
these levels.

4.3. Unstructured mesh of a 3D ball

As a concluding example, we show the results of sim-
ulations on a mesh of a 3D ball. The setup is less
challenging than the first two examples in terms of
anisotropy and is intended to demonstrate that the al-
gorithms developed in this work—with the exception of
the vertex-star patches—are easily extensible to the
unstructured case. Tables 12–13 show the results for p =
4 and p = 7. Overall, the timings of using diagonal and
ASM with cell-centric patches with n = 1 are very
competitive, with a slight advantage of the ASM case.
The fact that ASM can compete with a highly optimized
point-Jacobi implementation underlies the high quality
of our ASM implementations, which are built around the
cache-optimized and low-overhead concepts proposed
in this publication.

5. Conclusions and outlook

We have presented optimized implementations of the additive
Schwarzmethod accelerated byChebyshev sweeps for different
types of patches in the context of p-multigrid for high-order
FEM. The proposed optimizations contain the compression of
infrastructural data structures and the improvement of data
locality by working on index ranges during weighting required
by ASM and during the Chebyshev vector updates. An ex-
tensive parameter study has been conducted, showing that
ASM built around cell-centric patches can outperform opti-
mized point-Jacobi-based smoothers even for simple setups,
although the latter allow formore node-level optimizations. The
results are inconclusive regarding the type of weighting in
ASM, since the additional costs (more iterations vs GMRES
incl. orthogonalization) seem to balance each other.

As a concluding remark, one can state that finding optimal
sets of parameters for multigrid (smoothers) is a non-trivial
task due to the large search space, the problem dependency as
well as the hardware properties. In large production runs, an
auto-tuning step—as proposed by Phillips et al. (2022)—is
unavoidable in order to reach the optimal usage of hardware
and the minimum time to solution.

A natural future extension of the present work concerns
the case of locally refined meshes with hanging nodes,
where additional developments to incorporate continuity
constraints on a patch level are needed and conclusions
regarding performance or load balancing might change.

Acknowledgements

The authors acknowledge collaboration with Maximillian Berg-
bauer, Ivo Dravins, Nikas Fehn, Guido Kanschat, Magdalena
Schreter–Fleischhacker, Michał Wichrowski, and Julius Witte as
well as the deal.II community. The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
for funding this project by providing computing time on the GCS
Supercomputer SuperMUC-NG at Leibniz Supercomputing
Centre (LRZ, www.lrz.de) through project id pr83te.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the Bayerisches Kompetenznetzwerk für
Technisch-Wissenschaftliches Hoch-und Höchstleistungsrechnen
(KONWIHR) through the project “High-order matrix-free finite
element implementations with hybrid parallelization and improved
data locality.”

ORCID iDs

Peter Munch  https://orcid.org/0000-0003-2368-8533
Martin Kronbichler  https://orcid.org/0000-0001-8406-835X

Supplemental Material

Supplemental material for this article is available online.

Note

1. https://github.com/peterrum/dealii-asm

References

Adams M, Brezina M, Hu J, et al. (2003) Parallel multigrid
smoothing: polynomial versus Gauss–Seidel. Journal of
Computational Physics 188(1): 593–610.

Akkurt S, Witherden F and Vincent P (2022) Cache blocking
strategies applied to flux reconstruction. Computer Physics
Communications 271: 108193.

Anderson R, Andrej J, Barker A, et al. (2021) MFEM: a modular
finite element methods library. Computers & Mathematics
with Applications 81: 42–74.

Arndt D, Fehn N, Guido K, et al. (2020) ExaDG: high-order
discontinuous Galerkin for the exa-scale. In: Bungartz HJ,
Reiz S, Uekermann B, et al. (eds) Software for Exascale
Computing - SPPEXA 2016–2019. Cham: Springer Inter-
national Publishing, pp. 189–224.

Arndt D, Bangerth W, Davydov D, et al. (2021) The deal. II finite
element library: design, features, and insights. Computers &
Mathematics with Applications 81: 407–422.

16 The International Journal of High Performance Computing Applications 0(0)

Arndt D, Bangerth W, Feder M, et al. (2022) The deal. II library,
version 9.4. Journal of Numerical Mathematics 30(3):
231–246.

Bangerth W, Burstedde C, Heister T, et al. (2011) Algorithms and
data structures for massively parallel generic adaptive finite
element codes. ACM Transactions on Mathematical Software
38(1): 1–28.

Brubeck PD and Farrell PE (2022) A scalable and robust vertex-
star relaxation for high-order FEM. SIAM Journal on Sci-
entific Computing 44: A2991–A3017.

Cai X-C and Sarkis M (1999) A restricted additive Schwarz
preconditioner for general sparse linear systems. SIAM
Journal on Scientific Computing 21(2): 792–797.

Chalmers N, Mishra A, McDougall D, et al. (2023) HipBone: a
performance-portable graphics processing unit-accelerated
C++ version of the NekBone benchmark. The Interna-
tional Journal of High Performance Computing Applications
37(5): 10943420231178552.

Couzy W (1995) Spectral Element Discretization of the Unsteady
Navier-Stokes Equations and its Iterative Solution on Parallel
Computers. Lausanne: EPFL. Technical Report. Available at:
https://infoscience.epfl.ch/record/31858/files/EPFL_
TH1380.pdf

Deville MO, Fischer PF andMund EH (2002)High-order Methods
for Incompressible Fluid Flow. Cambridge: Cambridge
University Press.

Fehn N, Munch P, Wall WA, et al. (2020) Hybrid multigrid
methods for high-order discontinuous Galerkin discretiza-
tions. Journal of Computational Physics 415: 109538.

Fischer PF, Tufo HM and Miller NI (2000) An overlapping
Schwarz method for spectral element simulation of three-
dimensional incompressible flows. Parallel Solution of
Partial Differential Equations. Berlin: Springer,
pp. 159–180.

Fischer P, Kerkemeier S, Min M, et al. (2022) NekRS, a GPU-
accelerated spectral element Navier–Stokes Solver. Parallel
Computing 114: 102982.

Gee MW, Siefert CM, Hu JJ, et al. (2006) ML 5.0 smoothed ag-
gregation user’s guide. Technical Report. Available at: https://
www.researchgate.net/profile/Michael-Gee-3/publication/
51992105_ML_50_Smoothed_Aggregation_User’s_Guide/
links/0046353395404c2655000000/ML-50-Smoothed-
Aggregation-Users-Guide.pdf

Gholami A, Malhotra D, Sundar H, et al. (2016) FFT, FMM, or
multigrid? A comparative study of state-of-the-art
Poisson solvers for uniform and nonuniform grids in
the unit cube. SIAM Journal on Scientific Computing 38:
C288–C306.

Kershaw DS (1981) Differencing of the diffusion equation in
Lagrangian hydrodynamic codes. Journal of Computational
Physics 39(2): 375–395.

Kolev T, Fischer P, Austin AP, et al. (2021a) CEED ECPMilestone
Report: High-order Algorithmic Developments and Optimi-
zations for Large-scale GPU-accelerated Simulations.

Technical Report. Available at: https://www.osti.gov/servlets/
purl/1845639

Kolev T, Fischer P, Min M, et al. (2021b) Efficient exascale
discretizations: high-order finite element methods. The In-
ternational Journal of High Performance Computing Ap-
plications 35(6): 527–552.

Kronbichler M and Allalen M (2018) Efficient high-order dis-
continuous Galerkin finite elements with matrix-free im-
plementations. Advances and New Trends in Environmental
Informatics. Berlin: Springer, pp. 89–110.

Kronbichler M and Kormann K (2012) A generic interface for
parallel cell-based finite element operator application.
Computers & Fluids 63: 135–147.

Kronbichler M and Kormann K (2019) Fast matrix-free evaluation
of discontinuous Galerkin finite element operators. ACM
Transactions on Mathematical Software 45(3): 1–40,

Kronbichler M and Ljungkvist K (2019) Multigrid for matrix-free
high-order finite element computations on graphics proces-
sors. ACM Transactions on Parallel Computing 6(1): 1–32.

Kronbichler M andWall WA (2018) A performance comparison of
continuous and discontinuous Galerkin methods with fast
multigrid solvers. SIAM Journal on Scientific Computing 40:
A3423–A3448.

Kronbichler M, Sashko D and Munch P (2022) Enhancing data
locality of the conjugate gradient method for high-order
matrix-free finite-element implementations. The Interna-
tional Journal of High Performance Computing Appli-
cations 37: 61–81.

Ljungkvist K (2017) Matrix-free finite-element computations on
graphics processors with adaptively refined unstructured
meshes. In: HPC ’17: Proceedings of the 25th High Per-
formance Computing Symposium. San Diego, CA, USA,
June 26-28, 2019: Society for Computer Simulation Inter-
national, pp. 1–12.

Loisel S, NabbenR and SzyldDB (2008)On hybridmultigrid-Schwarz
algorithms. Journal of Scientific Computing 36(2): 165–175.

Lottes J (2022) Optimal polynomial smoothers for multigrid
V-cycles. arXiv. Available at: https://arxiv.org/abs/2202.08830

Lottes JW and Fischer PF (2005) Hybrid multigrid/Schwarz al-
gorithms for the spectral element method. Journal of Sci-
entific Computing 24: 45–78.

Lynch RE, Rice JR and Thomas DH (1964) Direct solution of
partial difference equations by tensor product methods.
Numerische Mathematik 6: 185–199.

Malas TM, Hager G, Ltaief H, et al. (2017) Multidimensional in-
tratile parallelization for memory-starved stencil computations.
ACM Transactions on Parallel Computing 4(12): 1–32.

Melenk JM, Gerdes K and Schwab C (2001) Fully discrete hp-
finite elements: fast quadrature. Computer Methods in Ap-
plied Mechanics and Engineering 190: 4339–4364.

Munch P, Kormann K and Kronbichler M (2021) Hyper.deal: an
efficient, matrix-free finite-element library for high-
dimensional partial differential equations. ACM Transac-
tions on Mathematical Software 47: 1–34.

Munch and Kronbichler 17

Munch P, Ljungkvist K and Kronbichler M (2022) Efficient ap-
plication of hanging-node constraints for matrix-free high-
order fem computations on CPU and GPU. In: Proceedings of
the High performance computing: 37th international con-
ference, ISC high performance 2022, Hamburg, Germany,
May 29–June 2, 2022, pp. 133–152. Springer.

Munch P, Heister T, Prieto Saavedra L, et al. (2023) Efficient
distributed matrix-free multigrid methods on locally refined
meshes for FEM computations. ACM Transactions on Par-
allel Computing 10: 1–38.

Orszag SA (1980) Spectral methods for problems in complex
geometries. Journal of Computational Physics 37: 70–92.

Phillips M and Fischer P (2022) Optimal Chebyshev smoothers
and one-sided V-cycles. arXiv. Available at: https://arxiv.org/
abs/2210.03179

Phillips M, Kerkemeier S and Fischer P (2022) Tuning spectral
element preconditioners for parallel scalability on GPUs.
Proceedings of the 2022 SIAM Conference on Parallel
Processing for Scientific Computing. Philadelphia, PA:
SIAM, pp. 37–48.

Scroggs MW, Dokken JS, Richardson CN, et al. (2022) Con-
struction of arbitrary order finite element degree-of-freedom
maps on polygonal and polyhedral cell meshes. ACM
Transactions on Mathematical Software 48(2): 1–23.

Stiller J (2017) Nonuniformly weighted Schwarz smoothers for
spectral element multigrid. Journal of Scientific Computing
72: 81–96.

Treibig J, Hager G and Wellein G (2010) LIKWID: a lightweight
performance-oriented tool suite for x86 multicore environ-
ments. In: Proceedings of PSTI2010, San Diego, CA, 13–
16 September 2010, pp. 207–216.

Trottenberg U, Oosterlee CW and Schuller A (2000) Multigrid.
Amsterdam: Elsevier.

Williams S, Waterman A and Patterson D (2009) Roofline: an
insightful visual performance model for multicore architec-
tures. Communications of the ACM 52: 65–76.

Witte J, Arndt D and Kanschat G (2021) Fast tensor product
Schwarz smoothers for high-order discontinuous Galerkin
methods. Computational Methods in Applied Mathematics
21(3): 709–728.

Author biographies

Peter Munch is a research associate and PhD student at
University of Augsburg. He is one of the principal devel-
opers of the open-source finite-element library deal.II. His
research interests lie in the fields of high-performance
computing, scientific software development, computa-
tional fluid mechanics, and computational plasma physics–
with a focus on matrix-free methods, software design, and
iterative solvers.

Martin Kronbichler is a Professor at Ruhr University Bochum,
Germany. He holds a PhD degree in scientific computing with
specialization in numerical analysis from Uppsala University,
Sweden (2012). His research interests include high-order finite
element methods for flow problems with matrix-free im-
plementations, efficient numerical linear algebra, and their
parallel and high-performance implementation on emerging
exascale hardware using generic numerical software.

Appendix

Figure 16 shows pre/post-optimizations for a basic relax-
ation iteration x1 =ωP�1b, xn+1 = xn +ωP�1rn for n < k, with
the relaxation parameter ω.

Figure 16. Pseudo code of different versions of relaxation iteration, including vector read/write estimates. Comments of Figure 11 also
hold here.

18 The International Journal of High Performance Computing Applications 0(0)

dummy

Paper V

\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{S}\mathrm{C}\mathrm{I}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 0, \mathrm{N}\mathrm{o}. 0, \mathrm{p}\mathrm{p}. \mathrm{S}71--\mathrm{S}96

STAGE-PARALLEL FULLY IMPLICIT RUNGE--KUTTA
IMPLEMENTATIONS WITH OPTIMAL MULTILEVEL

PRECONDITIONERS AT THE SCALING LIMIT*

PETER MUNCH\dagger , IVO DRAVINS\ddagger , MARTIN KRONBICHLER\S , AND MAYA NEYTCHEVA\ddagger

Dedicated to the memory of Owe Axelsson

Abstract. We present an implementation of a stage-parallel preconditioner for Radau IIA type
fully implicit Runge--Kutta methods, which approximates the inverse of the Runge--Kutta matrix AQ

from the Butcher tableau by the lower triangular matrix resulting from an LU decomposition and
diagonalizes the system with as many blocks as stages. For the transformed system, we employ a block
preconditioner where each block is distributed and solved by a subgroup of processes in parallel. For
combination of partial results, we use either a communication pattern resembling Cannon's algorithm
or shared memory. A performance model and a large set of performance studies (including strong-
scaling runs with up to 150k processes on 3k compute nodes) conducted for a time-dependent heat
problem, using matrix-free finite element methods, indicate that the stage-parallel implementation
can reach higher throughputs near the scaling limit. The achievable speedup increases linearly with
the number of stages and is bounded by the number of stages. Furthermore, we show that the
presented stage-parallel concepts are also applicable to the case that AQ is directly diagonalized,
which requires either complex arithmetic or solutions of two-by-two blocks, both exposing about half
the parallelism. Alternatively to distributing stages and assigning them to distinct processes, we
discuss the possibility of batching operations from different stages together.

Key words. implicit Runge--Kutta methods, Radau quadrature, stage-parallel preconditioning,
finite element methods, matrix-free methods, geometric multigrid, massively parallel

MSC codes. 65Y05, 65M55, 68W10

DOI. 10.1137/22M1503270

1. Introduction. Runge--Kutta methods are widely used time-integration
schemes to solve ordinary differential equations (ODEs) of the form

dy

dt
= f(t, y).

We consider a partial differential equation rewritten as a system of ODEs, after using
finite element methods (FEM) to discretize in space. The basic algorithm is to advance

*
Received by the editors June 15, 2022; accepted for publication (in revised form) December 20,

2022; published electronically July 18, 2023.
https://doi.org/10.1137/22M1503270
Funding: This work was supported by the Bayerisches Kompetenznetzwerk f\"ur Technisch-

Wissenschaftliches Hoch- und H\"ochstleistungsrechnen (KONWIHR) through the project ``High-order
matrix-free finite element implementations with hybrid parallelization and improved data locality.""
The Gauss Centre for Supercomputing e.V. (https://www.gauss-centre.eu) funded this project by
providing computing time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing
Centre (LRZ, https://www.lrz.de) through project id pr83te. The work of the second author (fully)
and the fourth author (partly) was supported by research grant VR-2017-03749, financed by the
Swedish Research Council.

\dagger
Corresponding author. Helmholtz-Zentrum Hereon, Geesthacht, 21502, and High-Performance

Scientific Computing, University of Augsburg, Augsburg, 86159, Germany (peter.muench@uni-a.de).
\ddagger
Department of Information Technology, Uppsala University, Uppsala, SE-75105, Sweden

(ivo.dravins@it.uu.se, maya.neytcheva@it.uu.se).
\S
High-Performance Scientific Computing, University of Augsburg, Augsburg, 86159, Germany,

and Uppsala University, Uppsala, SE-75105, Sweden (martin.kronbichler@uni-a.de).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S71

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S72 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

L = 6 L = 7 L = 8 L = 9 L = 10 L = 11

1 4 16 64 256 1k 3k
10−3

10−1

101

Nodes (× 48 CPU cores)

T
im

e
p
er

ti
m

e
st

ep
[s

]

(a)

1 4 16 64 256 1k 3k
10−3

10−1

101

×3.98

×1.42

×1.06

Nodes (× 48 CPU cores)

T
im

e
p
er

ti
m

e
st

ep
[s

]

(b)

1 iteration
8 iterations

Fig. 1. (a) Time of a single conjugate gradient iteration preconditioned by GMG for different
numbers of refinements 6 \leq L \leq 11 and linear Lagrange elements (k = 1). (b) Example visualizing
the benefit of stage parallelism for Q= 8 by comparing the time of a single iteration with the one of
eight iterations and providing idealized speedups in the case that Q iterations are solved in parallel
by Q subgroups.

the solution to the next time step by a linear combination of Q intermediate stage
function values:

un+1 = un + \tau
\sum

1\leq q\leq Q

bqkq with ki = f

\left(
 tn + ci\tau , yn + \tau

\sum

1\leq j\leq Q

aijkj

\right)
 ,

where tn is the time at time step n and \tau is the current time step size. The Butcher

tableau

cQ AQ

bTQ is a compact notation for these methods in terms of a matrix AQ

as well as two vectors \bfitb Q and \bfitc Q.
There is a vast literature on optimizing Runge--Kutta methods. The investiga-

tions include improving the accuracy and the stability region as well as performance
optimization. Low-storage Runge--Kutta methods [20], for instance, update the so-
lution step by step so that the intermediate results for all stages need not be stored
simultaneously, which might be an advantage for memory-intensive applications, e.g.,
computational plasma physics [29]. Implicit Runge--Kutta methods (IRK) require the
solution of systems of increased size so that the development of efficient solvers is
crucial [1, 5, 6, 9, 11, 12, 14, 19, 30, 31, 32].

In this work, we investigate solvers for fully implicit Runge--Kutta methods, focus-
ing on the parallelization of the solution process over all the stages [18]. Stage-parallel
approaches and, similarly, parallel-in-time approaches [10, 25] (out of the scope of
this work) are motivated by the disappointing scaling of algorithms, e.g., of itera-
tive solvers, on distributed systems when parallelism is only exploited in the spatial
domain. These algorithms cannot run faster than a certain threshold even if more
hardware resources are added. Figure 1(a) shows, as an example, the times for one
conjugate gradient iteration preconditioned by a single V-cycle of geometric multigrid
(GMG) we use in the experimental section when run across a large range of number
of processes. It is clearly visible that the times flatten out when the work per process
becomes too little. This phenomenon is also known as the ``scaling limit."" In the
context of GMG, the minimum time of one iteration is approximately proportional
to the number of levels. Since the total solution time of IRK is approximately the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S73

solution time accumulated over all stages run sequentially, the behavior of the overall
solution time is similar under the assumption that each block corresponding to a stage
can be solved by GMG.

As an alternative to the sequential solution process of each stage, one could assume
that it is possible to solve the stages by Q process groups with GMG independently.
In consequence, while it might take longer to solve for one stage, the stages can be
solved in parallel. A speedup can be expected if the solution time of one stage does
not increase significantly; if the slowdown is \sim Q, no speedup can be expected. Figure
1(b) presents, as an example, the solution times for a single GMG iteration and for
eight GMG iterations (assuming Q= 8). In addition, it shows ideal speedups we can
expect by solving one GMG iteration in parallel by each subgroup with one-eighth
of the processes. The speedup increases with an increasing number of processes.
Away from the scaling limit, the ideal speedup is only minor (a few percent), which
will be dominated by organizational overheads in practice. At the scaling limit, the
ideal speedup approaches Q. In summary, in the case that the IRK algorithm could
be reformulated such that stages can be solved independently, this additional level of
parallelism might allow one to increase the granularity of the subproblems to solve and
better utilize the capacity of the given hardware resources, such as to reach lower times
to solution. In this publication, we show that such a reformulation is possible and, for
a simple benchmark, we can achieve significant speedup at the scaling limit in this way.

Stage-parallel approaches for IRK methods have been investigated in the liter-
ature but rarely implemented (see section 3). In particular, a critical discussion
on the benefits of stage-parallel IRK regarding performance and on the challenges
regarding efficient implementation in the context of more sophisticated global precon-
ditioners and optimal preconditioners for the blocks, such as multigrid, is lacking.1

In order to address this issue, we consider a direct factorization of the linear sys-
tem arising from the IRK method and extend a novel preconditioner for IRK intro-
duced in [7]. Our results are based on benchmark programs leveraging the infrastruc-
ture of the open-source FEM library deal.II [3, 4] and are available on GitHub at
https://github.com/peterrum/dealii-spirk.

As a critical remark, we note that running IRK and, generally, time-stepping
schemes at the scaling limit means that the user has enough hardware resources
and computational budget. However, most scientists are not in such a ``luxurious""
position. Hence, using stage-parallel Runge--Kutta methods and potentially parallel-
in-time algorithms may not be beneficial or might even be disadvantageous if applied
far from the scaling limit due to some---unavoidable---organizational overhead.

The remainder of this contribution is organized as follows. Sections 2 and 3
provide a short description of the linear systems arising from the IRK method and
of stage-parallel solution procedures, followed by a discussion of their building blocks
and related work. Section 4 presents implementation details of the building blocks,
and section 5 discusses relevant performance models. Sections 6 and 7 demonstrate
performance results for the solution of the heat equation discretized by low- and high-
order FEM with different stage-parallel solution procedures and compare the results to
those of non-stage-parallel versions of the solvers. Finally, sections 8 and 9 summarize
our findings and point to further research directions.

2. Fully implicit Runge--Kutta methods and stage-parallel solution ap-
proaches. In the following, we summarize key aspects of the IRK methods and

1We define ``optimal"" as the solver with high node-level performance whose number of iterations
is independent of the number of DoFs and of the number of processes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S74 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

stage-parallel solution procedures analyzed in this publication. We consider the sub-
class of IRK methods referred to as Radau IIA methods. For Q stages, the method
order is given by 2Q - 1.

We restrict ourselves to the case of a linear system of equations of the form

M
\partial u(t)

\partial t
+Ku(t) = g(t),

where M denotes the mass matrix and K the stiffness matrix. A fully implicit Runge--
Kutta method computes the solution at the next time level as

um+1 = um + \tau

Q\sum

q=1

bqkq.

The values of kq at the stages q = 1, . . . ,Q are found by the usual Runge--Kutta
defining equations. In the following, we restrict ourselves to the first time step, m= 0.
Using the linearity of the term Ku and doing basic algebraic manipulations, the stage
values are found by solving the linear system

\left[

M + \tau a11K \tau a12K . . . \tau a1QK
\tau a21K M + \tau a22K . . . \tau a2QK

...
...

. . .
...

\tau aQ1K \tau aQ2K . . . M + \tau aQQK

\right]

\left[

k1

k2

...
kQ

\right]
 =

\left[

 - Ku0 + g(t0 + c1\tau)
 - Ku0 + g(t0 + c2\tau)

...
 - Ku0 + g(t0 + cQ\tau)

\right]
 ,

which is expressed using Kronecker products as

(\BbbI Q \otimes M + \tau AQ \otimes K)k= g - (\BbbI Q \otimes K)(eQ \otimes u0).

Next, we multiply both sides by (A - 1
Q \otimes \BbbI n) and use the relation (A\otimes B)(C \otimes D) =

(AC)\otimes (BD) to obtain

(2.1) (A - 1
Q \otimes M + \tau \BbbI Q \otimes K)

\underbrace{} \underbrace{}
\scrA

k= (A - 1
Q \otimes \BbbI n)g - (A - 1

Q \otimes K)(eQ \otimes u0),

which is the form we utilize in this study. Following Butcher [12], one can construct
the spectral decomposition of A - 1

Q = S\Lambda S - 1 and use this to transform the matrix:

\scrA = (A - 1
Q \otimes M + \tau \BbbI Q \otimes K) = (S \otimes \BbbI n)(\Lambda \otimes M + \tau \BbbI Q \otimes K)(S - 1 \otimes \BbbI n).(2.2)

The inverse of the matrix and the solution of the stages are explicitly given as

k= (S \otimes \BbbI n)(\Lambda \otimes M + \tau \BbbI Q \otimes K)
 - 1

(S - 1 \otimes \BbbI n)\underbrace{} \underbrace{}
\scrA - 1

((A - 1
Q \otimes \BbbI n)g - (A - 1

Q \otimes K)(eQ \otimes u0)).

(2.3)

In the context of Radau IIA methods, \Lambda is diagonal and contains \lfloor Q/2\rfloor complex-
conjugate eigenvalue pairs as well as one real eigenvalue in the case of odd Q, and the
matrix S contains the eigenvectors. Hence, (\Lambda \otimes M + \tau \BbbI Q\otimes K) is block-diagonal and
its inverse is given by the inverse of each block (\lambda qM + \tau K), which can be computed
independently. In practice, one solves blocks corresponding to complex-conjugate ei-
genvalue pairs together, necessitating the solution of \lfloor Q/2\rfloor complex blocks via com-
plex arithmetic or the transformation into two-by-two real blocks [32] and the solution
of one real block in the case of odd Q.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S75

In the literature, there are additional ways to factorize AQ/A
 - 1
Q and to obtain a

real block system more directly: The real Schur complement [31, 35] leads to block
triangular matrices \^S, \^S - 1 and block-diagonal matrix \^\Lambda with two-by-two blocks of

the form
\Bigl[\Re (\lambda q) \alpha

 - \Im (\lambda q)
2/\alpha \Re (\lambda q)

\Bigr]
for an arbitrary constant \alpha .

Alternatively to factorizing \scrA directly, one can also solve the system (2.1) itera-
tively with a Krylov solver, such as GMRES, with the help of a preconditioner. We
note that, for iterative solvers with suitable preconditioners, only the action of the
matrix (A - 1

Q \otimes M + \tau \BbbI Q \otimes K) on a vector needs to be implemented, rather than the
matrix itself.

Based on an observation by Axelsson [5], namely, that the matrices AQ and
A - 1

Q have a dominating lower triangular part, Axelsson and Neytcheva [7] proposed

to decompose A - 1
Q = LU . Here, matrix U has a unit diagonal, implying that all

eigenvalues of L - 1A - 1
Q are equal to one, which makes L suitable for constructing a

preconditioner for (2.1). Independently of [7], Masud Rana et al. [27] used a similar
idea to derive a block preconditioner based on AQ in which each block is solved by
AMG and the application is done via forward substitution, leading to a sequential
execution of the stages. In contrast, Axelsson and Neytcheva [7] proposed to employ
the spectral decomposition L = \~S \~\Lambda \~S - 1 in order to obtain a preconditioner allowing
for stage parallelism and real arithmetic. The inverse of the preconditioner is given as

P - 1 = (\~S \otimes \BbbI n)(\~\Lambda \otimes M + \tau \BbbI Q \otimes K)
 - 1

(\~S - 1 \otimes \BbbI n).(2.4)

Just as before, the term (\~\Lambda \otimes M + \tau \BbbI Q \otimes K) is block-diagonal. The spectral
decomposition of L is always real, which is the main motivation to use L instead of
A - 1

Q . Hence, Q real blocks can be solved independently, in contrast to the complex
case with only \lceil Q/2\rceil independent blocks. An analysis of the eigenvalues of the
preconditioned system is provided in [6]. Below, we drop the tilde in \~\Lambda and \~S as the
meaning of these symbols is clear in the context in which they are used.

In (2.1), (2.3), and (2.4), one can identify multiple independent operations:
1. the right-hand-side function g can be evaluated independently for each stage,
2. the matrix-vector multiplication with the mass matrix M and the stiffness

matrix K in (\BbbI q \otimes M)k and (\BbbI Q \otimes K)k can be performed independently for
each stage,2 and

3. Q or \lceil Q/2\rceil blocks involving (\lambda qM + \tau K) can be solved independently.
A parallel execution across the blocks is a natural choice on modern supercom-

puters.
Obviously, the combination of the partial results from the stage-parallel execution

via multiplication by (A - 1
Q \otimes \BbbI n), (S - 1\otimes \BbbI n), or (S\otimes \BbbI n) is not independent. This step

corresponds to a linear combination of the stage vectors, representing a basis change
in the latter two cases. Such an operation might be challenging in parallel, especially
on distributed memory systems if each stage is assigned to a distinct process, and
the parallel communication might counteract the benefits of the parallel execution of
other parts of the algorithm.

In the following discussions of parallelization and implementation aspects, we omit
the option of directly factorizing \scrA and consider it only in section 7, pointing out that
the proposed concepts are applicable in that context as well. For the realization of
a stage-parallel iterative solver including the stage-parallel preconditioner, one needs
an efficient parallel implementation of basic tensor operations from (2.1) and (2.4):

2Note that the following decomposition is applicable: A - 1
Q \otimes M = (A - 1

Q \otimes \BbbI n)(\BbbI Q \otimes M).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S76 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

\bullet ``generalized vector scaling"" with Cq \in \BbbR n\times n,

v=diag(C1, . . . , CQ)u \updownarrow vq =Cquq,

which simplifies with Cq =C \in \BbbR n\times n to

v= (\BbbI Q \otimes C)u \updownarrow vq =Cuq;(2.5)

\bullet ``generalized matrix-vector product"" with D \in \BbbR Q\times Q,

v= (D\otimes \BbbI n)u \updownarrow vi =
\sum

1\leq j\leq Q

Dijuj .(2.6)

Furthermore, we analyze the benefits of the stage-parallel solver in comparison to its
sequential counterpart. For the blocks, we use GMG [28] as an efficient solver with
state-of-the-art parallel scaling.

We call the algorithm (2.1) with preconditioner (2.4) stage-parallel IRK (in the
figures abbreviated as SPIRK) when the blocks are solved in parallel. When the blocks
are solved sequentially, we simply use IRK .

3. Related work. One of the few examples for a work considering stage-parallel
implementations of IRK in the currently available literature is that of Pazner and Pers-
son [30], who study time-dependent nonlinear problems and develop a stage-parallel
IRK preconditioner using a block-Jacobi solver across the processes around a local
ILU. They analyze different block sizes: one that takes into account all coupling terms
between stages (``stage-coupled"") and one that ignores them (``stage-uncoupled""). In
the latter case, the blocks corresponding to the stages are independent of each other
and are solved in a stage-parallel way. The stages are solved by subgroups of pro-
cesses, leading to larger individual spatial blocks and, hence, to better efficiency of
ILU in terms of number of iterations. The structure of the stage-parallel solver is very
similar to the inner term of (2.4). However, we note that the basis changes \~S and \~S - 1

imply a coupling of the stages. In section 6, we show that the cost of the basis changes
is small, enabling a stage-parallel ``stage-coupled"" preconditioner with a similar cost
as for the stage-parallel ``stage-uncoupled"" preconditioner proposed in [30].

Although not stated explicitly, the block-Jacobi preconditioners from [26, 33]
could be trivially parallelized over stages. Despite their simplicity, they are not effi-
cient preconditioners and not robust with an increasing number of stages, as recently
shown in [27]. In [33], the authors also study block Gauss--Seidel preconditioners,
which make the solution inherently serial due to forward and backward substitutions.
As investigated in [27], the approach built around L from the LU decomposition of the
Butcher tableau, which can be implemented in a stage-parallel way [7], can outperform
the Gauss--Seidel approach in regard to the number of iterations.

We conclude this section with comments on diagonally implicit Runge--Kutta
methods (DIRK), which involve a lower-triangular stage matrix AQ. Similarly to the
Gauss--Seidel case, a naive realization leads to a sequential dependence between the
solved stages, albeit without the need for an outer solver. DIRK methods generally
have worse accuracy and stability properties than fully implicit (Radau IIA) methods
for a given number of stages. In order to overcome the sequential solution nature of
DIRK, one could consider performing a spectral decomposition of its Runge--Kutta
matrix AQ. For diagonalizable AQ, this would lead to a solution procedure as in
(2.3), which would allow for stage parallelism. In the case that all eigenvalues are
real and unique, each stage could be solved independently, just like in (2.4), however,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S77

1

1

2

2

3

3

4

4

5

5

6

6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

1

2

3

4

1 2

3 4

column_comm

ro
w

_c
o
m

m

global_comm

spatial domain

mesh + parallel partitioning

(q=5, b=2)
stages

Fig. 2. Three MPI communicators (for a hypothetical setup with 24 processes, Q = 6 stages,
and B = 4 partitions) used to simplify communications in stage-parallel IRK: global\.comm lists
all involved processes, whereas column\.comm and row\.comm collect processes owning the same stage
and partition of the computational domain, respectively. Furthermore, the mapping between the
stage/partition pair and the rank in the global communicator is indicated. Adopted from [29].

without outer iterations. We do not consider DIRK methods in this work, since
the implementation of stage-parallel DIRK would be similar, with possible trade-offs
in terms of different iteration counts in the iterative solvers or the time-stepping
properties, respectively.

4. Implementation details. In the following, we discuss pure MPI implemen-
tations of the stage-parallel IRK; in some of our experiments, we use MPI's shared-
memory features. The algorithms can be easily generalized to task-based implemen-
tations, as provided by OpenMP, and to hybrid implementations (MPI+X). In sub-
sections 4.1--4.3, we describe an approach where stages are distributed and assigned
to distinct processes, and, in subsection 4.4, we describe a way to batch operations
from different stages. Both approaches aim to increase the parallelism in the solver
and, thereby, to increase the sizes of the subproblems, in order to better utilize the
resources of a massively parallel computer.

4.1. Domain decomposition. We decompose the mesh of our spatial compu-
tational domain into B partitions. In the case of IRK, we assign each partition to
a (MPI) process. In the case of stage-parallel IRK, we assign each process a pair
(q, b)\in [1,Q]\times [1,B] consisting of a stage and a spatial partition. For the sake of sim-
plicity, we enumerate the processes lexicographically, as shown in Figure 2. However, a
basic preprocessing step based on virtual topologies allows us to use any enumeration
of processes, as is needed in later discussions.

In order to perform operations between processes with the same stage (e.g., to
solve the inner blocks) or the same partition (e.g., for the basis change), we use ad-
ditional subcommunicators column\.comm and row\.comm. This is a common approach
in the context of distributed matrix-matrix-multiplication implementations [34] and
finite-difference stencil computations on Cartesian meshes [17]. A similar approach
has been used in [29] to solve the six-dimensional (6D) Vlasov--Poisson equation on
the tensor product of a 3D geometric domain and a 3D velocity-space domain.

4.2. Parallel data distribution. A natural choice is to let each process (q, b)
own the locally relevant part of the vectors associated with the stage q and to let it
update the locally owned part of the solution vector during evaluation of the right-
hand-side function, of the matrix-vector product, and of the block solvers.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S78 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

For the operation v= (\BbbI Q\otimes C)u, setting vq =Cuq does not require communication
between stages. However, each process needs access to the local part of the matrix
C \in \BbbR n\times n (in our case M and K). The need for local access to the matrix means
that certain data structures have to be duplicated Q times on distributed systems.
This could be addressed by using shared memory. Since all our experiments are run
without assembling any matrix (``matrix-free approach""), which is memory-efficient
[22], we defer the investigation of shared memory to future work.

In contrast, the operation v = (D \otimes \BbbI n)u only needs access to a small matrix
D \in \BbbR Q\times Q, which can easily be replicated on all processes. The major challenge for
this operation is that a process needs to access the local vector entries of all stages,
e.g., v2 =D11u1 +D21u2 + \cdot \cdot \cdot +D2QuQ. The gathering of the needed vector entries
from all stages is not feasible as this would mean that the vectors are duplicated
Q times. In the next sections, we discuss an appropriate communication pattern to
alleviate this problem and compare its performance to the one of a shared-memory
approach, in which the processes have direct read access to the needed entries of all
stages.

4.3. Distributed tensor operations. In order to derive a memory-efficient
implementation of the operation v= (D\otimes \BbbI n)u, which is needed for the linear combi-
nations during the setup of the right-hand-side vector and during the matrix-vector
multiplication as well as for the basis changes, one can exploit associativity:
(4.1)

If we consider each summand as a computation step, we realize that each process needs
access to a different part of the source vector u associated with a stage. The final
communication pattern is hence as follows. After each computation step, the matrix
is circularly shifted to the left and the source vector upward. The algorithm is similar
to Cannon's algorithm [13], which is designed for distributed matrix-matrix multipli-
cations. The crucial difference is that the present work operates on tensors and with
fully replicated D. In the case that u is distributed, we obtain a circular communica-
tion pattern, which can be built around a sequence of calls to MPI\.Sendrecv\.replace,
operating on comm\.row.

4.4. Batching of operations. Subsections 4.1--4.3 consider an approach that
also employs parallelism across the stages by assigning each stage to a distinct compute
unit. For fixed computational resources and problem sizes, this increases the size of the
spatial subproblems and reduces the number of communication steps. Alternatively,
one could increase the local work by processing Q stages on the same compute unit
in a batched fashion. To be efficient, all operations of the form v= (\BbbI Q\otimes C)u in (2.1)
and of the solvers of the steps in (2.4) need to support this matrix-times-multivector
processing mode.

For the GMG solver used for the experiments in sections 6 and 7, all ingredients
in terms of smoother, prolongator/restrictor, and coarse-grid solver need to support
batching. For simple smoothers and coarse-grid solvers, like Chebyshev iterations
around a point-Jacobi method, this is the case, whereas it is typically not the case for
algebraic multigrid.

Batching is more efficient in terms of memory consumption, since shared data
structures, particularly the matrices M and K, only need to be stored once. Fur-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S79

thermore, also data structures pertaining to matrix-free evaluation need to be loaded
via a shared resource, the bus from main memory, only once per iteration, having an
advantage in terms of memory transfer in the case in which all stages are processed
during a single cell loop where data from caches are still hot. For instance, many
matrix-free implementations load metric terms, e.g., the Jacobian matrix of size \BbbR 3\times 3

in three dimensions, for each quadrature point during cell loops. Even though com-
pression schemes are sometimes used for simple meshes, e.g., with affine shapes [22,
23], or metric terms are computed on the fly to reduce memory transfer [24], matrix-
free operator evaluation benefits from batching in the sense of more beneficial data
access to compute ratios.

