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Zusammenfassung

Die Relaxation in der Variationsrechnung fiihrt zu Minimierungsaufgaben mit einer quasi-konvexen
Energiedichte. In der nichtlinearen Elastizitit, Topologieoptimierung, oder bei Mehrphasenmod-
ellen sind solche Energiedichten konvex mit einer zusétzlichen Kontrolle in der dualen Variablen
und einem beidseitigem Wachstum der Ordnung p. Diese Minimierungsprobleme haben im
Allgemeinen mehrere Losungen, welche dennoch eine eindeutige Spannung o definieren. Die
Approximation mit der ,hybrid high-order (HHO) Methode benutzt eine Rekonstruktion des
Gradienten in dem Raum der stiickweisen Raviart-Thomas Finiten Elemente ohne Stabilisierung
auf einer Triangulierung in Simplexen. Die Anwendung dieser Methode auf die Klasse der de-
generierten, konvexen Minimierungsprobleme liefert eine eindeutig bestimmte, H(div) konforme
Approximation o, der Spannung. Die a priori Abschitzungen in dieser Arbeit gelten fiir gemis-
chten Randbedingungen ohne weitere Voraussetzung an der primalen Variablen und erlauben
es, Konvergenzraten bei glatten Losungen vorherzusagen. Die a posteriori Analysis fiihrt auf
garantierte obere Fehlerschranken, eine berechenbare untere Energieschranke, sowie einen kon-
vergenten adaptiven Algorithmus. Die numerischen Beispiele zeigen hohere Konvergenzraten mit
zunehmenden Polynomgrad und bestitigen empirisch die superlineare Konvergenz der unteren En-
ergieschranke. Obwohl der Fokus dieser Arbeit auf die nicht stabilisierte HHO Methode liegt, wird
eine detaillierte Fehleranalysis fiir die stabilisierte Version mit einer Gradientenrekonstruktion im
Raum der stiickweisen Polynome prisentiert.



Abstract

The relaxation procedure in the calculus of variations leads to minimization problems with a
quasi-convex energy density. In some problems of nonlinear elasticity, topology optimization,
and multiphase models, the energy density is convex with some convexity control plus two-sided
p-growth. The minimizers may be non-unique in the primal variable, but define a unique stress
variable o-. The approximation by hybrid high-order (HHO) methods utilizes a reconstruction of the
gradients in the space of piecewise Raviart-Thomas finite element functions without stabilization
on a regular triangulation into simplices. The application of the HHO methodology to this class of
degenerate convex minimization problems allows for a unique H(div) conform stress approximation
o, The a priori estimates for the stress error o — o7, in the Lebesgue norm are established for mixed
boundary conditions without additional assumptions on the primal variable and lead to convergence
rates for smooth solutions. The a posteriori analysis provides guaranteed error control, including
a computable lower energy bound, and a convergent adaptive scheme. Numerical benchmarks
display higher convergence rates for higher polynomial degrees and provide empirical evidence for
the superlinear convergence of the lower energy bound. Although the focus is on the unstabilized
HHO method, a detailed error analysis is provided for the stabilized version with a gradient
reconstruction in the space of piecewise polynomials.
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Chapter 1

Introduction

This thesis analyzes the HHO methodology [DPEL14; DPE15] for a class of degenerate convex
minimization problems defined in Section 1.1 with examples in Section 1.2 and main results
outlined in Section 1.3.

1.1 A class of degenerate convex minimization

Variational models in solid or fluid phase transitions in material physics lead to minimization
problems of a free energy with a non-convex energy density that satisfies some superlinear growth
[BJ87; BJ91]. The direct method in the calculus of variations provides a weakly convergent in-
fimizing sequence (vk)ken,. The deformation gradients D v; may develop rapid oscillations within
a certain part of the domain, also called microstructure zone, that separates homogenous phases
(e.g., austenite) from a fine mixture of different phases (e.g., martensite) in the microstructures of
alloys. The energy typically fails to converge due to the lack of the weak lower semicontinuity of
the energy functional.

The oscillating nature of infimizing sequences is characteristic for materials that undergo some
structural phase transformations, cf., e.g., [BJI87; BJ91; Fri94; Lus96] and the references therein.
Nevertheless, these sequences describe some average configuration that influences the behaviour
of the material on a macroscopic level. The concept of Young measures traces back to L. C. Young
[You37] and provides a mathematical tool to capture some statistics and macroscopic features of
almost minimizers [Bal89; KP91; KP94; Miil99; Car01].

The relaxation procedure in the calculus of variations [Dac08] aims at a direct computation of
the weak limits of infimizing sequences, where the non-convex energy density is replaced by its
quasiconvex envelope or its convex hull for scalar problems. The passage from a microscopic to a
macroscopic energy guarantees the weak lower semicontinuity of the energy functional and hence,
the existence of a minimizer in the direct method in the calculus of variations. In some model
problems, the relaxed energy density W € C!(M) with M := R"™" is degenerate convex with a
two-sided growth of order p plus the convexity control (1.2) with parameters 1 < p,p’,r < oo,
0 <s <oo,and 1/p +1/p’ = 1: There exist positive constants c1, ¢, c3 > 0 and non-negative
constants c4, c5 > 0 such that, for any A, B € M,

c1|AlP —cs < W(A) < c2]AlP +c5, (1.1)
[DW(A) —-DW(B)|" < c3(1+|A]°+|B|’) x (W(B) —W(A) —DW(A) : (B-A)). (1.2)

Throughout this thesis, suppose that the boundary 9€Q of the bounded polyhedral Lipschitz domain
Q c R”" with outer normal vector v is partitioned into the compact Dirichlet boundary I'p C 9Q
with positive surface measure [I'p| > 0 and the relatively open Neumann boundary I'y = 6Q \ I'p.
Given the right-hand side f € LP'(Q;R™), the Dirichlet data up € V in the Sobolev space V :=
WP (Q; R™) with distributional derivative in L? (€; M), and the Neumann data g € L? (I'y; R™),

10



11 CHAPTER 1. INTRODUCTION

the continuous problem minimizes the energy functional

E(v):‘/QW(Dv)dx—/Qf-vdx—/rNg-vds (1.3)

amongst admissible functions v in the affine space A = up + W]ID’p (; R™) with traces v = up on
I'p to model Dirichlet boundary conditions. Further details on the notation follow in Section 2.1.
The two-sided growth of W in (1.1) well defines the energy functional E. Although the convexity
control (1.2) asserts that the derivative D W of W is a monotone operator (hence, the convexity of
E), the minimizers # of £ may be non-unique due to the lack of strict convexity. Nevertheless,
(1.2) enforces some control on the dual variable and leads to a unique stress o = D W(Du).
A priori and a posteriori error estimates for the stress approximation are derived in [CP97; CP00]
for the lowest-order conforming scheme, followed by an adaptive scheme with plain convergence
in [Car0O8a; BC08; CD15].

The presence of a microstructure zone, where the microscopic solution u has a measure valued
gradient, a Young measure in the non-convex original problem [BKKO0O], causes the so-called
reliability-efficiency gap in [CJO3]: Efficient error estimates are not reliable and reliable error
estimates are not efficient. This severe loss in the a posteriori control for conforming discretizations
provokes the analysis of alternative numerical schemes.

The local stress regularity o € WIL’CP ,(Q; M) [CMO02] motivated the mixed finite element
approximation in [CGR12b]. The better approximation of the stress variable through Raviart-
Thomas FEM on the one hand meets the non-smoothness of the dual functional W* on the other.
A one-point quadrature rule in the dual mixed Raviart-Thomas formulation leads to the discrete
Raviart-Thomas FEM in [CL15], which is equivalent to a Crouzeix-Raviart FEM without a discrete
duality gap. This allows for guaranteed energy bounds and the first optimal a posteriori error
estimate to overcome the reliability efficiency gap in numerical examples for the optimal design
problem. Recent skeletal methods have been established in nonlinear problems [DPD17a; AEP18;
CT21] with convergence rates in [DPD17b; DDM18; CT21] and lead to lower eigenvalue bounds in
[CZZ20]. In the joint work [CT21] with the supervisor Prof. Carstensen, the author generalizes the
results in [CL15] to higher polynomial discretizations with a superlinear convergent lower energy
bound (LEB). This thesis expands the results in [CT21] to mixed boundary conditions, analyzes a
stabilized alternative to [CT21] in spirit of [DPD17a; AEP18], and provides a convergent adaptive
scheme.