As a final remark, we point out that batching resembles the monolithic solution
procedure of [15], in which the coupling terms are not skipped during smoothing and
the coarse-grid solver. However, the development of appropriate efficient smoothers is
not trivial, possibly involving vertex-star patches [1] with no obvious fast (matrix-free)
inversion in the general case. Apart from this sequential challenge, the performance
of the monolithic solution procedure can be expected to be comparable.

5. Performance modeling. In this section, we derive performance models for
sequential and stage-parallel IRK. Since the application of the preconditioner P - 1 is
the most expensive ingredient in both cases (see the results in section 6), we consider
it in detail. The statements made for the preconditioner can be straightforwardly
transferred to other parts of the algorithm.

Figure 3(a) shows a possible trace of a serial execution of IRK, and Figure 3(b)
presents a parallel execution of IRK (with three processes). In both cases, the basis
change S - 1, the inner block solvers Bq, and the basis change S are executed in
sequence so that one gets for the total runtime of the application of the preconditioner,

(a) serial IRK

(b) parallel IRK with 3 processes (c) stage-parallel IRK with 3 processes

1 GMRES iteration (global)

S−1 B1 B2 B3 S

B1

B2

B3

321

(d) batched IRK with 3 processes (e) complex SPIRK (Q = 4, 2 procs, PRESB)
PRESB

1 GMRES iteration (complex block)B1, B2, B3

Fig. 3. (a)--(d) Visualization of a serial, a parallel, a stage-parallel, and a batched execution of
the application of preconditioner P - 1 of IRK with Q = 3. The main components are the GMRES
solver, the basis changes (S, S - 1), and the block solvers (Bq). (e) Visualization of a stage-parallel
execution of the complex IRK with Q = 4 and PRESB [8]. Vertical lines indicate communication
between processes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S80 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

TIRK(N) = 2 \cdot TS(N) +
\sum

1\leq q\leq Q

TBq (N),(5.1)

where TIRK(N) denotes the total time for one application of the preconditioner.
Clearly, it is a function of the number of processes N . In the ideal case, \scrT \square (N) \approx
T\square (1)/N . However, inherently serial parts in the code prevent perfect scaling due to
Amdahl's law.

In the stage-parallel case, the steps of the inner block solver are performed in
parallel. Since each block may have different properties, the solution processes might
differ in their runtime and require different numbers of inner iterations in the case
that iterative solvers are used for the blocks. Recall that the block systems are
of the form (\lambda qM + \tau K). The number of stages affects the range of values of \lambda q,
the discretization affects the entries of M , and the time step \tau scales the stiffness
matrix K.

The solution of each block is combined during the application of S, leading to an
unavoidable synchronization. This results in a trace, as indicated in Figure 3(c), and
in a total runtime that is determined by the maximum runtime of any of the block
solvers:

TSPIRK(N) = 2 \cdot T \prime
S(N) + max

1\leq q\leq Q

\bigl(
TBq

(N/Q)
\bigr)
.(5.2)

Equation (5.2) also describes the runtime in the case of the batched approach; see
Figure 3(d).

Based on (5.1) and (5.2), one can expect the following parallel performance be-
havior. The timings are comparable if (1) TS and T \prime

S are comparable, (2) the block
solvers are scaling nearly ideally, i.e., TBq (N)\approx TBq (1)/N , and (3) the solution times
of the block solvers are comparable, i.e., TBq \approx TB1 for all q \in \{ 1, . . . ,Q\} . The parallel
performance of the sequential IRK deteriorates if T\square (N)\gg T\square (1)/N , which is the case
at the scaling limit. The performance of the stage-parallel IRK method deteriorates
if there is a significant difference in the solution times of the block solvers, limiting
the maximum speedup to

\sum
q TBq

/max(TBq
)\leq Q. One can deduce that stage-parallel

IRK has advantages only if IRK is at the scaling limit and the solution times of the
blocks are comparable.

The discussion above assumes wall-clock times of the solution of a block. We can
refine the expressions for iterative solvers:

TIRK(N) =
\sum

1\leq q\leq Q

N IT
q \cdot \^TBq

(N) and TSPIRK(N) = max
1\leq q\leq Q

\Bigl(
N IT

q \cdot \^TBq
(N/Q)

\Bigr)

with \^TBq
being the time of one iteration and N IT

q the number of iterations. For the
sake of simplicity, TS and T \prime

S are dropped. If we assume that we are at the scaling
limit (limN\rightarrow \infty \^Tq(N)\approx limN\rightarrow \infty \^Tq(N/Q)), we get the expressions

lim
N\rightarrow \infty

TIRK(N)\sim
\sum

1\leq q\leq Q

N IT
q and lim

N\rightarrow \infty
TSPIRK(N)\sim max

1\leq q\leq Q

\bigl(
N IT

q

\bigr)
,

indicating that it is possible to estimate bounds of maximum speedups based on the
number of inner block iterations that can be run in parallel. This estimate gives a sim-
ple means to compare the benefits to alternative (stage-parallel) implementations, like
the direct factorization (2.3), where one could consider all block solves accumulated
over all GMRES iterations for one time step.

In the numerical experiments in section 6 and 7, we evaluate the statements made
above.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S81

6. Numerical experiments. In this section, we present performance results of
the stage-parallel implementation of (2.1) with preconditioner (2.4). We start with
results obtained on 16 compute nodes. In particular, we discuss the performance of a
base configuration and the influence of key parameters. We conclude the section with
a strong-scaling analysis.

We consider the 3D heat equation \partial u/\partial t=\Delta u+f with the manufactured solution

u(x, y, z, t) = sin(2\pi x) sin(2\pi y) sin(2\pi z)(1 + sin(\pi t)) exp(- 0.5t)

on a cube \Omega = [0,1]3. The source-term function f and the Dirichlet boundary
conditions are selected appropriately. The spatial variables are discretized with the
finite element method, for which we use the open-source library deal.II [3, 4]. The
mesh is obtained by L steps of isotropic refinement of a coarse mesh consisting of
a single hexahedral cell, giving 2L mesh cells per spatial direction or 23L cells in
total. We use continuous Lagrange finite elements, defined as the tensor products
of 1D finite elements with degree k. For quadrature, we consider the consistent
Gauss--Legendre quadrature rule with (k + 1)3 points. Table 1 shows the number of
cells and the number of degrees of freedom (DoFs) for k= 1 and k= 4 for 4\leq L\leq 11.
The time step \tau is set to 0.1, and we run 10 time steps.

As outer solver for (2.1), we apply GMRES. It is run until the l2-norm of the
residual has been reduced by 1012. As the approximate inverse of each block of (2.4),
we use a single V-cycle of the GMG algorithm from deal.II [28]. As a smoother,
we apply Chebyshev iterations around a point-Jacobi method [2] with degree 5 and,
as a coarse-grid solver, we use the algebraic multigrid solver from ML [16]. The
corresponding solver diagram is shown in Figure 4. All operator evaluations are per-
formed using the matrix-free infrastructure described in [22, 23] to ensure a high
node-level performance, following the current trends of exascale finite-element algo-
rithms described in [21]. Hence, we embed the IRK methods in a---with regard to
communication costs---challenging context where differences are most pronounced.

Table 1
Number of cells and of DoFs for different numbers of refinements L.

Degrees of freedom Degrees of freedom

L Cells k= 1 k= 4 L Cells k= 1 k= 4

4 4.1E+03 4.9E+03 2.7E+05 8 1.7E+07 1.7E+07 1.1E+09
5 3.3E+04 3.6E+04 2.1E+06 9 1.3E+08 1.4E+08 8.6E+09

6 2.6E+05 2.7E+05 1.7E+07 10 1.1E+09 1.1E+09 6.9E+10

7 2.1E+06 2.1E+06 1.4E+08 11 8.6E+09 8.6E+09 5.5E+11

Implicit Runge–Kutta time stepper with time step τ and Q stages

GMRES with A = (A−1
Q ⊗M + τIQ ⊗K) according to (2.1)

(Stage-parallel) block preconditioner P = (S ⊗ In)(Λ⊗M + τIQ ⊗K)(S−1 ⊗ In) → (2.4)

Preconditioner for each Q block with A = λqM + τK: geometric multigrid

Smoother: Chebyshev iterations around a point-Jacobi method

Coarse-grid solver: AMG

Fig. 4. Diagram of the solver used to solve the heat problem in section 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S82 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVAS12 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

SPIRK (768 procs) IRK (768 procs) IRK (192 procs)

103 104 105 106 107

10−2

10−1

100

L
=

6

L
=

8

DoFs

T
im

e
p
er

it
er
at
io
n
[s
ec
]

103 104 105 106 107

105

106

107

DoFs

T
h
ro
u
gh

p
u
t
[D

oF
s/
se
c]

103 104 105 106 107

1

2

3

4

DoFs

S
p
ee
d
u
p
76
8
v
s.

19
2
p
ro
cs

Fig. 5. Comparison of stage-parallel IRK with 768 processes, of IRK with 768 processes, and
of IRK with 192(=768/4) processes for Q = 4 and k = 1: time and throughput per time step as well
as speedup.

rest (1.41s)

matrix-vector prod. (0.79s)

basis change (0.05s)

precond. block 0 (1.67s)

precond. block 1 (1.70s)

precond. block 2 (1.69s)

precond. block 3 (1.75s)

rest (2.29s)

matrix-vector prod. (0.96s)

basis change (0.45s)

precondition blocks (6.09s)

a) L = 8, k = 1, Q = 4

rest (0.04s)

matrix-vector prod. (0.04s)

basis change (0.00s)

precond. block 0 (0.20s)

precond. block 1 (0.19s)

precond. block 2 (0.19s)

precond. block 3 (0.20s)

rest (0.05s)

matrix-vector prod. (0.02s)

basis change (0.01s)

precondition blocks (0.25s)

b) L = 6, k = 1, Q = 4

Fig. 6. Time spent for matrix-vector product, basis change, block solvers, and the remaining
operations (setup of right-hand-side vector of (2.1), vector updates, etc.) for IRK (left) and stage-
parallel IRK (right). The area of the circles indicates the total time compared to the other version.

The corresponding solver diagram is shown in Figure 4. All operator evaluations
are performed using the matrix-free infrastructure described in [22, 23] to ensure a
high node-level performance, following the current trends of exascale finite-element
algorithms described in [21]. Hence, we embed the IRK methods in a—with regard
to communication costs—challenging context where differences are most pronounced.

All experiments are conducted on the SuperMUC-NG supercomputer. Its com-
pute nodes have 2 sockets (each with 24 cores of Intel Xeon Skylake) and the AVX-512
ISA extension so that 8 doubles can be processed per instruction.3 As compiler, we use
g++ (version 9.1.0) with the flags -O3 -funroll-loops -march=skylake-avx512.

6.1. Moderately parallel runs. We start with the analysis of the performance
of the proposed stage-parallel algorithm at small scales with 786 processes (16 compute
nodes) as an example. Figure 5 shows the runtime per time step and the throughput

3https://doku.lrz.de/display/PUBLIC/SuperMUC-NG, retrieved on February 26, 2022.

Fig. 5. Comparison of stage-parallel IRK with 768 processes, of IRK with 768 processes, and
of IRK with 192(=768/4) processes for Q= 4 and k= 1: time and throughput per time step as well
as speedup.

All experiments are conducted on the SuperMUC-NG supercomputer. Its com-
pute nodes have 2 sockets (each with 24 cores of Intel Xeon Skylake) and the AVX-512
ISA extension so that 8 doubles can be processed per instruction.3 As compiler, we use
g++ (version 9.1.0) with the flags -O3, -funroll-loops, -march=skylake-avx512.

6.1. Moderately parallel runs. We start with the analysis of the performance
of the proposed stage-parallel algorithm at small scales with 786 processes (16 compute
nodes) as an example. Figure 5 shows the runtime per time step and the throughput
for stage-parallel IRK and IRK for k = 1 and Q = 4. Furthermore, we present data
for IRK with 192 (=786/4) processes, to which we compare the obtained speedup.
For large problem sizes, IRK with four times the number of processes achieves a
speedup of 3.7. However, its performance quickly drops for smaller sizes, and times
comparable to the 192-process case are reached. In this range, the number of processes
used does not influence the times, and inherently serial parts of the code (like latency
of communication and the coarse-grid solver) dominate. In the case of stage-parallel
IRK, we see a different behavior: over large refinement ranges, a speedup of > 3 can
be reached. The maximum value is lower than in the IRK case (3.6< 3.7).

Figure 6 presents---in accordance with the traces in Figure 3---pie diagrams visu-
alizing the time spent on different parts of the algorithms. In particular, they show
the time for basis change S/S - 1 and for the solution of each block or of the whole
preconditioner in the case of IRK or of stage-parallel IRK, correspondingly. The pie
diagrams are provided for two refinement configurations: L = 8 (far away from the
scaling limit) and L = 6 (close to the scaling limit). Starting with L = 8, one can
observe that, in the case of IRK, the block preconditioners are dominating in the total
time (75\%) and the basis changes are negligible (1\%). In the case of stage-parallel
IRK, one can see that the time spent on the (single) preconditioner application has
decreased, but the times for setting up the right-hand-side vector, the matrix-vector
product, and the basis changes during preconditioning have slightly increased. This
is not surprising, since these are operations where communication between stages is
required and processes are implicitly synchronized by the rotation of the vectors. For
L = 6, the ratio of preconditioning becomes an even more dominating part of the
total solution time (90\%/77\%). However, one can see that the total time spent for
preconditioning reduces by a factor of 3.1 in the case of stage-parallel IRK compared
to IRK.

3https://doku.lrz.de/display/PUBLIC/SuperMUC-NG, retrieved on February 26, 2022.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S83

rest (1.41s)

matrix-vector prod. (0.79s)

basis change (0.05s)

precond. block 0 (1.67s)

precond. block 1 (1.70s)

precond. block 2 (1.69s)

precond. block 3 (1.75s)

rest (2.29s)

matrix-vector prod. (0.96s)

basis change (0.45s)

precondition blocks (6.09s)

(a) L = 8, k = 1, Q = 4

rest (0.04s)

matrix-vector prod. (0.04s)

basis change (0.00s)

precond. block 0 (0.20s)

precond. block 1 (0.19s)

precond. block 2 (0.19s)

precond. block 3 (0.20s)

rest (0.05s)

matrix-vector prod. (0.02s)

basis change (0.01s)

precondition blocks (0.25s)

(b) L = 6, k = 1, Q = 4

Fig. 6. Time spent for matrix-vector product, basis change, block solvers, and the remaining
operations (setup of right-hand-side vector of (2.1), vector updates, etc.) for IRK (left) and stage-
parallel IRK (right). The area of the circles indicates the total time compared to the other version.

k = 1 k = 2

k = 3 k = 4

Q = 2 Q = 4

Q = 6 Q = 8

103 104 105 106 107 108

105

106

107

108

DoFs

T
h
ro

u
gh

p
u
t

[D
oF

s/
s/

it
]

103 104 105 106 107 108

105

106

107

108

DoFs

T
h
ro

u
gh

p
u
t

[D
oF

s/
s/

it
]

103 104 105 106 107 108

1

2

3

DoFs

S
p
ee

d
u
p

v
s.

IR
K

103 104 105 106 107 108

1

3

5

2

4

DoFs

S
p
ee

d
u
p

v
s.

IR
K

(a) Vary polynomial degree k, fixed Q = 4 (b) Vary no. stages Q, fixed k = 1

Fig. 7. Influence of parameters on the performance of stage-parallel IRK and the speedup of
stage-parallel IRK as compared to IRK on 16 nodes/768 MPI processes.

Influence of key parameters. Figure 7 shows the influence of the parameters
``polynomial degree k"" and ``number of stages Q"" on the performance and speedup
of stage-parallel IRK compared to IRK with the same number of processes. The
following observations can be made.

Higher polynomial degrees k \geq 2 increase the throughput of matrix-free opera-
tor evaluation. As a consequence, the throughput of IRK also rises with increasing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S84 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

Table 2
Comparison of the number of GMRES iterations (\#G) and of accumulated V-cycle applications

(\#V) per time step for noncomplex/complex IRK and stage-parallel IRK. For the stage-parallel
IRK, the reported numbers of iterations and cycles are shown for process groups. Since complex
stage-parallel IRK runs GMRES independently on the blocks, the number of GMRES iterations
and, consequently, the number of V-cycle applications vary between blocks. In this case, we report
the minimum and maximum values. Numbers are shown for different Q and k = 1, L = 8. The
additional superscript of \#V specifies the number of blocks a GMG V-cycle considers.

Noncomplex (sections 2--6)

IRK SPIRK batched

Q \#G (\#V1) \#G (\#V1) \#G (\#VQ)

2 5.0 (12.0) 5.0 (6.0) 5.0 (6.0)
4 7.0 (32.0) 7.0 (8.0) 7.8 (8.8)

6 9.9 (65.3) 9.9 (10.9) 9.9 (10.9)

8 11.9 (103.1) 11.9 (12.9) 11.0 (12.0)

Complex (section 7)

IRK-PRESB IRK-GMG SPIRK-PRESB SPIRK-GMG

Q \#G (\#V1) \#G (\#V2) \#G (\#V1) \#G (\#V2)

2 6.0 (14.0) 7.0 (8.0) 6.0 (14.0) 7.0 (8.0)

4 11.6 (27.1) 14.0 (16.0) 5.6--6.0 (13.1--14.0) 7.0--7.0 (8.0--8.0)
6 18.2 (42.4) 22.0 (25.0) 6.0--6.2 (14.0--14.4) 7.0--8.0 (8.0--9.0)

8 23.1 (54.2) 31.3 (35.3) 5.0--6.1 (12.0--14.2) 7.0--9.3 (8.0--10.3)

polynomial degree, since its most time-consuming component, the geometric-multigrid
solver relying on a sequence of matrix-vector products, is also implemented in a
matrix-free way. Furthermore, increasing k seems to also have a positive effect on
the speedup of stage-parallel IRK.

The number of stages Q has the most significant influence on the throughput
of IRK and stage-parallel IRK. This is not surprising, since the work per time step
increases with the number of stages. However, the observed drop in throughput is
more significant than expected from the increase in work alone. This is explained by
the number of outer iterations, which increases slightly with the number of stages.
The achievable speedup with stage-parallel IRK rises as the number of stages gets
higher. In addition, Table 2 shows the average number of GRMES iterations and
accumulated numbers of V -cycles that are run in parallel. One can see, on the one
hand, that the number of GMRES iterations increases from 5 to 12 when going from
Q = 2 to Q = 8 and, on the other hand, that stage-parallel execution allows one to
reduce, e.g., for Q= 8, the number of V-cycles run sequentially by a factor of 8 from
103 to 12, matching the measured timings and speedups in Figure 7.

Making definite general conclusions is not straightforward as they depend on the
number of processes, the type of the coarse mesh, the refinement, the partial differ-
ential equation, and the block solvers. However, we believe that similar trends can
be observed in different setups. We would like to note that we use the heat equation
as a test problem, for which efficient and well-scaling block preconditioners based on
multigrid methods are available. For other classes of problems where optimally scaling
block solvers are more challenging to design, we would expect to observe differences
between stage-parallel IRK and IRK also for smaller problem sizes. In the worst case,
when the blocks are solved by direct methods, stage parallelism might be the only way
to parallelize the work. However, there is evidence for advantages of more advanced
spatial solvers that do not have optimal parallel scalability, such as the block-Jacobi
solver with local ILU as considered by [30].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S85

1

1

2

2

3

3

4 5 6

7 8 9

10 11 12

1

2

3

4

sm
_com

m

1

1

2

2

3

3

5 6 7

9 10 11

13 14 15

4

8

12

16

1

1

5

2

9

3

2 6 10

3 7 11

4 8 12

padding

(a) row major (default) (b) row major (with padding) (c) column major

Fig. 8. Different virtual topologies to increase data locality (a) for the basis change S and (c)
for the inner preconditioner. Version (b) introduces padding to guarantee that all stages are on the
same shared-memory domain/same compute node.

6.2. Virtual topology and shared memory. The row-major lexicographical
enumeration of processes of subsection 4.1 favors the operation v= (D \otimes \BbbI n)u, since
the data needed are in close proximity and maybe even on the same compute node.
However, it is not optimal for the inner (multigrid) solver, for which a column-major
enumeration (Figure 8(c)), placing nearby spatial partitions on the same node, would
be favorable. In the following, we compare these two virtual topologies.

Furthermore, we investigate the benefits of using shared-memory features of MPI
during v= (D\otimes \BbbI n)u. For this, a modified row-major enumeration is beneficial. We
introduce a padding---as indicated in Figure 8(b)---in such a way that all processes of
a stage are assigned to the same compute node similarly as done in [30]. This allows
us to skip the communication of complete vectors as their entries can be accessed
directly. In order to prevent race conditions, we introduce barriers across the processes
in comm\.row, which are equivalent to the implicit barriers in the case of parallel for
loops in OpenMP.

Figure 9 shows the experimental results for k= 1 and Q= 4 on 1, 16, and 64 com-
pute nodes. Generally, the different virtual topologies show similar behaviors. Using
shared memory leads to a speedup in a few cases, but, overall, the improvement is not
significant in terms of runtimes. This is because the basis change is not the bottleneck,
as discussed in the previous sections. Overall, the column-major enumeration seems
to give the best results in the intermediate regime. However, it also turns out to be
the slowest virtual topology far from the scaling limit, indicating that the increased
costs of the basis change cannot be counterbalanced by the faster block solver.

6.3. Large-scale parallel runs. Figure 10 shows the results of scaling exper-
iments starting with 1 compute node (48 processes) up to 3,072 nodes (147,456
processes) for different polynomial degrees (k = 1/k = 4) and numbers of stages
(Q= 2/Q= 4/Q= 9). One can clearly see that stage-parallel IRK reaches lower times
to solution at the scaling limit. Figures 11 and 12 give more insights, by providing
normalized plots (throughput of one time step per stage) of the same results of all
considered values of Q in a single diagram. Far from the scaling limit (right top corner
of the plots), IRK tends to be more efficient. Stage-parallel IRK, on the contrary,
reaches lower times per time step at the scaling limit (left bottom corner of the plots)
at the cost of lower efficiencies. Furthermore, the diagrams allow one to compare the
effect of the value of Q, as is similarly done in subsection 6.1 for a moderate number
of processes. Here, one can see again that the costs are increasing with the number of
stages, particularly also because of the increasing number of outer iterations, which

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S86 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

IRK SPIRK (row - default) SPIRK (row - shared memory) SPIRK (column)

103 104 105 106 107

105

106

DoFs

T
h
ro

u
g
h
p
u
t

[D
oF

s/
s/

it
]

48 procs (1 nodes)

103 105 107

105

106

107

DoFs

T
h
ro

u
gh

p
u
t

[D
o
F

s/
s/

it
]

768 procs (16 nodes)

103 105 107 109

105

106

107

108

DoFs

T
h
ro

u
gh

p
u
t

[D
o
F

s/
s/

it
]

3072 procs (64 nodes)

103 104 105 106

1

2

3

4

DoFs

S
p

ee
d
u
p

v
s.

IR
K

103 104 105 106 107

1

2

3

DoFs

S
p

ee
d
u
p

v
s.

IR
K

103 105 107

1

2

3

DoFs

S
p

ee
d
u
p

v
s.

IR
K

Fig. 9. Comparison of virtual topologies for k= 1 and Q= 4.

L = 5 L = 6 L = 7 L = 8 L = 9 L = 10 IRK SPIRK

1 4 16 64 256 1k 3k

10−2

10−1

100

101

Nodes (× 48 CPUs)

T
im

e
p

er
ti

m
e

st
ep

[s
] k = 1/Q = 2

1 4 16 64 256 1k 3k

10−2

10−1

100

101

Nodes (× 48 CPUs)

T
im

e
p

er
ti

m
e

st
ep

[s
] k = 4/Q = 2

1 4 16 64 256 1k 3k

10−2

10−1

100

101

Nodes (× 48 CPUs)

T
im

e
p

er
ti

m
e

st
ep

[s
] k = 1/Q = 4

1 4 16 64 256 1k 3k

10−2

10−1

100

101

Nodes (× 48 CPUs)

T
im

e
p

er
ti

m
e

st
ep

[s
] k = 4/Q = 4

1 4 16 64 256 1k 3k

10−2

10−1

100

101

Nodes (× 48 CPUs)

T
im

e
p

er
ti

m
e

st
ep

[s
] k = 1/Q = 9

1 4 16 64 256 1k 3k

10−2

10−1

100

101

Nodes (× 48 CPUs)

T
im

e
p

er
ti

m
e

st
ep

[s
] k = 4/Q = 9

Fig. 10. Strong-scaling comparison (time per time step) of IRK and stage-parallel IRK for
k= 1/k= 4 and Q= 2/Q= 4/Q= 9.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S87STAGE-PARALLEL FIRK AT THE SCALING LIMIT S17

L = 7 L = 8 L = 9 IRK SPIRK

10−2 10−1 100 101

103

104

105

106

sec / it

[D
o
F
s
×

it
]/
[p
ro
c
×

se
c]

k = 1

10−1 100 101

104

105

106

107 Q = 2

Q = 4

Q = 9

SPIRK

IRK

sec / it

[D
o
F
s
×

it
]/
[p
ro
c
×

se
c]

k = 4

Fig. 11. Strong scaling: throughput of a time step (results from Figure 10).

L = 7 L = 8 L = 9 IRK SPIRK

10−2 10−1 100
0

2

4

6

·106

sec / [it × stage]

[D
o
F
s
×

it
×

st
a
ge
]/
[p
ro
c
×

se
c]

k = 1

10−2 10−1 100
0

0.5

1

1.5

2
·107

Q = 2

Q = 4

Q = 9

sec / [it × stage]

[D
oF

s
×

it
×

st
ag

e]
/[
p
ro
c
×

se
c]

k = 4

Fig. 12. Strong scaling: throughput per stage (results from Figure 10).

ing normalized plots (throughput of one time step/per stage) of the same results of all
considered values of Q in a single diagram. Far from the scaling limit (right top corner
of the plots), IRK tends to be more efficient. Stage-parallel IRK, on the contrary,
reaches lower times per time step at the scaling limit (left bottom corner of the plots)
at the cost of lower efficiencies. Furthermore, the diagrams allow to compare the
effect of the value of Q, as is similarly done in subsection 6.1 for a moderate number
of processes. Here, one can see again that the costs are increasing with the number of
stages, particularly also because of the increasing number of outer iterations, which
influences the scaling limits as well. However, we recall that a high number of stages
allows to use larger time steps due to an increased accuracy so that the additional
costs might amortize.

As a summary, Figure 13 shows the measured speedup of stage-parallel IRK in
comparison to IRK, categorized according to the number of DoFs per process. A clear
speedup is obtained for less than 10k DoFs per process, i.e., half a million DoFs per
node. For larger problem sizes per process, the picture is split. For more than 100k
DoFs per process, IRK is consistently faster (≈20%).

Fig. 11. Strong scaling: throughput of a time step (results from Figure 10).

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S17

L = 7 L = 8 L = 9 IRK SPIRK

10−2 10−1 100 101

103

104

105

106

sec / it

[D
oF

s
×

it
]/
[p
ro
c
×

se
c]

k = 1

10−1 100 101

104

105

106

107 Q = 2

Q = 4

Q = 9

SPIRK

IRK

sec / it

[D
o
F
s
×

it
]/
[p
ro
c
×

se
c]

k = 4

Fig. 11. Strong scaling: throughput of a time step (results from Figure 10).

L = 7 L = 8 L = 9 IRK SPIRK

10−2 10−1 100
0

2

4

6

·106

sec / [it × stage]

[D
o
F
s
×

it
×

st
ag

e]
/[
p
ro
c
×

se
c]

k = 1

10−2 10−1 100
0

0.5

1

1.5

2
·107

Q = 2

Q = 4

Q = 9

sec / [it × stage]

[D
oF

s
×

it
×

st
ag

e]
/[
p
ro
c
×

se
c]

k = 4

Fig. 12. Strong scaling: throughput per stage (results from Figure 10).

ing normalized plots (throughput of one time step/per stage) of the same results of all
considered values of Q in a single diagram. Far from the scaling limit (right top corner
of the plots), IRK tends to be more efficient. Stage-parallel IRK, on the contrary,
reaches lower times per time step at the scaling limit (left bottom corner of the plots)
at the cost of lower efficiencies. Furthermore, the diagrams allow to compare the
effect of the value of Q, as is similarly done in subsection 6.1 for a moderate number
of processes. Here, one can see again that the costs are increasing with the number of
stages, particularly also because of the increasing number of outer iterations, which
influences the scaling limits as well. However, we recall that a high number of stages
allows to use larger time steps due to an increased accuracy so that the additional
costs might amortize.

As a summary, Figure 13 shows the measured speedup of stage-parallel IRK in
comparison to IRK, categorized according to the number of DoFs per process. A clear
speedup is obtained for less than 10k DoFs per process, i.e., half a million DoFs per
node. For larger problem sizes per process, the picture is split. For more than 100k
DoFs per process, IRK is consistently faster (≈20%).

Fig. 12. Strong scaling: throughput per stage (results from Figure 10).

influences the scaling limits as well. However, we recall that a high number of stages
allows us to use larger time steps due to an increased accuracy so that the additional
costs might amortize.

As a summary, Figure 13 shows the measured speedup of stage-parallel IRK in
comparison to IRK, categorized according to the number of DoFs per process. A clear
speedup is obtained for less than 10k DoFs per process, i.e., half a million DoFs per
node. For larger problem sizes per process, the picture is split. For more than 100k
DoFs per process, IRK is consistently faster (\approx 20\%).

6.4. Batched execution. For the batched experiments, we replace the coarse-
grid solver AMG by Chebyshev iterations around a point-Jacobi method with the
same settings as of the smoothers (cf. section 6). Furthermore, we do not set up
the coefficients of the Chebyshev polynomials for each block separately, but instead
set them up with the approximation of the maximum eigenvalue of all blocks. This
choice does not negatively affect the number of GMRES iterations, as indicated by
Table 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S88 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVAS18 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

0.5 0.8 1 2 4 8
104

106

108

Speedup vs. IRK

D
oF

s

DoFs/rank < 1, 000

0.5 0.8 1 2 4 8
105

107

109

Speedup vs. IRK

D
o
F
s

1, 000 ≤ DoFs/rank < 10, 000

0.5 0.8 1 2 4 8
106

108

1010

Speedup vs. IRK

D
oF

s

10, 000 ≤ DoFs/rank < 100, 000

0.5 0.8 1 2 4 8
107

109

1011

Speedup vs. IRK

D
oF

s

100, 000 ≤ DoFs/rank

Fig. 13. Strong scaling: speedup categorized according to number of DoFs per process (results
from Figure 10). Circles/x indicate k = 1/k = 4 and the colors red/blue/orange indicate Q = 2/Q =
4/Q = 9.

IRK SPIRK batched normal 1 vector 8 vector subgroup

103 104 105 106 107
10−2

10−1

100

DoFs

T
im

e
p
er

it
er
at
io
n
[s
ec
]

a)

103 105 107

10−3

10−2

10−1

DoFs

T
im

e
p
er

it
er
at
io
n
[s
ec
]

b)

103 105 107

2

4

6

8

1

DoFs

S
p
ee
d
u
p
v
s.

se
q
u
en
ti
al

c)

Fig. 14. a) Comparison of time per iteration of IRK, stage-parallel IRK, and batch IRK for
k = 1 and Q = 8 with 768 processes (16 compute nodes); b-c) time of iteration and speedup of
different execution modes to process Q = 8 stages in comparison to a sequential execution of the
stages.

6.4. Batched execution. For the batched experiments, we replace the coarse-
grid solver AMG by Chebyshev iterations around a point-Jacobi method with the
same settings as of the smoothers (cf. section 6). Furthermore, we do not set up the

Fig. 13. Strong scaling: speedup categorized according to number of DoFs per process (results
from Figure 10). Circles/x indicate k= 1/k= 4 and the colors red/blue/orange indicate Q= 2/Q=
4/Q= 9.

Figure 14(a) shows the timings of a batched execution of IRK on 16 nodes. The
results are somewhat disappointing compared to our performance model and the num-
ber of iterations documented in Table 2. The timings are similar to the sequential
execution of stages with only a small speedup, e.g., for Q= 8, 5\%--25\%.

The cause for this behavior is the implementation of communication of the in-
tergrid transfer in deal.II. Due to a design choice of allowing black-box processing
of the stages with a separate vector for each stage, all communication happens se-
quentially. By collecting all stages in a single vector, this issue could be overcome, as
indicated by preliminary results obtained for GMG. Figures 14(b)--(c) show timings
and speedup of a single-vector execution, of an execution with Q vectors, and of an
execution with Q subgroups, in comparison to a sequential execution.

The results highlight the importance of batching all parts of the code. If this is not
possible for all identified code paths, the execution gets serialized and the scalability
is limited. The results for GMG indicate that one can expect higher speedups (up to
5.7 for Q = 8) for batched execution; however, the speedup will probably be smaller
than that of the stage-parallel variants considered before.

We point out that using non-Cartesian meshes might shift the benefit from
grouped execution toward a batched one, since loading metric terms only once and not
Q times (once per process group) might be beneficial for the matrix-vector products,
as discussed in subsection 4.4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S89

IRK SPIRK batched normal 1 vector 8 vector subgroup

103 104 105 106 107

10−2

10−1

100

DoFs

T
im

e
p
er

it
er

at
io

n
[s

ec
]

(a)

103 105 107

10−3

10−2

10−1

DoFs

T
im

e
p
er

it
er

at
io

n
[s

ec
]

(b)

103 105 107

2

4

6

8

1

DoFs

S
p
ee

d
u
p

v
s.

se
q
u
en

ti
al

(c)

Fig. 14. (a) Comparison of time per iteration of IRK, stage-parallel IRK, and batch IRK for
k = 1 and Q = 8 with 768 processes (16 compute nodes); (b)--(c) time of iteration and speedup of
different execution modes to process Q = 8 stages in comparison to a sequential execution of the
stages.

7. Real versus complex arithmetic---a comparison. For the IRK algorithm
described in section 2, we have chosen L as the basis of the preconditioner, since its
eigenvalues and eigenvectors are real and the resulting block system to be solved is real
as well. However, the proposed concepts regarding stage-parallel implementation---
particularly the data distribution and the communication patterns---are also applica-
ble to the complex case, which arises whenA - 1

Q is diagonalized directly. The advantage

of factorizing A - 1
Q directly is that no global GMRES iterations---consisting of all Q

stages---are needed and one can solve each block individually after the basis change.
However, the disadvantage is that each block in (2.3) involves complex numbers:

\lambda qM + \tau K = (\Re (\lambda q) + i \cdot \Im (\lambda q))M + \tau K = (\Re (\lambda q)M + \tau K)\underbrace{} \underbrace{}
K\prime

q

+i \cdot \Im (\lambda q)M\underbrace{} \underbrace{}
M \prime

q

(7.1)

with \lambda q = \Re (\lambda q) + i \cdot \Im (\lambda q). Written as a two-by-two block-matrix system, (K \prime
q +

iM \prime
q)\bfitu q = \bfitv q becomes

\biggl[
K \prime

q - M \prime
q

M \prime
q Kq

\biggr] \biggl[
\Re (\bfitu q)
\Im (\bfitu q)

\biggr]
=

\biggl[
\Re (\bfitv q)
\Im (\bfitv q)

\biggr]
.(7.2)

Since the structure of the resulting system is similar to that of a real Schur complement
and, therefore, the algorithms to solve the system are equivalent, we will not detail
this approach.

For systems of the type (7.2), PRESB is an efficient preconditioner [8]:

Pq =

\biggl[
K \prime

q - M \prime
q

M \prime
q K \prime

q + 2M \prime
q

\biggr]
=

\biggl[
\BbbI n - \BbbI n
0 \BbbI n

\biggr] \biggl[
K \prime

q +M \prime
q 0

M \prime
q K \prime

q +M \prime
q

\biggr] \biggl[
\BbbI n \BbbI n
0 \BbbI n

\biggr]
.(7.3)

For approximating the inverse of (K \prime
q+M \prime

q), we use a single V-cycle. The correspond-
ing solver diagram is shown in Figure 15(a). Please note that the blocks corresponding
to the real and imaginary parts have to be solved in sequence (two V-cycles), possibly
limiting the scalability.

Alternatively to PRESB, we also consider GMG applied directly to (7.2), consist-
ing of both real and imaginary blocks. The corresponding solver diagram is shown

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S90 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

(a)

Implicit Runge–Kutta time stepper with time step τ and Q stages

(Stage-parallel) GMRES for each �Q/2� complex block with A = (� (λq)M + τK) + i · � (λq)M → (7.1)

Preconditioner: PRESB according to (7.3)

Preconditioner for block 1: geometric multigrid for ((� (λq) + � (λq))M + τK)

Smoother: Chebyshev iterations around a point-Jacobi method

Coarse-grid solver: AMG

Preconditioner for block 2: geometric multigrid (same as for block 1)

(b)
Preconditioner: geometric multigrid

Smoother/Coarse-grid solver: Chebyshev iterations around a point-Jacobi method

Fig. 15. Diagram of the complex solvers used to solve the heat problem in section 7: (a) PRESB
as preconditioner, (b) GMG as preconditioner.

in Figure 15(b). The motivation for this is similar to the one for batched IRK: at
the scaling limit, running one V-cycle on a vector with twice as many DoFs might be
cheaper than running two V-cycles on smaller vectors in sequence.

The block structure of the transformed system (2.3) has some influence on the
algorithms presented in section 4. The fact that only \lceil Q/2\rceil blocks can be solved
independently allows one to parallelize only between \lceil Q/2\rceil ``stages."" Naturally, each
process group would be responsible for a stage pair. Furthermore, operations of the
form v= (D\otimes \BbbI n)u need minor adjustments, depending on the usage:

\bullet application of A - 1
Q (\bfitu ,\bfitv \in \BbbR n\times Q, D \in \BbbR Q\times Q) with stages assigned to \lceil Q/2\rceil

processes and
\bullet application of S - 1 (\bfitu \in \BbbR n\times Q, \bfitv \in \BbbC n\times \lceil Q/2\rceil , D \in \BbbC \lceil Q/2\rceil \times Q) and of S

(\bfitu \in \BbbC n\times \lceil Q/2\rceil , \bfitv \in \BbbR n\times Q, D \in \BbbC Q\times \lceil Q/2\rceil).
In these cases, the distributed tensor algorithms from section 4 can be extended.

They work on blocks of two vectors and perform block operations between the rotation
steps, e.g., v1

v2

...

 =

D11u1 +D12u2

D21u1 +D22u2

...

+

D13u3 +D14u4

D23u3 +D24u4

...

+ . . .

as block extension of (4.1).
The performance models derived in section 5 are also applicable to the complex

case, with more pressure on the block solvers/preconditioners. The basis change---
resulting in an implicit synchronization between all stages---has to be performed only
once per time step as the \lceil Q/2\rceil blocks can be solved independently. Each block
solve might be more expensive, since they might involve the solution of a two-by-two
system. Comparing the complex case with the approximate case in real arithmetic,
we give up some possibilities for (stage) parallelization by reducing the number of
blocks (Q \rightarrow \lceil Q/2\rceil) and by the sequential execution of two GMG V-cycles in the
PRESB case. Not surprisingly, the obtained speedup (Figure 16) is about half of that
of the stage-parallel preconditioner, which allows the parallel execution of all stages
(see Figure 7). However, only two basis changes need to be performed per time step,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S91STAGE-PARALLEL FIRK AT THE SCALING LIMIT S21

Q = 2 (IRK≈SPIRK) Q = 4 Q = 6 Q = 8

103 104 105 106 107 108

105

106

107

DoFs

T
h
ro
u
gh

p
u
t
[D

oF
s/
s/
it
]

103 104 105 106 107 108

1

2

3

DoFs

S
p
ee
d
u
p

Fig. 16. Throughput and speedup of complex stage-parallel IRK vs. complex IRK with PRESB
for k = 1 with 768 processes (16 compute nodes).

solve might be more expensive, since they might involve the solution of a two-by-two
system. Comparing the complex case with the approximate case in real arithmetic, we
give up some possibilities for (stage) parallelization by reducing the number of blocks
(Q → ⌈Q/2⌉) and by the sequential execution of two GMG V-cycles in the PRESB
case. Not surprisingly, the obtained speedup (Figure 16) is about half of the one of
the stage-parallel preconditioner, which allows the parallel execution of all stages (see
Figure 7). However, only two basis changes need to be performed per time step, which
reduces the number of possibly expensive synchronization points.

According to our performance model, the total execution time at the scaling
limit will be dominated by the maximum number of accumulated GMG iterations
each process group has to execute. Hence, non-complex stage-parallel IRK might
be advantageous for low values of Q, but complex stage-parallel IRK might be com-
petitive for high Q, since the number of iterations per stage is independent of Q.
The results in Figure 17 verify our expectations, by comparing the times of the real-
valued IRK studied before against the complex-valued IRK and the stage-parallel
IRK solvers. Surprisingly, the two stage-parallel IRK algorithms show similar times
for small problem sizes, demonstrating that the growing iteration counts of the outer
solver of the non-complex solver—indicated by the growing gap between the IRK
implementations—can be compensated by its better parallel behavior. This can also
be seen in Table 2, which shows a similar number of V-cycles to be executed in the
context of non-complex and complex stage-parallel IRK, respectively. However, we
would like to note that it is hard to make a fair comparison, since the tolerances have
different meanings in the complex and the non-complex cases. Furthermore, while it
is easy to integrate efficient complex arithmetic in our small benchmarks, this might
not be the case when the time steppers should be applied in a black-box fashion.
Against this background, a more detailed analysis of when to favor one method over
the other is subject of future work.

Figure 18 compares the solution times of PRESB and GMG as preconditioners.
Overall, PRESB seems to be superior compared to GMG due to fewer GMRES iter-
ations (see Table 2). However, the scalability is comparable. In fact, Table 2 shows
that GMG needs fewer V-cycles in total, indicating potential for better scalability of
GMG once the optimizations discussed in subsection 6.4 have been realized.

Recently, Southworth et al. [32] presented a novel solver for IRK. They also ex-
ploit the complex-conjugate property of the eigenvalues and solve the pairs together.

Fig. 16. Throughput and speedup of complex stage-parallel IRK versus complex IRK with
PRESB for k= 1 with 768 processes (16 compute nodes).

which reduces the number of possibly expensive synchronization points.
According to our performance model, the total execution time at the scaling

limit will be dominated by the maximum number of accumulated GMG iterations
each process group has to execute. Hence, noncomplex stage-parallel IRK might be
advantageous for low values of Q, but complex stage-parallel IRK might be com-
petitive for high Q, since the number of iterations per stage is independent of Q.
The results in Figure 17 verify our expectations, by comparing the times of the real-
valued IRK studied before against the complex-valued IRK and the stage-parallel
IRK solvers. Surprisingly, the two stage-parallel IRK algorithms show similar times
for small problem sizes, demonstrating that the growing iteration counts of the outer
solver of the noncomplex solver---indicated by the growing gap between the IRK
implementations---can be compensated by its better parallel behavior. This can also
be seen in Table 2, which shows a similar number of V-cycles to be executed in the
context of noncomplex and complex stage-parallel IRK, respectively. However, we
would like to note that it is hard to make a fair comparison, since the tolerances have
different meanings in the complex and the noncomplex cases. Furthermore, while it is
easy to integrate efficient complex arithmetic in our small benchmarks, this might not
be the case when the time steppers should be applied in a black-box fashion. Against
this background, a more detailed analysis of when to favor one method over the other
will be the subject of future work.

Figure 18 compares the solution times of PRESB and GMG as preconditioners.
Overall, PRESB seems to be superior compared to GMG due to fewer GMRES iter-
ations (see Table 2). However, the scalability is comparable. In fact, Table 2 shows
that GMG needs fewer V-cycles in total, indicating potential for better scalability of
GMG once the optimizations discussed in subsection 6.4 have been realized.

Recently, Southworth et al. [32] presented a novel solver for IRK. They also
exploit the complex-conjugate property of the eigenvalues and solve the pairs together.
For preconditioning the blocks, they apply two V-cycles of (algebraic) multigrid as
well. However, it is a bit more involved to solve the blocks, since they have the
form (\Re (\lambda q)\BbbI n - \delta tM - 1K)2 + \Im (\lambda q)\BbbI n. The algorithm proposed in that study is,
however, inherently stage-serial as it requires the sequential solution of stage (pairs)
by construction so that the algorithms presented in our publication are not applicable
there.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S92 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVAS22 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

complex IRK-PRESB complex SPIRK-PRESB IRK SPIRK

T
im

e
p
e
r

it
e
r
a
t
io

n
[s
e
c
]

103 104 105 106 107 108

10−2

10−1

100

DoFs

Q = 2

103 104 105 106 107

10−2

10−1

100

DoFs

Q = 4

T
im

e
p
e
r

it
e
r
a
t
io

n
[s
e
c
]

103 104 105 106 107

10−2

10−1

100

DoFs

Q = 6

103 104 105 106 107

10−2

10−1

100

DoFs

Q = 8

Fig. 17. Comparison of throughputs of non-complex/complex IRK and stage-parallel IRK for
k = 1 with 768 processes (16 compute nodes).

For preconditioning the blocks, they apply 2 V-cycles of (algebraic) multigrid as well.
However, it is a bit more involved to solve the blocks, since they have the form
(ℜ(λq)In − δtM−1K)2 + ℑ(λq)In. The algorithm proposed in that study is, how-
ever, inherently stage-serial as it requires the sequential solution of stage (pairs) by
construction so that the algorithms presented in our publication are not applicable
there.

8. Possibilities for extensions. The present work has concentrated on build-
ing blocks for stage-parallel computations, solving a simple heat equation for demon-
stration purposes. Note that the iterative solution of (2.1) with a preconditioner
built on the idea of using L from the LU decomposition of AQ has previously been
applied to non-symmetric advection-diffusion equations (with time-dependent coef-
ficients) [6, 27] and pure advection equations [6]. Consequently, the parallelization
strategies discussed here are also applicable, with possible deviations on the block
level if multigrid is not an optimal solver and alternatives more suited for convection-
dominated problems are employed.

The derivations of efficient stage-parallel algorithms for differential-algebraic sys-
tems of equations (DAE) and for non-linear partial differential equations, e.g., the
Navier–Stokes equations, are still open research. In the following, we propose two
simple adaptions of our concepts to non-linear equations of the form M∂u(t)/∂t =
N (t,u). In this case, the Runge–Kutta scheme reads

un+1 = un + τ
∑

1≤q≤Q

bqkq with Mki = N


tn + ciτ, yn + τ

∑

1≤j≤Q

aijkj


 .

The non-linear system for the values kq can be solved, e.g., via a Newton method

Fig. 17. Comparison of throughputs of noncomplex/complex IRK and stage-parallel IRK for
k= 1 with 768 processes (16 compute nodes).

8. Possibilities for extensions. The present work has concentrated on build-
ing blocks for stage-parallel computations, solving a simple heat equation for demon-
stration purposes. Note that the iterative solution of (2.1) with a preconditioner built
on the idea of using L from the LU decomposition of AQ has previously been applied
to nonsymmetric advection-diffusion equations (with time-dependent coefficients) [6,
27] and pure advection equations [6]. Consequently, the parallelization strategies
discussed here are also applicable, with possible deviations on the block level if multi-
grid is not an optimal solver and alternatives more suited for convection-dominated
problems are employed.

The derivations of efficient stage-parallel algorithms for differential-algebraic sys-
tems of equations and for nonlinear partial differential equations, e.g., the Navier--
Stokes equations, are still open research. In the following, we propose two simple
adaptions of our concepts to nonlinear equations of the form M\partial u(t)/\partial t = \scrN (t,u).
In this case, the Runge--Kutta scheme reads

un+1 = un + \tau
\sum

1\leq q\leq Q

bqkq with Mki =\scrN

\left(
 tn + ci\tau , yn + \tau

\sum

1\leq j\leq Q

aijkj

\right)
 .

The nonlinear system for the values kq can be solved, e.g., via a Newton method with
the linearized version of the equation,

\Bigl(
A - 1

Q \otimes M - \tau diag(\scrL 1, . . . , \scrL Q)
\Bigr)

\underbrace{} \underbrace{}
\^\scrJ

(AQ \otimes \BbbI n)\Delta k\underbrace{} \underbrace{}
\Delta \^k

= f,(8.1)

with the Jacobian \scrL q being the linearization of \scrN regarding the qth stage and f a
suitable residual. Using the approximation of constant blocks \~\scrL \approx \scrL q for all q \in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S93

complex IRK-PRESB complex SPIRK-PRESB complex IRK-GMG complex SPIRK-GMG

T
im

e
p
e
r

it
e
r
a
t
io

n
[s

e
c
]

103 104 105 106 107

10−2

10−1

100

DoFs

Q = 2

103 104 105 106 107

10−2

10−1

100

DoFs

Q = 4

T
im

e
p
e
r

it
e
r
a
t
io

n
[s

e
c
]

103 104 105 106 107

10−2

10−1

100

DoFs

Q = 6

103 104 105 106 107

10−2

10−1

100

DoFs

Q = 8

Fig. 18. Comparison of throughputs of complex IRK and stage-parallel IRK with PRESB or
GMG as preconditioner for k= 1 with 768 processes (16 compute nodes).

\{ 1, . . . ,Q\} , we can construct preconditioners for \^\scrJ analogous to those used in the
linear case, P = (S \otimes \BbbI n)(\Lambda \otimes M - \tau \BbbI Q \otimes \~\scrL)(S - 1 \otimes \BbbI n), where \Lambda and S are the
eigenvalues and eigenvectors either of A - 1

Q or of its lower triangular factor.

Alternatively, using the real Schur decomposition A - 1
0 =Q0R0Q

T
0 on (8.1) yields

\bigl(
RQ \otimes M - (QT

Q \otimes \BbbI n) \tau diag (\scrL 1, . . . , \scrL Q) (QQ \otimes \BbbI n)
\bigr)

\underbrace{} \underbrace{}
\~\scrJ

(R - 1
Q QT

Q \otimes \BbbI n)\Delta k
\underbrace{} \underbrace{}

\Delta \~k

= (QT
Q \otimes \BbbI n)f\underbrace{} \underbrace{}

\~f

.

(8.2)

Instead of directly solving \Delta k= (QQRQ \otimes \BbbI n) \~\scrJ - 1\~f, Southworth et al. [32] proposed
to use a Newton-like method with an approximation of \~\scrJ in terms of a block-diagonal
representation. For details, we refer to their publication. Given the algorithms
proposed in the present work, it is natural to solve \~\scrJ iteratively using one of the
block-Jacobi preconditioners listed in [32] as the exact matrix-vector product (8.2)
can be evaluated with the building blocks of section 2 in a stage-parallel way due to
its resemblance with \scrA in (2.2). It is an open research question to derive an optimal
preconditioner in that context, resembling the coupled form (2.4), and evaluate its
efficiency against the choice in [32].

9. Conclusions and outlook. For distributed-memory computing platforms,
we have presented implementations of IRK algorithms, including the novel precon-
ditioner proposed by Axelsson and Neytcheva [7]. The algorithms allow us to run
the matrix-vector multiplication and the preconditioner in parallel by process groups

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S94 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

associated with each stage. Upon a basis change involving all stages, inner block
solvers can be applied independently in a black-box fashion. We have identified that
the tensor operations v= (\BbbI Q \otimes C)u and v= (D\otimes \BbbI n)u are the main building blocks
and have proposed efficient parallel algorithms.

We have presented a detailed performance analysis of the stage-parallel precondi-
tioner implementation for a time-dependent heat problem on up to 150k processes on
3k CPU compute nodes, using state-of-the-art matrix-free GMG solvers. Furthermore,
its performance has been compared to that of an implementation not using stage par-
allelism. We observed that the stage-parallel implementation is able to significantly
shift the scaling limit and reaches speedups \leq Q. In absolute numbers, the proposed
solvers and implementations make it possible to obtain high solver efficiencies down
to less than 0.05 seconds per time step for four-stage IRK schemes. However, far from
the scaling limit, possible load imbalances between the solvers of the stages and com-
munication overhead lead to a slight drop in performance by 13\% lower throughput
on average in comparison to the non-stage-parallel IRK implementation.

The algorithms are also applicable to the case when the system matrix arising
from the IRK method is directly factorized, requiring complex arithmetic or the
solution of two-by-two blocks. This limits the scalability in comparison to the case
of the stage-parallel preconditioner. Results, however, show that the lower number of
iterations and the scalability balance each other, leading to similar minimum times to
solution of stage-parallel direct factorization and preconditioning for a high number
of stages (Q\leq 8).

We have also discussed batching the operations of all stages instead of assigning
each stage to a process group, showing the challenge in terms of black-box interfaces.
In future work, we plan to study stage parallelism for nonlinear partial differential
equations, e.g., Navier--Stokes equations. Furthermore, we intend to improve the
batched implementation as well as make further investigations of its performance and
usability within a library context, which might require code generation [15].

Acknowledgments. The authors acknowledge discussions with Ben Southworth
regarding extensions of the algorithms toward nonlinear equations and collaboration
with the deal.II community.

REFERENCES

[1] R. Abu-Labdeh, S. MacLachlan, and P. E. Farrell, Monolithic Multigrid for Implicit
Runge-Kutta Discretizations of Incompressible Fluid Flow , preprint, https://arxiv.org/
abs/2202.07381, 2022.

[2] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, Parallel multigrid smoothing: Polynomial
versus Gauss-Seidel , J. Comput. Phys., 188 (2003), pp. 593--610.

[3] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassm\"oller, T. Heister, L. Heltai,
U. K\"ocher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Proell, K.
Simon, B. Turcksin, D. Wells, and J. Zhang, The deal.II library, version 9.3, J. Numer.
Math., 29 (2021), pp. 171--186.

[4] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier,
J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II finite element library: Design,
features, and insights, Comput. Math. Appl., 81 (2021), pp. 407--422.

[5] O. Axelsson, Global integration of differential equations through lobatto quadrature, BIT, 4
(1964), pp. 69--86.

[6] O. Axelsson, I. Dravins, and M. Neytcheva, Stage-parallel preconditioners for implicit
Runge-Kutta methods of arbitrarily high order, linear problems, to appear.

[7] O. Axelsson and M. Neytcheva, Numerical solution methods for implicit Runge-Kutta meth-
ods of arbitrarily high order , in 21st Conference on Scientific Computing, Vysok\'e Tatry-
Podbansk\'e 7, Slovakia, 2020, pp. 11--20.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

STAGE-PARALLEL FIRK AT THE SCALING LIMIT S95

[8] O. Axelsson, M. Pourbagher, and D. K. Salkuyeh, Robust Iteration Methods for Com-
plex Systems with an Indefinite Matrix Term, preprint, https://arxiv.org/abs/2110.00537,
2021.

[9] T. A. Bickart, An efficient solution process for implicit runge-Kutta methods, SIAM J. Numer.
Anal., 14 (1977), pp. 1022--1027.

[10] M. Bolten, D. Moser, and R. Spech, A multigrid perspective on the parallel full approxima-
tion scheme in space and time, Numer. Linear Algebr. Appl., 24 (2017), e2110.

[11] K. Burrage, C. Eldershaw, and R. Sidje, A parallel matrix-free implementation of a
Runge-Kutta code, in Proceedings of the Joint Australian-Taiwanese Workshop on Analysis
and Applications, Australian National University, Mathematical Sciences Institute, 1999,
pp. 83--88.

[12] J. C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT, 16 (1976),
pp. 237--240.

[13] L. E. Cannon, A Cellular Computer to Implement the Kalman Filter Algorithm, Ph.D. thesis,
Montana State University, 1969.

[14] J. J. B. De Swart, W. M. Lioen , and W. A. Van Der Veen, Specification of PSIDE , CWI,
Amsetrdam, 1998.

[15] P. E. Farrell, R. C. Kirby, and J. Marchena-Menendez, Irksome: Automating Runge-
Kutta time-stepping for finite element methods, ACM Trans. Math. Software, 47 (2021),
pp. 30/1--26.

[16] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala, ML 5.0 Smoothed Ag-
gregation User's Guide, Technical Report SAND2006-2649, Sandia National Laboratories,
2006.

[17] G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists and
Engineers, CRC Press, Boca Raton, FL, 2010.

[18] K. R. Jackson and S. P. N{\e}rsett, The potential for parallelism in Runge-Kutta methods.
Part I. RK formulas in standard form, J. Numer. Anal., 32 (1995), pp. 49--82.

[19] L. O. Jay and T. Braconnier, A parallelizable preconditioner for the iterative solution of
implicit Runge-Kutta-type methods, J. Comput. Appl. Math., 111 (1999), pp. 63--76.

[20] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit Runge-Kutta
schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35 (2000),
pp. 177--219.

[21] T. Kolev, P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton,
S. Tomov, M. S. Shephard, A. Abdelfattah, V. Barra, N. Beams, J.-S. Camier,
N. Chalmers, Y. Dudouit, A. Karakus, I. Karlin, S. Kerkemeier, Y.-H. Lan, D.
Medina, E. Merzari, A. Obabko, W. Pazner, T. Rathnayake, C. W. Smith, L. Spies,
K. Swirydowicz, J. Thompson, A. Tomboulides, and V. Tomov, Efficient exascale
discretizations: High-order finite element methods, Int. J. High Perform. Comput. Appl.,
35 (2021), pp. 527--552.

[22] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element
operator application, Comput. Fluids, 63 (2012), pp. 135--147.

[23] M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin
finite element operators, ACM Trans. Math. Software, 45 (2019), 29.

[24] M. Kronbichler, D. Sashko, and P. Munch, Enhancing data locality of the conjugate gradi-
ent method for high-order matrix-free finite-element implementations, Int J. High Perform.
Comput. Appl. (2022).

[25] J. L. Lions, Y. Maday, and G. Turinici, A ``parareal"" in time discretization of PDEs,
C. R. Acad. Sci. Ser. I Math., 332 (2001), pp. 661--668.

[26] K.-A. Mardal, T. K. Nilssen, and G. A. Staff, Order-optimal preconditioners for im-
plicit Runge-Kutta schemes applied to parabolic PDEs, SIAM J. Sci. Comput., 29 (2007),
pp. 361--375.

[27] M. Masud Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone, A new block pre-
conditioner for implicit Runge-Kutta methods for parabolic PDE problems, SIAM J. Sci.
Comput., 43 (2021), pp. S475--S495.

[28] P. Munch, T. Heister, L. Prieto Saavedra, and M. Kronbichler, Efficient Dis-
tributed Matrix-Free Multigrid Methods on Locally Refined Meshes for FEM Com-
putations, ACM Trans. Parallel Comput., https://arxiv.org/abs/2203.12292, 2023,
https://doi.org/10.1145/3580314.

[29] P. Munch, K. Kormann, and M. Kronbichler, hyper.deal: An efficient, matrix-free finite-
element library for high-dimensional partial differential equations, ACM Trans. Math. Soft-
ware, 47 (2021), pp. 33/1--34.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

S96 MUNCH, DRAVINS, KRONBICHLER, AND NEYTCHEVA

[30] W. Pazner and P.-O. Persson, Stage-parallel fully implicit Runge-Kutta solvers for discon-
tinuous Galerkin fluid simulations, J. Comput. Phys., 335 (2017), pp. 700--717.

[31] B. S. Southworth, O. Krzysik, and W. Pazner, Fast solution of fully implicit Runge-Kutta
and discontinuous Galerkin in time for numerical PDEs, part II: Nonlinearities and DAEs,
SIAM J. Sci. Comput., 44 (2022), pp. A636--A663.

[32] B. S. Southworth, O. Krzysik, W. Pazner, and H. D. Sterck, Fast solution of fully implicit
Runge-Kutta and discontinuous Galerkin in time for numerical PDEs, part I: The linear
setting, SIAM J. Sci. Comput., 44 (2022), pp. A416--A443.

[33] G. A. Staff, K.-A. Mardal, and T. K. Nilssen, Preconditioning of fully implicit Runge-
Kutta schemes for parabolic PDEs, MIC J., 27 (2006), pp. 109--123.

[34] R. A. Van De Geijn and J. Watts, Summa: Scalable universal matrix multiplication algo-
rithm, Concurrency-Pract. Ex., 9 (1997), pp. 255--274.

[35] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer Ser. Comput.
Math. 14, Springer, Berlin, 1996.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

07
/1

9/
23

 to
 1

29
.1

87
.2

54
.4

6
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

dummy

Paper VI

33

hyper.deal: An Efficient, Matrix-free Finite-element Library
for High-dimensional Partial Differential Equations

PETER MUNCH, Institute for Computational Mechanics, Department of Mechanical Engineering,
Technical University of Munich, Germany and Institute of Material Systems Modeling, Helmholtz-Zentrum
Hereon, Germany
KATHARINA KORMANN, Max Planck Institute for Plasma Physics, Germany, Department of
Mathematics, Technical University of Munich, Germany, and Department of Information Technology,
Uppsala University, Sweden
MARTIN KRONBICHLER, Institute for Computational Mechanics, Department of Mechanical
Engineering, Technical University of Munich, Germany and Department of Information Technology,
Uppsala University, Sweden

This work presents the efficient, matrix-free finite-element library hyper.deal for solving partial differential
equations in two up to six dimensions with high-order discontinuous Galerkin methods. It builds upon the
low-dimensional finite-element library deal.II to create complex low-dimensional meshes and to operate
on them individually. These meshes are combined via a tensor product on the fly, and the library provides new
special-purpose highly optimized matrix-free functions exploiting domain decomposition as well as shared
memory via MPI-3.0 features. Both node-level performance analyses and strong/weak-scaling studies on
up to 147,456 CPU cores confirm the efficiency of the implementation. Results obtained with the library
hyper.deal are reported for high-dimensional advection problems and for the solution of the Vlasov–Poisson
equation in up to six-dimensional phase space.

CCS Concepts: • Mathematics of computing→Mathematical software performance; Partial differential
equations; Solvers; • Computer systems organization→Multicore architectures; • Applied computing→
Physics;

This work was supported by the German Research Foundation (DFG) under the project “High-order discontinuous
Galerkin for the exa-scale” (ExaDG) within the priority program “Software for Exascale Computing” (SPPEXA), grant
agreement no. KO5206/1-1 and KR4661/2-1. The authors gratefully acknowledge the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC-
NG at Leibniz Supercomputing Centre (LRZ, www.lrz.de) through project id pr83te.
Authors’ addresses: P. Munch, Institute for Computational Mechanics, Department of Mechanical Engineering, Technical
University of Munich, Boltzmannstr. 15, 85748 Garching b. München, Germany, Institute of Material Systems Modeling,
Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; email: munch@lnm.mw.tum.de; K. Kormann,
Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching b. München, Germany, Department of Mathemat-
ics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching b. München, Germany, Department of Information
Technology, Uppsala University, Box 337, 75105 Uppsala, Sweden; email: katharina.kormann@ipp.mpg.de; M. Kronbichler,
Institute for Computational Mechanics, Department of Mechanical Engineering, Technical University of Munich, Boltz-
mannstr. 15, 85748 Garching b. München, Germany, Department of Information Technology, Uppsala University, Box 337,
75105 Uppsala, Sweden; email: kronbichler@lnm.mw.tum.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0098-3500/2021/09-ART33 $15.00
https://doi.org/10.1145/3469720

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:2 P. Munch et al.

Additional Key Words and Phrases: Matrix-free operator evaluation, discontinuous Galerkin methods, high-
dimensional, high-order, Vlasov–Poisson equation, MPI-3.0 shared memory

ACM Reference format:
Peter Munch, Katharina Kormann, and Martin Kronbichler. 2021. hyper.deal: An Efficient, Matrix-free Finite-
element Library for High-dimensional Partial Differential Equations. ACM Trans. Math. Softw. 47, 4, Article 33
(September 2021), 34 pages.
https://doi.org/10.1145/3469720

1 INTRODUCTION
Three-dimensional (3D) problems are today solved in great detail up to supercomputer scale
with codes relying on domain decomposition. With the increase in computational power and the
advance in algorithms, also the solution of higher-dimensional problems comes within the realm of
the possible. With this contribution, we target moderately high-dimensional (≤six-dimensional
(6D)) problems with complex geometry requirements in some of the dimensions. Our primary
target are kinetic equations that describe the evolution of a distribution function in phase space.
Such Boltzmann-type equations are for instance used in the modeling of magnetic confinement
fusion, where the evolution of a plasma is described by a distribution function that evolves accord-
ing to the Vlasov equation coupled to a system of Maxwell’s equations for its self-consistent fields.
Other areas of the application of phase space are, e.g., cosmic microwave background radiation or
magnetic reconnection in the Earth’s magnetosphere.

In phase space applications, there are two distinct sets of variables, configuration space and
velocity space, with the distribution function nonlinearly coupled to additional equations in the
configuration space. Especially in configuration space, the domain can be geometrically complex
(e.g., torus-like shapes as in the case of tokamak and stellarator fusion reactors), necessitating a
flexible description of unstructured meshes as is commonly provided by finite-element method
(FEM) libraries for grids in up to three dimensions. In the fusion community, the focus has shifted
from simulations of the core to simulations of the edge and scrape-off layer, where the geometry
of the problem gets more involved and density profiles get less homogeneous.

With the library hyper.deal, we are targeting phase-space simulation with complex geometry
requirements in either dimension: two separate possibly complex meshes describing configuration
space and velocity space are defined based on the capabilities of a “low-dimensional” finite-element
library, in our case the library deal.II [4, 5], and combined by taking their tensor product on the
fly. The equations we have in mind are advection-dominated, which is why we mostly focus on
the discretization of the advection equation in this article.

The presented concept is not limited to the description of the phase space. Possible applications
of a high-dimensional FEM library, like hyper.deal, could for instance include 3D problems that
involve a low-dimensional parameter space or low-dimensional Fokker–Planck-type equations,
e.g., the Black–Scholes equation for option pricing in mathematical finance.

1.1 Related Work
While the solution of partial differential equations (PDEs) on complex domains in up to three
dimensions is a well-studied problem, PDEs on complex domains in dimensions higher than three
are not tackled by generic FEM libraries to date. Some libraries have started to extend their ca-
pabilities to higher dimensions on structured grids. An example is the YaspGrid module of the
finite-element library DUNE, which implements structured grids in arbitrary dimensions [8]. In [37],
Helmholtz equations on adaptive structured grids up to d = 4 are studied. Higher-dimensional

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:3

problems are also solved based on sparse grids [17] or low-rank tensors [6]. However, these
techniques require a certain low-rank structure of the solution. In the plasma community, some
specialized codes exist that target gyrokinetic or kinetic equations. The Gekyll code [18] is a
discontinuous Galerkin (DG) solver for plasma physics applications, and a fully kinetic version
for Cartesian grids was presented in [22]. The authors use higher-order serendipity elements to
reduce the number of degrees of freedom (DoF).

The specifics of domain decomposition in higher dimensions have only been studied recently.
In [27], a 6D domain decomposition for a semi-Lagrangian solver on a Cartesian grid of the Vlasov–
Poisson system was investigated and the high demands on memory transfer between neighboring
processes due to the increased surface-to-volume ratio with increasing dimensionality were high-
lighted. The parallelization of a similar algorithm has also been addressed in [42]. However, the
domain decomposition is limited to configuration space in that work, which poses a strong limit
to the scalability of the implementation.

The most widespread algorithm for solving problems in high-dimensional phase space is a solu-
tion based on the particle-in-cell method. While this method scales very well to high dimensions
and features automatic adaptivity in velocity space, it suffers from inherent noise. Grid-based codes,
as proposed in this work, may provide a promising alternative, as discussed, e.g., in [15].

1.2 Our Contribution
This work shows a way to extend a low-dimensional general-purpose high-order matrix-free FEM
library to high dimensions. We discuss how to cope with possible performance deteriorations due
to the “curse of dimensionality” and present special-purpose concepts exploiting the structure of
the phase space. In particular, we show how to create a high-dimensional triangulation by taking
the tensor product of possibly unstructured partitioned triangulations from a low-dimensional
FEM library. This way to construct a triangulation enables us to re-use information related to the
low-dimensional finite-element space, quadrature, and mapping and to combine the information
on the fly.

We evaluate cell and face integrals with a matrix-free approach, using highly-optimized sum-
factorization kernels: this involves loading the portion of the solution vector describing the ele-
ment unknowns and computing derived quantities such as values or gradients at the quadrature
points. We have investigated different sequences to loop over cells and faces and show the ad-
vantage of looping over all cells and processing in direct succession all 2d faces of a cell in an
element-centric manner (ECL). In regard to parallelization, we discuss the usage of explicit
SIMD vectorization over multiple elements, domain decomposition based on the domain decom-
position of the low-dimensional triangulations, and shared-memory parallelization using MPI-3.0
features, all taking hardware characteristics into account.

The concepts described in this work have been implemented and are available under the
LGPL 3.0 license as the library hyper.deal hosted at https://github.com/hyperdeal/hyperdeal. It
extends, as an example, the open-source FEM library deal.II [4] to high dimensions. Analyses of
both the node-level performance and strong/weak scaling conducted for this library confirm the
suitability of the proposed concepts for solving partial differential equations in high dimensions.

The remainder of this work is organized as follows. In Section 2, we introduce the model prob-
lem equation and discretize it with a skew-symmetric DG approach. Section 3 introduces the con-
cept of a tensor product of partitioned low-dimensional meshes and details its implementation for
phase space. In Section 4, we describe a shared-memory vector based on MPI-3.0, which keeps the
memory overhead due to ghost regions to a minimum without the requirement to add a second
parallelization concept. Section 5 presents performance results for the advection equation, con-
firming the efficiency of the design decisions made during the implementation. Section 6 explains

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:4 P. Munch et al.

how hyper.deal can efficiently be combined with a deal.II-based Poisson solver and shows
scaling results for a benchmark problem from plasma physics. Finally, Section 7 summarizes our
conclusions and points to further research directions.

2 DISCRETIZATION WITH DG METHODS
2.1 Model Problem
For the analysis of our algorithms and implementations, we consider the advection equation on
the d-dimensional domain Ω:

∂ f

∂t
+ ∇ · (�a(t , �x) f) = 0 on Ω × [0, tfinal], (1)

with �a(t , �x) being the time- and space-dependent advection coefficient. The system is closed by
an initial condition f (0, �x) and suitable boundary conditions. In the following, we concentrate on
periodic boundary conditions. We will discuss the Vlasov–Poisson equation in Section 6, where we
combine the advection solver from the library hyper.deal and a Poisson solver based on deal.II.

2.2 DG Discretization of the Advection Equation
High-order DG methods are attractive methods for solving hyperbolic partial differential equa-
tions like (1) due to their high accuracy in terms of dispersion and dissipation, while maintaining
geometric flexibility through unstructured grids [21]. The skew-symmetric DG discretization of
Equation (1) reads as follows [26]:

(
д,
∂ f

∂ t

)

Ω(e)

= (д,−β (�a · ∇f))Ω(e) + (∇д, (1 − β)�af)Ω(e) − 〈
д, �n · (�af)∗ − βu− (�n · �a)

〉
Γ(e) , (2)

with the element domain Ω(e) ,д the test function, and (�af)∗ being the numerical flux, like a central
(α = 0) or an upwind flux (α = 1):

(�af)∗ =
1
2

(
(f − + f +) (�n · �a) + (f − − f +) |�n · �a |) · α)

. (3)

The factor β controls the formulation of the flux: β = 1
2 represents the skew-symmetric version,

whereas β = 0 corresponds to the conservative DG method, see also [26]. Integration
∫

Ω
dΩ and

derivation∇ are not performed in the real space but in the reference space Ω(e)
0 and Γ(e)

0 and require
a mapping to the reference coordinates, i.e.,

∫
Ω

dΩ =
∫

Ω(e) |J | dΩ(e) and ∇ = J−T∇�ξ , where J
is the Jacobian matrix of the mapping from reference to real space and |J | its determinant.

To discretize this equation in space, we use a tensor product of one-dimensional (1D) nodal
polynomials with nodes in the Gauss–Lobatto points. These nodal polynomials are chosen to en-
sure minimal data access on faces [39]. The integrals are evaluated numerically by weighted sums.
We consider both the usual Gauss(–Legendre) quadrature rules and the integration directly in the
Gauss–Lobatto points without the need for interpolation (collocation setup [13]). The resulting
semi-discrete system has the following form:

M ∂
�f

∂t
= A (�f , t) ↔ ∂ �f

∂t
=M−1A (�f , t), (4)

where �f is the vector containing the coefficients for the polynomial approximation of f ,M the
mass matrix, andA the discrete advection operator. This system of ordinary differential equations
can be solved with classical time integration schemes, such as explicit Runge–Kutta methods. They
require the right-hand sideM−1A (�f , t) to be evaluated efficiently. The particular structure of the
mass matrix M should be noted: it is diagonal in the collocation case and block-diagonal with

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:5

Table 1. Estimated Working Set of Different Stages of a Matrix-free Evaluation of the
Advection Operator for ECL with Shape Functions of Polynomial Degree k and

nq Quadrature Points in Each Direction

Stage Working set
(1) Sum factorization > max

(
(k + 1)d , nd

q

)

(2) Derived quantities > (d + 1) · nd
q

(3) Flux computation � (k + 1)d + 2 · d · (k + 1)d−1

(1) Includes both the source and the destination element vector; (2) includes the buffers needed during
testing and face evaluation; and (3) includes the DoFs of neighboring cells, needed during flux computation.

Table 2. Estimated Minimal Memory Consumption for D-dimensional
Advection Simulations with N DoFs on p Processes, nq = k + 1, 3 Vectors

(one with Ghost Values), and Pre-computed Mapping Data

Reason Times Amount
(1) Vector 3 · N

(2) Ghost DoFs (+buffer) + 2 · 2 · d · N d−1
d · p 1

d

(3) Mapping + d2 · N

blocks equal to the number of unknowns per element in the case of the consistent Gauss quadra-
ture. For two-dimensional (2D) and 3D high-order DG methods, efficient matrix-free operator
evaluations for the individual operatorsA [29, 30] andM−1 [32] as well as for the merged operator
M−1A are known in the context of fluid mechanics [28], structural mechanics [11], and acoustic
wave propagation [39]. DG methods and matrix-free operator evaluation kernels are part of many
low-dimensional general-purpose FEM libraries nowadays [3, 5, 24, 35, 40].

As the conclusion of this subsection, Table 1 gives a rough estimate of the working sets for the
matrix-free evaluation of the advection operator at different stages during cell and face integrals.
Table 2 shows the estimated minimal memory consumption of a complete simulation, considering
vectors including ghost values and precomputed mapping information. The number of ghost DoFs,
computed under the assumption of a partitioning of the domain into cubes, also gives an estimate
for the amount of data to be communicated.

2.3 Challenges
The finite-element formulations are dimension-agnostic. However, we face the following major
challenges tied to the lack of libraries designed for high dimensions. For example, the library
deal.II and its back end for handling distributed triangulations, p4est [10], are limited to di-
mensions up to three. These libraries can not easily be extended for high dimensions due to the
following specific difficulties:

(1) Significant memory overhead due to ghost values and mapping: In high dimensions,
solution vectors (at least 2–3 are needed, depending on the selected time discretization
scheme) are huge (O (N d

1D)), with N1D the number of DoFs in each direction, necessary to
achieve the required resolution. Also the ghost values and the mapping have significant
memory requirements in high dimensions: the evaluation of the advection cell integral on
complex geometries needs among other things the Jacobian matrix of size O (d2) at each
quadrature point. If precomputed, this implies an at least 36-fold memory consumption
of the scalar solution vector in 6D. For high-dimensional problems, this is not feasible
as only little memory would remain for the actual solution vectors and only problems

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:6 P. Munch et al.

with significantly smaller resolutions could be solved. Even if one would decide not to
pre-compute the mapping information, one would need to store the coordinate of each
vertex O (d), what might also already require too much memory, and to solve for the
Jacobian J ∈ Rd×d at each quadrature point, which is a O (d3) operation.

(2) Increased ghost-value exchange due to increased surface-to-volume ratio: The
communication amount scales with 2 · d · N (d−1)/d · p1/d for a hypercube-shaped partition
(cf. Table 2). According to [30], the MPI ghost-value exchange already leads to a noticeable
share of time in purely MPI-parallelized applications (30% for 3D Laplacian) in comparison
to the highly efficient matrix-free operator evaluations if computations are performed on a
single compute node for 3D problems. For high dimensions, the situation is even worse: an
estimation with d = 6, N = 1012, p = 1, 024 ·48 (1,024 compute nodes with 48 processes each)
gives that the size of the ghost values is at least 72% of the size of the actual solution vector.

(3) Decreased efficiency of the operator evaluation due to working sets exceeding the
cache capacities: The working set of a cell with shape functions of polynomial degree k
and nq quadrature points in each direction is at least O (max((k + 1)d ,nd

q)) (cf. Table 1) so
that for high order and/or dimension the data eventually drops out of the cache during each
sum-factorization sweep of one cell. This can lead to a significant drop in performance once
the data has to be streamed from the slow main memory.