1.2 Examples

The arguments of this paper apply to the following examples summarized in Figure 1.1 and revisited
in computational benchmarks in Chapter 6. Further motivating examples are found in [CM02;
Kne08] including the vectorial two well problem, Hencky elastoplasticity with hardening, and a
special case of the Ericksen-James energy.

Examples p r S cq Ca c3 | cq4 | cs

p-Laplacian 2<p<oo |2 |p=2|1/p | 1/p| B | 0O
l<p<2 |p 0

optimal design 2 2 0 u1/2 | ua/2 | 2ux | 0 | O

relaxed double-well 4 2 2 1/8 8 A K | K

Figure 1.1: Parameters in (1.1)—(1.2) in the examples of Section 1.2
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1.2.1 p-Laplace

The minimization of the energy functional E in (1.3) withW : R" - R,a > |a|P /pfor]l < p < o0
is equivalent to the nonlinear mixed PDE divo + f = 0 € LP (Q) and o — |Vu|P™2Vu = 0 €
LP' (€;R™) subject to the boundary conditions # = up on I'p and o - v = g on I'y. The
energy density W satisfies (1.1)-(1.2) with the constants of Figure 1.1. The author verified
c3 =B =3(p—-1)max{1,2773} in (3.46) if 2 < p < oo and ¢3 = p’ max{2,27~?} in (3.50) if
1 < p < 2below in Lemma 3.7. Since D W is strictly monotone, W and thus, E are strictly convex.
This implies the uniqueness of the minimizer u of E in A. In particular, there is no microstructure
involved in this classical example.

1.2.2 Optimal design problem

The optimal design problem seeks the optimal distribution of two materials with fixed amounts
to fill a given domain for maximal torsion stiffness. The mathematical modelling of this real-life
problem in topology optimization is rather involved [KS86; BC08] and eventually leads to a scalar
minimization problem. For fixed parameters 0 < & < & and 0 < y; < pp with &1y = &4, the
energy density W(a) = (&), a € R", £ = |a| = 0 with

1?2 if0<¢<é,
Y (&) = E1ma(é-&1/2) if§ <& <&,
miE2 2= Eipua(é1/2 - 6/2) ifé <€
satisfies (1.1)—(1.2) with the constants from [BCO08, Prop. 4.2] displayed in Figure 1.1.

1.2.3 Relaxed two-well problem

The convex envelope W of |F — F{|?|F — F»|*> for F € R" and fixed Fy, F> € R" in the two-well
problem from [CC92] reads

W(F) = max{0, |F — B|* — |A|*}* +4(|A]*|F - B|* - (A - (F - B))?)

with A = (F, — F1)/2, B = (F + F»)/2, and satisfies (1.1)—(1.2) with the constants of Figure 1.1
and the abbreviations k := 8 max{|F;|*, |F»|*} from [CP97] and c3 = A := 32max{1, |A|>, |A|?/2+
2|B|?,2|B|?} from [Car08b].

1.3 Main results

The HHO discretization features a split of the degrees of freedom into volume variables and
skeletal variables of polynomial degree at most k € Ny, namely v, = (v, v¢) € Vi, The proposed
numerical scheme replaces Dv in (1.3) by a gradient reconstruction G vy, in a linear space X,
the piecewise Raviart-Thomas finite element functions X5 = RT}" (7;M) in Chapter 3 without
stabilization or the piecewise polynomials X, = Pi(7 ;M) in Chapter 5 with a stabilization
s : Vi xV, — R on a regular triangulation 7 into simplices. Further details on the HHO
methodology follow in Section 2.5. The discrete minimizers uy, of the discrete energy Ej, in the
affine space Ay of admissible discrete functions may be non-unique, but define a unique discrete
stress oy, = Ily, DW(G up) € X, with the L? projection onto X;,. The unstabilized HHO method
in Chapter 3 leads to a discrete stress o, in the Sobolev space W»' (div, Q; M) of all LP" functions
with distributional divergence in L?' (€;R™). Similar to the equilibrium on the continuous level,
oy, satisfies div o, + H’;_f =0in Q and o = H’(/;Ng on I'y, or in short o, € Qy,. The results of
Chapter 3 apply to the examples of Section 1.2 and lead to the a priori estimate

L o =DW(Gunll g + E(u) = En(up)]
< |E(u) — max E*(Qp,)| + osc(f, T) +osen(g, Fn) + ||(1 = Ty, Du||;’,,(g)

llo = omll
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with the dual energy E* defined in (2.11) below. This implies the convergence rates

+|E(u) — Ep(up)| < hk (1.4)

llo = amll +[lo =DW(G un)ll max

r r
LP' (Q) LP' (Q)

for piecewise smooth o, u in Theorem 3.5 and thereby generalizes the a priori results in [CGR12b]
to methods of higher polynomial degrees. The a posteriori error analysis in Section 3.3 establishes
the computable lower energy bound

LEB = E*(0}) — Coosc(f,T ) — Ciposen(g, Fn) < min E(A)

that converges superlinearly towards the minimal energy min E(A) in the numerical examples
of Chapter 6. For the lowest-order discretization, this is superior in comparison to the LEB of
[Ort11; OP11] in the sense that || A7 f|| 0’ () is replaced by the higher-order term osc(f, 7). The
a posteriori estimate

+ [l =D W(G un)|

llor = omll +|E(u) — Ep(un)l

r r
LP'(Q) LP' (Q)

< Ep(up) — E* (o) +osc(f, T) +osen(g, ) + II)I;IQ |G un — DvH'ZP(Q)

is computable with some post-processing of v € A as demonstrated in Chapter 6. Additional
control over the primal variable in the p-Laplace problem allows for a refined a priori error
analysis and leads to the convergence rates

(ke 1)/(p=1)
if2<p < oo,
IDu—Gunllr@ S 3, snprr - :
hikt ifl <p<2,
hoa PP 2 < p < oo,

0—_0‘ ’l s -
I nllLs (Q) {h[(g)r(l)(P D yp1 < p <2,

in Corollary 3.9. This improves the existing rate hr(n];;l)(p for1 < p < 2 in the literature

[DPD17b; DDM18].

A discrete compactness result in Section 4.2 motivates an adaptive scheme presented in Sec-
tion 4.1 with plain convergence for convex minimization problems with the two-sided p-growth
in (1.1): Suppose that uy = (ug;,us,) minimizes the discrete energy E, in A, on each level
£=0,1,2,... of the adaptive algorithm and let J, uys € V be a conforming postprocessing of u,
from Subsection 2.5.3 below, then any weak accumulation point of (J ¢ u¢)sen, in V minimizes E
in A and limy_,o E¢(tt¢) = min E(A). The results in Chapter 4 imply lim;—,.o DW(G, ur) = o
strongly in L”'(€; M), provided the energy density W additionally satisfies (1.2).

While the focus of this thesis is on the unstabilized HHO method on simplicial meshes, the sta-
bilized version introduced in Chapter 5 with a gradient reconstruction in the space X5 = P (7 ; M)
of piecewise polynomials is the classical method on general polyhedral meshes [DPEL14; DPE15].
This is the main selling point over its unstabilized version in Chapter 3, but comes at the cost of
an additional stabilization term s : V), X V), — R defined in (2.18) below. The discrete stress
op = H’;_D W(G uy,) is not H(div) conform in general and so, the duality techniques in the error
analysis of Chapter 3 are only applicable with some postprocessing on simplicial meshes. (This is
due to the lack of classical Raviart-Thomas finite element functions on polytopes, this will be left
for future research.) The a priori estimate
+|E(u) = Ep(up)| +s(up; un)

lo = aully ) + Il =DWG w7

SN =T [l gy +0se(f, T) +osen(g, ) + (1 = T5) Dull7 ) +s(Tu; L)

arises from the interplay of the conforming companion J : V;, — V and the interpolation
I: V — Vj, introduced in Section 2.5. This implies the convergence rates in (1.4). The a posteriori
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error analysis in Section 5.4 provides the error estimate

llo = omll +[lo =DW(G un)ll +|E(u) — Ep(un)l

LP' (Q) LP' (Q)

< /Q W (o) dox — /Q W*(DW(G up)) dx

+ose(f, T) +osen(g, ) +min |G uj — Dy, ) + s(un; un) 7

and a convergent adaptive scheme. The latter extends the convergence results of [DPD17a] from
uniform meshes to adaptive mesh refinements for efficient approximation of singular solutions.