This work shows how these problems can be mitigated by certain design choices: We address
problem (1) by restricting ourselves to the tensor product of two grids in 1D–3D. This reduces the
size of the mapping data and makes it possible to reuse much of the infrastructure available in a
low-dimensional library, such as deal.II. We will describe in the next section how such a tensor
product can be formed. Problem (2) demonstrates that it is essential to exploit shared-memory
parallelism particularly in high dimensions. For the given example, the size of ghost values could
be halved to 37% if all 48 processes on a compute node shared their locally owned values. There-
fore, we propose a novel shared-memory implementation of finite-element-type vectors, which is
based on MPI-3.0. To mitigate problem (3), we try to minimize the number of cache misses due
to increased working-set sizes by reorganizing the loops. To reduce the working set with cross-
element vectorization, we also allow to use narrower SIMD registers containing data from fewer
elements than the given instruction-set extensions allow. For example, we use AVX2 or SSE2 in-
stead of AVX-512, or by working directly with doubles and relying on auto-optimization of the
compiler. We defer the investigation of explicit vectorization within elements to future work.

3 HYPER.DEAL: A TENSOR PRODUCT OF TWO MESHES
The main idea is to combine two meshes of a low-dimensional general-purpose finite-element
library to solve problems in up to six dimensions. We therefore work with a computational domain
defined as a tensor product of two domains Ω := Ω�x ⊗ Ω�v . Since our sample application is an
advection equation in phase space, separating the meshes in configuration space and in velocity
space is natural. As a consequence, we use the indices �x and �v for the two parts of the dimensions.
The boundary of the high-dimensional domain is then described by Γ := (Γ�x ⊗ Ω�v) ∪ (Ω�x ⊗ Γ�v).

The concept of obtaining higher-dimensional triangulations by taking the tensor product of low-
dimensional triangulations is generic and could in principle be built upon any general-purpose
FEM library, such as MFEM [3], DUNE [12], FEniCS [2], or Firedrake [9, 40]. Our description
is, however, specialized to the implementation in hyper.deal that is constructed on top of the
deal.II library. Also, we use some of the naming conventions from the deal.II project. In Sub-
section 3.6, we list requirements a FEM library needs to fulfill to be extensible.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:7

ALGORITHM 1: Element-centric Loop
/* loop over all cells (cell pairs) */

1 foreach (cx , cv) ∈ C�x × C�v do
2 process_cell(cx , cv)

/* loop over all x-faces (face-cell pairs) */

3 for 0 ≤ i < 2 · dx do
4 process_face(face(cx , i), cv); /* face(c, i) returns the i-th face of the cell c */

/* loop over all v-faces (cell-face pairs) */

5 for 0 ≤ i < 2 · dv do
6 process_face(cx , face(cv , i))

For a tensor-product domain, the discretized advection equation (2) can be reformulated and
simplified for the phase space. We can exploit the fact that the Jacobian matrix J is a block-
diagonal matrix in phase space,

J =
(J�x 0

0 J�v

)
, (5)

with the blocks being the respective matrices of the �x-space and the �v-space. Hence, the inverse
J−1 is the inverse of each of its blocks. Furthermore, face integrals over the faces in phase space
Γ(e) = (Γ(e)

�x ⊗ Ω(e)

�v) ∪ (Ω(e)

�x ⊗ Γ(e)

�v) can be split into integration over �x-space faces Γ(e)

�x ⊗ Ω(e)

�v and
integration over �v-space faces Ω(e)

�x ⊗ Γ(e)

�v . The following relation holds for �x-space faces: due to
�n� = (�n�x , 0) for �x-space faces, �n · �a = �n�x · �a�x . Analogously, �n · �a = �n�v · �a�v is true for �v-space faces.
Hence, the specialization of Equation (2) solved by hyper.deal is:
(
д,
∂ f

∂ t

)

Ω(e)

=

(
д,−β

(
�a�xJ−1

�x
�a�vJ−1

�v

)
∇ξ f

)

Ω(e)

+

(
∇ξд,

(J−1
�x �a�x
J−1
�v �a�v

)
(1 − β) f

)

Ω(e)

(6)

+
(
д, �n�x · (�a�x f)∗ − β f − (�n�x · �a�x)

)
Γ

(e)

�x ⊗Ω
(e)

�v
+

(
д, �n�v · (�a�v f)∗ − β f − (�n�v · �a�v)

)
Ω

(e)

�x ⊗Γ
(e)

�v
.

We proceed with explaining practical implementation details of our proposed approach.

3.1 Triangulation
Naturally, both domains Ω�x and Ω�v can be meshed separately. As a consequence, the final trian-
gulation results from the tensor product of the two triangulations T�x and T�v , which might come
from a low-dimensional library (visualized in Figure 1),

T := T�x ⊗ T�v . (7)

In this context, cells C, inner faces I, and boundary faces B are defined as

C := C�x ⊗ C�v , I := (I�x ⊗ C�v) ∪ (C�x ⊗ I�v), B := (B�x ⊗ C�v) ∪ (C�x ⊗ B�v), (8)

where C�x/�v , I�x/�v , and B�x/�v are the collection of cells, inner faces, and boundary faces of the low-
dimensional triangulations Tx or Tv . With this concept, we never need to explicitly construct the
high-dimensional triangulation T , but can extract the relevant information on the fly. We simply
loop over all possible cell-cell and cell-face pairs in the form of nested loops. Algorithms 1–2
show two possible ways to loop over all high-dimensional cells and faces. While “element-centric
loops” (ECL) loop over all cells and process all 2d faces of a cell in direct succession, involving
only the test functions of the respective cell (i.e., visit interior faces twice), “face-centric loops”

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:8 P. Munch et al.

Fig. 1. On-the-fly mesh generation of a high-dimensional distributed triangulation (right) by taking the ten-
sor product of two low-dimensional triangulations (left) from a low-dimensional library (for a hypothetical
setup of 24 partitions and of a 6×4 partitioning of the 4D space). Cells are ordered lexicographically within
a process (as are the processes themselves), leading to the depicted global enumeration of the cells.

Fig. 2. Local view of an arbitrary process for the hypothetical setup of Figure 1 (here: process 10). Local cells
L10 result as tensor product of local cells from each low-dimensional triangulation and ghost cells G10 as
tensor product of one local and one ghost cell.

ALGORITHM 2: Face-centric Loop (Boundary Faces not Shown)
/* loop over all cells (cell pairs) */

1 foreach c ∈ C�x × C�v do
2 process_cell(c)
/* loop over all x-faces (face-cell pairs) */

3 foreach f ∈ I�x × C�v do
4 process_face(f)
/* loop over all v-faces (cell-face pairs) */

5 foreach f ∈ C�x × I�v do
6 process_face(f)

(FCL) visit all faces only once in a separate loop (with test functions from both sides of an interior
face).

The way we create the high-dimensional triangulation restricts the possibilities of mesh refine-
ment to the two spaces separately from each other. We defer investigations on how to allow local
refinement on a part of the tensor product to future work.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:9

Fig. 3. Four MPI communicators (constructed from MPI_COMM_WORLD with 26 processes and shared-memory
domains of size 4) used in hyper.deal for the hypothetical setup of Figure 1: global_comm collects all non-
empty partitions; row_/column_comm collects processes owning the same partitions of Tv /Tx ; sm_comm col-
lects processes on the same shared-memory domain.

3.2 Domain Decomposition
We split up the low-dimensional triangulations T�x and T�v independently into p�x and p�v partitions
with

T�x =
⊎

0≤i<p�x

T i
�x and T�v =

⊎

0≤j<p�v

T j
�v , (9)

and a halo of ghost cells. Ghost faces are shared by locally-owned cells and ghost cells. We will
use the terms “ghost cell” and “ghost face” interchangeably, although we only allocate memory for
the DoFs on the faces.

The partition of the phase space belonging to rank r (i, j) is constructed by T r (i, j) := T i
�x ⊗ T

j
�v ,

where ranks are enumerated lexicographically according to r (i, j) := j · p�x + i with the �x-rank i
being the fastest running index. As a consequence, a quasi-Cartesian partitioning is obtained (see
Figure 1). Figure 2 illustrates the neighborhood relations within the tensor product grid

As a consequence, a quasi-Cartesian partitioning is obtained (see Figure 1). Note that it might
be advantageous in some cases not to use the full number of processes in order to get a more sym-
metric decomposition (cf. Figure 3). This is achieved by a subcommunicator of MPI_COMM_WORLD,
which we will call global_comm(unicator) in the following.

The following relationship holds:

T�x ⊗ T j
�v =

⊎

f (i, j)/n�x=j

T f (i, j) and T i
�x ⊗ T�v =

⊎

f (i, j)%n�x=i

T f (i, j), (10)

so that parallel reduction to distributed Ω�x -space and to distributed Ω�v -space becomes a collec-
tive communication of subsets of processes. This is important in mathematical operations like∫

dΩ�x and
∫

dΩ�v , hence we make the subsets of processes available via the MPI communicators
column_comm and row_comm similarly as in distributed matrix-matrix multiplication implementa-
tions [43].

We enumerate cells within a subdomain lexicographically to get a global numbering, as depicted
in Figure 1. This enables us to determine a globally unique cell ID of locally owned cells and of
ghost cells by querying the low-dimensional triangulation cells for their IDs and ranks without
the need for communication.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:10 P. Munch et al.

Fig. 4. Renumbering of ranks in the global communicator (via MPI_Comm_split) for a hypothetical setup of
26 ranks in MPI_COMM_WORLD and a 6 × 4 partition, processes are grouped in 2 × 2 blocks, which are ordered
along a z-curve. Based on this new global communicator, the partitioning, as described in Subsection 3.2, is ap-
plied. A quasi-Cartesian partitioning with a better data locality for the shared-memory domains is obtained.

Placing ranks according to ⌊
r (i, j)/pnode

⌋ onto the same compute node (with pnode being the
number of processes per node) leads to striped partitioning (see the colors of the blocks in Figure 3).
This results in a bad shape of the union of subpartitions belonging to the same compute node, lead-
ing to decreased benefit of shared memory. In order to improve the placing of subpartitions onto
the compute nodes without having to change the function r , we block within a Cartesian virtual
topology (Figure 4), e.g., by 48 process blocks with 8 processes in �x-space and with 6 processes in
�v-space. Compute nodes are ordered along a z-curve.

As a final remark, it should be emphasized that the presented partitioning approach delivers
good results regarding communication amount and communication pattern if the low-dimensional
triangulations T�x and T�v have been partitioned well by the underlying low-dimensional library.
Depending on the given mesh, a space-filling curve approach [7, 10, 44] or a graph-based approach
[20, 23] might be beneficial for this. Nevertheless, it should be noted that, generally, PDEs with
surface data exchange become increasingly heavier on communication as the dimension increases,
including a significant amount of inter-node communication even for an optimal communication
layout.

3.3 Elements, DoFs, Quadrature, and Mapping
On each element of the mesh, we use d-dimensional tensor-product shape functions of polynomial
degree k , based on Gauss-Lobatto support points,

Pd
k = P1

k ⊗ . . . ⊗ P1
k︸������������︷︷������������︸

×d

. (11)

The unknowns are discontinuous across cells with (k + 1)d unknowns per cell for a scalar field f .
The total number of DoFs for |C| cells is

N = |C| · (k + 1)d . (12)
In DG, the unknowns are coupled via fluxes. This necessitates the access to the DoFs of neighboring
cells. The dependency region for computing all contributions of a cell with a nodal basis and nodes
on the faces is

(k + 1)d
︸���︷︷���︸

cell

+ 2 · d · (k + 1)d−1
︸��������������︷︷��������������︸

faces

. (13)

This expression includes all unknowns of the cell and the unknowns residing on faces of the 2 · d
neighboring cells, as shown in Figure 5. The dependency region influences how much data should
be cached and how much data has to be communicated.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:11

Fig. 5. Visualization of the five steps of a matrix-free cell-integral evaluation for polynomial degree k = 2
and number of quadrature points nq = 3.

Table 3. Comparison of the Memory Consumption (in Doubles) of the Mapping Data
(Per Quadrature Point) Due to the Jacobian Matrices if the Phase-space Structure is

Exploited (J�x and J�v) and if the Phase-space Structure is not Exploited (J)

J�x and J�v J Example: k = 3, d = 6

Jacobian:
(k + 1)d�x · d2

�x + (k + 1)d�v · d2
�v

(k + 1)d�x+d�v
(d�x + d�v)2 0.28� 36

Similar to the shape functions, quadrature rules are expressed as a tensor product of 1D quad-
rature rules (with nq points). For the cell integral, we get

Qd
nq
= Q1

nq
⊗ . . . ⊗ Q1

nq︸���������������︷︷���������������︸
×d

, (14)

with the evaluation points given as �xd
q = (x1

q1 , . . . ,x
1
qd

)T and the quadrature weights as wd
q =

w1
q1 · . . . · w1

qd
. We support the Gauss–Legendre family of quadrature rules (Figure 5), which are

exact for polynomials of degree 2nq − 1 and require an interpolation operation from the Gauss–
Lobatto to the Gauss–Legendre points. As an alternative, we support the Gauss–Lobatto family of
quadrature rules, which allow a collocation setup, i.e, do not require a basis change. However, they
are only exact for polynomials of degree 2nq − 3.

To be able to evaluate Equation (6), the Jacobian matrices J�x ∈ Rd�x×d�x and J�v ∈ Rd�v×d�v and
their determinants are needed at each cell quadrature point. At face quadrature points, we require
the Jacobian determinant and the face normals �n�x ∈ Rd�x and �n�v ∈ Rd�v . If these quantities are
precomputed once during initialization, this leads, as shown in Table 3, to an additional memory
consumption per unknown, which is significantly less than if the tensor-product structure would
not be exploited.

For affine meshes, only one set of mapping quantities has to be precomputed and cached, since
they are the same for all quadrature points. As we are considering complex non-affine meshes
in this article, we will use simulations with these optimization techniques specific for affine or
Cartesian grid only to quantify the quality of our implementation.

3.4 Matrix-free Operator Evaluation
Cell and face integrals in Equation (6) can be efficiently evaluated via the effect of the operator on
element vectors on the fly. For example, for cell integrals the following five steps are performed:

(1) gather (k + 1)d cell-local values fi ;
(2) interpolate values and gradients to quadrature points fq (if no collocation setup is used);

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:12 P. Munch et al.

(3) perform the operations (−β �aq J−1
q ∇�ξ fq + J−1

q �aq (1 − β) fq) · wq |Jq | at each quadrature
point;

(4) test with the value and gradient of the shape functions; and
(5) write back the local contributions into the global vector.

The five steps are visualized in Figure 5.
The most efficient implementations of the basis change (from Gauss–Lobatto to Gauss–Legendre

points) perform a sequence of d 1D interpolation sweeps, utilizing the tensor-product form of the
shape functions in an even-odd decomposition fashion with (3+ 2 ·
((k − 1) · (k + 1)/2)�/(k − 1))
FLOPs/DoF (for k +1 = nq) [30]. This operation is known as sum factorization and has its origin in
the spectral-element community [13, 34, 36]. Similarly, the testing with the gradient of the shape
functions can be performed efficiently with 2d sweeps [30].

In the case of FCL, we perform the same five steps as in the case of cell integrals on the faces
in a separate loop. In contrast, ECL allows to perform some optimizations, although we visit each
face twice and, as a consequence, have to evaluate fluxes between neighboring cells twice for each
side of an interior face. For example, values already interpolated to the cell quadrature points
can be interpolated to a face with a single 1D sweep. Furthermore, entries in the solution vector
are written back to main memory exactly once in the case of ECL. This makes the algorithm
more cache-friendly. Moreover, no synchronization between threads is needed while accessing the
solution vector in the case of ECL, since each entry of the solution vector is accessed only exactly
once. This makes ECL particularly suitable for shared-memory parallelization, a key ingredient for
the reduction of communication. A further advantage of ECL is that the application of a cell-wise
implementation of the inverse mass matrix [32] can be merged into the application of the advection
operator, avoiding another access to the global solution vector. For a more detailed discussion on
ECL, see [30].

Algorithm 3 shows the pseudocode of a possible matrix-free merged advection and inverse-
mass-matrix operator evaluation in the context of ECL. Lines 3, 7, 9, 13, 15, and 19 are evaluated
with sum factorization. To reduce the working set, we do not compute all (d�x + d�v)-derivatives at
once, but first we compute the contributions from �x-space and then the contributions from �v-space.
One could further reduce the working set by loop blocking [30].

Since we loop over cell-cell and cell-face pairs, mapping information of the cells c�x and c�v as
well as of the faces f�x and f�v can be queried from the low-dimensional library independently and
combined on the fly. The separate cell IDs c�x and c�v only have to be combined when accessing the
solution vector, which is the only data structure set up for the whole high-dimensional space.

3.5 Implementation of Operator Evaluations with hyper.deal
The library hyper.deal provides classes that are built around deal.II classes and contain inter
alia utility functions needed in Algorithm 3. To enable a smooth start for users already famil-
iar with deal.II, we have chosen the same class and function names living in the namespace
hyperdeal. The relationship between classes in hyper.deal and classes in deal.II is visualized
in the UML diagram in Figure 6. The class hyperdeal::MatrixFree is responsible for looping
over cells (and faces) as well as for storing precomputed information related to shape functions
and precomputed quantities at the quadrature points. The classes hyperdeal::FEEvaluation
and hyperdeal::FEFaceEvaluation (not shown) include functions to read and write cell-/face-
local values from a global vector as well as operations at the quadrature points. As an exam-
ple, Figure 6 shows the implementation of the hyperdeal::FEEvaluation::submit_gradient()
method, which uses two instances of the deal.II class with the same name, one for �x- and one
for �v-space, for the evaluation of f (�u) = J−1

c,q |Jq |wq �u for �u ∈ Rd .

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:13

ALGORITHM 3: Element-centric loop for arbitrary operators and DG integration of a cell batch for
advection operator evaluation for vectorization over elements

/* loop over all cell pairs */
1 foreach c := (c�x , c�v) ∈ C�x × C�v do

/* step 1: gather values (Array of structs (AoS) → struct of arrays (SoA)) */

2 - gather local vector values u (c)
i on the cell from global input vector �u

/* step 2: apply advection cell contributions */

3 - interpolate local vector values �u (c) onto quadrature points, uc
h (�ξq) =

∑
i ϕiu (c)

i and compute gradients
∇�x uc

h (�ξq) in reference coordinate system
4 foreach quadrature index q = (q�x , q�v) do
5 - compute convective-term contribution

�bi = −β�a�x

(
x̂ (c�x) (�ξq�x), x̂ (c�v) (�ξq�v)

)
J−1

(c�x)
∇�ξ u (c)

h (�ξq) |Jq�x | |Jq�v |wq�x wq�v︸����������������������︷︷����������������������︸
“|J(q) |wq "

6 - prepare integrand on each quadrature point by computing
�tq = (1 − β)J−1

(c�x)
�a�x

(
x̂ (c�x) (�ξq�x), x̂ (c�v) (�ξq�v)

)
u (c)

h (�ξq) |Jq�x | |Jq�v |wq�x wq�v︸����������������������︷︷����������������������︸
“|J(q) |wq "

; /* buffer �b */

7 - evaluate local integrals by quadrature bi = bi +
(
∇�x ϕco

i , �c�x u (c)
h

)
Ω(e)
≈ bi +

∑
q ∇�x ϕco

i (�ξq) ·�tq

8 end
9 repeat lines 3-8 for v space

/* step 3: apply advection face contributions (loop over all 2d faces of Ωc) */
10 foreach f ∈ F(c) do
11 - interpolate values from cell array �u (c) to quadrature points of face
12 - if interior face, gather values from neighbor Ωe+ of current face
13 - interpolate u+ onto face quadrature points
14 - compute numerical flux and multiply by quadrature weights ; /* not shown here */
15 - evaluate local integrals related to cell c by quadrature and add into cell contribution bi
16 end

/* step 4: apply inverse mass matrix */
17 foreach quadrature index q = (q�x , q�v) do
18 - prepare integrand at each quadrature point by computing tq = bi w−1

q�x
w−1

q�v
19 - transformation from collocation space to the Gauss-Lobatto space used for vector storage:

y (c)
i =

∑
q ϕ̃iq ·�tq with ϕ̃iq = V−1

iq with Viq = ϕi (�ξq)

20 end
/* step 5: scatter values (SoA → AoS) */

21 - set all contributions of cell, �y (c) , into global result vector �y
22 end

We process a batch of vlen cells or faces in a “vectorization over elements” fashion. We do
not operate directly on the primitive types double/float but on structs built around intrinsic
instructions1, with each vector lane dedicated to a separate cell of mesh. The maximal number
of vector lanes depends on the given hardware; with AVX-512 instruction-set extension, as most
modern Intel-based processors have, 8 doubles (i.e., 8 cells in the context of our application) can
be processed by a single instruction.

Currently, we vectorize only over elements in �x-space, whereas the �v-space is not vectorized.
The reason is that the Vlasov–Maxwell and the Vlasov–Poisson models contain heavy operations

1For this purpose, deal.II provides the class struct dealii::VectorizedArray<Number, v_len>, where Number denotes
the underlying primitive type and v_len the number of lanes. The information is automatically translated to the right
instruction-set extension [29].

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:14 P. Munch et al.

Fig. 6. Class diagram of a part of the matrix-free infrastructure of hyper.deal. It presents how classes
from hyper.deal (namespace hyperdeal— highlighted in blue) and from deal.II (namespace dealii—
highlighted in yellow) relate to each other. Only the hyper.deal methods are shown that are relevant for
the evaluation of one term of the advection cell integral and the deal.II methods that are used in those.
The methods read_dof_values() and distribute_local_to_global() are, on the one hand, responsible
for gathering from and scattering to the solution vector as well as, on the other hand, for the transformation
from an array-of-struct format to a struct-of-array format, as needed by the integration routines, and for the
transformation back.

on the full phase space and on the �x-space, respectively, which benefit from vectorization over
�x . As a consequence, the data structures are already laid out correctly for an efficient matrix-free
solution of the lower-dimensional problem.

3.6 Requirements to a Low-dimensional Finite-element Library
As a conclusion of this section, we list the requirements on a low-dimensional finite-element li-
brary for the proposed concept:

(1) The low-dimensional triangulation T can be partitioned among a user-defined group of
processes. Besides locally owned cells Li , each process needs a halo of ghost cells.

(2) 1D scalar (discontinuous) Lagrange shape functions P1
k of polynomial degree k , based

on Gauss–Lobatto support points, and 1D quadrature rules with nq points are accessible.
Dimension-independent interpolation kernels based on sum factorization are available.

(3) The library has access to the mapping data, like J−T and |J | ×w both on cells and faces as
well as �n on faces. It is not relevant whether these quantities are pre-computed or recomputed
on the fly.

(4) It is beneficial if the library has the option to work on a batch of cells where the size of
the batch can be set arbitrarily. This implies that the needed data is already provided in a
vectorized fashion, which allows to skip an additional reshuffling step.

Note: The library hyper.deal uses data structures and functions of deal.II directly, making
it impossible to switch the backend library at this point. By introducing an intermediate layer, this
problem might be circumvented.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:15

4 PARALLELIZATION BY SHARED-MEMORY MPI
The parallelization of the library hyper.deal is purely MPI-based. MPI allows to program for dis-
tributed systems, which is crucial for solving high-dimensional problems due to their immense
memory requirements. A downside of a purely MPI-based code with one rank used per core is
that many data structures are created and updated multiple times on the same compute node, al-
though they could be shared. In FEM codes, it is widespread that ghost values filled by standard
MPI_(I)Send/MPI_(I)Recv reside in an additional section of the solution vector [29]. Depending
on the MPI implementation, these operations will be replaced by efficient alternatives, avoiding
additional copying and unexpected message buffers if the calling peers are on the same compute
node. Nevertheless, the allocation of additional memory, if main memory is scarce, might be unac-
ceptable.

Adding shared-memory libraries, like TBB and OpenMP, to an existing MPI program would al-
low to use shared memory; however, with the downside of manually annotating and parallelizing
all relevant loops. We propose a different approach to exploit shared memory. It is based on the
observation that the major time and memory benefit of using shared memory in a purely MPI-
parallelized FEM application comes from accessing the part of the solution vector owned by the
processes on the same compute node without the need to make explicit copies and buffering them
[30, 31]. This is why we propose a new vector class that uses MPI-3.0 features to allocate shared
memory and provides controlled access to it with an otherwise unchanged vector interface.

4.1 Shared-memory Vector
The MPI function MPI_WIN_ALLOCATE_SHARED() allocates contiguous and non-contiguous mem-
ory that is shared among all processes on the same compute node. To query the beginning of the
local array of each process, MPI provides the function MPI_WIN_SHARED_QUERY().

These functions form the basis of the new shared-memory modus of the vector class dealii::
LinearAlgebra::distributed::Vector and provide memory for the locally-owned unknowns
and for unknowns of ghost faces that are not owned by any process on the same compute node.
Furthermore, pointers to the arrays of the other processes are included so that with a basic pre-
processing step the address of each cell residing on the same compute node can be determined.
The appendix provides further implementation details of the allocation/deallocation process of
the shared memory in the vector class.

A natural way to access the solution vector is by specifying vector entry indices and the cell
ID for DoFs owned by a cell or by specifying a pair of a cell ID and a face number (< 2d) for DoF
owned by faces.

An interpretation layer also provides access to the values of the DoFs of the local and the ghost
cells: it returns pointers either to buffers or to the shared memory, depending on the cell type
(shared or remote). In this way, the user of the vector class gets the illusion of a pure MPI program,
since the new vector has to be added at a single place and only a few functions querying values from
the vector (e.g., FEEvaluation::read_dof_values() and ::distribute_local_to_global() in
Figure 6) oblivious to the user have to be specialized.

We provide two operation modes:
• In the buffered mode (see Figure 7(a)), memory is allocated also for ghost values owned

by the same compute node; these ghost values are updated directly via memcpy without an
intermediate step via MPI. This mode is necessary if ghost values are modified, as it takes
place in FCLs. It promises some performance benefit, since data packing/unpacking can be
skipped.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:16 P. Munch et al.

Fig. 7. Two hybrid ghost-value-update approaches for a hypothetical setup with two nodes, each with two
cores. Only the communication pattern of rank 2 is considered.

• The non-buffered mode (see Figure 7(b)) does not allocate any redundant memory for ghost
values owned by the same compute node. This mode works perfectly with ECL, since it is
by design free of race conditions.

4.2 Overlapping Communication and Computation
Finally, we discuss an appropriate integration of the new shared-memory vector into ECL-based
operator-evaluation algorithms (see Algorithm 3). For this purpose, we categorize cells owned by
a process into the following subpartitions Si :

(1) cells with only locally-owned neighbors;
(2) cells with locally-owned neighbors or neighbors shared within the same shared-memory

domain; and
(3) remaining cells, i.e., cells with at least one remote neighbor.
Since S1 does not depend on any data possessed by other processes, the communication for

updating the ghost values and the computation can be overlapped. We furthermore split up the
communication into two steps, one for shared data and one for remote data exchange.

The shared data exchange step consists of the notification of relevant processes on the same
shared-memory domain (start), on one hand, and of the waiting until the needed data of relevant
processes on the same shared-memory domain is ready (finish), on the other hand. In the case of
the buffering mode, the latter substep also comprises the copying of the data into buffers.

By merging S2 and S3, one recovers the standard overlapping communication and computation
that does not exploit shared memory. By merging all three subpartitions, the overlapping can be
completely turned off.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:17

One could skip S3 and instead loop over all faces with remote neighbors in a second loop. How-
ever, this would involve a second write access to the solution vector during the face integrals what
we intentionally try to avoid.

5 PERFORMANCE ANALYSIS FOR HIGH-DIMENSIONAL SCALAR TRANSPORT
In the following section, we show results of the solution of a high-dimensional scalar transport
problem. These results confirm the suitability of the underlying concepts and the implementation
of the library hyper.deal for high orders and high dimensions. Both node-level performance
and parallel scalability are shown, including strong and weak scaling analyses with up to 147,456
processes on 3,072 compute nodes.

5.1 Experimental Setup and Performance Metrics
The setup of the simulations is as follows. We consider the computational domains Ω�x =[0, 1]d�x

and Ω�v =[0, 1]d�v with the following decomposition of the dimensions d = d�x + d�v : 2 = 1 + 1,
3 = 2 + 1, 4 = 2 + 2, 5 = 3 + 2, 6 = 3 + 3. The computational domains are initially meshed
separately with subdivided d�x /d�v -dimensional hyperrectangles with (2l1 , . . . , 2ld�x) ∈ Nd�x and
(2ld�x +1 , . . . , 2ld�x +d�v) ∈ Nd�v hexahedral elements in each direction and with a difference in the
mesh size of at most two, i.e., meshed for four-dimensional (4D) space from the mesh sequence
(l1, l2, l3, l4): (1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1, 1), (2, 2, 2, 1), (2, 2, 2, 2), (3, 2, 2, 2). The number of ele-
ments is selected for each “dimension d / polynomial degree k” configuration in such a way that
the solution vectors do not fit into the cache. To obtain unique Jacobian matrices at each quadra-
ture point and to prevent algorithms explicitly designed for affine meshes, we deform the Cartesian
meshes slightly. The velocity �a in Equation (1) is set constant and uniform over the whole domain.

The measurement data have been gathered either with user-defined timers or with the help of
the script likwid-mpirun from the LIKWID suite and with suitable in-code LIKWID API annota-
tions [38, 41]. The following metrics are used to quantify the quality of the implementations:
• throughput: processed DoFs per time unit

throughput = processed DoFs
time

Equation (12)
=

|C| · (k + 1)d

time (15)

(In Subsections 5.2–5.4, we consider the throughput for the application of the advection
operator, while a single Runge–Kutta stage, i.e., the evaluation of the advection operator
plus vector updates, is considered in Subsection 5.5.);
• performance: maximum number of floating-point operations per second;
• data volume: the amount of data transferred within the memory hierarchy (we consider

the transfer between the L1-, L2-, and L3-caches as well as the main memory); and
• bandwidth: data volume transferred between the levels in the memory hierarchy per time.

Our main objective is to decrease the time-to-solution, which, for a fixed discretization, corre-
sponds to increasing the throughput. The measured quantities “performance,” “data volume,” and
“bandwidth” are useful, since they show how well the given hardware is utilized and how much
additional work or memory transfer is performed compared to the theoretical requirements of the
mathematical algorithm.

High-order and high-dimensional problems have a large working set (k + 1)d . The evaluation
of this expression for 2 ≤ k ≤ 5 and 2 ≤ d ≤ 6 is presented in Table 4. The k-d configurations
with working-set size of vlen · (k + 1)d < L1, fitting into the L1 cache, are expected to show
good performance; the k-d configurations with working-set size of L1 ≤ vlen · (k + 1)d < L2 are

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:18 P. Munch et al.

Table 4. DoFs Per Cell: (k + 1)d

k 2D 3D 4D 5D 6D
2 9 27 81 243 729
3 16 64 256 1,024 4,096
4 25 125 625 3,125 15,625
5 36 216 1,296 7,776 46,656

The k-d configurations with working-set size vl en · (k + 1)d < L1 are highlighted
in italics and configurations with working-set size L1 ≤ vl en · (k + 1)d < L2 in bold.

Table 5. Specification of the Hardware System used for Evaluation with Turbo Mode Enabled

Intel Skylake Xeon Platinum 8174
Cores 2 × 24
Frequency base (max AVX-512 frequency) 2.7 GHz (2.7 GHz)
SIMD width 512 bit
Arithmetic peak (dgemm performance) 4147 GFLOP/s (3318 GFLOP/s)
Memory interface DDR4-2666, 12 channels
STREAM memory bandwidth 205 GB/s
Empirical machine balance 14.3 FLOP/Byte
L1-/L2-/L3-/MEM size 32kB/1MB/66MB (shared)/96GB (shared)
compiler + compiler flags g++, version 9.1.0, -O3 -funroll-loops -march=skylake-avx512

Memory bandwidth is according to the STREAM triad benchmark (optimized variant without read for ownership
transfer involving two reads and one write), and GFLOP/s are based on the theoretical maximum at the AVX-512
frequency. The dgemm performance is measured for m = n = k = 12,000 with Intel MKL 18.0.2. We measured a
frequency of 2.5 GHz with AVX-512 dense code for the current experiments. The empirical machine balance is
computed as the ratio of measured dgemm performance and STREAM bandwidth from RAM memory.

expected to be performance-critical, since each sum-factorization sweep might drop out of the
cache. The latter configurations are, however, the most relevant with regard to high-order and
high-dimensional problems.

All performance measurements have been conducted on the SuperMUC-NG supercomputer. Its
compute nodes have 2 sockets (each with 24 cores of Intel Xeon Skylake) and the AVX-512 ISA
extension so that 8 doubles can be processed per instruction. A detailed specification of the hard-
ware is given in Table 5. The parallel network is organized into islands of 792 compute nodes each.
The maximum network bandwidth per node within an island is 100 GBit/s = 12.5 GB/s2 due to the
fat-tree network topology. Islands are connected via a pruned-tree network architecture (pruning
factor 1:4).

The library hyper.deal has been configured in the following way: all processes of a node are
grouped into blocks of the size of 48 = 8 × 6. All processes in these blocks share their values via
the shared-memory vector. The cells in low-dimensional triangulations are enumerated along a
Morton curve, which is equally distributed among the processes. We use the highest ISA extension
AVX-512 so that eight cells are processed at once. The Jacobian matrices and their determinants
are precomputed for �x- and �v-space and combined on the fly. The quadrature is based on the
Gauss-Legendre formula with nq = k + 1. The skew factor β is set to 0.5 such that the gradients
of the solution have to be computed at the cell quadrature points and the values have to be tested
by the gradient of the test functions. In the following, we refer to this configuration as “default
configuration.”

2https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:19

5.2 Cell-local Computation
This subsection analyzes the cell-local computation in the element-centric evaluation of the advec-
tion operator (see Algorithm 3) as a means to assess the caching efficiency of temporary arrays in
sum factorization with respect to the increasing number of sweeps and working-set sizes.

5.2.1 Cell Integrals. We first consider all steps in Algorithm 3 related to the cell integrals
(lines 2–9 and 17–21), skipping the loops over faces and ignoring the flux computation.

During the cell integrals, values are read from the global vector, a basis change to the Gauss–
Legendre quadrature points is performed (with d data sweeps for reading and d for writing), the
gradients at the quadrature points are computed (2d), the gradients obtained are multiplied with
the velocities (d), the values obtained are multiplied with the velocities at the quadrature points (2d)
and tested by the value and the gradient of the collocation functions (3d), the inverse mass matrix is
applied (2d), and finally the results are written back to the global vector. A total of 12d data sweeps
are necessary if reading and writing are counted separately. The working set of sum factorization
isvlen · (k+1)d1+d2 , and the working set of the intermediate values isvlen ·max(d1,d2) · (k+1)d1+d2 .
A comparison with hardware statistics shows that the working set of sum factorization exceeds
the size of the L1 cache for configurations k = 3 / d = 5 and k = 5 / d = 4 so that every data sweep
has to fetch the data from the L2 cache.

The theoretical considerations made above are supported by the measurement results in Figure 8,
which shows the data traffic between the memory hierarchy levels (data volume per DoF and
bandwidth), the floating-point operations per DoF, and the throughput for k = 3 and k = 5 for
2 ≤ d ≤ 6.

In Figure 8(a), one can observe that with increasing dimension the data traffic between the
memory hierarchy levels increases as the data volume and the corresponding bandwidth increase.
Beginning from the configurations mentioned above (k = 3 / d = 5 and k = 5 / d = 4), the data
have to be fetched from and written back to the L2 cache again during every sweep, resulting in
a data volume traffic between the L1 and L2 caches that linearly increases with the number of
sweeps. The constant offset of 22 double/DoF is mainly related to the access to the global solution
vector and to the mapping data. However, data have to be loaded from the L2 cache also for smaller
working-set sizes than the ones of the k-d configurations mentioned above; the main reason for
this is that the intermediate values do not fit into the cache any more.

For even higher dimensions, the L3 cache and the main memory have to be accessed during the
sweeps. While this operation is negligible for k = 3 (see Figure 8(d)), it is performance-limiting in
the case of k = 5: For k = 5 / d = 5, the bandwidth to the L1 cache is limited by the access to the
L2 cache (see Figure 8(b)); for k = 5 / d = 6, it is even limited by the main memory. In the latter
case, the caches are hardly utilized any more and the data have to be fetched from/written back
to main memory during every sweep, leading to a bandwidth close to the values measured for the
STREAM benchmark. This comes along with a significant performance drop.

Figure 8(c) also shows the number of floating-point operations performed per DoF, which in-
creases linearly with the dimension d—with higher polynomial degrees requiring more work. It is
clear that also the arithmetic intensity will increase linearly as long as the data stay in the cache
(see also Subsection 5.3).

5.2.2 Local Cell and Face Integrals. In this subsection, we consider all computation steps in Al-
gorithm 3, but ignore the data access to neighboring cells (line 12). This means that face values from
neighboring cells are not gathered and face buffers for exterior values are left unchanged. In this
way, we are able to demonstrate the effects of increased working sets (of both face buffers) and of
the increased number of sweeps. Additional sweeps have to be performed for interpolating values

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:20 P. Munch et al.

Fig. 8. Node-level analysis of the cell integrals of the advection operator in terms of data transfer, bandwith,
arithmetic operations, and throughput in two to six dimensions.

from the cell quadrature points to the quadrature points of the 2d faces as well as for interpolating
the values of the neighboring cells onto the quadrature points during the flux computation.

Figure 9 shows the data traffic between the memory hierarchy levels (data volume per DoF and
bandwidth), the floating-point operations per DoF, and the throughput for k = 3 and k = 5 for
2 ≤ d ≤ 6. In comparison to the results of the experiments that only consider the cell integrals in
Figure 8, the following observations can be made: as expected, the data volume transferred between
the cache levels (Figure 8(a) and 9(a)) and the number of floating-point operations approximately
double (Figure 8(c) and 9(c)). However, the configurations at which the traffic to the next cache
level increases have not changed, indicating that the increase in working set is not limiting the
performance here.

The doubling of the data volume to be transferred for k = 5 and high dimensions naturally
leads to half the throughput (see Figure 9(d)). In the case of k = 3, we can also observe a drop of
performance in high dimensions. Given that the memory transfer between the L1 and L2 caches
reaches 2,400 GB/s or around 22 bytes/cycle, we suspect that the data transfer between the L1 and
L2 caches is the main limit in this case. The memory transfer between the L2 and L3 caches is
about 550GB/s. This value is significantly less than that is observed for the cell-integral-only run,
resulting in the drop of the overall performance by 40% for high dimensions.

5.3 Full Advection Operator
This subsection considers the application of the full advection operator, as shown in Algorithm 3,
including the access to neighboring cells during the computation of the numerical flux. Figure 10

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:21

Fig. 9. Node-level analysis of the evaluation of the cell and face intergrals of the advection operator, ignoring
loads from neighboring cells.

presents the results of parameter studies of the dimension 2 ≤ d ≤ 6 for different polynomial
degrees 2 ≤ k ≤ 5.

Note that the number of DoF per cell, (k + 1)d , is utilized as x-axis. This is done because the
working-set size is a suitable indicator of the overall performance of the operator evaluation. Also
results taken from parameter studies of the polynomial degreek are comparable to results obtained
from parameter studies of the dimension d .

The following observations can be made in Figure 10: for working sets that fit into the L1 cache,
a higher polynomial degree leads to a higher throughput. For working sets exceeding the size of the
L1 cache and only fitting into the L2 cache, the throughput drops. In this region, the curves overlap
so that we conclude that the throughput is indeed a function of the working-set size ≈ (k + 1)d

and independent of the polynomial degree k and the dimension d individually.
Comparing these findings with the results presented in Subsections 5.2.1 and 5.2.2, an averaged

performance drop of 30% and 20%, respectively, can be observed (see Tables 6 and 7). Looking at
the results for high dimensions, it becomes clear that processing the faces is more expensive than
loading the actual values from the neighbors.

Figure 11 shows a roofline model [45] for k = 3 and k = 5. In this model, the measured perfor-
mance is plotted over the measured arithmetic intensity

(measured arithmetic intensity)i =
measured performance
(measured bandwidth)i

, (16)

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:22 P. Munch et al.

Fig. 10. Node-level analysis of the evaluation of the full advection operator in terms of data transfer, band-
width, arithmetic operations, and throughput in two to six dimensions. Dashed vertical lines show the limits
of the L1 and L2 caches for a hypothetical fully associative cache with optimal replacement policy.

with i ∈ {L1↔ L2, L2↔ L3, caches↔MEM}. We can compute the arithmetic intensity of each
level of memory hierarchy as we measure the necessary bandwidth with LIKWID. The diagram
confirms the observation made above: a high arithmetic intensity and, consequently, a high per-
formance can only be reached if the caches (L1 and L2) are utilized well. Once the working sets
get too large, the L1 and L2 caches are under-utilized, the arithmetic intensity on the other levels
drops and new hard (bandwidth) ceilings limit the maximal possible performance.

We point out that by selecting the skew-symmetric parameter β = 0.5, we need to compute
both the values and the gradients at the quadrature points as well as to test by the value and
the gradient of the test functions. Instead, by using a conservative formulation (β = 0.0) or a
convective formulation (β = 1.0), it is possible to skip either the computation of the gradients or
testing by the gradients, which leads to fewer sum-factorization sweeps and potentially decreases
the cache misses. Experiments indeed confirm this and show a speed-up of approximately 14% for
both β = 0.0 and β = 1.0.

We conclude this subsection by discussing the performance benefit of using the shared-memory
vector introduced in Section 4. We consider three different modi of the vector: (1) exploitation of no
shared-memory features (by setting the shared-memory group size to 1 so that the implementation
falls back to pure MPI-2.0 features); (2) buffered mode; and (3) non-buffered mode. The results
are summarized in Table 8. Exploiting the shared memory explicitly is beneficial in cases 2 and 3.
While in the case of buffering we observe a speed-up of 20%, we even see a speed-up of 30% when
not buffering.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:23

Table 6. Relative Performance Due to Flux
Computation (Ratio Fig. 9–8)

k/d 2 3 4 5 6
3 73% 74% 62% 61% 59%
5 78% 78% 64% 88% 66%

Table 7. Relative Performance Due to Access to the
Values of Neighboring Cells (Ratio Fig. 10–9)

k/d 2 3 4 5 6
3 84% 78% 83% 84% 72%
5 88% 81% 82% 71% 88%

Fig. 11. Roofline model of the application of the full
advection operator for k = 3/5.

Table 8. Evaluation of the Shared-memory Vector for Different Configurations on
a Single Compute Node with 48 Processes

MPI-2.0 MPI-3.0 w. buffering MPI-3.0 w.o. buffering
Throughput [GDoFs/sec] 1.02 1.23 1.33

In the simulation, there were accumulated 2.1G locally-owned DoFs and 1.6G ghost DoFs for a 6D problem
with k = 3. Communication and computation has been overlapped in all cases.

5.4 Alternative Implementations
In the following subsection, we compare the performance of the default configuration of the library
hyper.deal (tensor product of mappings, ECL, Gauss quadrature, vectorization over elements
with the highest ISA extension for vectorization—see also Subsection 5.1) with the performance of
alternative algorithms and/or configurations.

The library hyper.deal has been developed to be able to compute efficiently on complex ge-
ometries both in geometric and velocity space. The upper limit of the performance of the tensor-
product approach is given by the consideration of the tensor product of two Cartesian grids, which
leads to the same constant diagonal Jacobian matrix at all quadrature points. As a lower limit, one
can consider the case that each quadrature point has a unique Jacobian of size d × d . Figure 12(a)
shows that the behavior of the default tensor-product setup is similar to that of a pure Cartesian
grid simulation with only a small averaged performance penalty of approximately 13%. This obser-
vation matches our expectations expressed in Subsection 3.3 and means that in high dimensions,
the evaluation of curved meshes in the tensor-product factors is essentially for free, compared to
storing the full Jacobian matrices.

Figure 12(b) compares ECL with FCL and shows the clear advantage of the former. We have
neither implemented any advanced blocking schemes for ECL or FCL nor are we processing cell
and face integrals in alternating order, as it is done in deal.II [30], to potentially increase cache
efficiency. The fact that ECL still shows a better performance demonstrates the natural cache-
friendly property of ECL. The benefit of ECL decreases for high dimensions and high polynomial
degrees due to the increased number of sweeps, which is related to the repeated evaluation of
the flux terms. Nevertheless, we propose to use ECL for high-dimensional problems because of its
suitability for shared-memory computations that reduce the allocated memory.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:24 P. Munch et al.

Fig. 12. Node-level analysis of the application of the full advection operator: (a)–(c) comparison of the per-
formance of different algorithms and the default configuration for k = 3 and k = 5; (d) comparison of the
performance of different (SIMD) ISA extensions and the auto-vectorization for k = 3 and k = 4.

We favor the Gauss–Legendre quadrature method over the collocation methods due to its higher
numerical accuracy. This benefit comes at the price of a basis change from the Gauss–Lobatto
points to the Gauss quadrature points and vice versa. Figure 12(c) shows a performance drop of
11% on average due to these basis changes as long as the data that should be interpolated remains
in the cache.

In the library hyper.deal, we currently only support “vectorization over elements.” As a default,
the highest instruction-set extension is selected, i.e., the maximum number of cells is processed at
once by a core. Since the number of lanes to be used is templated, the user can reduce the number
of elements that are processed at once, as it is demonstrated in Figure 12(d). It can be observed that,
in general, the usage of higher instruction-set extensions leads to a better throughput. However,
once the working set of a cell batch exceeds the size of the cache, a performance drop can be
observed. The performance drop leads to the fact that in 6D with cubic elements the throughputs
of AVX-512 and of AVX2 are comparable and in 6D with quartic elements SSE2 and AVX2 show
the best performance.

In this subsection, we have demonstrated that the chosen default configuration of the library
hyper.deal has a competitive throughput compared to less memory-expensive and computation-
ally demanding algorithms, which are numerically inferior.

5.5 Strong and Weak Scaling
In this subsection, we examine the parallel efficiency of the library hyper.deal. For this study,
we consider the advection operator embedded into a low-storage Runge–Kutta scheme of order 4
ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:25

Table 9. Strong and Weak Scaling Configurations

DoFs Configuration
5.4GDoFs 3842 · 1922

21.7GDoFs 3844

268MDoFs/node 1922 · 962

1.1GDoFs/node 1924

DoFs Configuration
2.1GDoFs 325 · 641

17.2GDoFs 322 · 644

268MDoFs/node 162 · 324

1.1GDoFs/node 326

left, d = 4/k = 5; right, d = 6/k = 3.

Table 10. Partitioning the �x- and �v-triangulations on up to 3,072 Nodes with 48 Cores

Nodes 1 2 4 8 16 32 64 128 256 512 1,024 2,048 3,072
p�x 8 12 16 24 32 48 64 96 128 192 256 384 384
p�v 6 8 12 16 24 32 48 64 96 128 192 256 384

Fig. 13. Strong and weak scaling of one Runge–Kutta step with the advection operator as right-hand side.
Each line corresponds to a weak scaling experiment with the given number of DoFs per node or to a strong
scaling experiment with the given number of DoFs, as specified in Table 9.

with 5 stages, which uses two auxiliary vectors besides the solution vector [25]. From these three
vectors, only one (auxiliary) vector has ghost values.

Figure 13 shows strong and weak scaling results of runs on SuperMUC-NG with up to 3,072
nodes with a total of 147,456 cores. We consider two configurations: “d = 4 / k = 5,” an easy
configuration, and “d = 6 / k = 3,” a demanding configuration. As examples, we present for each
configuration two strong and two weak scaling curves (see Table 9). Table 10 shows the considered
process decomposition p = p�x · p�v .

For the “d = 4 / k = 5” configuration, we observe excellent weak-scaling behavior with parallel
efficiencies of 89% and 86% for up to 2,048 nodes on the large and the small setup, respectively. We
get more than 75/80% efficiency for strong scaling up to the increase in the number of nodes by a
factor of 256. For the “d = 6 / k = 3” configuration, we see parallel efficiencies of 49/57% for weak
scaling. These values are lower than the ones in the 4D case; however, they are still very good in
the light of the immense communication amount in the 6D case: As shown in Figure 15, the ghost
data to remote nodes amounts to 29% of the solution vector in 6D and only 5% in 4D.

Finally, we analyze the drop in parallel efficiency of the weak-scaling runs of the 6D large-scale
simulations. For this, we have slightly modified the setup: we start from a configuration of 86

cells with k = 3 on one node (32 DoFs in each direction and a total number of 1.1 GDoFs). When

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:26 P. Munch et al.

Fig. 14. Details on the weak scaling of a single Runge–Kutta stage of the solution of the advection equation.

doubling the number of processes, we double the number of cells in one direction, starting from
direction 1 to direction 6 (and starting over at direction 1). Each time, we double the number of cells
along a direction, we also double the number of processes in that direction, keeping the number of
processes in the other direction constant. In this way, the number of DoFs per process along �x and
�v as well as the number of ghost DoFs per process remain constant once all cells at the boundary
have periodic neighbors residing on other nodes (number of nodes ≥ 2d�x+d�v). As a consequence,
the computational work load and the communication amount of each node are constant.

The total communication amount of the considered setup increases linearly with the number of
processes, as presented in Figure 14(a). Measurements in Figure 14(b) show that the network can
handle this increase: the data can be sent with a constant network bandwidth of 10 GB/s per node,
which is close to the theoretical 100 Gbit/s as long as the job stays on an island due to the fat-tree
network topology. Once the job stretches over multiple islands due to the pruned-tree network
architecture, we observe a bandwidth of 6 GB/s, which is related to the fact that only a small ratio
of the messages crosses island boundaries.

Figure 14(c) and 14(d) show the time spent in different sections (in the following referred to as
steps) of the advection operator. We consider the following five steps:

(1) Start the shared-memory communication and the remote communication by calling
MPI_Irecv as well as pack and send (via MPI_Isend) messages to each neighboring process

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:27

Fig. 15. Approximate memory-consumption distribution of high-dimensional advection application for
48×1024 cores.

residing on remote compute nodes. Furthermore, process S1 in the overlap of the communi-
cation and the computation strategy.

(2) Finish shared-memory communication and process S2.
(3) Finish the remote ghost-value update by waiting (with MPI_Waitall) until all messages have

been sent and received as well as process S3.
(4) Synchronize the shared-memory processes, which is needed to prevent race conditions due

to the reusage of the source vector during the subsequent Runge–Kutta update steps.
(5) Perform the remaining Runge–Kutta update steps.

Besides averaged times, the minimum and maximum times encountered on any process are shown
for each step. The times have been averaged over all Runge–Kutta stages.

On a single node, most of the time is spent for S2, since all data are available in the same shared-
memory domain. As the number of nodes increases, the time spent for S3 needing more data from
remote processes increases. The time spent for S1 is comparatively small, which can be attributed
to the fact that in 6D nearly all cells have neighbors owned by other processes.

The overall runtime increases with increasing number of nodes. In particular, the time increases
for low node numbers as new periodic neighbors are added. For high node numbers, slower com-
munication to other islands is required.

The minimum and the maximum time spent for each step differ significantly, which can be
attributed to the non-trivial communication pattern and the varying size of S2 and S3. Overall,
however, this imbalance caused by the MPI communication is not performance-hindering, as has
been demonstrated by the fact that a significant portion of the network bandwidth is used. How-
ever, one should keep this imbalance in mind and not attribute it accidentally to other sections of
the code.

5.6 Memory Consumption
Figure 15(b) shows the approximated memory consumption for a large-scale simulation from Sub-
section 5.5 (1,024 nodes, d = 6 / k = 3, 1.1 · 1012 DoFs). A total of 34.6 PB main memory from
available 98 PB is used. The largest amount of memory is occupied by the three solution vec-
tors (each. 25.4%). The two buffers for MPI communication occupy each 10.3%. One of the buffers
is attributed to the ghost-value section of the vector called tmp. The remaining data structures,
which include inter alia the mapping data, occupy only a small share (3.2%) of the main memory,
illustrating the benefit of the tensor-product approach employed by the library hyper.deal in
constructing a memory-efficient algorithm for arbitrary complex geometries for high dimensions.
As reference, the memory consumption for a 4D simulation is shown in Figure 15(a).

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:28 P. Munch et al.

5.7 Largest Simulations
In order to demonstrate the large-scale suitability of our code, we have performed simulations on
3,072 compute nodes, the largest possible configuration available on the SuperMUC-NG system.
We have conducted a 6D simulation with a curved mesh, which contains 1286 = 4.4 · 1012 DoFs
(≈1.4 GDoFs/node) with a partitioning as specified in Table 10. In this case, we reached a total
throughput of 1.1 · 1012 DoFs/s. This means that each Runge–Kutta stage is processed in 3.7 s and
a complete time step consisting of 5 Runge–Kutta stages takes 19.3 s. As a reference, the largest
4D simulation run processed 1,5364 = 5.56 · 1012 DoFs with 1.9 · 1012 DoFs/s.

6 APPLICATION: VLASOV–POISSON
We now study the Vlasov–Poisson system as an application example for our library. The Vlasov
equation for electrons in a neutralizing background in the absence of magnetic fields,

∂

∂ t
f (t , �x , �v) + �v · ∇�x f (t , �x , �v) − �E (t , �x) · ∇�v f (t , �x , �v) = 0, (17)

is considered, where f (t , �x , �v) denotes the probability density of a particle as a function of the
phase space and �E the electric field. If we define the gradient operator as ∇� := (∇�

�x , ∇��v) and
�x := (�x , �v)T , (17) can be rewritten as

∂ f (t , �x , �v)

∂ t
+

(
�v

−�E (t , �x)

)
· ∇f (t , �x , �v) = 0. (18a)

The electric field is obtained from the Poisson problem

ρ (t , �x) = 1 −
∫

f (t , �x , �v) dv, −∇2
�xϕ (t ,x) = ρ (t , �x), �E (t , �x) = −∇�xϕ (t , �x). (18b)

For the time propagation, we use a low-storage Runge–Kutta method of order 4 with 5 stages [25].
Each stage contains the following five steps for evaluating the right-hand side:

(1) Compute the DoFs of the charge density via integration over the velocity space.
(2) Compute the right-hand side for the Poisson equation.
(3) Solve the Poisson equation for ϕ.
(4) Compute �E from ϕ.
(5) Apply the advection operator.

Step (5) is a d�x +d�v -dimensional problem, and Steps (2)–(4) are d�x -dimensional problems. Step (1)
reduces information from the phase space to the configuration space.

6.1 Implementation Details
The advection step (Step (5)) relies on the advection operator analyzed in Section 5. The constant
velocity field function �a is replaced by the function �a(t , �x , �v)� = (�v�, −�E (t , �x)�). The evaluation
of �v at a quadrature point can be queried from a low-dimensional FEM library in �v-space. Similarly,
�E is independent of the velocity �v and can be precomputed once at each Runge–Kutta stage for
all quadrature points in the �x-space. Exploiting these relations, we never compute the d�x + d�v -
dimensional velocity field, but compose the d�x - and d�v -information on the fly, just as we did in
the case of the mapping. Since the data to be loaded per quadrature point is negligible (see also
the reasoning regarding the Jacobian matrices in Subsection 3.3), the throughput of the advection
operator is weakly effected by the variable velocity field.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:29

Fig. 16. Weak scaling of a single Runge–Kutta stage of the solution of the Vlasov–Poisson equations on
a hypercube. The average (dashed), averaged minimum and averaged maximum runtime of each step are
indicated. Additionally, the total runtime is shown with bullets and in the table.

For the solution of the Poisson problem

(∇�xψ ,∇�xϕ)�x = (ψ , ρ)�x , (19)

with ψ denoting the test functions, we utilize a matrix-free geometric multigrid solver from
deal.II, which uses a Chebyshev smoother with polynomial degree 5 [1] and has settings similar
to [14, 33]. The Poisson problem is solved up to a relative tolerance of 10−4 by each process group
with a constant velocity grid (see row_comm in Subsection 3.2). The result of this is that the solution
ϕ is available on each process without the need for an additional broadcast step.

The integration of f over the velocity space is implemented via an MPI_Allreduce operation
over all processes with the same �x grid partition (i.e., colomn_comm) so that the resulting ρ is
available on all processes. We have verified our implementation with a simulation of the Landau
damping problem as in [27].

6.2 Weak Scaling
We perform a weak-scaling experiment for the 6D Vlasov–Poisson system, starting from a config-
uration of 86 cells with k = 3 on one node. When doubling the number of processes, we double
the number of cells in one direction as in Subsection 5.5.

Figure 16 shows the scaling of Steps 1–5 of one Runge–Kutta stage. We can see that the total
computing time is dominated by the 6D-advection step, which we have analyzed earlier.

Step 1, which reduces f to ρ, becomes increasingly important as the problem size and the par-
allelism increase. In this step, an all-reduction is performed over process groups with constant p�x
coordinate in the process grid (called comm_column in Subsection 3.2). The amount of data sent
by each process corresponds to the number of DoFs in �x-direction of one process and is thus the
same in every experiment. The total amount of data sent/received is therefore proportional to the
total number of processes, while the number of reduction steps is only O (log(p�v)). The scaling
experiment shows that the time needed by Step 1 generally increases with the number of nodes
and that this step has the worst scaling behavior. We also note that the process grid is designed to
optimize the communication of the advection step so that communication patterns of other steps
might be suboptimal due to shared-memory blocking, see Figure 4.

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:30 P. Munch et al.

Fig. 17. Coarse grid of the “torus ⊗ sphere”-simulation. The torus consists of 30 and the sphere of 32 cells.
Curved surface descriptions are used to derive a high-order mapping of the curved surfaces.

Table 11. Weak Scaling of the Problem Size of 1.00e+09 DoFs per Node

#Nodes #DoFs Total time per stage [s]x v x ⊗ v
2 122.9k 16.4k 2.0G 1.23
16 122.9k 131.1k 16.1G 1.53
128 983.0k 131.1k 128.8G 1.67

1,024 983.0k 1.0M 1.0T 2.03

Steps 2–4 are 3D problems, which are mostly negligible. Only the Poisson solver (Step 3) has
some impact on the total computing time. Let us note that the 3D parts are solved p�v times on all
subcommunicators (called comm_row in Subsection 3.2) with constant p�v coordinate.

6.3 Tensor Product of a Torus and a Sphere
We conclude this section by presenting timings for simulations conducted on the tensor product of
a torus and a sphere, a prototype of a complex geometry needed for the simulation of a Tokamak.

The torus has a major radius of 6.2 and a minor radius of 2.0; the sphere has a radius of 5.0. The
coarse grid of both 3D geometries is shown in Figure 17. The curved surfaces are described by
analytical manifolds according to the model described in [19] and extended into the interior of the
computational domain with transfinite interpolation [16]. The analytical geometry representation
is queried for the position of mesh vertices during mesh refinement and for auxiliary points of
polynomial mappings to enable a high-order curvilinear geometry description. The final mesh is
obtained by uniform global refinement of each 3D geometry.

We apply a homogeneous Dirichlet boundary condition on all surfaces in phase space and a
homogeneous Neumann boundary condition in the case of the Poisson problem.

The timings of a weak scaling experiment are presented in Table 11. The fact that the timings are
comparable with those of a high-dimensional hypercube with periodic boundaries, as presented
in Figure 16, verifies that the proposed algorithms are indeed generic and efficient for complex
unstructured meshes and for more complex boundary conditions.

7 SUMMARY AND OUTLOOK
We have presented the finite-element library hyper.deal, which efficiently solves high-
dimensional partial differential equations on complex geometries with high-order DG methods.
It constructs a high-dimensional triangulation via the tensor product of distributed triangulations
with dimensions up to three from the low-dimensional FEM library deal.II and solves the given

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:31

partial differential equation with sum-factorization-based matrix-free operator evaluation. To re-
duce the memory consumption and the communication overhead, we use a new vector type, which
is built around the shared-memory features from MPI-3.0. The proposed algorithms are aligned
with the architecture of current pre-exascale machines with high FLOP-per-byte ratios and are
expected to also run efficiently on projected exascale machines.

We have compared the node-level performance of the default configuration of hyper.deal with
alternative algorithms, which are specialized for Cartesian and affine meshes or use collocation in-
tegration schemes. Even though the proposed algorithms are not primarily limited by the raw
memory bandwidth, our studies reveal that loading less mapping data is most beneficial to im-
prove the performance, and, to a lesser extent, reducing the number of sum-factorization sweeps
is beneficial, too. To utilize these advantages on a broader set of configurations, we plan to look into
computing the low-dimensional mapping information on the fly and study the benefits of increas-
ing the cache locality during sum-factorization sweeps by a suitable hierarchical cache-oblivious
blocking strategy.

Furthermore, we have studied the reduction of the working set of “vectorization over elements”
by processing fewer cells in parallel as SIMD lanes would allow. Since we observed the benefit of
this approach for 6D and polynomial orders higher than three, we intend to investigate “vectoriza-
tion within an element” as an alternative vectorization approach in the future.

All simulations have been run on uniformly refined meshes. In future work, we will target the ex-
tension of the presented algorithms to adaptively refined meshes. Generic low-dimensional finite-
element implementations perform interpolations across hanging nodes, involving a tensor product
of interpolation matrices on half the reference interval for a 2:1 mesh ratio plus some changes to
the neighbor data access. One could even go beyond the use of a single mesh by combining the
meshes for different refinement level pairs (“slices”) of the phase space, requiring that each “slice”
is treated on its own with the presented tensor-product approach and “slices” are glued together by
special-purpose coupling operators. While the implementation is not trivial, we believe that it only
involves changes in the vector access and possibly in the MPI partitioning of the low-dimensional
meshes, with the general interface of the library remaining unmodified.

The high degree of optimization of our implementation together with the features offered by
deal.II regarding meshes of complex geometry and refinement paves the way to exploring the
physics of fusion plasmas with this novel library also on future exascale machines.

APPENDIX
The following code snippets give implementation details on the new shared-memory modus of
the vector class dealii::LinearAlgebra::distributed::Vector, which is built around MPI-
3.0 features (see Section 4).

A new MPI communicator comm_sm, which consists of processes from the communicator comm
that have access to the same shared memory, can be created via:

MPI_Comm_split_type (comm , MPI_COMM_TYPE_SHARED , rank , MPI_INFO_NULL , &comm_sm) ;

We recommend to create this communicator only once globally during setup and pass it to the
vector.

The following code snippet shows the simplified allocation routines of the vector class for the
value type T and the size _local_size+_ghost_size:

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:32 P. Munch et al.

MPI_Win win ; / / window
T ∗ data_this ; / / p o i n t e r t o l o c a l l y −owned d a t a
std : : vector <T ∗ > data_others ; / / p o i n t e r s t o s h a r e d d a t a

/ / c o n f i g u r e s h a r e d memory
MPI_Info info ;
MPI_Info_create (&info) ;
MPI_Info_set (info , " a l l o c _ s h a r e d _ n o n c o n t i g " , " t r u e ") ;

/ / a l l o c a t e s h a r e d memory
MPI_Win_allocate_shared ((_local_size + _ghost_size) ∗ s i z e o f (T) , s i z e o f (T) ,

info , comm_sm , &data_this , &win) ;

/ / g e t p o i n t e r s t o the s h a r e d d a t a owned by the p r o c e s s e s i s same sm domain
data_others . resize (size_sm) ;
f o r (i n t i = 0 , i n t disp_unit , MPI_Aint ssize ; i < size_sm ; i++)

MPI_Win_shared_query (win , i , &ssize , &disp_unit , &data_others [i]) ;

Assert (data_this==data_others [rank_sm]) ;

Once the data is not needed anymore, the window has to be freed, which also frees the locally-
owned data:

MPI_Win_free (&win)

REFERENCES
[1] Mark Adams, Marian Brezina, Jonathan Hu, and Ray Tuminaro. 2003. Parallel multigrid smoothing: polynomial versus

Gauss–Seidel. J. Comput. Phys. 188, 2 (2003), 593–610. DOI:http://dx.doi.org/10.1016/S0021-9991(03)00194-3
[2] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris Richardson,

Johannes Ring, Marie E. Rognes, and Garth N. Wells. 2015. The FEniCS Project Version 1.5. Arch. Numer. Soft. 3,
100 (2015), 9–23. DOI:http://dx.doi.org/10.11588/ans.2015.100.20553

[3] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub Cerveny, Veselin
Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido Akkerman,
Johann Dahm, David Medina, and Stefano Zampini. 2021. MFEM: A modular finite element methods library. Comput.
Math. Appl. 81 (2021), 42–74. DOI:http://dx.doi.org/10.1016/j.camwa.2020.06.009

[4] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Thomas C. Clevenger, Marc Fehling, Alexander V. Grayver, Timo
Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Reza Rastak, Ignacio
Thomas, Bruno Turcksin, Zhuoran Wang, and David Wells. 2020. The deal.II Library, Version 9.2. J. Numer. Math.
28, 3 (2020), 131–146. DOI:http://dx.doi.org/10.1515/jnma-2020-0043

[5] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier,
Jean-Paul Pelteret, Bruno Turcksin, and David Wells. 2021. The deal.II finite element library: Design, features, and
insights. Comput. Math. Appl. 81 (2021), 407–422. DOI:http://dx.doi.org/10.1016/j.camwa.2020.02.022

[6] Markus Bachmayr, Reinhold Schneider, and André Uschmajew. 2016. Tensor networks and hierarchical tensors for
the solution of high-dimensional partial differential equations. Found. Comput. Math. 16, 6 (2016), 1423–1472. DOI:
http://dx.doi.org/10.1007/s10208-016-9317-9

[7] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. 2011. Algorithms and data structures
for massively parallel generic adaptive finite element codes. ACM Trans. Math. Software 38, 2 (2011), 28 pages. DOI:
http://dx.doi.org/10.1145/2049673.2049678

[8] Peter Bastian, Christian Engwer, Jorrit Fahlke, Markus Geveler, Dominik Göddeke, Oleg Iliev, Olaf Ippisch, René Milk,
Jan Mohring, Steffen Müthing, Mario Ohlberger, Dirk Ribbrock, and Stefan Turek. 2016. Hardware-based efficiency
advances in the EXA-DUNE Project. In Software for Exascale Computing – SPPEXA 2013–2015, Hans-Joachim Bungartz,
Peter Neumann, and Wolfgang E. Nagel (Eds.). Springer International Publishing, Cham, 3–23.

[9] Gheorghe-Teodor Bercea, Andrew T. T. McRae, David A. Ham, Lawrence Mitchell, Florian Rathgeber, Luigi Nardi,
Fabio Luporini, and Paul H. J. Kelly. 2016. A structure-exploiting numbering algorithm for finite elements on extruded

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

hyper.deal: An Efficient, Matrix-free Finite-element Library 33:33

meshes, and its performance evaluation in Firedrake. Geosci. Model Dev. 9, 10 (2016), 3803–3815. DOI:http://dx.doi.org/
10.5194/gmd-9-3803-2016

[10] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2011. p4est : Scalable algorithms for parallel adaptive mesh
refinement on forests of octrees. SIAM J. Sci. Comput. 33, 3 (2011), 1103–1133. DOI: http://dx.doi.org/10.1137/100791634

[11] Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, and Paul Steinmann. 2020. A matrix-free ap-
proach for finite-strain hyperelastic problems using geometric multigrid. Internat. J. Numer. Methods Engrg. 121, 13
(2020), 2874–2895. DOI:http://dx.doi.org/10.1002/nme.6336

[12] Andreas Dedner, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. 2010. A generic interface for parallel and
adaptive scientific computing: Abstraction principles and the DUNE-FEM module. Computing 90 (2010), 165–196.
DOI:http://dx.doi.org/10.1007/s00607-010-0110-3

[13] Michel O. Deville, Paul F. Fischer, and Ernest H. Mund. 2002. High-Order Methods for Incompressible Fluid Flow. Vol. 9.
Cambridge University Press, Cambridge.

[14] Niklas Fehn, Peter Munch, Wolfgang A. Wall, and Martin Kronbichler. 2020. Hybrid multigrid methods for high-order
discontinuous Galerkin discretizations. J. Comput. Phys. 415 (2020), 109538. DOI:http://dx.doi.org/10.1016/j.jcp.2020.
109538

[15] Francis Filbet and Eric Sonnendrücker. 2003. Comparison of Eulerian Vlasov solvers. Comput. Phys. Communic. 150,
3 (2003), 247–266. DOI:http://dx.doi.org/10.1016/s0010-4655(02)00694-x

[16] William J. Gordon and Linda C. Thiel. 1982. Transfinite mappings and their application to grid generation. Appl. Math.
Comput. 10 (1982), 171–233. DOI:http://dx.doi.org/10.1016/0096-3003(82)90191-6

[17] Wei Guo and Yingda Cheng. 2016. A sparse grid discontinuous Galerkin method for high-dimensional transport
equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38, 6 (2016), A3381–A3409. DOI:http:
//dx.doi.org/10.1137/16M1060017

[18] Ammar Hakim, Greg Hammett, Eric L. Shi, and Noah Mandell. 2019. Discontinuous Galerkin schemes for a class of
hamiltonian evolution equations with applications to plasma fluid and kinetic problems. arXiv 1908.01814 (2019).

[19] Luca Heltai, Wolfgang Bangerth, Martin Kronbichler, and Andrea Mola. 2021. Propagating geometry information
to finite element computations. ACM Trans. Math. Softw. 47, 4, Article 32 (2021), 30 pages. https://doi.org/10.1145/
3468428.

[20] Michael A. Heroux, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring,
Alan Williams, Kendall S. Stanley, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G.
Kolda, Richard B. Lehoucq, Kevin R. Long, and Roger P. Pawlowski. 2005. An overview of the Trilinos project. ACM
Trans. Math. Software 31, 3 (2005), 397–423. DOI: http://dx.doi.org/10.1145/1089014.1089021

[21] J. S. Hesthaven and T. Warburton. 2008. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications.
Springer, New York. DOI:http://dx.doi.org/10.1007/978-0-387-72067-8

[22] James Juno, Ammar Hakim, Jason TenBarge, Eric L. Shi, and William Dorland. 2018. Discontinuous Galerkin algo-
rithms for fully kinetic plasmas. J. Comput. Phys. 353 (2018), 110–147. DOI: http://dx.doi.org/10.1016/j.jcp.2017.10.009

[23] George Karypis and Vipin Kumar. 1998. METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning
Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices.

[24] Dominic Kempf, René Heß, Steffen Müthing, and Peter Bastian. 2021. Automatic code generation for high-
performance discontinuous Galerkin methods on modern architectures. ACM Trans. Math. Software 47, 1 (2021),
31 pages. DOI:http://dx.doi.org/10.1145/3424144

[25] Christopher A. Kennedy, Mark H. Carpenter, and R. Michael Lewis. 2000. Low-storage, explicit Runge–Kutta schemes
for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 3 (2000), 177–219. DOI:http://dx.doi.org/10.
1016/s0168-9274(99)00141-5

[26] David A. Kopriva and Gregor J. Gassner. 2014. An energy stable discontinuous Galerkin spectral element discretization
for variable coefficient advection problems. SIAM J. Sci. Comput. 36, 4 (2014), A2076–A2099. DOI:http://dx.doi.org/10.
1137/130928650

[27] Katharina Kormann, Klaus Reuter, and Markus Rampp. 2019. A massively parallel semi-Lagrangian solver for the
six-dimensional Vlasov–Poisson equation. Int. J. High Perform. Comput. Appl. 33, 5 (2019), 924–947. DOI:http://dx.doi.
org/10.1177/1094342019834644

[28] Benjamin Krank, Niklas Fehn, Wolfgang A. Wall, and Martin Kronbichler. 2017. A high-order semi-explicit discon-
tinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. J.
Comput. Phys. 348 (2017), 634–659. DOI: http://dx.doi.org/10.1016/j.jcp.2017.07.039

[29] Martin Kronbichler and Katharina Kormann. 2012. A generic interface for parallel cell-based finite element operator
application. Comput. Fluids 63 (2012), 135–147. DOI: http://dx.doi.org/10.1016/j.compfluid.2012.04.012

[30] Martin Kronbichler and Katharina Kormann. 2019. Fast matrix-free evaluation of discontinuous Galerkin finite ele-
ment operators. ACM Trans. Math. Software 45, 3 (2019), 40 pages. DOI: http://dx.doi.org/10.1145/3325864

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

33:34 P. Munch et al.

[31] Martin Kronbichler, Katharina Kormann, Niklas Fehn, Peter Munch, and Julius Witte. 2019. A Hermite-like basis for
faster matrix-free evaluation of interior penalty discontinuous Galerkin operators. arXiv preprint arXiv:1907.08492
(2019).

[32] Martin Kronbichler, Svenja Schoeder, Christopher Müller, and Wolfgang A. Wall. 2016. Comparison of implicit and
explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Internat. J. Numer. Methods
Engrg. 106, 9 (2016), 712–739. DOI:http://dx.doi.org/10.1002/nme.5137

[33] Martin Kronbichler and Wolfgang A. Wall. 2018. A performance comparison of continuous and discontinuous Galerkin
methods with fast multigrid solvers. SIAM J. Sci. Comput. 40, 5 (2018), A3423–A3448. DOI: http://dx.doi.org/10.1137/
16M110455X

[34] J. Markus Melenk, Klaus Gerdes, and Christoph Schwab. 2001. Fully discrete hp-finite elements: Fast quadrature.
Comput. Methods Appl. Mech. Eng. 190, 32 (2001), 4339–4364. DOI: http://dx.doi.org/10.1016/S0045-7825(00)00322-4

[35] Steffen Müthing, Marian Piatkowski, and Peter Bastian. 2017. High-performance implementation of matrix-free high-
order discontinuous Galerkin methods. arXiv preprint arXiv:1711.10885 (2017).

[36] Steven A. Orszag. 1980. Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 1 (1980), 70–92.
DOI: http://dx.doi.org/10.1016/0021-9991(80)90005-4

[37] Bram Reps and Tobias Weinzierl. 2017. Complex additive geometric multilevel solvers for Helmholtz equations on
spacetrees. ACM Trans. Math. Software 44, 1 (2017), 1–36. DOI:http://dx.doi.org/10.1145/3054946

[38] Thomas Roehl, Jan Treibig, Georg Hager, and Gerhard Wellein. 2014. Overhead analysis of performance counter mea-
surements. In 2014 43rd International Conference on Parallel Processing Workshops, Vol. 2015-May. IEEE, Minneapolis,
Minnesota, 176–185. DOI: http://dx.doi.org/10.1109/ICPPW.2014.34

[39] Svenja Schoeder, Katharina Kormann, Wolfgang A. Wall, and Martin Kronbichler. 2018. Efficient explicit time stepping
of high order discontinuous Galerkin schemes for waves. SIAM J. Sci. Comput. 40, 6 (2018), C803–C826. DOI:http:
//dx.doi.org/10.1137/18M1185399

[40] Tianjiao Sun, Lawrence Mitchell, Kaushik Kulkarni, Andreas Klöckner, David A. Ham, and Paul H. J. Kelly. 2020. A
study of vectorization for matrix-free finite element methods. Int. J. High Perf. Comput. Appl. 34, 6 (2020), 629–644.
DOI:http://dx.doi.org/10.1177/1094342020945005

[41] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A lightweight performance-oriented tool suite for x86
multicore environments. In 2010 39th International Conference on Parallel Processing Workshops, Wang-Chien Lee (Ed.).
IEEE, Piscataway, NJ, 207–216. DOI: http://dx.doi.org/10.1109/ICPPW.2010.38

[42] Takayuki Umeda, Keiichiro Fukazawa, Yasuhiro Nariyuki, and Tatsuki Ogino. 2012. A scalable full-electromagnetic
vlasov solver for cross-scale coupling in space plasma. IEEE T. Plasma Sci. 40, 5 (2012), 1421–1428. DOI: http://dx.doi.
org/10.1109/TPS.2012.2188141

[43] Robert A. Van De Geijn and Jerrell Watts. 1997. SUMMA: Scalable universal matrix multiplication algorithm.
Concurrency–Pract. Ex. 9, 4 (1997), 255–274.