1.4 Outline of the thesis

The remaining parts of this thesis are organized as follows. Chapter 2 recalls standard function
spaces and common duality tools in convex analysis, followed by an overview of known results
on the continuous level in Section 2.4. Section 2.5 introduces the HHO methodology, including
the discrete ansatz space Vj, the gradient reconstruction operator G, the stabilization s, and
the conforming companion ,J. Chapter 3 analyses the unstabilized HHO method introduced in
Section 3.1. A priori error estimates for the stress error o — 0y, in the Lebesgue norm and for
the energy error |E(u) — Ep(uy,)| are established in Section 3.2 with a discussion on convergence
rates, followed by the a posteriori error analysis in Section 3.3 with a computable lower energy
bound of min E(A). A refined error analysis for the p-Laplace problem concludes this chapter.
Chapter 4 starts with the introduction of an adaptive scheme in Section 4.1, motivated by the discrete
compactness result in Section 4.2. The application of the unstabilized HHO method to convex
minimization problems with a Lavrentiev gap is briefly examined in Section 4.4. Section 5.2 derives
a priori error estimates for the stabilized HHO method introduced in Chapter 5. The a posteriori
error analysis in Section 5.3 designs a post-processing of the discrete stress oy, € Pi(7 ;M) that
allows for a computable lower energy bound on simplicial meshes. A discussion of the results
on general polyhedral meshes concludes Chapter 5. Numerical results for the unstabilized HHO
method applied to the three model problems in Section 1.2 and a modified Foss-Hrusa-Mizel
example from [FHMO3; OP11] are presented in Chapter 6. Conclusions drawn from the numerical
experiments conclude this thesis.
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Chapter 2

Preliminaries

A summary of the notation used in this thesis precedes common duality tools in convex analysis and
further properties of the energy density W, followed by an overview of known results concerning
the minimizer u and the stress o = D W(Du). The introduction of the HHO methodology in
Section 2.5 concludes this chapter.

2.1 Notation

For any A, B € M := R"™" the Euclidean scalar product A : B == T: | 2p=1 AjeBjc of Aand B
induces the Frobenius norm |A| := (A : A)'/? in M. Note that the meaning of | e | depends on the
context: | e | is the £% norm of a vector, the Frobenius norm of a matrix, the volume of a simplex,
the counting measure of a discrete set, etc. The notation A < B abbreviates A < CB for a generic
constant C independent of the mesh-size and A ~ B abbreviates A < B < A. Generic constants
are written as c; or C;, where cg, . . ., ¢15 exclusively depend on c1, . . ., c5s from Figure 1.1, while
Cy, ..., C3 may additionally depend on the domain, the shape-regularity of the triangulations, the
data up, f, g, and the parameters k, £, m,n, p,r, s, t with ¢t from Section 3.2.

2.1.1 Space of continuous functions

Given the multi-index @ = (a1, 2, ...,@,) € Njj of order |a| = a; + @2 + -+ + ay, let DY v
denote the a-th partial derivative 8!lv/ (0x{"0x3” ... dx,") of v : w — R on an open subset
w C R™. The space C¥(w) with k € Ny consists of all v : w — R such that any partial derivative
D? v of order 0 < |a| < k is continuous with the convention C’(w) = C(w). Let C¥(w) denote
the space of v € C¥(w) with compact support in w, i.e., the closure supp(v) of the non-zero set
{x € w: v(x) # 0} in R" is compact in w.

2.1.2 Lebesgue and Sobolev spaces

Standard notation for Sobolev and Lebesgue functions applies throughout this thesis and is briefly
recalled below. Given a bounded polyhedral Lipschitz domain Q c R”,let LP (Q) with1 < p < o0
denote the space of Lebesgue functions [AF03, Chapter 2], endowed with the norm

1/p
(/|f|de) if1<p < oo,
fllzr (@) = Q .
esssup,cq | f(x)| if p = co.

For p = 2, L*(Q) is a Hilbert space with the L? scalar product (e,e) 12()- The deriva-
tives of Sobolev functions are understood in a distributional sense. Given the multi-index

15
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a=(ay,a,...,a,)oforder || = a1 +as +- - - +a,, the weak a-th derivative D v of v € L? (Q)
[AF03, § 1.62] satisfies the integration by parts formula

lal
[eptvar=nlel [oo 0t
Q Q Ox;'0xy%...0x,"

for any smooth test function ¢ € C2(Q). The Sobolev space WK-P(Q) := {v € LP(Q) : D¥v €
LP(Q) for all @ with |a| < k} is a Banach space [AF03, Theorem 3.3], equipped with the norm

lvllwer @) = (Zosj<k [Vl q)) "7 and

1/p
> ||D(tq;||€p(g)) if1<p < oo,
[vlwir (@) =9 aeNTlal=)

maxgens,|al=j DY vllLe@  if p=oo

for j = 0,...,k. The density of the test functions C*(Q) in W5 (Q) [AF03, Theorem 3.17]
allows for the notion of traces. In particular, there exists a bounded linear operator y : WP (Q) —
L?(dQ) such that y v = v|sq for v € WHP(Q) N C(Q) [AF03, Theorem 5.36]. This gives rise to
the space Wé’p (Q) (resp. Wllj’p (Q)) of Sobolev functions with vanishing trace on 9Q (resp. I'p).
The preceding definitions are carried out for scalar-valued functions, but apply componentwise
to vector- or matrix-valued functions, e.g., LP (Q;R™) = LP(Q)™, LP(Q;M) = LP(Q;R™")™,
WkP(Q;R™) := WP (Q)™ etc. The local equilibrium condition in computational mechanics
motivates the definition of the weak divergence div T of T € LP'(Q;R") [Tar07, Section 20] such

that any ¢ € C°(Q) satisfies
/gpdidex = —/T -V dx.
Q Q

The Banach space of all Sobolev functions 7 € LP' (Q;R") with weak divergence div T € L' (Q)

P STy 1/p’ _
LP’(Q)+||d1UT||LP’(Q)) . Forp =2,

abbreviate H*(Q) = W*2(Q) and H(div, Q) = W?(div, Q). An integration by parts defines

is called WP’ (div, Q) with the norm ITllwe (div.0) = (1=l

(tv, v)aq = / (t-Vv+vdivr)dx forall T € WP (div, Q) and v € WP (Q).
Q

Note that (e, )gq extends the L? scalar product on Q. For p = 2, the Hilbert space H(div, Q)
allows for normal traces ,, such that y, 7 = 7 on dQ for T € H(div, Q) N C(Q;R™). The range
v, (H(div, Q)) = H'/2(8Q) of y, is the dual space of H'/>(dQ) = y(H'(Q)) [Tar07, Lemma
20.2]. The characterization of this duality with minimal energy extension norms is carried out in
[CDG16, Lemma 2.2].

2.1.3 Regular triangulation

A regular triangulation 7~ of Q in the sense of Ciarlet is a finite set of closed simplices 7" of
positive volume |T'| > 0 with boundary 4T and outer unit normal vr such that UpeqT = Q and
two distinct simplices are either disjoint or share one common (lower-dimensional) subsimplex
(vertex or edge in 2D and vertex, edge, or face in 3D). Let #(T) denote the set of the n + 1
hyperfaces of T, called sides of T. Define the set of all sides ¥ = UrcsF (T), the set of interior
sides F(Q) = F \ {F € ¥ : F c 0Q}, the set of boundary sides F(9Q) := F \ F (), the set of
Dirichlet sides Fp := {F € F : F C I'p}, and the set of Neumann sides ¥y = F(dQ) \ Fp in 7.