[44] Tobias Weinzierl. 2019. The peano software—parallel, automaton-based, dynamically adaptive grid traversals. ACM
Trans. Math. Software 45, 2 (2019), 41 pages. DOI:http://dx.doi.org/10.1145/3319797

[45] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model
for multicore architectures. Commun. ACM 52, 4 (2009), 65. DOI: http://dx.doi.org/10.1145/1498765.1498785

Received February 2020; revised May 2021; accepted June 2021

ACM Transactions on Mathematical Software, Vol. 47, No. 4, Article 33. Publication date: September 2021.

dummy

Paper VII

Computational Materials Science 231 (2024) 112589

Available online 27 October 2023
0927-0256/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Full length article

On the construction of an efficient finite-element solver for phase-field
simulations of many-particle solid-state-sintering processes
Peter Munch a,∗, Vladimir Ivannikov b, Christian Cyron b,c, Martin Kronbichler a,d

a University of Augsburg, Universitätsstraße 12a, Augsburg, 86159, Germany
b Helmholtz-Zentrum Hereon, Max–Planck-Straße 1, Geesthacht, 21502, Germany
c Technical University of Hamburg, Eißendorfer Straße 42, Hamburg, 21073, Germany
d Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany

A R T I C L E I N F O

Dataset link: https://github.com/hpsint/hpsint-
data

Keywords:
Solid-state sintering
Finite-element computations
Matrix-free computations
Jacobian-free Newton–Krylov methods
Preconditioning
Grain tracking
Node-level performance analysis
Strong-scaling analysis

A B S T R A C T

We present an efficient solver for the simulation of many-particle solid-state-sintering processes. The mi-
crostructure evolution is described by a system of equations consisting of one Cahn–Hilliard equation and a set
of Allen-Cahn equations to distinguish neighboring particles. The particle packing is discretized in space via
multicomponent linear adaptive finite elements and implicitly in time with variable time-step sizes, resulting
in a large nonlinear system of equations with strong coupling between all components to be solved. Since on
average 10k degrees of freedom per particle are necessary to accurately capture the interface dynamics in 3D,
we propose strategies to solve the resulting large and challenging systems. This includes the efficient evaluation
of the Jacobian matrix as well as the implementation of Jacobian-free methods by applying state-of-the-art
matrix-free algorithms for high and dynamic numbers of components, advances regarding preconditioning, and
a fully distributed grain-tracking algorithm. We validate the obtained results, examine in detail the node-level
performance and demonstrate the scalability up to 10k particles on modern supercomputers. Such numbers
of particles are sufficient to simulate the sintering process in (statistically meaningful) representative volume
elements. Our framework thus forms a valuable tool for the virtual design of solid-state-sintering processes for
pure metals and their alloys.

1. Introduction

Sintering is a physically complex process that includes various
mechanisms interacting and competing with each other. The obtained
densification and microstructure of the sintered packing are of key
interest. The accurate prediction of the powder coalescence for a given
material and heating profile is a challenging multiphysics problem,
which couples mass transport and mechanics. It is convenient to
split the entire sintering process into two stages, as visualized in
Fig. 1: the early stage and the later stage. Initially, the microstructure
mainly evolves due to intensive neck-growth and shrinkage, while the
particles1 become strongly non-spherical and grain growth starts to
play an important role in the later stage. These rheological differences
justify the application of specialized numerical models and methods
with different computational costs for each of the stages. For instance,
molecular dynamics [1,2] provides the most detailed insights into pro-
cesses taking place during solid-state sintering, but can only be applied

∗ Corresponding author.
E-mail addresses: peter.muench@uni-a.de (P. Munch), vladimir.ivannikov@hereon.de (V. Ivannikov), christian.cyron@hereon.de (C. Cyron),

martin.kronbichler@uni-a.de (M. Kronbichler).
1 In practice, a powder particle may contain multiple grains. For reasons of simplicity, we use the terms particle and grain interchangeably. Such a simplification

is admissible for the present work, since, in our studies, each particle always consists of a single grain.

to domains spanning a few particles (or even less). Thus, it is typically
not appropriate to predict the densification, which is a hallmark of sin-
tering on the meso- and macroscale. On the contrary, approaches based
on continuum mechanics [3] can operate on the macroscale but remain
phenomenological, since they can predict changes of the geometry of
a whole workpiece only with additional assumptions on local material
densification and cannot resolve microscopic phenomena, such as grain
growth. Discrete element methods (DEM) and phase-field methods are po-
sitioned between the two aforementioned approaches in terms of scale:
they can handle packings of hundreds or thousands of particles. While
both can capture shrinkage during analysis (provided the corresponding
mechanisms are properly included in the model), DEM simulations typ-
ically rely on the assumption of nearly spherical particles and remain
thus largely limited to early-stage sintering [4]. Capturing both densifi-
cation and grain growth properly can be crucial for many applications,

https://doi.org/10.1016/j.commatsci.2023.112589
Received 22 June 2023; Received in revised form 15 October 2023; Accepted 16 October 2023

Computational Materials Science 231 (2024) 112589

2

P. Munch et al.

Fig. 1. Visualization of different phases of sintering for a 5-particle packing in 2D. The colors indicate the different grains. Up to 𝑡 = 90 (early stage), a clear neck growth is
visible and the shape of the particles remains, at least to some extent, spherical; after that (later stage), the grain-growth phenomenon plays an important role, with smaller grains
disappearing.

for instance, the manufacturing of patient-specific biodegradable mag-
nesium implants [5], where the mechanical properties as well as the
biodegradation process may crucially depend on both the geometry and
microstructure of an implant [6].

Recently, a number of large-scale simulations of sintering using
phase-field methods has been reported. For example, [7] simulated
early-stage sintering for packings containing 332, 333, 1172 and 2968
particles. The authors of [8] applied the phase-field framework
Pace3D [9] to simulate sintering of 1.2 million particles, using dis-
cretization of 24003 grid cells. An even larger packing of 3.1 million
particles on 25603 cells was analyzed in [10], however, for a simpler,
ideal grain-growth problem. All these publications have in common
that they use finite difference methods (FDM) on uniform meshes mostly
with explicit time stepping. The finite element method (FEM) is success-
fully used, for instance, in the framework MOOSE [11] to demonstrate
the sintering simulation of several hundreds of particles [12] and in
the package Tusas [13] to perform various large-scale solidification
simulations with up to 270 million unknowns; both using implicit time
stepping and Jacobian-free Newton–Krylov (JFNK) methods. The pack-
age PRISM-PF [14], in contrast, applies the fast evaluation routines of
deal.II to accelerate explicit time stepping in the context of a large
set of phase-field simulation cases.

In our previous works, we have tackled modeling of solid-state
sintering by multiple numerical methods in close interaction with
experimental validation. In [15], we used a FEM-based phase-field
approach to simulate shrinkage and neck growth between two particles.
To simulate the early-stage sintering process for larger packings of par-
ticles, we applied DEM and proposed a novel approach [4] that couples
the diffusive mass-transport processes described by an elementary 7-
equation model [16] with mechanical interactions of particles arising
because of changes of their geometry. Due to the low computational
costs of the DEM approach, the developed code is able to simulate the
sintering of relatively large packings consisting of 3000–5000 particles
on a regular laptop within a few hours. However, this approach is
limited to the early stage of sintering and cannot capture non-spherical
grains and grain-growth phenomena. In the current work, we extend
our phase-field-based code [15] to simulate packing sizes similar to
those we considered in the case of DEM, without the limitation to the
early sintering stages.

The development of a FEM-based code with implicit time stepping
for such scales is a challenging task, since it involves algorithmic
developments on many levels. In particular, the number of degrees
of freedom (DoFs) 𝑁 increases linearly with the number of particles
(𝑁𝑃): 𝑁 ∼ (𝑁𝑐𝑁𝑃), with 𝑁𝑐 being the number of order parameters,
which are sets of non-neighboring particles. This number is, in practice,
rather high (10–20) but independent of the number of particles. Never-
theless, the computational complexity is quadratic (𝑁2

𝑐𝑁𝑃), since the
surface-coupling terms between particles need to be evaluated.

In this work, we develop efficient evaluation strategies of the Jaco-
bian that fully exploit modern hardware features, reducing the effective
complexity to (𝑁𝑃)–(𝑁𝑐𝑁𝑃). To this end, we adopt Jacobian-free
Newton–Krylov approaches and fast matrix-free operator evaluation
to solve systems of linear equations arising from implicit time step-
ping. We, furthermore, discuss efficient preconditioning and propose a
fully distributed and improved version of the grain-tracking/remapping
algorithm [17]. The latter is crucial to keep the number of order
parameters low and, as a result, to make the operator evaluation more
efficient. During the whole simulation, we maintain two representa-
tions of the particles: a 0D representation for postprocessing purposes
and a phase field for each order parameter for computation purposes,
as shown in Fig. 2. The 0D representation is used to detect situations
when particles belonging to the same order parameter get too close and
to resolve them such that the number of order parameters is minimized.
As a consequence, the fast synchronization of both representations is
crucial to reduce the computational time and enables then large-scale
simulations.

Though the number of order parameters is minimized via grain
tracking, it still remains significant. In the context of FEM, each or-
der parameter would correspond, e.g., to a component of a vectorial
element. Such a high number of components is not common for FEM
applications in other areas, with density functional theory as an excep-
tion [18,19]. In our case, the number of components may also change
between time steps, which poses an additional software challenge.

The remainder of this article is organized as follows. In Section 2,
we provide an overview of the governing equations and their FEM
discretization. Section 3 outlines the aims of our optimizations, and Sec-
tion 4 proposes the performance-relevant solver components. Sections 5
and 6 present numerical results and discuss the overall performance of
the solver in detail, respectively. Section 7 demonstrates the application
of the proposed algorithms in alternative, more advanced, sintering
formulations. Finally, Section 8 summarizes our conclusions and points
out future research directions. Our novel simulation framework is freely
available, as hpsint, on GitHub2 and uses the open-source library
deal.II as FEM backend [20,21].

2. Sintering model and its numerical solution

2.1. Governing equations

The classical formulation for modeling solid-state sintering of 𝑁𝑃
particles proposed by Wang [22] and adopted in numerous works [23–
26] is based on a system of Cahn–Hilliard and Allen–Cahn equations:

𝜕𝑐
𝜕𝑡

(𝐱, 𝑡) = ∇ ⋅
[
𝑀∇ 𝛿𝐹

𝛿𝑐

]
, (1a)

2 https://github.com/hpsint/hpsint.

Computational Materials Science 231 (2024) 112589

3

P. Munch et al.

Fig. 2. Overview of types of particle representation considered in this publication and their interaction for a 5-particle packing in 2D. Phase-field simulations are run for order
parameters, i.e., sets of particles that do not neighbor. For postprocessing purposes, we maintain a 0D representation with particles described by position, radius, and additional
statistical quantities. This reduced model is also used to determine potential contacts of grains and to maintain the invariant that order parameters can only contain non-neighboring
particles, which might involve the remapping of solution vectors.

𝜕𝜂𝑖
𝜕𝑡

(𝐱, 𝑡) = −𝐿𝛿𝐹
𝛿𝜂𝑖

for 1 ≤ 𝑖 ≤ 𝑁𝑃 , (1b)

where 𝐱 is the position vector in space. The microstructure evolution
is described by a conserved variable 𝑐 and a set of non-conserved
unknowns 𝜂𝑖. Variable 𝑐 can be interpreted as the molar fraction of
the overall material and has a magnitude of 1 inside particles and 0
in voids. The unknown 𝜂𝑖 describes the position of particle 𝑖 within the
domain such that 𝜂𝑖 = 1 inside the 𝑖th particle and 𝜂𝑖 = 0 elsewhere. Due
to the local support of 𝜂𝑖, it is common in the literature [17,27,28] to
collect non-neighboring particles in groups called order parameters and
describe all particles in such a group by a single 𝜂𝑖. We have adopted
this strategy in this publication. In the following, we implicitly assume
that particles are treated in groups unless it is explicitly pointed out
that particles are treated individually.

The free energy of system (1) is given by the integral

𝐹 = ∫𝛺
[
𝑓
(
𝑐, 𝜂𝑖

)
+ 1

2
𝜅𝑐 |∇𝑐|2 +

𝑁𝑃∑
𝑖

1
2
𝜅𝜂|∇𝜂𝑖|2

]
d𝛺 (2)

based on the following Landau-type polynomial:

𝑓 = 𝐴𝑐2 (1 − 𝑐)2 + 𝐵
⎡
⎢⎢⎣
𝑐2 + 6 (1 − 𝑐)

𝑁𝑃∑
𝑖
𝜂2𝑖 − 4 (2 − 𝑐)

𝑁𝑃∑
𝑖
𝜂3𝑖 + 3

(𝑁𝑃∑
𝑖
𝜂2𝑖

)2⎤
⎥⎥⎦
,

(3)

where 𝐴 and 𝐵 are energy coefficients and 𝜅𝑐 and 𝜅𝜂 are gradient
prefactors. These parameters can be extracted from the surface and
grain-boundary energy properties of the material by using the relations
obtained from the analysis of the behavior of the phase-field variables
across the flat surface [24].

Even though it has been recently revealed [29] that the bulk free
energy (3) may spontaneously generate the void phase on triple and
higher-order junctions, we have still decided to use the original for-
mulation from [22] due to its widespread use and for the sake of
simpler validation and comparison with the existing literature. The
implementation aspects discussed in the next sections are applicable
to similar models based on other free-energy expressions, provided
𝐹
(
𝑐, 𝜂𝑖

)
is a continuous differentiable function.

Parameter 𝐿 defines the mobility of the grain boundary and is
typically set as a constant. The diffusion along different pathways is
introduced by the scalar mobility [22]

𝑀 =𝑀vo𝜙 +𝑀va (1 − 𝜙) + 4𝑀s𝑐
2 (1 − 𝑐)2 + 𝑀gb

𝑁𝑃∑
𝑖=1

𝑁𝑃∑
𝑗≠𝑖

𝜂𝑖𝜂𝑗 , (4)

where 𝜙 = 𝑐3
(
10 − 15𝑐 + 6𝑐2

)
. Here, the subscripts vo, va, s and gb

denote the mobility coefficients for the volumetric, vapor, surface,
and grain-boundary paths, respectively. For the sake of simplicity, the
scalar form of the mobility is chosen in the following, whereas a more
complex tensorial form [23] is discussed as an extension separately in
Section 7. The mobility coefficients can be introduced via the Arrhenius
relationship by defining the corresponding prefactors and activation
energies [30]. This allows the model to be calibrated with the available
experimental data [15].

We note that the surface-mobility term in Eq. (4) (underlined)
slightly differs from that used in [7,22,30,31] to enhance the conver-
gence rate of the Newton solver. A more detailed discussion of this
alteration can be found in Supplementary Material S1.

2.2. Discretization

We discretize Eq. (1) by means of multicomponent linear Lagrange
𝐶0 finite elements. For this purpose, we reformulate the original system
to:
𝜕𝑐
𝜕𝑡

= ∇ ⋅ [𝑀∇𝜇] ,

𝜇 = 𝜕𝑓
𝜕𝑐

− 𝜅𝑐∇2𝑐,

𝜕𝜂𝑖
𝜕𝑡

= −𝐿
[
𝜕𝑓
𝜕𝜂𝑖

− 𝜅𝑝∇2𝜂𝑖

]
,

by introducing the chemical potential 𝜇 = 𝛿𝐹∕𝛿𝑐 as auxiliary variable,
expanding explicitly the variational derivatives 𝛿𝐹∕𝛿𝑐 and 𝛿𝐹∕𝛿𝜂𝑖, and
exploiting the definition (2). This leads to the following weak form:
(
𝑣𝑐 ,

𝜕𝑐
𝜕𝑡

)
= −

(
∇𝑣𝑐 , 𝑀∇𝜇

)
, (5a)

(
𝑣𝜇 , 𝜇

)
=
(
𝑣𝜇 ,

𝜕𝑓
𝜕𝑐

)
+
(
∇𝑣𝜇 , 𝜅𝑐∇𝑐

)
, (5b)

(
𝑣𝜂𝑖 ,

𝜕𝜂𝑖
𝜕𝑡

)
= −

(
𝑣𝜂𝑖 , 𝐿

𝜕𝑓
𝜕𝜂𝑖

)
−
(
∇𝑣𝜂𝑖 , 𝐿𝜅𝑝∇𝜂𝑖

)
, (5c)

where the usual boundary integrals arising after applying integration
by parts vanish due to imposition of the no-flux boundary conditions.

We use BDF2 with adaptive time steps for time discretization. The
resulting nonlinear system  (𝒖) = 0, with the vector of unknowns
𝐮 =

[
𝑐 𝜇 𝜂𝑖

]𝑇 , is solved by means of a Newton solver. The action
of the Jacobian on a factor is either evaluated exactly or approximated

Computational Materials Science 231 (2024) 112589

4

P. Munch et al.

Fig. 3. Visualization of the block sparsity pattern of (1) the system matrix and (2) the considered preconditioners for four order parameters.

by finite differences around the linearization point 𝐮lin (Jacobian-free
approach):

𝐽 (𝐮lin)𝐩 ≈ 𝐽 ′(𝐮lin)𝐩 =
 (𝐮lin + 𝛽𝐩) −  (𝐮lin)

𝛽
, (6)

where the parameter 𝛽 is chosen as described in [32–34]. The lineariza-
tion of the weak form (5) is derived with respect to variations of the
state vector 𝛿𝐮 as(

𝑣𝑐 ,
𝜕�̇�
𝜕𝑐
𝛿𝑐
)
= −

(
∇𝑣𝑐 ,

[𝜕𝑀
𝜕𝑐

𝛿𝑐 + 𝜕𝑀
𝜕∇𝑐

∇𝛿𝑐

+ 𝜕𝑀
𝜕𝜂𝑗

𝛿𝜂𝑗 +
𝜕𝑀
𝜕∇𝜂𝑗

∇𝛿𝜂𝑗
]
∇𝜇

)
, (7a)

(
𝑣𝜇 , 𝛿𝜇

)
=
(
𝑣𝜇 ,

𝜕2𝑓
𝜕𝑐2

𝛿𝑐 + 𝜕2𝑓
𝜕𝑐𝜕𝜂𝑗

𝛿𝜂𝑗

)
+
(
∇𝑣𝜇 , 𝜅𝑐∇𝛿𝑐

)
, (7b)

(
𝑣𝜂𝑖 ,

𝜕�̇�𝑖
𝜕𝜂𝑖

𝛿𝜂𝑖

)
= −

(
𝑣𝜂𝑖 , 𝐿

𝜕2𝑓
𝜕𝜂𝑖𝜕𝜂𝑗

𝛿𝜂𝑗

)
−
(
∇𝑣𝜂𝑖 , 𝐿𝜅𝑝∇𝛿𝜂𝑖

)
. (7c)

The notation �̇� = 𝜕𝜓∕𝜕𝑡 is used here to denote the first time derivative
of an arbitrary variable 𝜓 for convenience. Note that (7a) contains
derivatives of 𝑀 with respect to gradients of concentration 𝑐 and
order parameters 𝜂𝑗 in order to account for tensorial mobility described
in Section 7. The linearized forms of the free-energy function and
the mobility are listed in Supplementary Material S2. Fig. 3 shows
the sparsity pattern of the resulting Jacobian matrix. The coupling
terms introduce a quadratic complexity (𝑁2

𝑐𝑁𝑃) in both storage and
computational effort, making the assembly of the Jacobian unfeasible.

2.3. Algorithmic overview

Fig. 4 shows an overview of the algorithm used to solve the solid-
state-sintering problem. Before solving the nonlinear system with a
Newton solver, we optionally run adaptive mesh refinement (AMR)
and the grain tracker to detect potential new contacts and to mini-
mize the number of order parameters. After the solution or when the
linear/nonlinear solver fails to converge in the prescribed number of
iterations, we optionally increase or decrease the time-step size 𝜏. In
the following, we investigate this algorithm regarding performance.

3. Performance metric

Our aim is to minimize the computational time for running a
solid-state-sintering simulation up to the required physical end time,
allowing the simulation of larger problem sizes. For the described
solution approach, the runtime can be estimated by the sum of the
costs of the nonlinear solution process and other costs, like AMR, grain
tracking, and postprocessing:

𝑇 = 𝑇sol + 𝑇AMR + 𝑇grain tracking + 𝑇post +⋯

The cost of the nonlinear solution process [35] is the sum of the costs
of each time step:

𝑇sol =
∑

𝑇sol,𝑖 = 𝑁𝑇 𝑇 sol.

In the following, we consider averaged times, which are indicated by
overbars. Under the assumption that we use a Newton solver and solve

Fig. 4. Simplified flow chart of the solution procedure of the sintering problem with
adaptive time stepping and adaptive meshing.

the Jacobian by means of iterations of the preconditioned generalized
minimal residual method (GMRES), we can refine the estimates of the
costs 𝑇 sol = 𝑇sol∕𝑁𝑇 :

𝑇 sol = 𝑇 𝑃 , setup ⊳ setup preconditioner

+ 𝑁𝑁𝑇 𝐽 ,setup ⊳ setup Jacobian

+ 𝑁𝑁𝑁𝑅𝑇 residual ⊳ residual evaluation

+ 𝑁𝑁𝑁𝐿(𝑇 𝐽 , apply + 𝑇 𝑃 , apply + 𝑇 updates
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⊳single linear iteration

),

with the preconditioner only updated once per nonlinear solve. Here,
𝑁𝑁 is the number of nonlinear iterations, each of which requires 𝑁𝑅
residual evaluations and 𝑁𝐿 iterations of the linear solver. To acceler-
ate the solution process, one needs, on the one hand, to minimize the
accumulated number of Jacobian and preconditioner evaluations (each
𝑁𝑇𝑁𝑁𝑁𝐿) and of their setup (𝑁𝑇 and 𝑁𝑇𝑁𝑁 times, respectively)
and, on the other hand, to minimize the cost of their application and
construction (𝑇 𝐽 , apply, 𝑇 𝑃 , apply, 𝑇 𝐽 , setup, 𝑇 𝑃 , setup). The costs 𝑇 updates
related to the updates of the solution vector are fixed and can hardly
be optimized.

We note that these different costs need to be balanced against each
other. For example, minimizing only 𝑁𝑇 by increasing the time-step
sizes can lead to increased 𝑁𝑁 and 𝑁𝐿 due to increased nonlinearity

Computational Materials Science 231 (2024) 112589

5

P. Munch et al.

and nonsymmetry of the system of linear equations to be solved. In
the present work, we increase the size of the time steps as long as a
user-provided threshold regarding the numbers of linear and nonlinear
iterations is not violated (see Section 4.5.2). This implies that the main
factors we can tune are the costs of the evaluation of the Jacobian
(𝑇 𝐽 , apply) and the setup and application costs of the preconditioner
(𝑇 𝑃 , setup, 𝑇 𝑃 , apply). The choice of the preconditioner has an effect not
only on 𝑇 𝑃 , setup, 𝑇 𝑃 , apply but also on 𝑁𝑃 , 𝑁𝑁 , and 𝑁𝐿. Hence, an
effective preconditioner is characterized by a tradeoff between the
setup and application times as well as the resulting iteration counts.
Generally 𝑁𝐿 ≫ 𝑁𝑅, which implies that the costs of the residual eval-
uation are not crucial. At the same time, this function constitutes the
core algorithm of the Jacobian-free implementation. For computational
efficiency, this work uses a matrix-free evaluation of the Jacobian,
which is conceptually similar to the residual evaluation. Here, the cost
of setting up the factors of the Jacobian matrix is small and only
involves storing the linearization point and, potentially, precomputing
its values at the quadrature points.

Minimizing the solution time by splitting the spatial computation
domain into partitions for parallel computation – so that each process
only works on a part of the mesh cells, called locally owned cells – is
a key aspect to enable large systems, since most of the computational
time is spent here. However, extensive memory usage and poor parallel
scalability of other parts of the code might become a bottleneck as
well. For instance, gathering data from all processes to be able to
run the grain-tracking algorithm, as done in [17,36], is only feasible
for small number of processes but is not an option at a larger scale,
limiting the maximum problem sizes per process that can be solved.
This implies that we need a grain-tracking algorithm that returns the
minimal number of order parameters but is also computationally and
memory-wise cheap to apply even if it is not executed at each time step.

Hardware

All experiments are performed, unless stated otherwise, on a dual-
socket 20-core Intel Cascade Lake Xeon Gold 6230 system (2.6 TFLOP/s,
180 GB/s, AVX-512) with up to 8 compute nodes. To give a broader
performance perspective, we also report experiments from a dual-
socket AMD EPYC 7713 processor with 64 cores per socket. It has
an aggregated bandwidth of 320–340 GB/s and only supports AVX2,
but the clock frequency and core count are higher (4.6 TFLOP/s). The
parallel-scaling experiments are executed on a dual-socket 24-core Intel
Xeon Platinum 8174 (Skylake) system of the supercomputer SuperMUC-
NG,3 (achieved STREAM triad memory throughput of 205 GB/s) with
up to 1024 compute nodes (49k processes).

4. Solver components

Section 3 identifies the solver components needed for scalable large-
scale simulations of solid-state-sintering processes: fast operator evalu-
ation of the Jacobian and the residual as well as a balance between the
costs and effectiveness of the preconditioner. Both ingredients need to
able to deal with a large and dynamic number of order parameters,
i.e., components. A fully parallel implementation of the grain-tracking
algorithm enables a low number of order parameters also for large sim-
ulations, where replicating information is unfeasible. In the following,
we present the algorithmic realization of these steps.

3 https://top500.org/system/179566/ received on December 11, 2022.

Algorithm 1: Cell loop considering all vector blocks. The con-
version of the number of components into a constant expression
is done at a central place before looping over all cells.
1 if 𝑛blocks = 𝑛static

blocks then
2 for cell ∈ cells do
3 for 𝑏 = 1 to 𝑛blocks do
4 read from block 𝑏 of source vector
5 perform cell integral → action of 𝑒 in (8)
6 for 𝑏 = 1 to 𝑛blocks do
7 write to block 𝑏 of destination vector

8 else
9 not shown

4.1. Dealing with large and dynamic number of components

During sintering, grains build necks with neighboring particles,
increase and/or decrease in size, and might disappear. The grain-
tracking algorithm assigns and reassigns the grains to order parameters.
Typical values of the number of order parameters are between 8 and 14.
Depending on the topology of grains, the number of order parameters
can be dynamically reduced or has to be increased. A natural choice
is to assign each order parameter to a component of a vectorial finite
element. For solid-state sintering, this implies vectorial elements with
two components for the Cahn–Hilliard system and one component for
each order parameter. Such a dynamic behavior is in contrast to the
fixed number of components in most vectorial problems solved with
finite-element models.

In order to simplify the workflow in the context of a general-
purpose FEM library, we do not actually work with vectorial elements
but with multivectors defined upon scalar finite elements, which we
manually combine on the cell4/quadrature-point level. Each component
corresponds to a vector in the multivector, which simplifies adding
or removing blocks during remapping. In the following, we use the
term block to denote an individual vector related to a scalar function
space within the multivector and denote the vector of all unknowns
as block vector. To accelerate computations of integrals on the mesh
cells, we use the C++ template mechanism for generating separate
code for different numbers of components to provide the compiler
with optimization opportunities via known loop bounds and data-
structure sizes. From compute kernels precompiled up to a known
maximal possible number of components, the right kernel is chosen at
runtime. The resulting procedure is summarized in Algorithm 1. The
memory consumption is (𝑁𝑐𝑁𝑃) and the computational complexity is(𝑁2

𝑐𝑁𝑃), since coupling between order parameters is considered on
the cell level also when a cell is not cut by the boundary of a grain.

In the context of large-scale finite-difference implementations [8,
10], it is common to exploit the local support of grains [37], i.e., 𝜂𝑖(𝐱) >
0 only for limited 𝐱. For this purpose, the indices of relevant grains
are stored for each cell. In practice, the number of possible relevant
grains is fixed and limited, e.g., to 𝑐max = 6. Since 𝑐max ≪ 𝑐 is generally
much lower than the number of order parameters and – per definition
– constant, the memory consumption is (𝑁𝑃) and the computational
complexity is (𝑁𝑃) with a larger constant of proportionality.

It is also possible to adopt this approach in the context of FEM if
one realizes that the data structure used for existing finite-difference
codes is – in a nutshell – a compressed-row-storage-format object with
rows being the cell/vertex/DoF indices, storing a fixed number of the
relevant column indices (grain indices) and associated values (𝜂𝑖). In
the context of computational solution of the density functional theory
based on FEM [38,39], such a data structure was successfully used in
the form of sparse block vectors.

4 We use the terms cell and element interchangeably.

Computational Materials Science 231 (2024) 112589

6

P. Munch et al.

Algorithm 2: Cell loop considering only vector blocks relevant
for the current cell. The conversion of the number of components
into a constant expression has to be performed for each cell.
1 for cell ∈ cells do
2 𝑏𝑙𝑜𝑐𝑘𝑠 ← relevant blocks of cell
3 for 𝑏 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠 do
4 read from block 𝑏 of source vector
5 if |𝑏𝑙𝑜𝑐𝑘𝑠| = 𝑛static

blocks then
6 perform cell integral → action of 𝑒 in (8)
7 else
8 not shown
9 for 𝑏 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠 do
10 write to block 𝑏 of destination vector

Fig. 5. 51 particles: distribution [%] of cells and cell batches with 𝑛 relevant grains
at 𝑇 = 500 (see Section 6).

Despite of the appeal of sparse block vectors with 𝑁𝑃 blocks regard-
ing memory consumption, their usage within an implicit (non)linear
solver is challenging. For instance, sparse block vectors imply different
and frequently changing sparsity patterns of the matrix of each block,
which makes the setup of preconditioners more expensive and paral-
lelization more challenging if established linear-algebra libraries should
be used. However, processing all particles of one order parameter
implies a natural parallelization across particles under the assumption
that the grain-tracking algorithm is able to reduce the number of order
parameters to a reasonable value. Therefore, we defer the investigation
of such data structures to future work and, instead, focus on a novel
simplified approach: we allocate (dense) block vectors in memory but
limit the arithmetic work on cells to the relevant blocks in the block
vector, including the coupling in cell integrals. This is achieved by
storing the relevant order parameters for each cell. Obviously, this
approach still implies a memory consumption of (𝑁𝑐𝑁𝑃) and an
associated overhead throughout the remainder of the solver (e.g., non-
relevant entries of the vectors have to be zeroed and communicated),
but the computational effort can be significantly lowered. In the current
work, we use the—heuristic—criterion 𝜂𝑖 > 10−5 to determine whether
a grain is relevant within a cell. Fig. 5 shows the distribution of the
resulting number of components on cells. The value ranges from 0 to
6 with 81% of the cells only containing 1 or 2 grains, which indicates
a significant increase of efficacy. We present the corresponding per-
formance comparison in Section 6. The resulting algorithm is shown
in Algorithm 2 indicating that the number of components needs to be
translated into a constant expression for each cell.

4.2. Fast Jacobian and residual evaluation

A widespread optimization of iterative linear solvers for modern
hardware is to not assemble the final global matrix but implement the
action of the linear(ized) operator through a loop over cells and com-
pute the FEM integrals on the fly in a matrix-free way. This approach

has been established in the high-order spectral-element community.
By now, it is commonly used in the computational fluid dynamics
formulations [40–42] and has been also applied, e.g., in the context
of solid mechanics [43,44], material science [14] and computational
plasma physics [45]. Depending on the polynomial degree and the
underlying quadrature formula, the matrix-free operator evaluation is
beneficial for accelerating the actual matrix–vector product or only for
reducing the setup costs of the Jacobian. The latter might provide,
depending on iteration counts, a better overall runtime also when the
actual evaluation is more expensive.

Due to the implementation similarity between the matrix-free eval-
uation of the Jacobian and the evaluation of the residual, we introduce
the concepts of high-performance evaluation of an arbitrary operator(𝑥). The overall structure is [46–48]:

𝒗 = (𝒙) =
∑
𝑒
𝑇𝑒 ◦ ̃𝑇𝑒 ◦𝑒◦𝑒

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝒗𝑒=𝑒(𝒙𝑒)

◦𝑒𝒙. (8)

For each cell 𝑒, the operator 𝑒 gathers the values pertaining to the
local FEM solution expansion from the source vector 𝒙 and applies
constraints (like hanging-node constraints [49] related to AMR). The
operator 𝑒 computes values or gradients associated to the vector 𝒙 at
the quadrature points. These quantities are processed by a quadrature-
point operation 𝑒; the result is integrated and summed into the vector
𝒗 by applying ̃𝑇𝑒 and 𝑇𝑒 . In the literature, specialized implementa-
tions for GPUs [48,50–52] and CPUs [45–47,50,53] for operations as
expressed in (8) have been presented, including the use of the structure
in interpolation matrices. For CPUs, it is an option to vectorize across
elements [46,47], i.e., evaluate 𝑒 for multiple cells in different lanes
of vector execution units by the same instructions. This necessitates
the data to be laid out in a struct-of-arrays fashion. The necessary
permutations to support unstructured meshes can be done, e.g., by 𝑒,
while looping through all elements [46]. On modern CPUs, the most
common number of lanes 𝑁SIMD is either 4 (AVX) or 8 (AVX512) for
double-precision floating-point numbers, implying that batches of 4 or
8 cells are processed at once.

For multicomponent FEM, the indices within 𝑒 are the same for
each block, allowing to process blocks one by one with the same index
data. Furthermore, 𝑒 and ̃𝑇𝑒 can be executed for each component in-
dividually. The operator 𝑒 determines the quantities to be provided at
quadrature points, encoding the actual physics via the weak forms (5)
and (7). In the case of the residual (5) and the Jacobian (7), we need
the values and the gradients of 𝑐, 𝜇, 𝜂𝑖 and have to multiply the results
by both the value and the gradient of the respective test function. When
evaluating the operators in (8) sequentially, the amount of temporary
data is 𝑁SIMD(𝑁𝑐 + 2)(𝑑 + 1)(𝑝 + 1)𝑑 data fields, with 𝑝 the polynomial
degree and 𝑑 the spatial dimension. The performance crucially depends
on the ability to keep the temporary results between the steps of Eq. (8)
on a cell accessible quickly. Hence, the higher numbers of components
require larger cache capacities to remain fast.

At each quadrature point, the values and gradients of 𝑐, 𝜇, 𝜂𝑖 are
coupled via 𝑒. From a performance point of view, the two limiting
factors are possible register spills for high number of components
and (𝑁2

𝑐) arithmetic operations. Apart from constants, this is the
same complexity as for a matrix-based implementation, since coupling
between all components arises in both cases. The crucial difference is
that a matrix-based code involves the coupling over the whole stencil
of a point. Furthermore, matrices are large objects in memory with
low data reuse, implying that data needs to be loaded via the slow
main memory, whereas the matrix-free evaluation only experiences the
complexity on a single point and on cached data. In the ideal case,
the time complexity is thus (𝑁𝑃𝑁𝑐) if the computation can be hidden
behind the global memory access. In the following, we concentrate on
linear elements (𝑝 = 1) in 3D, as common in the literature [12,26,30]
for simulating sintering problems.

Fig. 6 shows the time and throughput of the computation of the
residual and the application of the Jacobian. Here, the throughput is

Computational Materials Science 231 (2024) 112589

7

P. Munch et al.

Fig. 6. Comparison of the time and throughput (given in GDoF/s=109DoF/s) of the application of sparse matrix (SpMV), of the vector Helmholtz operator, and of the generic
sintering operator. 4.3 million DoFs per vector component for different number of components. Run on 1 compute node with Intel Xeon 6230 (40 cores).

computed as the ratio between the number of degrees of freedom for
all vector components and the runtime/wall time of the experiment in
seconds, in short, the number of DoFs processed per second. We use
Algorithm 1 on a uniformly refined Cartesian mesh with 4.3 million
DoFs per vector component. As a reference, we also list the timings for
the evaluation of the vector Helmholtz operator (𝑣𝑖, 𝑢𝑖)+(∇𝑣𝑖,∇𝑢𝑖). Since
this operator involves the same operations 𝑒 and ̃𝑇𝑒 , the difference
illustrates the cost of the physics-based 𝑒. The residual evaluation
of the sintering operator involves around 50% more floating-point
operations on average, with the execution being 30% slower than
the one of the vector Helmholtz operator. Evaluating the Jacobian
gives a 19% lower throughput than the residual because of additional
floating-point operations from linearization and additional data access
for loading a given linearization point, as we precompute the values
of 𝑐, 𝜇, 𝜂𝑖 and the gradients of 𝑐, 𝜇 at the quadrature points. We
also show the times of the multiplication with a sparse matrix in
which all components are coupled. It is clear that the time of the
sparse matrix–vector multiplication increases quadratically with the
number of components, as does the memory consumption, making this
approach unfeasible for large number of components. Note that sparse
matrices involve additional costs for the assembly and the creation of
the pattern of non-zero entries.

The experiments also show a decrease in throughput with increasing
the number of components for the matrix-free case, which indicates
a quadratic complexity with low constant of proportionality. These
results motivate the development of algorithmic variants that reduce
the number of components a particular cell needs to work on, e.g., by
using Algorithm 2. The central ingredient for this algorithm is to track
the relevant grains per cell batch. Since the batching of cells is done a
priori, changes in the simulation lead to a slight increase in the number
of relevant grains per cell batch, compared to the one of the relevant
grains per cell, as illustrated in Fig. 5.

Table 1 illustrates the performance metrics of the underlying exper-
iments. One can see that the write access to main memory, normalized
per unknown, increases only marginally with increasing number of
components, indicating that all relevant data needed for 𝑒/𝑒 fit into
cache. The data read per DoF decreases with increasing number of
components, reflecting the fact that other data (e.g., indices and metric
terms) can be shared between components and the relative amount
of data related to the linearization point, where the Cahn–Hilliard
part dominates, decreases. The number of floating-point operations
increases as 73→78 and 86→99 FLOP per quadrature point as the
number of components increases in the cases of residual and Jacobian
evaluation, respectively. As a summary, the results are inserted into
a graphical representation of the roofline performance model [55]
for the residual evaluation in Fig. 7. With increasing the number of
components, the arithmetic intensity increases (11.5→13.1 FLOP/byte)

Table 1
Comparison of measured throughput, read/write memory access and arithmetic work
for evaluation of the residual and the Jacobian of generic sintering operator for different
number of components (see Fig. 6). As a reference, the vector Helmholtz operator
involves 416 FLOP/DoF. The hardware performance counters were accessed with the
LIKWID tool [54].
𝑁𝑐+2 Sintering (residual) Sintering (Jacobian)

D/s r/D w/D F/D D/s r/D w/D F/D

2 0.83 5.3 1.3 608 0.53 37.7 1.6 690
3 0.71 4.9 1.5 591 0.54 29.4 1.7 688
4 0.96 4.7 1.5 579 0.64 25.1 1.7 704
5 0.76 4.6 1.6 579 0.65 22.6 1.8 711
6 0.72 4.6 1.6 579 0.65 20.9 1.8 717
7 0.70 4.5 1.6 582 0.51 19.7 1.9 723
8 0.68 4.4 1.7 585 0.51 18.7 1.9 730
9 0.57 4.4 1.7 590 0.49 18.1 1.9 756
10 0.54 4.4 1.7 595 0.46 17.5 2.0 763
11 0.51 4.3 1.7 601 0.44 17.0 2.0 771
12 0.48 4.2 1.7 607 0.42 16.5 2.1 779
13 0.45 4.2 1.7 614 0.41 16.2 2.1 786
14 0.45 4.2 1.8 620 0.40 15.9 2.1 794

D/s: throughput in [GDoFs/s]; r/D: read data per DoF in [Double/DoF]; w/D: written
data per DoF in [Double/DoF], F/D: work [FLOP/DoF]. Due to the usage of Gauss–
Legendre quadrature implying approx. 8 quadrature points per vertex, F/D needs to be
divided by 8 to obtain the number of FLOP per quadrature point and component. The
numbers represent the average of 100 repetitions of the experiment.

and the obtained performance decreases (556→277 GFPLOP/s). As a re-
sult, 27%–12% of the obtainable hardware bandwidth limit is reached.
Albeit the gap appears to be significant, the result can be explained by
limits not included in this simplistic roofline model, most prominently
by the relatively high share of non-floating point operations for linear
shape functions, such as unstructured gather/scatter access and related
integer operations. For comparison, a sparse matrix–vector product
(SpMV) would reach a much lower performance of 45 GFLOP/s due
to an arithmetic intensity ≈ 0.25 FLOP/byte.

In order to reduce the impact of a higher number of components,
the following optimization strategies are developed:

• We do not explicitly compute individual terms of the free energy
(3) or mobility (4) but instead apply them directly to vectors. This
allows us to transform equations like
∑
𝑗,𝑖≠𝑗

𝜕2𝑓
𝜕𝜂𝑖𝜕𝜂𝑗

𝑢𝑗 =
∑
𝑗,𝑖≠𝑗

(𝜂𝑖𝜂𝑗)𝑢𝑗 = 𝜂𝑖
∑
𝑗,𝑖≠𝑗

𝜂𝑗𝑢𝑗 = 𝜂𝑖(𝛼 − 𝜂𝑖𝑢𝑖),

with the precomputed factor 𝛼 =
∑
𝑖 𝜂𝑖𝑢𝑖. Note that some scaling

factors are dropped for the sake of simplicity.
• Other factors, e.g., ∑

𝑖 𝜂
2
𝑖 and ∑

𝑖 𝜂
3
𝑖 , can be precomputed and

reused for each grain.
• Off-diagonal block entries are processed in pairs, and symmetry

is exploited, e.g., ∑𝑔
𝑖=1

∑𝑔
𝑗=1,𝑖≠𝑗 𝜂𝑖𝜂𝑗 = 2

∑𝑔
𝑖=1

∑𝑖−1
𝑗=1 𝜂𝑖𝜂𝑗 .

Computational Materials Science 231 (2024) 112589

8

P. Munch et al.

Fig. 7. Roofline performance model of the evaluation of the residual of the generic
operator (Table 1) as well as the advection and tensorial operator (Table 8) for
different number of components. On the Intel system, the bandwidth and the number
of floating-point operations are extracted from hardware-performance counters. On the
AMD system, where direct measurements have not been possible, the memory access
of the Intel system is assumed as a model.

Fig. 8. Comparison of the throughput of application of the sparse matrix, of the vector
Helmholtz operator, and of the generic sintering operator on the AMD hardware.

• Those coupling terms that cannot be reformulated and, as a
consequence, introduce a quadratic complexity are explicitly op-
timized.

Further examples are discussed in Section 7 for tensorial mobility,
which requires more transformations due to a higher arithmetic load.
In particular, that section contains an example for the last bullet point.

Remark. We have experimented with advanced techniques to increase
the throughput of the cell integrals, namely (1) interleaving the evalua-
tion/integration with the loop over the quadrature points by performing
quadrature in two-dimensional layers at a time [47] and (2) implementing
the arithmetic work for 2𝑑 cells at once. These techniques allow, e.g., to
decrease the size of the working set by additional cache blocking and to
reduce the cost of indirect addressing when accessing the DoFs on cells.
The preliminary results are promising with speedups between 50% and
100%, allowing for a reduction of the gap to the hardware bandwidth
limit. Detailed investigations on these options and alternative vectorization
strategies, e.g., vectorization over components [53], are deferred to future
work.

Behavior on AMD and GPU hardware
The above-mentioned performance bottlenecks in terms of the num-

ber of components are partly due to the specific microarchitecture of
the chosen Intel hardware. In order to better illustrate the performance
capabilities on the expected trajectory of computer hardware evolution,
we performed a node-level performance experiment on a more recent
AMD Epyc 7713 processor. According to Fig. 8, the throughput is on
average 2.3× higher than the Intel results from Fig. 6, which is related
to the higher bandwidth and compute performance (1.8× each) as well
as to larger-bandwidth caches. Our code utilizes around 50% of the
available memory bandwidth for a low number of components and
around 40% for a higher number of components, as indicated by the
roofline performance model (Fig. 7). This shows that the proposed
algorithms also work, as expected, on alternative CPU-based hard-
ware, however, the dependency on the number of components is less
prominent due to a more balanced cache system of the AMD hardware.

The present work focuses on CPU implementations. However, fast
(matrix-free) operator evaluation is also attractive on GPUs. Refs. [44,
51] discuss optimizations for some standard operators. For the sintering
operator, the need to compute significantly larger amount of data at
the quadrature points limits the applicability of current algorithms,
since many implementations rely on keeping most intermediate data
in registers rather than in caches used for CPUs. However, we believe
that the novel algorithm design to organize work along 2D layers, as
described above, combined with moving the remaining data into shared
memory, as proposed for high orders in [56], could be beneficial.

Application in Jacobian-free methods
We conclude this subsection by discussing an efficient implemen-

tation of a Jacobian-free method (6) in the case of the fast operator
evaluation (8) for the residual. In order to evaluate a Jacobian-free
operator 𝑛 times, we need to evaluate the residual 𝑛 + 1 times. During
the first iteration, the residual at the linearization point 𝐹 (𝐮) has to
be evaluated once, which can be reused in the subsequent operations.
Within the actual Jacobian-free evaluation, the linearization point has
to be perturbed, the residual is evaluated, and the finite difference
needs to be taken. We propose to merge the two vector-update steps
into the loop over cells and perform them on ranges of the vectors
only when the value is needed for the cell integral (pre) and once
contributions from all cells have been added to an index (post), as also
has been done to accelerate conjugate-gradient solvers [57] and addi-
tive Schwarz solvers [58]. In order to minimize the memory footprint,
we perturb the vector containing the linearization point and revert the
modifications afterwards. The resulting pre und post operations are
as follows:

𝐩𝐫𝐞∶ 𝑢lin
𝑖 ← 𝑢lin

𝑖 + 𝛽𝑝𝑖, 𝐩𝐨𝐬𝐭∶
{
𝑣𝑖 ← (𝑣𝑖 + 𝑟lin𝑖)∕𝛽
𝑢lin
𝑖 ← 𝑢lin

𝑖 − 𝛽𝑝𝑖,

which are run interleaved with 𝑣 ←  (𝑢lin). This implies 6 additional
floating-point operations and – under the assumption that the vector
entries are still in cache – one extra write operation per DoF besides
those in Table 1. In order to obtain the parameter 𝛽, our current
implementation computes the 𝑙2-norm of the source vector, implying,
in addition, one global vector reduction step with the associated data
access before the cell loop.

4.3. Block preconditioner

In the following, we propose a preconditioner of the Jacobian (7).
The preconditioner is needed when we apply the Jacobian directly
or via a finite-difference approach. In the current work, we consider
incomplete LU factorizations that are of block-Jacobi type across MPI
processes, in short, ILU-based block preconditioners. In order to com-
pute an ILU, we need access to the entries of the underlying sparse
matrix. To avoid the cost for memory access, we propose to set up ILU
for the Cahn–Hilliard block and a single Allen–Cahn block, applying the

Computational Materials Science 231 (2024) 112589

9

P. Munch et al.

Fig. 9. Visualization of the fully distributed determination of grains within the same order parameter, starting with a discrete concentration field 𝜂𝑖. The results are (1) the
grain index of each locally owned cell and (2) grain properties, e.g., centroid and bounding radius. In the example, the mesh is partitioned among four processes. For the sake
of simplicity, the mesh is not shown and isocontours in 𝜂𝑖 are perfectly circular. Grain indices are constant within cells. Steps 3⃝ and 4⃝ can be interpreted as a distributed
connected-component algorithm that returns, for each node, a component number.

latter to each block, as indicated in the rightmost panel of Fig. 3. The
setup is of constant complexity (𝑁𝑃), and the application naturally
has a linear complexity (𝑁𝑐𝑁𝑃). The runtime cost of the precondi-
tioner applications can be reduced if the application is batched in a
matrix-multivector form, thus only loading the entries of the factorized
matrix once. To be able to reuse the ILU instance for each Allen–Cahn
block, we take the maximum of the term

(
𝑣𝑖, 𝐿𝜕2𝑓∕𝜕𝜂2𝑖 𝑢𝑖

)
in (7c) over

all order parameters.
Remark. We use an ILU for the two-by-two Cahn–Hilliard block. For

better performance with larger time steps or higher diffusivity, physics-based
preconditioners, like the one in [59], might reduce the iteration counts.
We defer the investigation of such preconditioners to future work, since the
Cahn–Hilliard block is independent of the number of order parameters and,
in our experiments, is not the bottleneck (2≪ 𝑁𝑐).

4.4. Fully distributed grain tracking and remapping

In the following, we propose a fully distributed version of the
grain-tracking algorithm, which we need to guarantee a non-conflicting
assignment of the order parameters according to the invariant described
in Fig. 2. The algorithm is inspired by reference [17], which presents
the grain-tracking implementation in MOOSE. The procedure (1) detects
grains in each order parameter, based on the discrete values of 𝜂𝑖,
(2) checks for conflicts within each order parameter, and (3) reassigns
the grains with conflicts to existing or new order parameters, which
involves also the copying of data in the solution vectors.

Our implementation is heavily graph-based and works only on
locally owned cells, allowing the algorithm to scale to large problem
sizes.

4.4.1. Grain detection
For each order parameter 𝜂𝑖, each process runs a flooding algo-

rithm [60] on locally owned cells to identify all agglomerations of cells
with 𝜂𝑖 > 𝜂lim (𝜂lim = 0.01 in our simulations). An agglomeration either
forms a whole grain itself or is a part of a grain if it is located at internal
boundaries between the neighboring processes. The challenging task is

to match agglomerations related to grains stretched over multiple pro-
cesses. For this purpose, we propose the following algorithm, which is
inspired by the unique enumeration of DoFs in the context of FEM [61]
and is visualized in 5 steps in Fig. 9.

Initially, we locally enumerate all identified agglomerations and
give them globally unique indices via a parallel prefix sum (steps 1 and
2 in Fig. 9). Once each agglomeration has a unique index, we commu-
nicate that information by a ghost-value update so that processes know
the agglomeration index of each ghost cell. This information is enough
to build a distributed graph with nodes being agglomerations and edges
being connections determined based on the information from the ghost
cells. By determining all connected components, we get all agglomera-
tions (and cells) that make up a grain (distributed stitching, step 3
in Fig. 9). Finally, we give each grain a unique index and determine
properties, like centroid or bounding radius and—optionally—force or
torque (see Section 7.2), via parallel reduction operations (steps 4 and
5 in Fig. 9).

Note: The described algorithm also works for systems with periodic
boundary conditions if it is possible to access ghost values across periodic
boundaries (see the blue grain in Fig. 9). In addition, special care has to be
taken during determination of properties, e.g., the grain centroids.

4.4.2. Grain tracking
After the grains have been detected for the current configuration,

they need to be matched to those from the previous one. This is
required to ensure no new grains have appeared, which would be an
abnormal, not physically admissible behavior in the case of sintering.
In order to determine, for a grain, the closest grain from the previous
configuration, we build an R-tree, which allows a fast query.

4.4.3. Grain reassignment
Once all the grains have been identified and matched between the

current and previous configurations, they are checked for collisions in
a safety region 𝑟′𝑖 = 𝑟𝑖 + 0.05𝑟𝑖. If the safety regions of any two grains
𝑖 ≠ 𝑗 in the same order parameter overlap, we need to reassign one of

Computational Materials Science 231 (2024) 112589

10

P. Munch et al.

Fig. 10. Special remapping cases. Grain packings and remapping graphs.

them, since they might come into conflict in the next time steps. For
reassigning, we use two algorithms.

A greedy algorithm checks, for a conflicting grain pair from order
parameter 𝑖, whether any grain from all other order parameters 𝑖 ≠ 𝑗
would have a conflict with one of the two grains being currently under
investigation. If not, one of the conflicting grains can be moved there,
resolving the conflict. If no such order parameter could be found, the
conflicting grain has to be assigned to a newly created order parameter
or a more involved algorithm has to be used. In order to check whether
a grain is in conflict with any grain in an order parameter, we use an
R-tree data structure to accelerate the query.

Alternatively to the greedy algorithm, we use an algorithm based on
graph coloring. In this case, grains are the nodes and conflicts are the
edges. The graph coloring gives the minimum number of colors, which
we interpret as the new order parameters. This approach, however,
does not guarantee that grains keep their current order parameter so
that remapping might become overly expensive even in the case of
slight topological changes.

4.4.4. Grain remapping
The previous step has assigned grain 𝐺𝑖 to an order parameter 𝑗:

𝜂𝑗 → 𝜂𝑗′ with possibly 𝑗 ≠ 𝑗′ so that grains in the same order parameter
do not have any conflicts. Now, values corresponding to grain 𝑖 in the
current and previous solution vectors have to be transferred from the
block corresponding to order parameter 𝑗 to the one of 𝑗′, without
overwriting the values in the destination vector that still need to be
moved.

Let us consider the two configurations in Fig. 10, each aiming to
reassign three grains. While the remapping can be done straightfor-
wardly with the sequence (𝐺3: 𝜂2 → 𝜂3), (𝐺2: 𝜂1 → 𝜂2), (𝐺1: 𝜂0 → 𝜂1)
in the first case, this is not possible in the second case due to cyclic
dependencies. Here, we need to introduce a temporary vector and can
run the remapping, e.g., with the following sequence: (𝐺1: 𝜂0 → 𝜂𝑡),
(𝐺3: 𝜂2 → 𝜂0), (𝐺2: 𝜂1 → 𝜂2), (𝐺1: 𝜂𝑡 → 𝜂1), where 𝜂𝑡 corresponds to
the temporary vector.

In order to automatically detect and resolve possible remapping
issues, we construct a directed graph containing all necessary remap-
pings. We run a depth-first search algorithm to determine all connected
nodes, i.e., grain-remapping operations that need to be serialized. If a
cluster of connected nodes does not contain cycles, we can schedule
the reassignment in topological order. However, if a cycle is detected,
a dummy node corresponding to the temporal vector is introduced to
break the cyclic dependency. For performance purposes, the described
remapping procedure is applied within a single cell loop, based on
cached resolved graphs.

Note: In our implementation, we are performing the graph/tree algo-
rithms in the cases of grain stitching, matching, reassignment and remap-
ping redundantly on each process, using either boost.graph/boost.
geometry [62] or Zoltan from the Trilinos library [63]. This
implies that 0D grain information has to be replicated on each process. An
extension to distributed graphs is possible but is deferred to future work to
enable packings with more than 10k grains.

4.5. Solver configuration

We conclude this section by summarizing the ingredients of our
solver. We refer to the configuration of the solver as default configuration
if the Jacobian is evaluated in a matrix-free way and all order param-
eters are considered on the cell level (Algorithm 1). When different
variants are investigated, these are labeled accordingly.

4.5.1. Nonlinear and linear solver
In order to solve the nonlinear system (5), we use a Newton solver

with cubic line search from the NOX package from the Trilinos li-
brary [63]. This nonlinear solver is run until the 𝑙2-norm of the residual
has been decreased by 𝜀nonlin = 10−5 and the Jacobian is solved with
GMRES with a rather coarse relative tolerance of 𝜀lin = 10−2, in line
with Brown [35] (see also Supplementary Material S3.2). The choice
𝜀nonlin = 10−5 as default tolerance for our nonlinear solver is the
result of experiments over a wide range of tolerances and benchmark
applications, ensuring sufficient accuracy in the mass conservation and
the free energy of the discretized solution. A more detailed discussion
on this matter with the elementary assessment of the conservation error
in view of [64] can be found in Supplementary Materials S3.1 and S3.3.
The preconditioner for GMRES is set up at the beginning of each time
step once and is reinitialized between Newton iterations only if the
number of linear iterations at a particular single Newton step exceeds
the value of 50. We use the ILU implementation from the Ifpack
package from the Trilinos library [63].

4.5.2. Time stepping
We use BDF2 with adaptive time steps. We increase the time-step

size by 20% if the number of nonlinear iterations is less than 5 and the
accumulated number of linear iterations is less than 100, i.e., less than
20 linear iterations per nonlinear iteration on average. We consider a
time step as failed if the nonlinear solver needs more than 10 iterations
or the linear solver more than 100 iterations in total. If the nonlinear
solver has failed, we decrease the time-step size by 50% and rerun
the time step, based on the old converged solution. The described
time-stepping heuristic is conservative, since time-step sizes are not
increased for challenging configurations, reducing the number of time
steps that need to be repeated. Nonetheless, the obtained time-step sizes
are quite large overall, leading to significant pressure on the linear
solver and its preconditioner.

4.5.3. Initial mesh generation
The initial geometry is defined as a list of spherical particles. The

definition of potentially overlapping particles can be supplied for the
phase-field simulations from the preliminary DEM early-stage-sintering
analysis [4]. The computational domain is then constructed based on a
bounding box over all particles with a boundary padding 0.5𝑟max, where
𝑟max is the radius of the largest particle in the packing.

We choose the diffuse interface thickness a priori as 𝑤 = 0.1𝑟avg …
0.15𝑟avg, where 𝑟avg is the average radius of particles in the packing. The
choice of 𝑤 then defines the free-energy properties 𝐴 = (12𝛾𝑠−7𝛾𝑔𝑏)∕𝑤,
𝐵 = 𝛾𝑔𝑏∕𝑤, 𝜅𝑐 = 3𝑤

(
2𝛾𝑠 − 𝛾𝑔𝑏

)
∕4, 𝜅𝜂 = 3𝑤𝛾𝑔𝑏∕4, based on a limit

case analysis [24,30,31] with the physical surface 𝛾𝑠 and the grain
boundary energies 𝛾𝑔𝑏, both usually given by the physics of the material
of interest. Depending on the problem size and the desirable accuracy in
capturing the interface motion, the thickness of the latter is discretized
by 1–4 cells, giving the finest mesh size ℎ𝑒 desired only at the interface
itself. The mesh is obtained by locally refining a coarse quad-/hex-
only mesh. This mesh is constructed in such a way that cells have a
good aspect ratio and the value ℎ𝑒 is approximately obtained in each
direction by local refinement. For the latter, we use a forest-of-trees
approach where cells are recursively replaced by 2𝑑 child cells and rely
on p4est [61,65]. The proposed strategy generates meshes with on
average less than 10k and 100k scalar DoFs per particle for 2D and 3D
simulations, respectively.

Computational Materials Science 231 (2024) 112589

11

P. Munch et al.

Fig. 11. 5 particles: microstructures obtained with MOOSE and with our code during simulations of the 5-particle sintering. The plots show ∑
𝑖 𝜂2𝑖 computed with MOOSE, and the

white lines display the isosurfaces constructed for each 𝜂𝑖 = 0.5 with hpsint.

4.5.4. Adaptive mesh refinement
The AMR algorithm is triggered every 10th time step or when the

mesh quality has deteriorated in relation to the values of 𝜂𝑖; we only
allow |max(𝜂𝑖) − min(𝜂𝑖)| < 0.5 for all cells. We coarsen cells if they are
not close to the boundary of a particle, which is identified by 0.05 <
𝜂𝑖 < 0.95. At boundaries themselves, we keep the mesh fine throughout
the simulation. The number of maximum/minimum refinements is a
runtime parameter and is chosen depending on the material properties.

4.5.5. Grain tracking
We run the grain-tracking algorithm every 25 s of the simulated

time or according to the same quality criterion as in the case of
AMR described in Section 4.5.4. The initial distribution of grains over
the order parameters is performed by running the graph-colorization
algorithm that is also used at the reassignment step (see Section 4.4.3).

5. Numerical results

In the following, we present numerical results obtained with the
developed solver, mainly to verify it from the sintering-physics point
of view. We keep the discussion short and regard this section as an
introduction into the setups of the performance analyses in Section 6.

5.1. 5-Particle case

We first analyze the 5-particle geometry depicted in Fig. 1; the
centers and radii of the particles are listed in Table 2. The cubic
computational domain of size 42 × 50 × 27 in 3D is generated as
described in Section 4.5.3. The free energy constants are defined as
𝐴 = 16, 𝐵 = 1 and the energy barriers are set to 𝜅𝑐 = 1.0, 𝜅𝜂 = 0.5. These
values render the diffuse interface thickness 𝑤 ≈ 1.0. The following
diffusion mobilities are chosen: 𝑀vo = 10−2, 𝑀va = 10−10, 𝑀s = 4.0,
𝑀gb = 0.4. The grain-boundary mobility is set to 𝐿 = 1.0. This is
a common set of parameters used in multiple works [22,25,30]. The
packing is analyzed in 2D and 3D for the period up to 𝑡end = 1,000
seconds. For this benchmark, we use a tighter tolerance 𝜀lin = 10−5

Table 2
5 particles: initial locations and radii of the particles.

ID 𝑥 𝑦 𝑧 𝑟

1 7.5 7.5 0 7.5
2 10 23.81 0 9.0
3 21.464 8.5 0 6.5
4 25.8 21.285 0 7.0
5 21.583 34.109 0 6.5

for the linear solver, matching the default value in MOOSE, in order to
make sure that the coarser value of 10−2, which we normally use as
stated in Section 4.5.1, does not degrade the performance of MOOSE
and, that way, ensures the comparison of the two codes. Note that no
units are given except for time, since the geometry, energy and mobility
properties for the current problem are defined as dimensionless.

The aim of these simulations is to compare the results with an
alternative, well-established implementation [26,30,66] of the same
phase-field model available in project Crow,5 which is based on the
MOOSE framework [11]. Crow reuses most of the parts of the phase-
field module of MOOSE, including the kernels that provide the mobility
and free-energy terms as materials required by this particular sintering
model. We carefully tuned the AMR settings, absolute and relative
tolerances, iteration thresholds, implicit time-integration properties of
both solvers such that the numbers of DoFs and of linear and nonlinear
iterations are comparable in both codes. Fig. 11 shows meshes at
different times in the 2D case. Other settings were set to be optimal
for the MOOSE solver according to its documentation.6 For instance,
the preconditioned JFNK solution strategy provided by SNES from
PETSc [34] was used and the parallel ILU implementation provided
by the Euclid library from hypre [67] was chosen as preconditioner
for the GMRES linear solver.

5 https://github.com/SudiptaBiswas/Crow.
6 https://mooseframework.inl.gov/source/systems/NonlinearSystem.html,

https://mooseframework.inl.gov/modules/phase_field/Solving.html.

Computational Materials Science 231 (2024) 112589

12

P. Munch et al.

Fig. 12. 5 particles: comparison of total free energy, time-step size, and number of scalar DoFs over the simulation time.

Table 3
5 particles: performance metrics of the 2D and 3D simulations in hpsint and MOOSE.
Scalar DoFs are given.

2D 3D

hpsint MOOSE hpsint MOOSE

Wall time [s] 164.8 704.4 1072 69,898
max 𝜏 12.22 18.22 16.74 18.05
time steps 190 223 303 241
DoFs initial 3604 3504 128,700 123,209
DoFs final 2751 2673 80,909 76,697

As can be seen in Fig. 11, the microstructures obtained for both
solvers are identical for the 2D and 3D cases. For this purpose, the quan-
tity ∑

𝑖 𝜂
2
𝑖 obtained in MOOSE is compared with the isolines constructed

for each 𝜂𝑖 = 0.5. For the 3D case, the corresponding plots are shown at
the cross-section plane 𝑧 = 0. As expected and previously demonstrated
in [12], the 3D case exhibits faster microstructure evolution than the
2D simulations for the same material parameters. This is due to the
added driving force from a second curvature term in 3D and also due
to qualitative topological differences: for comparable geometries, those
pores that are closed in 2D are usually open in 3D.

Fig. 12 shows the plots of the total free energy (2). The curves
obtained in both codes reveal a gradual reduction of the total free
energy. The comparison of its components (bulk and interfacial) along
with some other model metrics is shown in Supplementary Material
S3.1. Additionally, Fig. 12 presents the evolution of the total number
of DoFs and the time-step size during the numerical simulations. In
distinct contrast to MOOSE, our code does not always attempt to in-
crease 𝜏, since we target a predefined number of linear and nonlinear
iterations; once that limit is exceeded, the time-step size is not enlarged.
Confirming the design of the experiment, the numbers of DoFs in both
codes are found to vary similarly.

The solver-related metrics7 are summarized in Table 3. In particular,
we show timings for the MOOSE-based and our implementation. The
wall times for both codes were obtained in separate runs with output
disabled. A speedup of 4.3/65.3 is visible for 2D and 3D. The num-
bers are primarily intended to show the significance of the proposed
optimizations, as the comparison to the MOOSE code has to remain
qualitative: even though its settings have been tuned to provide the
maximum performance, we believe that better performance might be
possible for developers with deeper insight into MOOSE.8

5.2. 332-Particle case

As a second validation benchmark, we compare the results of our
simulations with those presented in [7]. The authors of that paper
kindly provided us the initial packings used for their numerical anal-
ysis. The original focus of the discussion in [7] was on the influence
of the rigid body motions on the sintered microstructures. Even though
our code also implements the advection terms (see Section 7.2), we
intentionally perform the comparison of results without advection and,
thus, rigid body motions. Due to this reason, we run the sintering
simulation of the packing containing 332 particles, for which a number

7 The simulations were executed on a single node of the cluster at
Helmholtz-Zentrum Hereon (dual-socket 24-core 2.1 GHz Intel Xeon Scalable
Platinum 8160 processor; Skylake), using 24 processes for 2D and 48 for 3D.

8 A small benchmark code based on deal.II, which evaluates (8) for
the residual without exploiting the structure of the shape functions (tensor-
product, same for each component, . . .) and does not vectorize over cells,
results in a ≈ 30× lower throughput. The code path is not specialized for
the evaluation of the residual but for easy-to-read and generic assembly of
a sparse matrix, which normally has to be computed less frequently so that
performance optimizations are not as crucial as if it would be done in each
linear iteration. Since libMESH [68], the FEM backend of MOOSE, evaluates
the residual similarly to the implementation of the slow path in deal.II,
we are confident that the presented performance comparison with MOOSE is
qualitatively reasonable.

Computational Materials Science 231 (2024) 112589

13

P. Munch et al.

Fig. 13. 332 particles: the final configuration after sintering for 3.47 h.

Fig. 14. 332 particles: contour lines on the 𝑧 = 10 μm plane taken at 𝑡 = 0 (green) and
3.47 h (gray).

of metrics is available in [7], referred to as ‘‘Case 3’’ in that publication.
The numerical implementation in [7] is based on finite differences on
a uniform grid and uses explicit time integration.

We use the same material parameters: the free-energy constants are
set to 𝐴 = 32, 𝐵 = 8, 𝜅𝑐 = 0.4, 𝜅𝜂 = 0.2, and the diffusion mobilities are
defined as 𝑀vo = 10−2, 𝑀va = 10−3, 𝑀s = 10.0, 𝑀gb = 1.0. The energy
properties lead to the diffuse interface thickness 𝑤 ≈ 0.18. The same
grain-boundary mobility 𝐿 = 100 as in [7] is used, ensuring that the
grain-growth effects do not dominate in the regime examined. Similarly
to the original publication, we also solve the dimensionless form of the
phase-field equations, using the same scaling parameters: 𝑙 = 5 μm,
𝑀0 = 10−12 cm2/s, and 𝑡ref = 𝑙2∕𝑀0 = 2.5 × 105 s. Given the physical
sintering time 𝑡physical = 3.47 h, the simulation time is 𝑡end = 0.05. The
initial time-step size is chosen as 𝜏initial = 10−3.

The computational domain is defined by the bounding box with
dimensions of −1.5 < 𝑥 < 41.5, −1.5 < 𝑦 < 61.5, −1.5 < 𝑧 < 13 such
that the distance between each particle and the domain boundary is
at least 1. The coarse mesh consists of 86 × 126 × 29 cubic cells, and
we perform two local-refinement steps to obtain the minimal cell size
ℎ𝑒 = 0.125, which is comparable to the grid spacing 𝛥𝑥 = 0.1 from [7].
This results in ≈ 6−7 million scalar DoFs in our case in contrast to the
≈ 34 million points (420 × 620 × 130 cells) of the uniform mesh in [7].
A typical simulation of this test case with our code needs only 14 time
steps when using the time-stepping strategy described in Section 4.5.2
and, on 16 nodes of SuperMUC-NG, runs in about 5 min (not counting
the time required for generating the output).

In this particular simulation, we employ the conventional surface-
mobility term [22] instead of the one from (4) in order to achieve a
better agreement with the original results from [7]. To alleviate the
arising convergence issue due to the non-smooth coefficient, we apply
the Jacobian-free formulation (6).

In order to postprocess and visualize the results, the physical do-
main is used. Fig. 13 presents the final configuration of the packing,

Table 4
Numbers of order parameters, cells and scalar DoFs for 51–10,245-particle packings.
𝑁grains 51 102 212 316 603 1370 3760 6140 10,245

𝑁op 9 10 10 11 10 11 11 11 11
𝑁cells [×1e6] 3.0 5.7 10.4 18.8 34.0 53.5 153.2 325.5 589.1
𝑁DoFs [×1e6] 3.4 6.4 11.7 20.9 37.9 59.5 170.2 360.8 651.7

and Fig. 14 shows the microstructure view at the cross-section plane 𝑧 =
10 μm. Visually, both images are in close agreement with the analogous
Figs. 7(a) and (c) presented in [7], without noticable differences.

To perform a quantitative comparison, we also compute the mi-
crostructure metrics

solid-volume fraction ∫𝛺 𝑐 d𝛺, (9a)

surface area
∑
𝑖 ∫𝛤𝑖 1 d𝛤𝑖 w. 𝛤𝑖 = {𝑝 ∈ 𝛺|𝜂𝑖(𝑝) = 0.5}, (9b)

grain-boundary area
∑
𝑖 ∫𝛤𝑖 0.5 d𝛤𝑖 w. 𝛤𝑖 = {𝑝 ∈ 𝛤𝑖|𝜂𝑖𝜂𝑗 > 0.14 ∃𝑗 ≠ 𝑖}

(9c)

in the control volume 5 < 𝑥 < 195 μm, 5 < 𝑦 < 295 μm, 2.5 < 𝑧 < 35 μm
as in [7]; the corresponding graphs are shown in Fig. 15. The curves
do not match perfectly. For the solid-volume fraction, the mismatch
is, in fact, negligible given the scale of the 𝑦-axis. For the remaining
two quantities, the difference is more tangible but still does not exceed
3% for the surface and 10% for the grain-boundary areas, respectively,
and, is most probably related to the details in the implementation
of the postprocessors, which extract the isosurfaces. Despite of the
differences in the values, the slopes of the curves are in a very good
agreement, meaning that the dynamics of the sintering processes in
both simulations are the same.

6. Performance

In the following, we analyze the performance of the implementation
of our solver in detail from a holistic point of view. This is needed
because of the multi-faceted challenges of the solution of sintering
processes, in which it is not enough to optimize and analyze the
(matrix-free) linear operator evaluation, as we did in Section 4.2. For
example, the preconditioner choices implied by the matrix-free solver
design need to be assessed in terms of the total solution time.

This section is divided into two parts. We start by studying the
performance of the solver for a moderate number of grains (51; far left
in Fig. 16), where the focus is on the influence of different variations
of the solver. Next, we analyze the parallel scalability of the code by
increasing the number of particles up to 10k and using up to 50k
processes on a supercomputer.

All packings considered in the current section are cubic and shown
in Fig. 16. Bounding boxes of different sizes are used to extract smaller
packings containing 51…6,140 particles from the largest one having
10,245 grains within a control volume of size 1399 × 1400 × 1318
(μm3). The latter has been obtained by the preliminary DEM simula-
tions performed with the package Yade [69], following the procedure
proposed in [4], which was designed to deliver an isotropic initial
configuration with irregular, realistic distributions of particles having
relatively low porosity. The particle-size distribution of the largest
packing is shown in Fig. 16.

In contrast to Section 5.1, larger powder particles are considered
in this section. For this reason, the energy parameters are defined as
𝐴 = 4.35, 𝐵 = 0.15, 𝜅𝑐 = 9.0, 𝜅𝜂 = 1.79. These values yield a thicker
diffuse interface with 𝑤 = 4 for the surface and grain-boundary free-
energy values 𝛾𝑠 = 1.8 and 𝛾𝑔𝑏 = 0.6. The diffusion mobilities are defined
as 𝑀vo = 10−2, 𝑀va = 10−3, 𝑀s = 4.0, 𝑀gb = 0.4, and the grain-
boundary mobility is set to 𝐿 = 1.0. The initial number of divisions
per interface thickness is chosen as 𝜁 = 3. The initial numbers of scalar

Computational Materials Science 231 (2024) 112589

14

P. Munch et al.

Fig. 15. 332 particles: comparison of relevant microstructure metrics according to (9).

Fig. 16. Left: Particle packings considered for the performance study in Section 6: 51, 212, 1037, 10,245 particles (not shown: 102, 316, 603, 3076, 6140 particles), with colors
indicating the order parameters. Right: Distribution of particle diameters for the packing containing 10,245 particles.

Table 5
51 particles (up to 𝑡 = 500): Comparison of different solver configurations.

Configuration 𝜏max 𝑁𝑇 𝑁𝑁 𝑁𝐿 𝑁𝑅 𝑁𝐹
𝑇 𝑁𝐹

𝐿 𝑇 𝑇 𝐽 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦 𝑇 𝑅
Default 19.78 51 4.6 25.3 1.2 0.0% 0.0% 463.2 0.027 1.279 0.013 0.028
JF (Jacobian-free) 19.78 51 4.6 25.7 1.2 0.0% 0.0% 444.7 0.023 1.277 0.013 0.028
cut-off 19.78 51 4.6 25.4 1.2 0.0% 0.0% 353.9 0.009 1.269 0.013 0.009
JF + cut-off 19.78 51 4.6 25.3 1.2 0.0% 0.0% 356.1 0.008 1.272 0.013 0.009

tensorial 16.48 73 4.4 16.4 1.2 4.1% 5.7% 551.4 0.040 1.253 0.014 0.036
tensorial + JF 19.78 59 4.5 19.5 1.2 1.7% 2.2% 450.8 0.028 1.239 0.014 0.032
tensorial + cut-off 16.48 60 4.6 19.8 1.2 0.0% 0.0% 355.3 0.010 1.192 0.013 0.010

advection + JF 19.78 56 4.4 24.4 1.2 1.8% 2.7% 523.0 0.025 1.262 0.014 0.065
advection + JF + cut-off 19.78 56 4.5 24.4 1.2 1.8% 2.6% 434.1 0.010 1.238 0.014 0.025

𝜏max: maximal time-step size, 𝑁𝑇 : number of time steps, 𝑁𝑁 : average number of nonlinear iterations per time step, 𝑁𝐿:
number of linear iterations per nonlinear iteration, 𝑁𝑅: number of residual evaluations per nonlinear iteration, 𝑁𝐹

𝑇 : fraction
of repeated time steps, 𝑁𝐹

𝐿 : fraction of linear iterations of repeated time steps, 𝑇 : total runtime in seconds, 𝑇 𝐽 : average time
for application of Jacobian, 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝: average setup time of the preconditioner, 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦: average time for application of the
preconditioner, 𝑇 𝑅: average time for evaluation of the residual

degrees of freedom generated for each of the packings by using such
settings are shown in Table 4.

For time marching, the BDF2 scheme is used with the initial time-
step size 𝜏 = 0.1 and its growth is limited by the maximum value
𝜏max = 100.

6.1. 51 Particles

We start with the investigation of a 51-particle packing. All exper-
iments are run on 4 Intel Cascade Lake Xeon Gold 6230 nodes with
a total of 160 processes. In this section, each experiment has been
run once and we average the results over at least 50 time steps, 230
nonlinear iterations, and 5200 linear iterations.

6.1.1. Default configuration
The line ‘‘default’’ in Table 5 shows the solver statistics obtained

over a complete simulation up to 𝑡 = 500 (𝜏max, 𝑁𝑇 , 𝑁𝑁 , 𝑁𝐿, 𝑁𝑅,
𝑇 , 𝑇 𝐽 , 𝑇 𝑃 ,setup, 𝑇 𝑃 ,apply, 𝑇𝑅; see Section 3). The maximum time-step
size achieved is 19.78. The average numbers of nonlinear and linear
iterations are about 4.6 and 25.3, respectively. These numbers lie in
the expected range, given the control parameters of the adaptive time
stepping according to Section 4.5.2.

Similarly, Table 7 shows the data for 𝑡 = 15,000. One can see that
the nonlinear solver fails to converge for certain time steps, requiring a
second attempt with decreased time-step size. However, their number
and the resulting wasted (non)linear iterations are rather small and do
not exceed 6%.

For the long simulation, Fig. 17 shows the time share of different
parts of the code. 80% of the time are spent on solving the Jaco-
bian. From this linear solver process, 46% are spent on applying the

Computational Materials Science 231 (2024) 112589

15

P. Munch et al.

Table 6
51 particles (up to 𝑡 = 500): Comparison of different preconditioners. The default configuration uses ILU + sILU (max).

Preconditioner name 𝜏max 𝑁𝑇 𝑁𝑁 𝑁𝐿 𝑁𝑅 𝑁𝐹
𝑇 𝑁𝐹

𝐿 𝑇 𝑇 𝐽 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦 𝑇 𝑅
Default 19.78 51 4.6 25.3 1.2 0.0% 0.0% 449.6 0.024 1.265 0.013 0.026
ILUa 23.74 56 4.4 22.3 1.2 1.8% 6.3% 2495.0 0.022 22.446 0.140 0.024
ILU + ILU 23.74 54 4.5 21.9 1.2 1.9% 6.3% 2141.0 0.026 19.037 0.128 0.028
ILU + bILU 19.78 50 4.4 24.7 1.2 0.0% 0.0% 530.8 0.025 2.890 0.019 0.027
ILU + sILU (none) 5.52 112 4.3 29.9 1.2 0.0% 0.0% 1009.0 0.024 1.047 0.013 0.026
ILU + sILU (avg) 19.78 53 4.5 24.8 1.2 1.9% 2.8% 478.9 0.027 1.315 0.014 0.028

a 5 compute nodes used due to increased memory consumption of the sparse matrix needed to set up the preconditioner.

Table 7
51 particles (up to 𝑡 = 15,000): Comparison of different preconditioners. The default configuration uses ILU + sILU (max).

Preconditioner name 𝜏max 𝑁𝑇 𝑁𝑁 𝑁𝐿 𝑁𝑅 𝑁𝐹
𝑇 𝑁𝐹

𝐿 𝑇 𝑇 𝐽 𝑇 𝑃 ,𝑠𝑒𝑡𝑢𝑝 𝑇 𝑃 ,𝑎𝑝𝑝𝑙𝑦 𝑇 𝑅
Default 25.52 1043 4.8 26.0 1.2 3.5% 4.6% 10240.0 0.027 1.117 0.014 0.027
ILU + bILU 27.43 990 5.3 27.4 1.5 2.5% 5.3% 12 710.0 0.025 2.785 0.019 0.029
ILU + sILU (avg) 24.57 1113 4.7 25.8 1.2 3.7% 4.7% 10 790.0 0.028 1.133 0.014 0.029

Fig. 17. 51 particles (up to 𝑡 = 15,000): time share of different parts of the code.