For any interior side F € #(Q), there exist exactly two simplexes Ty, 7- € 7 such that
0T, N dT- = F. The orientation of the outer normal unit vr = vr,|F = —vr | along F is fixed
beforehand. Define the side patch wr := int(T,UT_) of F. Let [v]f = (v|z,)|F—(v|r.)|F € L'(F)
denote the jump of v € L'(wp) with v € WHI(T,) and v € WHI(T.) across F (with the
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abbreviations W (T,) := W' ! (int(7%)) and W'-!(T_) := W!!(int(7T.))). For any boundary side
F € F(9Q), there is a unique T € 7 with F € F(T). Then wr = int(T), vr = vr, and
[v]lF == (v|r)|F. The differential operators divpy and Dy, depend on the triangulation 7~ and
denote the piecewise application of div and D without explicit reference to 7.

The shape regularity of a triangulation 7~ is the minimum minyes o(T) of all ratios o(T) :=
ri/re < 1 of the maximal radius r; of an inscribed ball and the minimal radius 7. of a circumscribed

ball for a simplex T € 7. A family T of regular triangulations is called shaped regular if, for all
TeT withT €T, 1 < o(T) < 1is uniformly bounded.

2.1.4 Discrete spaces

The discrete ansatz space of the HHO methods consists of piecewise polynomials on the triangu-
lation 7~ and on the skeleton 97 := U¥. For a simplex or a side M C R" of diameter h,,, let
P (M) denote the space of polynomials of maximal order £ > 0 regarded as functions defined in
M. The L? projection H’;/Iv € Pir(M) of v € L' (M) satisfies

/ pr(1 - Hllf,[)vdx =0 forany ¢ € Pr(M).

M

The gradient reconstructionin 7 € 9 maps in the space of Raviart-Thomas finite element functions
RT(T) = Pr(T;R") + xPr(T) C Pr1(T;R").

Let Pr(7), Px(¥), and RTiW (7)) denote the space of piecewise functions with respect to 7~ or
F and with restrictions to T or F in Pi(T), Pi(F), and RTy(T). The L* projections 1% and TI%
onto the discrete spaces Pr(7) and P (F) are the global version of H; and 1'[1’;, respectively,
e.g. (H(krv)|T = H;(U|T) for v € L'(Q). For vector-valued functions v € L'(Q;R™), the L?
projection HZ} onto Pr(7;R™) = P (7)™ applies component-wise. This convention extends to
the L? projections onto Py (M;R™) := Py (M)™ and Py (F;R™) := Py (F)™. For k = 0, the HHO
ansatz space is closely related to the space of Crouzeix-Raviart finite element functions

CRY(7") = {vcr € P1(T) : vcr is continuous at midpoints of F for all F € F(Q)}.

Conforming companions are constructed in the space S¥(77) = Py (7)) N WhP(Q) of piecewise
but globally continuous polynomials of order & > 1. The local mesh sizes give rise to the
piecewise constant function hqy € Py(7) with he|y = hy for T € 7 in the data oscillation
osc(f,T) = ||hs(1 — H’;.) SllLr' (@ of f in 7. Similarly, define the Neumann data oscillation

osen(g, ) = 1Ayl (1 =TI gl L 1y Of g With g, € Po(Fx) and h | = hr on F € .

On the continuous level, the triangulation 7~ motivates the space WP (77) of piecewise Sobolev
functions with restriction to 7 € 7 in W5P(T).

2.2 Standard tools in CPDE

This section summarizes widely used tools in computational PDE (CPDE). Their proofs can be
found in classical textbooks or are carried out in functional analysis and CPDE courses. Throughout
this section, let T c R" be a simplex and 1 < ¢, q” < co with 1/g+1/¢q’ = 1. The generic constants
hidden in the notation < in Lemma 2.5-2.10 depend only on the shape-regularity o(7T) of T € T~
(in Subsection 2.1.3), the dimension n, and the parameters &, g.

2.2.1 Inequalities

The Young inequality follows from the concavity of the logarithm log and can be utilized to prove
the Holder inequality. General versions of the Young inequality and Holder inequality are stated
in [AF03, § 2.27].
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Lemma 2.1 (Young equality). Any non-negative a,b € R with a, b > 0 and positive € > 0 satisfy
ab < &al/q+'"1b9 |q for1 < q,q’ < cowith1/q+1/q = 1.

Lemma 2.2 (Holder inequality). Suppose that v € L9(Q) and T € LY (Q), then vt € L'(Q) with
lotll @) < ollze@ 17l Lo -

A function ¢ : M — Ris called convex if its epigraph epi ¢ = {(A, 1) : A e M,1 € R, ¢(A) <
A} is a convex set in M x R. This definition is equivalent to the condition ¢(11A] + A2A43) <
A19(A1) + A2¢(A,) for any Ay, Ap € M and non-negative 1y, 4, > 0 with 4; + 2, = 1 [Roc70,
Theorem 4.2]. The statement below is a special case of the classical Jensen inequality [Roc70,
Theorem 4.3].

Lemma 2.3 (Jensen inequality). Let ¢ : M — R be a convex function. Then any tuple
(Ay1,...,An) € MY with N € N satisfies

e((Ar+---+AN)/N) < (p(A1) +---+9(AN))/N.

The Friedrichs inequality asserts the equivalence of the full norm || e |[y1.4 () and the energy
norm | @ |yi.q¢q) = [V ®|lLa(q) in Wé’q (Q) with a compact Dirichlet boundary I'p of positive
surface measure.

Lemma 2.4 (Friedrichs inequality [BSO8, Proposition 5.3.5]). Any v € W];’q (Q) with vanishing
trace on I'p satisfies ||v||ra(q) < CrllVV||lLa(q). The constant Cr depends on the domain Q and
on I'p with |I'p| > 0.

An integration by parts verifies the trace identity in Lemma 2.5, which implies the trace
inequality and its discrete version in Lemma 2.6.

Lemma 2.5 (trace identity [CGR12a, Lemma 2.1]). Let F € F(T) denote a side of the simplex
T = conv{F, P} with its opposite vertex P. Then any v € WH1(T) satisfies

F F
/vds=u/(x—P)-Vvdx+u/vdx.
F n|T| Jr Tl Jr

. -1 1/q’
In particular, |0l a(ry < hy ol Lacr) + k! L V0]l La 1)

Lemma 2.6 (inverse inequality [BSO8, Lemma 4.5.3]). Any polynomial p; € Py(T) satisfies
IVpillLa () < h}l pxllLa(r). This and the trace inequality from Lemma 2.5 lead to the discrete

trace inequality ||pillra(F) S h;]/quklqu(T) forall F € ¥(T).

2.2.2 Stability and approximation property of L? projections

The stability of the L? orthogonal projection is an immediate consequence of the best approximation
property in the L? norm, but also holds in any L¢ norm with ¢ # 2. This is essentially a consequence
of the Bramble-Hilbert lemma [BS08, Lemma 4.3.8], cf., e.g, [EG21, Lemma 11.18] and can be
extended to general meshes, e.g., in [DPD17a, Lemma 3.2].

Lemma 2.7 (stability of H;). The L? projection H% is stable in the L9 norm in the sense that any
v € L1(T) satisfies ||H§U||Lq(r) < lvllpa(ry- In other words, H? : L9(T) — L9(T) is a bounded
operator with the operator norm

W5l cezacryy = sup  T50llacry /NvllLacry < .
veL4(T)

In particular, ||(1 — H;‘w)vlqu(T) < ming,, ep, (1) |V = pilleacr). This assertion also holds for the
case q € {1, 00} and for the L* projections onto RTy(T) or VP4 (T).
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The approximation property of the Taylor polynomials is well-known in the context of the
Bramble-Hilbert lemma [BS08, Lemma 4.3.8]. This and the stability of H; prove Lemma 2.8.

Lemma 2.8 (approximation property of H;ﬂ [BS08, Lemma 4.3.8]). Suppose that v e W*+1-4(T),
then ||(1 = TI§)vll La(r) S A5 [vlywkera 7).