Fig. 18. 51 particles (up to 𝑡 = 15,000): number of scalar DoFs, number of grains, number of order parameters, time-step size 𝜏, nonlinear iterations 𝑁𝑁 , and linear iterations 𝑁𝐿
over time. The values are averaged over ranges of 30 time steps.

Computational Materials Science 231 (2024) 112589

16

P. Munch et al.

Jacobian, 26% on the application of the preconditioner and the rest
on vector operations within GMRES. About 11% of the time is spent
on setting up the preconditioner, which is dominated by the setup of
the preconditioner for the 2 × 2 Cahn–Hilliard block. Fig. 18 shows
relevant quantities (number of DoFs, number of grains, number of order
parameters, time-step size, number of nonlinear and linear iterations)
over time. The number of DoFs is decreasing during the simulation,
which is correlated with the disappearance of grains. The number
of order parameters does not exceed 10 due to the developed grain-
tracking algorithm. On average, the number of order parameters is 9.5.
The number of nonlinear and linear iterations is kept at a constant value
by our strategy to increase/decrease time-step sizes and resetting the
preconditioner. The time-step size shows a strong variation over time,
primarily driven by the high dynamics when new necks are forming
between particles.

6.1.2. Alternative preconditioners
In the following, we compare the proposed preconditioner (ILU +

sILU (max)) with the following alternatives, motivated by the block
sparsity pattern in Fig. 3. (1) ILU: set up ILU for the complete Jacobian;
(2) ILU + ILU: set up ILU for the Cahn–Hilliard block and the Allen–
Cahn block; (3) ILU + bILU: set up ILU for the Cahn–Hilliard block
and for each scalar Allen–Cahn block, ignoring the coupling between
the Allen–Cahn blocks. (4) In addition to taking the maximum of(
𝑣𝑖, 𝐿𝜕2𝑓∕𝜕𝜂2𝑖 𝑢𝑖

)
in ILU + sILU (max), we also consider ignoring this

problematic term (none) and taking the average value over all order
parameters (avg).

Table 6 evaluates the solver efficiency – for a simulation up to
time 𝑡 = 500 – for the different preconditioners. We note that the
choice of the preconditioner does not influence the accuracy of the
solution, which is primarily controlled by the nonlinear tolerance. It is
clear that ILU and ILU+ILU are inherently expensive due to quadratic
complexities in both setup costs and memory consumption. Considering
only the blocks on the diagonal of the Allen–Cahn block (ILU+bILU)
improves the situation without significantly affecting the convergence
of the overall solver. In order to reduce the setup costs, the reuse of
the preconditioner of one Allen–Cahn block helps. Our observation is
that ILU+sILU(avg) and ILU+sILU(max) are able to cut down
the setup costs of the preconditioner by a factor of two and the costs of
applying by 30%, since the ILU instance has to be loaded only once due
to the batched application.9 Overall, the performance can be improved
by 20%. ILU+sILU(none), however, results in a significant drop in
applicable time-step sizes, leading to an increase in the required overall
solution time. For the best three preconditioners, Table 7 shows the
results obtained for simulations up to 𝑡 = 15,000, indicating that the
scalar preconditioners are also applicable to later stages of sintering
simulations and that the proposed variant ILU + sILU (max) is
indeed the fastest overall.

6.1.3. Matrix-free vs. Jacobian-free evaluation
Table 5 (row ‘‘JF’’) also evaluates the efficiency of the Jacobian-free

approach. The number of linear iterations is growing moderately. In
total, a matrix-free approach that evaluates the Jacobian exactly and
a Jacobian-free approach result in similar solution times, with slight
advantages in favor of the Jacobian-free approach due to lower costs
of residual evaluation without loss of accuracy. This observation allows
users to skip explicit linearization of the weak form as well as to avoid
the implementation and its cumbersome performance optimization.
Nevertheless, a fast parameter-free approach (we still need to identify 𝛽
for the Jacobian-free case, see Section 4.2) might be crucial and useful
in practice.

9 Please note that the costs of setting up the Cahn–Hilliard 2 × 2 block are
now dominating.

6.1.4. Relevant grains on cells
Table 5 (rows ‘‘cut-off’’ and ‘‘JF + cut-off’’) shows the impact of

considering only relevant grains on a cell level. In the case of matrix-
free and Jacobian-free operator evaluations, the costs can be cut down
by a factor of 3.0 and 2.9, respectively. Considering that the operator
evaluation only takes half of the overall runtime, the solver speedup is
rather modest at 30% or 25%, respectively. These results are a strong
motivation for adopting the cut-off strategy to other parts of the code
in future work. For example, the design of a suitable variation of the
chosen preconditioner is not straightforward without manually rewrit-
ing sparse matrix kernels. We refer interested readers to Supplementary
Material S3.4 for the results of experiments regarding the influence of
the cut-off tolerance on the model accuracy.

6.2. Scaling up to 10k particles

We conclude this section by presenting scaling results. For this
purpose, we run packings with 51, 102, 212, 316, 603, 1037, 3076,
6140, and 10,245 particles on 8, 16, 32, 64, 128, 256, 512, and
1024 compute nodes on SuperMUC-NG. In each case, we perform the
simulation for a fixed number of 10 time steps: the grain tracking is
triggered once, at the first step. We run all experiments three times
and report the best timings. The statistical distribution is close to the
minimal time within a few percent.

Fig. 19 shows the scaling behavior of the most important ingredients
for our solver. Overall, it is clear that the solver (linear solver and
setup of preconditioner) scales well up to 512 compute nodes. The
performance drops significantly when going to 1k nodes, which is
related to an unexpected spike of setup costs of ILU in Trilinos.

Alternative plotting of the data in Fig. 20 indicates excellent parallel
efficiency over large ranges in the case of the linear solver: for suffi-
ciently large problem sizes per process, one can increase the number
of processes by a factor of 16–32 with only a loss of 25% in parallel
efficiency. Furthermore, the lowest times to solutions are reached for
about 10k DoFs per process.

The cost of the grain-tracking algorithm increases linearly with the
number of processes. This is related to the fact that the graphs are
gathered during stitching. Since the costs are rather small compared to
other parts of the code, we defer the investigation of the grain-tracking
algorithm to future work, for which we plan to adopt algorithms based
on distributed graphs.

7. Extensions

So far, we have considered a basic phase-field approach for sim-
ulating solid-state-sintering processes. More involved physical models
involve additional computations (see Section 2.1). Since we do not
assemble matrices, where one would only pay the cost of additional
computations during assembly and the cost of the application of the
matrix is independent of the depth of the physical model as long as
the sparsity pattern is not changing, additional computations could
limit the throughput in a matrix-free implementation. Also the choice
of the physical model might influence the preconditioner selection. In
the following, we investigate these points for two common physical
extensions: (1) tensorial mobility and (2) advection terms (rigid body
motions).

7.1. Extension 1: tensorial mobility

In the basic model (1), the mass fluxes are defined by the scalar
mobility term (4). Despite its simplicity, this term is not the best choice
if a rigorous treatment of the surface and the grain-boundary fluxes is
of primary interest, as shown in [23]. In this case, the tensorial form

𝐌 =𝑀vo𝜙𝐈+𝑀va (1 − 𝜙) 𝐈+ 4𝑀s𝑐
2 (1 − 𝑐)2 𝐓𝑠 + 𝑀gb

𝑁∑
𝑖=1

𝑁∑
𝑗≠𝑖

𝜂𝑖𝜂𝑗𝐓𝑖𝑗 (10)

Computational Materials Science 231 (2024) 112589

17

P. Munch et al.

Fig. 19. Scaling of different and computationally most expensive parts of the solver for 51–10,245 particles and 10 time steps. Times are accumulated over all time steps and
include both computations and communications. The data for ‘‘grain tracking’’ is only shown for a selected set of particles (51, 212, 603, 3076, 10,245 particles).

Fig. 20. Detailed scalability analysis of linear solver (see Fig. 19). The data is only shown for a selected set of particles (51, 212, 603, 3076, 10,245 particles).

Fig. 21. Comparison of different sintering operator variants for different number of components: generic (Section 2.2), tensorial (Section 7.1), and advection operator (Section 7.2).

can be considered. This definition restrains the surface and the grain-

boundary atomic fluxes to be strictly tangent to the corresponding

diffusion paths, by introducing the following tensors:

𝐓𝑠 = 𝐈 − 𝐧𝑠 ⊗ 𝐧𝑠,

𝐓𝑖𝑗 = 𝐈 − 𝐧𝑖𝑗 ⊗ 𝐧𝑖𝑗 ,

where the unit normal vector to the grain surface is computed as

𝐧𝑠 =
∇𝑐
|∇𝑐| , (11)

and the unit normal vector between the phases 𝑖 and 𝑗 is computed
from the gradients of the corresponding order parameters as

𝐧𝑖𝑗 =
∇𝜂𝑖 − ∇𝜂𝑗
|||∇𝜂𝑖 − ∇𝜂𝑗

|||
. (12)

Here, symbol ⊗ denotes a tensor product.
The definition of the Jacobian given by (7) also holds for the present

case. Of course, the derivatives of the mobility differ, as detailed in
Supplementary Material S2. Since the modified mobility only influences
the rows of the Jacobian related to the Cahn–Hilliard block and does
not influence the Allen–Cahn blocks, we can adopt the preconditioner
from Section 4.3 also in the current context.

Computational Materials Science 231 (2024) 112589

18

P. Munch et al.

Table 8
Comparison of different sintering operator variants for different number of components (see Fig. 21). Table 1 contains the data for the generic
implementation.
𝑁𝑐+2 tensorial (residual) tensorial (Jacobian) advection (residual)

D/s r/D w/D F/D D/s r/D w/D F/D D/s r/D w/D F/D

2 0.70 5.3 1.3 706 0.49 14.0 1.5 1055 0.82 5.3 1.3 608
3 0.60 4.9 1.5 656 0.46 13.6 1.6 941 0.67 6.1 1.5 698
4 0.77 4.8 1.5 690 0.52 13.3 1.7 1024 0.74 5.6 1.6 739
5 0.63 4.6 1.6 753 0.40 13.2 1.7 1136 0.62 5.3 1.6 772
6 0.58 4.6 1.6 830 0.38 13.2 1.8 1278 0.59 5.1 1.6 794
7 0.55 4.5 1.6 918 0.37 13.1 1.8 1437 0.57 5.0 1.6 811
8 0.51 4.5 1.7 1012 0.34 13.0 1.8 1607 0.55 4.9 1.7 827
9 0.44 4.4 1.7 1111 0.32 13.0 1.9 1805 0.47 4.8 1.7 840
10 0.41 4.4 1.7 1212 0.29 13.0 1.9 1988 0.45 4.7 1.7 853
11 0.38 4.3 1.7 1316 0.28 13.0 2.0 2175 0.43 4.6 1.7 864
12 0.35 4.3 1.7 1421 0.26 12.9 2.0 2366 0.42 4.5 1.7 875
13 0.34 4.2 1.7 1528 0.25 12.9 2.1 2558 0.39 4.5 1.8 886
14 0.32 4.2 1.8 1636 0.24 12.9 2.1 2752 0.39 4.4 1.8 896

Additional challenges in comparison to the scalar-mobility case are:
(1) in the application of the Jacobian, one needs the gradient of 𝜂𝑖
at the linearization point in addition to those of 𝑐 and 𝜇, as required
in the scalar case, and (2) more complex coupling terms need to be
evaluated. We address the first point by precomputing the values of
the linearization point at the quadrature points and by computing the
gradients on the fly. In order to reduce the costs of the coupling, we use
similar strategies as discussed in Section 4.2. In particular, we exploit
the facts (1) that a tensor of the form 𝐧𝑎 ⊗ 𝐧𝑏 applied to a vector
𝐯 can be efficiently replaced by a dot product and a scalar scaling,
(𝐧𝑎 ⊗ 𝐧𝑏)𝐯 = 𝐧𝑎(𝐧𝑏 ⋅ 𝐯), without the need to actually set up the tensor
and (2) that in (11) and (12) no square root has to be computed, since
it cancels out later on during subsequent multiplications.

Fig. 21 and Table 8 present timings, data volume, and work com-
pared to the scalar-mobility case for the evaluation of the residual and
of the Jacobian. One can observe a clear slowdown of up to 29 and
38%, respectively. This is caused by an increase of arithmetic opera-
tions by 7–127 and 35–244 FLOP per quadrature point for different
numbers of components in the two cases, showing more pronouncedly
the quadratic complexity. According to the roofline performance model
of Fig. 7, high FLOP/s can be maintained with increasing number
of components. In the case of the Jacobian, the measured read data
volume decreases, as the gradients are computed on the fly. In total,
the read and write data volumes are similar to the ones in Table 1,
indicating that the compute-intensive operations are performed on
cached data.

Table 5 gives statistics of a complete 51-particle simulation, show-
ing an increase in the simulation time by 19% with an increase in the
number of time steps and a decrease in the number of linear iterations.
We note that the matrix-free and the Jacobian-free evaluation as well
as the cut-off approach are applicable here without the need for any
modifications.

7.2. Extension 2: advection terms

The system (1) is capable to capture the evolution of the mi-
crostructure during sintering, however, completely omits shrinkage
mechanisms. In order to resolve this issue, Wang [22] added advection
terms to system (1):
𝜕𝑐
𝜕𝑡

(𝐱, 𝑡) = ∇ ⋅
[
𝑀∇ 𝛿𝐹

𝛿𝑐

]
− ∇ ⋅ (𝑐𝐯) , (13a)

𝜕𝜂𝑖
𝜕𝑡

(𝐱, 𝑡) = −𝐿𝛿𝐹
𝛿𝜂𝑖

− ∇ ⋅
(
𝜂𝑖𝐯𝑖

)
. (13b)

Here, 𝐯 =
∑
𝑖 𝐯𝑖 and the advection velocity within individual particles

𝐯𝑖 consists of translational and rotational components:

𝐯𝑖(𝐱) =
{

𝐯𝑡 𝑖(𝐱) + 𝐯𝑟 𝑖(𝐱), if inside (e.g., 𝜂𝑖 ≥ 0.1)
0, otherwise

𝐯𝑡 𝑖(𝐱) =
𝑚𝑡
𝑉𝑖

𝐅𝑖,

𝐯𝑟 𝑖(𝐱) =
𝑚𝑟
𝑉𝑖

𝐓𝑖 ×
(
𝐱 − 𝐱𝑐 𝑖

)
,

where 𝑚𝑡 and 𝑚𝑟 are constants characterizing the particle translation
and rotation and where

𝑉𝑖 = ∫𝛺 𝜂𝑖 d𝛺
is the particle volume. Vector 𝐱𝑐 𝑖 denotes the mass center of the 𝑖th
particle. The velocity components 𝐯𝑡 𝑖 and 𝐯𝑟 𝑖 are proportional to the
force and torque [22], which are given by

𝐅𝑖 = ∫𝛺 d𝐅𝑖, (14a)

𝐓𝑖 = ∫𝛺
(
𝐱 − 𝐱𝑐 𝑖

)
× d𝐅𝑖. (14b)

The effective local force density d𝐅𝑖 is the key component of the
entire shrinkage mechanism and is related to the annihilation of the
over-saturated vacancies at the grain boundaries:

d𝐅𝑖 = 𝑘
∑
𝑖≠𝑗

(
𝑐 − 𝑐0

) ⟨𝜂𝑖𝜂𝑗⟩
[
∇𝜂𝑖 − ∇𝜂𝑗

]
d𝛺.

The quantities 𝑉𝑖, 𝐅𝑖, 𝐓𝑖, 𝐱𝑐 𝑖 can be considered as additional properties
of the 0D representation, as discussed in Section 4.4. These quantities
have to be gathered for each cell (batch) during the cell loop when
multiple particles are assigned to the same order parameter.

The definition of advective velocities as proposed in [22] is far
from optimal and introduces several drawbacks: the lack of rigorous
physically based foundation, complicated calibration of the advection
model parameters or severe size effects [70] if only the original Wang’s
forces are employed. In fact, the discussion of the rigid body motions
in the phase-field sintering models [15,25,70] is a big topic by itself.
Keeping the above-mentioned limitations in mind, we still implemented
this particular extension due to its wide use and the fact that it can
be applied for other non-local advection mechanisms. For instance, the
staggered coupling of the phase-field and DEM approaches [71] also
requires the reduced 0D modeling for its implementation and, thus,
could benefit from the techniques described in the present publication.

The velocity terms in (13b) result in different Allen–Cahn blocks,
potentially requiring different (ILU) preconditioners. Our experiments
indicate that these terms can be dropped during preconditioning, al-
lowing to work with a single ILU instance for all Allen–Cahn blocks, as
proposed in Section 4.3.

Due to the non-local terms (14), the evaluation of the exact Jaco-
bian would be both memory-intensive and computationally demanding.
Therefore, we only consider the Jacobian-free implementation. Figs. 7,
21, Tables 5, and 8 describe the properties of the residual evaluation as
stand-alone and in the context of the 51-particle sintering benchmark
with and without cut-off. The increase in the simulation time can be

Computational Materials Science 231 (2024) 112589

19

P. Munch et al.

mainly contributed to the fact that the grain-tracking algorithm has to
be performed at each time step. Also the number of operations during
the residual evaluation increases by a fixed value of ∼33 FLOP per
quadrature point.

8. Conclusions and outlook

We have presented an efficient, adaptive, implicit finite-element
solver for modeling solid-state-sintering processes by means of a well-
established phase-field approach that is able to capture diffusive mass-
transport, shrinkage, and grain-growth phenomena. Our implementa-
tion, which is freely available as hpsint, has been verified with
reference data from the literature and successfully simulates pack-
ings with ten thousands of particles in high-performance-computing
environments.

To enable such large-scale simulations, we have performed a holistic
optimization of the solver on many levels by an interdisciplinary effort
in order to minimize the time to solution. The proposed optimizations
include a tailored block preconditioner, a distributed graph-based ver-
sion of the grain-tracking algorithm, and the usage of fast matrix-free
evaluation kernels. For the latter, the presented solver relies on the
open-source library deal.II [20,21], particularly, on its state-of-the-
art matrix-free framework [46,47]. Even though it is most efficient
for higher-degree shape functions, the underlying algorithmic choices
following the current trends of exascale algorithms ensure a high node-
level performance also for the linear shape functions in the present
case, with increasing advantage for larger numbers of components. We
have extended the matrix-free algorithm to deal with varying number
of vector components related to changing number of order parameters
and to work only with locally-relevant components related to the local
support of the phase field as well as presented low-level strategies to
reduce the computational effort at quadrature points.

In addition to these fundamental advances, we have discussed possi-
ble optimizations that build upon the current developments and might
allow an additional speedup of 2× in the near future. This includes
the usage of sparse block vectors [39], interleaving of evaluation and
quadrature-point loops [47], and physics-based preconditioning [59].

CRediT authorship contribution statement

Peter Munch: Conceptualization, Investigation, Software, Valida-
tion, Visualization, Writing – original draft, Writing – review & edit-
ing. Vladimir Ivannikov: Formal analysis, Methodology, Software,
Validation, Visualization, Writing – original draft, Writing – review
& editing. Christian Cyron: Conceptualization, Funding acquisition,
Supervision, Writing – review & editing. Martin Kronbichler: In-
vestigation, Methodology, Software, Supervision, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The raw data required to reproduce these findings and the processed
data required to reproduce these findings are available to download
from https://github.com/hpsint/hpsint-data.

Acknowledgments

The authors acknowledge collaboration with Thomas Ebel, Daniel
Paukner, Magdalena Schreter-Fleischhacker, and Regine Willumeit-
Römer as well as the deal.II community. The authors gratefully
acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing computing time on the
GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre
(LRZ, www.lrz.de) through project id pn36li. This work was also
funded by Helmholtz-Zentrum Hereon through I2B MgSinter project.
We would like to credit Hui-Chia Yu, Robert Termuhlen, Xanthippi
Chatzistavrou and Jason D. Nicholas for providing us the input data
of their simulations.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.commatsci.2023.112589.

References

[1] Huilong Zhu, Robert S. Averback, Molecular dynamics simulations of densi-
fication processes in nanocrystalline materials, Mater. Sci. Eng. A 204 (1)
(1995) 96–100, Proceedings of the Symposium on Engineering of Nanostructured
Materials.

[2] Lifeng Ding, Ruslan L. Davidchack, Jingzhe Pan, A molecular dynamics study of
sintering between nanoparticles, Comput. Mater. Sci. 45 (2) (2009) 247–256.

[3] Ken-ichiro Mori, Finite element simulation of powder forming and sintering,
Comput. Methods Appl. Mech. Engrg. 195 (48) (2006) 6737–6749.

[4] Vladimir Ivannikov, Fritz Thomsen, Thomas Ebel, Regine Willumeit-Römer,
Coupling the discrete element method and solid state diffusion equations for
modeling of metallic powders sintering, Comput. Part. Mech. 10 (2) (2023)
185–207.

[5] Christopher Gloeckle, Thomas Konkol, Olaf Jacobs, Wolfgang Limberg, Thomas
Ebel, Ulrich A. Handge, Processing of highly filled polymer-metal feedstocks for
fused filament fabrication and the production of metallic implants, Materials 13
(19) (2020).

[6] Eshwara Phani Shubhakar Nidadavolu, Diana Krüger, Berit Zeller-Plumhoff,
Domonkos Tolnai, Björn Wiese, Frank Feyerabend, Thomas Ebel, Regine
Willumeit-Römer, Pore characterization of pm mg–0.6ca alloy and its degradation
behavior under physiological conditions, J. Magnes. Alloys 9 (2) (2021) 686–703.

[7] Robert Termuhlen, Xanthippi Chatzistavrou, Jason D. Nicholas, Hui-Chia Yu,
Three-dimensional phase field sintering simulations accounting for the rigid-body
motion of individual grains, Comput. Mater. Sci. 186 (2021) 109963.

[8] Henrik Hierl, Johannes Hötzer, Marco Seiz, Andreas Reiter, Britta Nestler,
Extreme scale phase-field simulation of sintering processes, in: 2019 IEEE/ACM
10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA), IEEE, 2019, pp. 25–32.

[9] Johannes Hötzer, Andreas Reiter, Henrik Hierl, Philipp Steinmetz, Michael Selzer,
Britta Nestler, The parallel multi-physics phase-field framework Pace3D, J.
Comput. Sci. 26 (2018) 1–12.

[10] Eisuke Miyoshi, Tomohiro Takaki, Munekazu Ohno, Yasushi Shibuta, Shinji
Sakane, Takashi Shimokawabe, Takayuki Aoki, Ultra-large-scale phase-field
simulation study of ideal grain growth, NPJ Comput. Mater. 3 (1) (2017) 25.

[11] Derek Gaston, Chris Newman, Glen Hansen, Damien Lebrun-Grandié, Moose: A
parallel computational framework for coupled systems of nonlinear equations,
Nucl. Eng. Des. 239 (10) (2009) 1768–1778.

[12] Ian Greenquist, Michael R. Tonks, Larry K. Aagesen, Yongfeng Zhang, Develop-
ment of a microstructural grand potential-based sintering model, Comput. Mater.
Sci. 172 (2020) 109288.

[13] Supriyo Ghosh, Christopher K. Newman, Marianne M. Francois, Tusas: A fully
implicit parallel approach for coupled phase-field equations, J. Comput. Phys.
448 (2022) 110734.

[14] Stephen DeWitt, Shiva Rudraraju, David Montiel, W. Beck Andrews, Katsuyo
Thornton, PRISMS-PF: A general framework for phase-field modeling with a
matrix-free finite element method, npj Comput. Mater. 6 (1) (2020) 1–12.

[15] Vladimir Ivannikov, Fritz Thomsen, Thomas Ebel, Regine Willumeit-Römer,
Capturing shrinkage and neck growth with phase field simulations of the solid
state sintering, Modelling Simul. Mater. Sci. Eng. 29 (7) (2021) 075008.

[16] Fritz Thomsen, Götz Hofmann, Thomas Ebel, Regine Willumeit-Römer, An
elementary simulation model for neck growth and shrinkage during solid phase
sintering, Materialia 3 (2018) 338–346.

Computational Materials Science 231 (2024) 112589

20

P. Munch et al.

[17] Cody J. Permann, Michael R. Tonks, Bradley Fromm, Derek R. Gaston, Order
parameter re-mapping algorithm for 3D phase field model of grain growth using
FEM, Comput. Mater. Sci. 115 (2016) 18–25.

[18] Phani Motamarri, Sambit Das, Shiva Rudraraju, Krishnendu Ghosh, Denis Davy-
dov, Vikram Gavini, DFT-FE – a massively parallel adaptive finite-element code
for large-scale density functional theory calculations, Comput. Phys. Comm. 246
(2020) 106853.

[19] Nikhil Kodali, Gourab Panigrahi, Debashis Panda, Phani Motamarri, Fast
hardware-aware matrix-free computations of higher-order finite-element dis-
cretized matrix multi-vector products, 2022, arXiv preprint arXiv:2208.
07129.

[20] Daniel Arndt, Wolfgang Bangerth, Marco Feder, Marc Fehling, Rene Gassmöller,
Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch,
Jean-Paul Pelteret, Simon Sticko, Bruno Turcksin, David Wells, The deal.II
library, version 9.4, J. Numer. Math. 30 (3) (2022) 231–246.

[21] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai,
Martin Kronbichler, Matthias Maier, Jean-Paul Pelteret, Bruno Turcksin, David
Wells, The deal.II finite element library: Design, features, and insights, Comput.
Math. Appl. 81 (2021) 407–422.

[22] Yu U. Wang, Computer modeling and simulation of solid-state sintering: A phase
field approach, Acta Mater. 54 (4) (2006) 953–961.

[23] Jie Deng, A phase field model of sintering with direction-dependent diffusion,
Mater. Trans. 53 (2) (2012) 385–389.

[24] Karim Ahmed, Clarissa A. Yablinsky, A. Schulte, Todd Allen, Anter El-Azab, Phase
field modeling of the effect of porosity on grain growth kinetics in polycrystalline
ceramics, Modelling Simul. Mater. Sci. Eng. 21 (6) (2013) 065005.

[25] Marco Seiz, Effect of rigid body motion in phase-field models of solid-state
sintering, Comput. Mater. Sci. 215 (2022) 111756.

[26] Sudipta Biswas, Daniel Schwen, Hao Wang, Maria A. Okuniewski, Vikas Tomar,
Phase field modeling of sintering: Role of grain orientation and anisotropic
properties, Comput. Mater. Sci. 148 (2018) 307–319.

[27] Carl E. Krill III, Long-Qing Chen, Computer simulation of 3-D grain growth using
a phase-field model, Acta Mater. 50 (12) (2002) 3059–3075.

[28] Srikanth Vedantam, Prasad Patnaik, Efficient numerical algorithm for multiphase
field simulations, Phys. Rev. E 73 (2006) 016703.

[29] Qingcheng Yang, Yongxin Gao, Arkadz Kirshtein, Qiang Zhen, Chun Liu, A
free-energy-based and interfacially consistent phase-field model for solid-state
sintering without artificial void generation, Comput. Mater. Sci. 229 (2023)
112387.

[30] Sudipta Biswas, Daniel Schwen, Vikas Tomar, Implementation of a phase
field model for simulating evolution of two powder particles representing
microstructural changes during sintering, J. Mater. Sci. 53 (8) (2018) 5799–5825.

[31] K. Chockalingam, Varvara. G. Kouznetsova, Olaf van der Sluis, Marc G.D. Geers,
2D phase field modeling of sintering of silver nanoparticles, Comput. Methods
Appl. Mech. Engrg. 312 (2016) 492–508.

[32] Michael Pernice, Homer F. Walker, NITSOL: A Newton iterative solver for
nonlinear systems, SIAM J. Sci. Comput. 19 (1) (1998) 302–318.

[33] Peter N. Brown, Youcef Saad, Hybrid Krylov methods for nonlinear systems of
equations, SIAM J. Sci. Stat. Comput. 11 (3) (1990) 450–481.

[34] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris
Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William Gropp, et al.,
PETSc Users Manual, Argonne National Laboratory, 2019.

[35] Jed Brown, Efficient nonlinear solvers for nodal high-order finite elements in
3D, J. Sci. Comput. 45 (1) (2010) 48–63.

[36] Stephen DeWitt, Shiva Rudraraju, David Montiel, W. Beck Andrews, Katsuyo
Thornton, PRISMS-PF: A general framework for phase-field modeling with a
matrix-free finite element method, npj Comput. Mater. 6 (1) (2020) 29.

[37] Seong Gyoon Kim, Dong Ik Kim, Won Tae Kim, Yong Bum Park, Computer
simulations of two-dimensional and three-dimensional ideal grain growth, Phys.
Rev. E 74 (6) (2006) 061605.

[38] Denis Davydov, Timo Heister, Martin Kronbichler, Paul Steinmann, Matrix-
free locally adaptive finite element solution of density-functional theory with
nonorthogonal orbitals and multigrid preconditioning, Phys. Status Solidi (b) 255
(9) (2018) 1800069.

[39] Denis Davydov, Martin Kronbichler, Algorithms and data structures for matrix-
free finite element operators with MPI-parallel sparse multi-vectors, ACM Trans.
Parallel Comput. (TOPC) 7 (3) (2020) 1–30.

[40] Daniel Arndt, Niklas Fehn, Guido Kanschat, Katharina Kormann, Martin
Kronbichler, Peter Munch, Wolfgang A. Wall, Julius Witte, ExaDG: High-
order discontinuous Galerkin for the exa-scale, in: Software for Exascale
Computing-SPPEXA 2016-2019, Springer, 2020, pp. 189–224.

[41] Michel O. Deville, Paul F. Fischer, Ernest H. Mund, High-Order Methods for
Incompressible Fluid Flow, Cambridge University Press, 2002.

[42] Martin Kronbichler, Ababacar Diagne, Hanna Holmgren, A fast massively parallel
two-phase flow solver for microfluidic chip simulation, Int. J. High Perform.
Comput. Appl. 32 (2) (2018) 266–287.

[43] Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, Paul
Steinmann, A matrix-free approach for finite-strain hyperelastic problems using
geometric multigrid, Internat. J. Numer. Methods Engrg. 121 (13) (2020)
2874–2895.

[44] Jed Brown, Valeria Barra, Natalie Beams, Leila Ghaffari, Matthew Knepley,
William Moses, Rezgar Shakeri, Karen Stengel, Jeremy L. Thompson, Junchao
Zhang, Performance portable solid mechanics via matrix-free 𝑝-multigrid, 2022,
arXiv preprint arXiv:2204.01722.

[45] Peter Munch, Katharina Kormann, Martin Kronbichler, hyper.deal: An effi-
cient, matrix-free finite-element library for high-dimensional partial differential
equations, ACM Trans. Math. Software 47 (4) (2021) 33/1–34.

[46] Martin Kronbichler, Katharina Kormann, A generic interface for parallel
cell-based finite element operator application, Comput. & Fluids 63 (2012)
135–147.

[47] Martin Kronbichler, Katharina Kormann, Fast matrix-free evaluation of discontin-
uous Galerkin finite element operators, ACM Trans. Math. Softw. 45 (3) (2019)
1–40.

[48] Tzanio Kolev, Paul Fischer, Misun Min, Jack Dongarra, Jed Brown, Veselin
Dobrev, Tim Warburton, Stanimire Tomov, Mark S. Shephard, Ahmad Ab-
delfattah, Valeria Barra, Natalie Beams, Jean-Sylvain Camier, Noel Chalmers,
Yohann Dudouit, Ali Karakus, Ian Karlin, Stefan Kerkemeier, Yu-Hsiang Lan,
David Medina, Elia Merzari, Aleksandr Obabko, Will Pazner, Thilina Rathnayake,
Cameron W. Smith, Lukas Spies, Kasia Swirydowicz, Jeremy Thompson, Ananias
Tomboulides, Vladimir Tomov, Efficient exascale discretizations: High-order
finite element methods, Int. J. High Perform. Comput. Appl. 35 (6) (2021)
527–552.

[49] Peter Munch, Karl Ljungkvist, Martin Kronbichler, Efficient application of
hanging-node constraints for matrix-free high-order FEM computations on
CPU and GPU, in: International Conference on High Performance Computing,
Springer, 2022, pp. 133–152.

[50] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain
Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio
Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido Akkerman, Johann Dahm,
David Medina, Stefano Zampini, MFEM: A modular finite element methods
library, Comput. Math. Appl. 81 (2021) 42–74.

[51] Martin Kronbichler, Karl Ljungkvist, Multigrid for matrix-free high-order finite
element computations on graphics processors, ACM Trans. Parallel Comput. 6
(1) (2019) 2:1–32.

[52] Karl Ljungkvist, Matrix-free finite-element computations on graphics processors
with adaptively refined unstructured meshes, in: SpringSim (HPC), 2017.

[53] Steffen Müthing, Marian Piatkowski, Peter Bastian, High-performance implemen-
tation of matrix-free high-order discontinuous Galerkin methods, 2017, arXiv
preprint arXiv:1711.10885.

[54] Jan Treibig, Georg Hager, Gerhard Wellein, LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments, in: Proceedings of PSTI2010,
San Diego CA, 2010, pp. 207–216.

[55] Samuel Williams, Andrew Waterman, David Patterson, Roofline: an insightful
visual performance model for multicore architectures, Commun. ACM 52 (4)
(2009) 65–76.

[56] Katarzyna Świrydowicz, Noel Chalmers, Ali Karakus, Timothy Warburton, Accel-
eration of tensor-product operations for high-order finite element methods, Int.
J. High Perform. Comput. Appl. 33 (4) (2019) 735–757.

[57] Martin Kronbichler, Dmytro Sashko, Peter Munch, Enhancing data local-
ity of the conjugate gradient method for high-order matrix-free finite-
element implementations, Int. J. High Perform. Comput. Appl. (2022)
10943420221107880.

[58] Peter Munch, Martin Kronbichler, Cache-optimized and low-overhead implemen-
tations of additive Schwarz methods for high-order FEM multigrid computations,
2023, Manuscript.

[59] Owe Axelsson, Petia Boyanova, Martin Kronbichler, Maya Neytcheva, Xunxun
Wu, Numerical and computational efficiency of solvers for two-phase problems,
Comput. Math. Appl. 65 (3) (2013) 301–314.

[60] James D. Foley, Andries Van Dam, John F. Hughes, Steven K. Feiner, Computer
Graphics: Principles and Practice, second ed., Addison-Wesley, 1990.

[61] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, Martin Kronbichler, Algo-
rithms and data structures for massively parallel generic adaptive finite element
codes, ACM Trans. Math. Softw. 38 (2) (2012) 1–28.

[62] Jeremy G. Siek, Lie-Quan Lee, Andrew Lumsdaine, The Boost Graph Library:
User Guide and Reference Manual, The, Pearson Education, 2001.

[63] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps,
Andrew Salinger, et al., An Overview of Trilinos, Citeseer, 2003.

Computational Materials Science 231 (2024) 112589

21

P. Munch et al.

[64] Xiaobing Feng, Steven Wise, Analysis of a Darcy–Cahn–Hilliard diffuse interface
model for the Hele–Shaw flow and its fully discrete finite element approximation,
SIAM J. Numer. Anal. 50 (3) (2012) 1320–1343.

[65] Carsten Burstedde, Lucas C. Wilcox, Omar Ghattas, p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput.
33 (3) (2011) 1103–1133.

[66] Sudipta Biswas, Daniel Schwen, Jogender Singh, Vikas Tomar, A study of the
evolution of microstructure and consolidation kinetics during sintering using a
phase field modeling based approach, Extreme Mech. Lett. 7 (2016) 78–89.

[67] Robert D. Falgout, Ulrike Meier Yang, hypre: A library of high performance
preconditioners, in: Computational Science–ICCS 2002: International Conference
Amsterdam, The Netherlands, April 21–24, 2002 Proceedings, Part III, Springer,
2002, pp. 632–641.

[68] Benjamin S. Kirk, John W. Peterson, Roy H. Stogner, Graham F. Carey, libMesh:
A C++ library for parallel adaptive mesh refinement/coarsening simulations,
Eng. Comput. 22 (3–4) (2006) 237–254.

[69] Vaclav Smilauer, et al., Yade Documentation, second ed., The Yade Project, 2015,
http://yade-dem.org/doc/.

[70] Marco Seiz, Henrik Hierl, Britta Nestler, An improved grand-potential phase-field
model of solid-state sintering for many particles, Modelling Simul. Mater. Sci.
Eng. 31 (5) (2023) 055006.

[71] Kazunari Shinagawa, Simulation of grain growth and sintering process by
combined phase-field/discrete-element method, Acta Mater. 66 (2014) 360–369.

	List of papers
	1 Motivation
	1.1 Background
	1.2 Matrix-free methods for finite-element computations
	1.3 Historical overview, state of the art & challenges
	1.4 Aim of this thesis

	2 Algorithmic aspects of efficient matrix-free computations
	2.1 Derivation of the matrix-free algorithm
	2.2 Cell loop & vector updates
	2.3 Vector access & application of constraints
	2.4 Evaluation & application of test function
	2.5 Quadrature operation
	2.6 Discontinuous Galerkin methods
	2.7 Arbitrary shapes: simplex and mixed meshes
	2.8 Local refinement
	2.9 Example implementation & interface
	2.10 Performance aspects
	2.11 Variations: interleaving on cell level
	2.12 Preconditioning

	3 Accomplishments
	3.1 Application to high-order FEM
	3.1.1 Increasing the data locality
	3.1.2 Application of hanging-node constraints
	3.1.3 Multigrid: global coarsening for locally refined meshes
	3.1.4 Multigrid: efficient block smoothers
	3.1.5 Stage-parallel implicit Runge–Kutta methods

	3.2 Application to high-dimensional FEM
	3.2.1 Motivation: computational plasma physics
	3.2.2 Software and performance aspects

	3.3 Application to multicomponent FEM
	3.3.1 Motivation: solid-state sintering
	3.3.2 Software and performance aspects
	3.3.3 Nonlinear solver and preconditioning

	3.4 Coupling via non-matching grids
	3.4.1 Motivation: multiphysics applications
	3.4.2 Distributed search
	3.4.3 Efficient operator evaluation
	3.4.4 Software
	3.4.5 Black-box coupling via preCICE

	4 Additional publications and software
	4.1 List of papers
	4.2 List of publicly available software

	5 Conclusions & Outlook
	References