The special case k = 0 in Lemma 2.8 is also known as the Poincaré inequality.

Lemma 2.9 (Poincaré inequality). Any v € W'4(T) with vanishing integral mean fT vdx =0
satisfies ||v||pa(ry < hrCpl|VU|lpa(r). For q = 2, the optimal constant Cp = 1/ j 1 with the first
positive root j1.1 = 3.8317 of the first Bessel function is established in [LS10] for a triangle T in
two dimensions n = 2 and Cp = 1/m in [PW60; Beb03] for any convex set K = int(K) c R" in any
space dimension n > 3.

2.2.3 Fortin interpolation

For any T € W14 (T; R"), define the local Fortin interpolation Ir 7 € RTy(T) by

/IFT *Pk-1 dx = /T *Pk-1 dx for all Pk-1 € Pk_l(T;Rn), (2.1)

T T

/pk(IFT'VTlp)dS=/pk(T'VT|F) ds for any px € Px(F),F € F(T) (2.2)
F F

with the convention P_;(T;R"™) = {0}. Tt is pointed out in [BBF13, p. 103] that the trace integral
in (2.2) is not well-defined for all functions in W% (div, T'). Nevertheless, the standard assumption
7 € WH4(T;R") can be relaxed. For instance, if ¢ = 2, then the Fortin interpolation exists for
7 € H(div,T) N L5(T;R") with s > 2. In general space dimensions, v € W!/P+&P(T;R") with
€ > 0 is sufficient [EG21, Theorem 16.6]. The following estimate is well-established for g = 2
[BBF13, Proposition 2.5.3] and can be extended to the general case 1 < g < oo, cf., e.g. [EG21,
Theorem 16.4].

Lemma 2.10 (approximation property of Ir). Any v € W*1-4(T; R") satisfies ||(1 = 1)t || La (1) S
h’;:” |T|Wk+l,q(T).

The conditions (2.1)—(2.2) define the (not relabelled) Fortin interpolation I : Wb (Q;R") —
RT (7)) such that (I 7)|7 of T € W'4(Q; R") satisfies (2.1)—(2.2) for all T € 7. The weights on
the left-hand side of (2.1)—(2.2) correspond to the canonical degrees of freedom of Raviart-Thomas
finite element functions [BBF13, Lemma 2.3.4]. An affine transformation to a reference simplex
and the equivalence of norms in discrete spaces verify, for all 7, € RT(T; R"),

el oy ~ ISl o+ > hellTulrvrlellLy ) (2.3)
FeF(T)

2.3 Convex analysis for functions with two-sided growth

Let W* : M — R denote the convex conjugate of W (also known as dual or Fenchel conjugate of
W) [Roc70, Corollary 12.2.2] with

W*(G) = sup(G : A—W(A)) forany G € M. (2.4)
AeM

In the setting of Section 1.1, the convex conjugate W* of W inherits the two-sided growth of W
(cf. Lemma 2.11) and so, W* € C(M). Although W is continuously differentiable, W* is only
differentiable a.e. in M [Roc70, Theorem 25.5] in general. A generalization to the differentiability
for convex functions is the concept of the subdifferential 9W*. The multivalued map 0W* : M —
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P (M) with the power set P (M) := {U : U C M} is defined such that 0W*(G) at G € M [Roc70,
Section 23] is the set of A € M with

A:(H-G)<W(H)-W(G) forall He M. (2.5)

The relation A € 9W*(G) is equivalent to G : A = W(A) + W*(G) [Roc70, Theorem 23.5]. This
duality implies the equivalence of the convexity control (1.2) and

|G - H|" < c3(1+|A]° +|B*)(W'(H) -W*(G) - A: (H-G)) (2.6)

for any G,H € M, A € 0W*(G), and B € dW*(H). Further properties of W and W* are
summarized below.

Lemma 2.11. Suppose that W € C'(M) is convex with the two-sided p-growth in (1.1), then
W* € C(M) is convex and there exist constants cg, . .., c1s5 depending only on ¢y, ¢, c4, and cs
from Figure 1.1 that satisfy (a)—(c).

(a) (two-sided growth of W*) For all G € M, it holds
c6|GI” = s < WH(G) < ¢7|G|” + ca.
(b) (two-sided growth of DW) Any A € M satisfies
IDW(A)P < cglAIP +co and ciolAlP —c11 < [DW(A)|P.
(c) (two-sided growth of OW*) For all G € M and A € O0W*(G), it holds
JAIP < cialGIP + ¢35 and  cis|GIP = c15 < |AJP.

Proof. The proof of Lemma 2.11 involves elementary algebra only and is partly found in [CT21,
Lemma 2.1]. For the convenience of the reader, the proof is recalled below.

Proof of (a). The two-sided p-growth of W in (1.1) implies
G:A-)AIP—cs<G:A-W(A) <G :A—-ci|AlIP +cu 2.7
for any A, G € M. The choice A := (cop)' 7' |G|>P)/(P=1G in (2.7) verifies
G:A=clAlP —cs = (c2p) 7 ()G ~e5 = ¢6|GIP ~ cs.
This and the definition of W* in (2.4) prove c¢4|G|P" — c5

inequality shows G : A < (c1p)' P (p)7'|G|P" + c1|A|P
imply W*(G) < ¢7|G|P" + ¢4 forall G € M.

W*(G) for all G € M. A Young
¢7|G|P" + ¢1|A|P. This and (2.7)

1A

Proof of (¢). The choice H := G +2 ' (c7p’)'"P|A|P~2A in (2.5) leads to
A:(H-G)=2"(c7p")'"P|AlP.

The two-sided growth of W* from (a), a triangle inequality, and the application of the Jensen
inequality from Lemma 2.3 to the convex function | e |?" prove

W*(H) = W*(G) < c7|H|”" + c4 — c6|G|” + c5

< (2P 77 = co)|GIP +ca+ s+ 2_lcé_p(p')_p|A|p.
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Since A : (H-G) < W*(H)—-W*(G), the combination of the two previously displayed inequalities
results in, for all G € M,

271 ()P (p” = DIAIP < (2P 7 = ¢6)IGIP + ca + cs.

Thus, |A|p < C12|G|p, +cy3 withepp = 2p,_16‘7 —cegand c13 = ¢4 +C5.
The duality W*(G) —G : A = =W(A) [Roc70, Theorem 23.5], the lower bound ¢4|G|? - ¢5 <
W*(G) from (a), and the lower growth —-W(A) < —c|A|P + ¢4 from (1.1) imply
c6lGIP —cs—G : A < -W(A) < —c1|AIP + ¢4 < cq. (2.8)

This and the Young inequality G : A < ¢¢|G|P'/p’ +cé_p|A|P/p conclude the proof of ¢14|G | —
c15 < |A|P with the constants ¢4 = cé’ and cy5 = pcg_1(04 +cs).

Proof of (b). Notice that the proof of (¢) only requires a two-sided p’-growth of W*. The same
arguments apply to W with (1.1) replacing W* and lead to (b). m|

Remark 2.1 (redundancy). Lemma 2.11 shows that the assumption [DW(A)| < |A[P~! + 1 in
earlier works on this class of degenerate convex minimization problems [CP97; CMO02; Kne08] is
not necessary.

Remark 2.2 (monotonicity). The convexity control (1.2) confirms the monotonicity of the operator
D W in the sense that, for any A, B € M,
IDW(A) -DW(B)|" < c3(1+]A|" +|B[*)

(2.9)
x (DW(A) ~DW(B)) : (A - B).

Conversely, the monotonicity of D W, the growth of D W from Lemma 2.11.b, and the growth of
OW* from Lemma 2.11.c imply the convexity control (1.2) [Kne08, Lemma 2.2].

Remark 2.3 ((p — 1)r < p+s). The choice B := 0 in (1.2), the reverse triangle inequality, and the
growth |A|P~1 =1 < |[DW(A)| < |A|P~! + 1 from Lemma 2.11.b prove, for all A € M,

AP 1 < IDW(A) ~DWO)" 5 (1+]A)]AI”. (2.10)

The limit in (2.10) as |A] — oo leadsto (p — 1)r < p + 5.

2.4 Review of known results on the continuous level

The minimization of the convex energy functional E in (1.3) is closely related to a constrained
dual maximization problem. Recall the space £ = WP (div, Q; M) of Sobolev functions with
weak divergence in L” (Q;R™) from Subsection 2.1.2. The Euler-Lagrange equations motivate
the definition of the subspace Q := {r € £ : divt+ f =0in Q and 7v = g on 'y} of X with the
Neumann boundary conditions in the weak sense

(v, v)g0 = /r g-vds forallveVp = Wll)’p(Q; R™).
N

For any v € A and 7 € Q, the duality 7 : Dv — W*(7r) < W(Dw) a.e. in Q follows from the
definition of the convex conjugate W* of W in (2.4). This and an integration by parts prove

E(v)Z/g(‘r:Dv—f-v—W*(T))dx— g g-vds
=—/W*(T)dx+(Ty,uD>rD = E*(1) (2.11)
Q

with the abbreviation (v, up)r, = (TV, Up)oq — /FN g -vds. This defines the dual energy E* of E
in Q with sup E*(Q) < inf E(A). It turns out that there is no duality gap max E*(Q) = min E (A).
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Theorem 2.12 (review of known results). The minimal energy min E (A) is attained. Any min-
imizer u of E in A and the stress o = DW(Du) € LP (M) satisfy (a)—(d) with positive
constants C| and C; that only depend on Q, I'p, f, g, up, p, and the constants cy, c2, C4, Cs.

(a) Anyv € Vp = Wllj’p (Q; R™) satisfies the Euler-Lagrange equations

/U:Dvdx:/f-vdx+/ g -vds. (2.12)
Q Q I'n

(b) The stress o is unique the sense that the definition of o does not depend on the choice of
the minimizer u € arg min E(A). Additionally, o € Q.

(c) The stress o is the unique maximizer of the dual energy E* in Q without duality gap

min E(A) = E(u) = E*(0) = max E*(Q).

(d) IDullr (@) < Crand |||l q) < Co

Proof. The Friedrichs inequality from Lemma 2.4 and areverse triangle inequality show ||v[[zr (@) <
CelIDv|lLr (@) +llupllr (@) +CellD upl|Lr (o) for any v € A. This, the two-sided p-growth of W in
(1.1), a Holder inequality, and the boundedness of the trace operator ||v[|Lr90) < Cyllvllwir(q)

[AF03, Theorem 5.36] verify

cilID ol g = €4l = (CE Il @) + (Cy + CyCrIIgl Lo 1) ID vl o (@) — Cs < E(v)

with the constant C3 = || f||L»’ () (lunllLr (@) + CFIIDunllLr () + Cyligll e ) (lupllLe @) +
CrlIDup|lr(@)). A Young inequality proves the boundedness of E in A. The existence of a
minimizer follows from the direct method in the calculus of variations [Dac08, Theorem 3.30].

Proof of (a). The growth of DW from Lemma 2.11.b leads to o € L”'(Q; M) and [Dac08,
Theorem 3.37] proves the Euler-Lagrange equations (2.12).

Proof of (b). The uniqueness of o follows from the monotonicity of W in (2.9) and the Euler-
Lagrange equations (2.12) as in [CP97, Theorem 2]. The latter also verifies o € Q.

Proof of (c). The duality Du € 0W*(o) leadstoo : Du=W(Du)+W*(o) a.e.in Q [Roc70,
Corollary 12.2.2]. Consequently, E*(7) < E*(0) = E(u). The convexity control of W* in (2.6)
implies strict convexity of W* and so, the maximizer o of E* in Q is unique.

Proof of (d). The constant C; in (d) is the positive root of the function ¢ x” — (CF 11l o @t
(Cy+C,CF)lIgll o (FN))x —c4|Q| = C3 — E(up) [CP97, Proof of Theorem 2] in x > 0. The growth

of DW from Lemma 2.11.b confirms ||0'||i;,,(9) < c8Cf +c9|Q| = Cﬁ’/. O

Remark 2.4 (regularity of o). The following regularity results were established for pure Dirichlet
boundary conditions with I'np = 9Q. The local stress regularity o € Wllo’cp ,(Q;M) [CMO2,
Theorem 2.1] holds for f € LP (Q;R™) N Wllo’f’(Q;Rm). Suppose that p + s < pr. The global
stress regularity o € W1/7=%-9(Q; M) with ¢ = pr/(p + s) [Kne08, Theorem 2.2] holds for any
§>0and f € LP (Q;R™). In particular, ¢ = p’ is allowed in all examples of Section 1.2 without
any additional assumption. The fractional Sobolev embedding W!/7~%-4(Q; M) < L7*(Q; M) for
any g* < nq/(n —q/r) if g/r < n [DNPV12, Theorem 6.7] and ¢* = o if ¢g/r = n [DNPV12,
Theorem 6.10] proves o € L9 (Q; M).

2.5 Hybrid high-order method

This section is devoted to the definition of the discrete ansatz spaces, the reconstruction operators,
the stabilization, and the conforming companion in the HHO methods. The continuous gradient
Dwin (1.3) is approximated by a gradient reconstruction G vy, in a discrete space Xj. The different
choices of X, give rise to the HHO methods presented in Chapter 3 and Chapter 5.
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2.5.1 HHO ansatz space

For fixed k € Ny, let Vj = Pi(7T;R™) X Pr(F;R™) denote the discrete ansatz space for
V = WHP(Q;R™) of HHO methods [DPEL14; DPE15]. The notation v, € Vj, means that
vp = (v, vg) = ((vr)reT, (VF)Fes) for some vy € Pr(T3R™) and vy € Pr(F;R™) with
the identification vy = vg|r € Pr(T;R™) and vp = ve|p € Pr(F;R™). Forany T € 7T, let
Vi(T) = Pp(T;R™) X Pr(F (T); R™) denote the local analogue to Vj, endowed with the seminorm
|| ® [|[7 with, for all wy, = (W, we(r)) € Va(T),

1-
willy = IDwrll7, g + E hg Plwe =wrlellLp - (2.13)
FeF(T)

This and the restriction vy |7 = (vr, v#(1)) € Vi (T) for v, = (vy, vy) € Vj, define the seminorm

1/p .
lonlln = (3 onlrli2) ™ of vy in Vi, (2.14)
TeT

The discrete linear space Vi p = Pr(T:;R™) X Pr(F \ Fp;R™) is the subspace of all v, =
(v, vg) € Vj, with the convention v¢#|r = 0 on F € Fp to model homogenous Dirichlet boundary
conditions, equipped with the norm || e ||;, from (2.13)—(2.14). The interpolation I : V — V}, maps
veVontolv = (H(’}U,H’;,v) e V.
Remark 2.5 (discrete Sobolev embeddings). Any v, = (vy,vs) € Vjp satisfies ||vr]lra@) <
llonllp with1 < g < p*, p* == (n—1)p/(n—p) forl < p <nandwithl < g < coforn < p. This
result is established in [BO09; DPE10; DPE12] for the DG methodology and extended to HHO
in [DPD17a, Proposition 5.4] for pure Dirichlet boundary conditions. The arguments therein and
[BO09, Corollary 10] verify ||[ve||ra() < llvnlln for mixed boundary conditions. Notice that the
choice g = p is always possible and leads to a discrete Friedrichs inequality [[vr|lzr () < llvnlln.

2.5.2 Reconstruction operators and stabilization

The reconstruction operators defined in this section link the two discrete variables of V}, and provide
discrete approximations of the displacement v € V and its derivative Dv € L?(Q; M).

Potential reconstruction. Fix 7 € 7 and let w, = (wr,wsr)) € Vi(T) with the conven-
tion w1y = (Wr)Fres(r) from Subsection 2.5.1. The local potential reconstruction Ry wy, €
P (T; R™) satisfies

/DRTwh:Dsokde:—/AsokH wpdx + /wF-(DsokHuTans 2.15)
T T F

FeF(T)

for all gx+1 € Pry1(T;R™). The bilinear form (D @gi1, DWry1) L2(T) for discrete functions
Ok+1> Wi+l € Pre1(T;R™) on the left-hand side of (2.15) defines a scalar product in the quotient
space Pr1(T;R™)/R™ and the right-hand side of (2.15) is a linear functional in Py, (T;R™)/R™.
Hence, R wy, is the Riesz representation of this linear functional in P4 (T;R™)/R™ equipped
with the L? scalar product. This defines Ry wy, € P41 (T; R™) uniquely up to a constant vector in
R™, which is fixed by

/RTwhdx=/wde. (2.16)
T T

The unique solution Ry wy, € Pi41 (T; R™) to (2.15)—(2.16) give rise to the potential reconstruction
operator R : V, — P (7;R™) with restriction (R vp)|r = Rr(vp|r) on each simplex T € T~
for any vy, € Vp,.
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Gradient reconstruction. The gradient is reconstructed in a linear space Xj, with P (7 ;M) C
Yn C Pry1 (7, M). For any vy, = (v, vg) € Vp, the gradient reconstruction G vy, € Xy of vy, is
the unique solution to

/th:Thdx:—/vrr-divaThdx+ >0 | vr - [tavrlrds 2.17)
Q Q FeF F

for all 7, € X;. In other words, G vy, is the Riesz representation of the linear functional on the
right-hand side of (2.17) in the Hilbert space X, endowed with the L? scalar product. The right-
hand side of (2.15) coincides with the right-hand side of (2.17) for all test function 7, € X, with
Tk =0in K € T\ {T} and 13|17 € D Pry1 (T;R™) C Pi(T; M). In particular, Dpy R vy, is the L?
projection of G v, onto Dpy, Pry1 (773 R™) characterized by the L? orthogonality G v, —Dpw Rvp, L
Dpw Pri (Tv Rm)-

Stabilization. The two choices %), = RTiW (7°; M) in Chapter 3 and X, = Py (7 ; M) in Chapter 5
form the focus of this thesis. The latter is paired with a penalization term called stabilization in the
HHO context. For any side F € F(T) of T € 7 and vy, = (vy, v¢) € Vp,, define

St.r v = (v —vr — (1 = 11I5) Rr(valr)) € Pr(F;R™).

The stabilization s : Vj, XV, — R is locally defined by s(vp; wp) = Yreqst(vn; wp) with

sT(vn; wh) = Z h}r_p/ |S7,F vn|? > St.F O - ST.F Wi ds (2.18)
FeF(T) F

forall T € 7 and vy, w,, € V). Notice that st is linear in the second component, but not in the
first. The reconstruction operators R, &, and the stabilization s are defined locally on each simplex.
Thus, they can be computed in parallel in the numerical benchmarks of Chapter 6.

2.5.3 Conforming companion

This section is devoted to the definition of a conforming companion (also called enrichment
operator) J : V) — wbLrP(Q;R™). In spirit of [CGS15; CP20; EZ20], J is a right-inverse of the
interpolation I : W7 (Q; R™) — V}, and preserves the moments

Hé‘-jvh =wvgq and H’}j vp = vy for any vy = (vg, vg) € Vi (2.19)

An explicit construction of J vy, of v, € Vj, on simplicial meshes is presented in [EZ20, Section
4.3] and outlined for scalar valued discrete variables in the three steps below.

Step 1: Averaging. Let £, denote the set of Lagrange nodes associated with the degrees of
freedom of S¥*1(77) = Py, (7)NW 1P (Q) [BS08, Section 3.1-3.2]. (The local degrees of freedom
on a reference element in two space dimensions are displayed in Figure 2.1.) Given z € L1,
let <p(z) € S™1(7) denote the Lagrange basis function of z. The average A v;, € S¥*1(7) of the

k+1
potential reconstruction R vy, of vy, from (2.15)—(2.16) is uniquely defined by the nodal values

1
A = = Te;z)m onlr)(2)

with the node patch 7 (z) = {T € T : z € T} of cardinality |7 (z)|.
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RSN

Figure 2.1: Degrees of freedom of Py (Tir) for k = 1,...,4 (from left to right) on the reference
triangle Tier = conv{(0,0), (1,0), (0, 1)} in 2D

Step 2: Face bubble technique. For all side F € ¥, recall the side patch wr of F from
Subsection 2.1.3. The face bubble function ¢ € S (7) of F vanishes outside wr (i.e. ¢F|q\wy =
0) and ¢pr > 0 in wp with the scaling pr(mid(F)) = 1. Let Bp(vp — Avp|r) € Pr(F) be the
unique solution to

/ 0rBr(vr — Avp|F)prds = /(UF —Avylp)prds forall pp € Pr(F).
F F

The second step computes J g1, U € SKE(T7) with

Avp+ Y per Br(vr — Avp|r)er if k =0,

T kinVn = i
o Avp+ Tper Deeronr Br(F — Avplp) (2 @ior  ifk > 1.

The construction of 1, v, provides the projection property Hij k+n Vh = Vg on the skeleton
07T =UF.

Step 3: Volume bubble technique. For any T € 7, the volume bubble ¢ € §™'(7) of T
satisfies o7 = 0in Q\ T, o7 > 0in T, and o7 (mid(T)) = 1. Let Br(vr — T an VnlT) € Pr(T)
solve

/ o1 Br(vr = T ks VnlT) Prc dx = /(UT — T ksnVnlr)prdx  forall py € Pr(T)
T T

and Br(vr — T kan Vnl7) = 0in Q \ T. The conforming companion J vy, € SK*1(77) of vy, is
defined by

T h =T kan U + Z Br(vr = T k+n VnlT)OT-

TeT

The construction of J vy, in Step 1-3 ensures (2.19) and leads to the stability property below.

Lemma 2.13 (conforming companion). Let either £, = RT;" (7. M) or £j, = P (T3 M) in (2.17).
There exists a linear operator J : Vj, — WP (Q; R™) with (2.19) such that any vy, = (vy, vF) €
Vi satisfies

1-
IGvn=DT onll? s D, Do hpPllve =vrlell?, )
TeT FeF(T)

Proof. The potential reconstruction operator R from (2.15)—(2.16) satisfies

1-
IDpw (Rvn =T o7y < D0 Do by Pllve =vrlelly, (2.20)
TeT FeF(T)

for any vy, = (vg,vg) € Vi For p = 2, (2.20) is established in [EZ20, Proposition 4.7].
Some straightforward modification of the arguments therein verifies (2.20) for the general case
1 < p < co. The definition of G in (2.17), an integration by parts, a Holder inequality, and the
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discrete trace inequality ||7a|Fl Lo (F) S h;l/p,IIThIILpf(T) for F € F(T), T € 7 from Lemma 2.6
prove, for all 7, € X,

/Q(th—DpWth):Thdx

= [ Dpw(vg—Ruop) : mpdx + (vp —vr|F) - Thr| R ds
‘/g;p T h):Th Z Z F —UT|F) " ThVT|F

TeT Fer(T) Y F

1/p

1-

< (IDpw(vr = RoIE, o+ D) > ki llor = orlely ) Il ) 22D
TeT FeF(T)

Since G vy, — Dpw R vp, € Xy, this implies
|G vh — Dpw RvpllLr (@)

1/p

1-

< (IDpw(or = RoDIE, o+ D) D0 by llor = vrlllf, ) -
TeT FeF(T)

(2.22)

The same arguments as in (2.21) prove, for any @g41 € Prs1 (7;R™),
I-p P t/p
Dpw (v — Rvp) : Dpw i1 dx < ( Z Z hy "llvr = UT|F||Lp(F)) IDpw @k+1ll Lo (q)-
Q TeT FeF(T)

This and Dpy (v — R vp,) € Dpw Pre1 (73 R™) lead to

IDp (v = RoW 1Y, ) S D, D b llvor =vrlell?, ) (2.23)
TeT FeF(T)

The combination of (2.20) with (2.22)—(2.23) and a triangle inequality conclude the proof. ]



Chapter 3

The unstabilized HHO method

The characteristic feature of a gradient reconstruction in the space Xj, = RTiW(T; M) of piecewise
Raviart-Thomas finite element functions is the stability of G in Lemma 3.2.a. The consequence
is that no additional penalization is required. The discrete Euler-Lagrange equations surprisingly
lead to a H(div) conforming stress approximation oj. The comparison to the mixed scheme
in [CGR12b; CL15] allows for a priori and a posteriori error estimates including a superlinear
convergent lower energy bound.

3.1 Discrete minimization problem

Throughout this chapter, let X, = RTiW (7;M). Recall the linear space Vi, p = Pr(7;R™) X
Pi(F \ ¥p;R™) from Subsection 2.5.1 and define the affine space Ay, := Lup + V), p of discrete
admissible functions. The unstabilized HHO method minimizes the discrete energy

Ep(vn) 3=/QW(th)dx—/Qf'vfrdx— g IN-vgds (3.1

amongst v, = (v, vy) € Ap. The degeneracy of this class of convex minimization problems
carries over to the discrete level and so, discrete minimizers u, of Ej; in Ay are not unique in
general. Nevertheless, any uj, well defines a discrete stress oy, = Ily, D W(G uy) with the L?
orthogonal projection Ily, onto the space X, i.e. 0y, is the Riesz representation of the linear
functional (DW(G up),®);2(q) in the Hilbert space X, endowed with the L? scalar product.
Although Ils, applies piecewise, 07, is unique and H(div) conform in the following sense.

Theorem 3.1 (uniqueness and H (div) conformity of o,). The minimal discrete energy min Ej, (Aj,)
is attained. Any discrete minimizer uy, € Ay, and the discrete stress oy, = Iz, D W(G uy) satisfy
(a)—(d) with the positive constants C4 and Cs.

(a) Any v, = (v, vg) € Vy p satisfies the discrete Euler-Lagrange equations

/o’h:gvhdx=/f-v7-dx+/ g - vgds. (3.2)
Q Q I'v

(b) The discrete stress oy, is unique in the sense that the definition of oy, does not depend on
the choice of the discrete minimizer uy, of Ej, in Ay,

(c) oy € Qn = {Th eEX,Nx: diUTh+Hl,;.f:OinQando-hy:Hkﬁ\1g on FN}-
(d) 1G unllr (@) < Caand |lon|lpr gy < Cs.

Recall the abbreviations V = WP (Q; R"™) from Section 1.1 and V}, = Py (7 ; R™) X Pr(F; R™)
from Section 2.5 endowed with the discrete seminorm || e ||;, in (2.13)—(2.14). The proof of
Theorem 3.1 utilizes the following lemma.

27
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Lemma 3.2 (properties of G). Any v € V and v, = (vg, vg) € Vy, satisfy (a)—(b).

(a) (norm equivalence) ||vp||n ~ |G vhllLr ()-
(b) (commutativity) Ils, Dv = G I v.

There exist positive constants Cqr and Cgqy that only depend on Q, the shape regularity of T, k,
and p such that any vy, = (vy, vF) € Vi p satisfies

(c) (discrete Friedrichs) ||vrllrr () < CarllG villLr (@),

(d) (discrete trace) ||vFllLr (ry) < CaullG villLr (@)-

Proof of Lemma 3.2. The norm equivalence in (a) was observed in [AEP18] for p = 2. The
arguments therein can be adjusted to the general case 1 < p < oo as outlined in [CT21, Lemma
3.1]; further details are omitted. The commutativity property in (b) is a classical result for the
HHO methodology, cf. [DPEL14; DPE15; AEP18; DPD20]. Given v € V with the interpolation
Iv= (Hl‘rv, H’;v) € Vi, the gradient reconstruction G 1 v satisfies, for all 7, € Xy,

/QIU:Thdx:—/H(’}v-divaThdx+ Z 5o - [thvr]Fds. (3.3)
Q Q Fe¥F F

Since divpy 7, € Pir(7;R™) and [tpvp]lr € Pi(F;R™) for all F € F, the L? orthogonal
projections Hrkr and H}‘; in the integrals on the right-hand side of (3.3) can be omitted. The result
is a integration by parts formula of (D v, 7,)12(q) on the right-hand side of (3.3). In particular,
Dv - @Glv L %j. This proves (b). The remaining assertions (c)—(d) concern discrete functions
vp = (v7, vF) € Vi p with homogenous Dirichlet boundary data v#|r = 0 on F € Fp.

The discrete Sobolev embedding ||[vs||Lr (@) < [|vnlln from Remark 2.5 and the norm equiv-
alence |lvplln = |G unllLr (@) from (a) imply (c). The discrete trace inequality from [BOOQ9,
Theorem 4.4] proves

1-
”v']—HlL)p(aQ) s ”vT”ip(Q) + ||DpW UT”{p(Q) + § hF p”[UT]FHEp(F)-
FeF(Q)

The triangle inequality ||[vr]Fl|lLr(F) < llvr, — vFllLe(F) + vz — vE|lLp(F) for all F € F(Q)
with F = T, N T_, the discrete Friedrichs inequality from (c), and the norm equivalence from (a)

verify [[orl[Lr (o) < |G vnllLr (). This, the triangle inequality [lvr|Le (ry) < llvgF—v7lle g +
lvrllr (ry)» and ||[vE — vl e ry) < diam(Q)"/?||vp || conclude the proof of (d). O

Proof of Theorem 3.1. Since lup — vy, € Vj, p, the discrete Friedrichs inequality and the discrete
trace inequality from Lemma 3.2, and the triangle inequality show, for all v, = (vy, v¢) € Ap,

/Qf vy dx +/ g - vrds < (Carllfll L ) + Carllgll Lp (o) G vrllLr @) + Co
I'n

with the constant Cs := (Carl| 1l .’ () +Caullgll Lo () )| G Tun | Le @)+ F 1| Lo (0 T sun || o () +
gl Lo (ry) ||H]7<_-MD”LP(FN). This and the two-sided p-growth of W in (1.1) prove

En(on) 2 cillG onl? ) — €al@l = (Carll fll o + Carllgll o g IG vallr @) — Co. (3.4)

A Holder and Young inequality on the right-hand side of (3.4) confirm inf Ej (Ay) > —oco. The
direct method in the calculus of variations [Dac08, Theorem 3.30] proves the existence of discrete
minimizers.

Proof of (a). Since uy, is a discrete minimizer of the convex energy functional Ej in Ay, the
Gateaux derivative %! o E n(up + tvy) vanishes for any direction vy, € Vj, p. This proves (a).
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Proof of (b). The choice A = Guv, and B := Gwy, in (1.2) for two discrete minimizers
vp = (v, vE), wi = (W, wy) € Ay, leads to

IDW(G vn) —-DW(G Wh)”rLr(Q) s(+]g Uh”;;oo(g) +1G Wh”;;oo(g))

(3.5)
x [(W(Gwn) = W(G 1) ~DW(G ) 5 (Gwi— Gun) .
Q
The discrete Euler-Lagrange equations (3.2) prove (DW(G vp),Gwn — Gun)2q) = (fswr —
vr)2(@) + (& WF — vs)2(ry)- Thus, the right-hand side of (3.5) vanishes Ej,(wp) — Ep(vp) = 0.
In particular, D W(G v;,) —DW(G wy,) = 0 a.e. in Q and so, the definition of o7, is independent of
the choice of the discrete minimizer.

Proof of (c). Given F € ¥ \ p and vp € Py (F;R™), the choice v, = (0,v#) € Vj p with
veElg = 0on E € F with E # F in (3.2) and the definition of the gradient reconstruction G in
(2.17) prove

0 if F e F(Q),
o G dx o 3.6
‘/I;[O'hVF]F vF ds /QUh G vn {ng'UFdS if F e . 0

The L? orthogonality [ohvr]r L Pr(F;R™) and [0 vr]F € Pr(F;R™) show [opvr]F = O for
any inner side F € 7 (Q). It is well established that the continuity of the normal components of
o, € Xy, leads to oy, € H(div, Q; M); the same argument proves o, € X. For any Neumann side
F € ¥y, the L? orthogonality o, vF — H%g 1 Pp(F;R™) from (3.6) implies o, vp = Hf:g on F.
The choice vy, = (vy, 0) in (3.2) for all vy € Pr(7;R™) leads to div o, = —Hka in Q.

Proof of (d). The choice vy, := uy, in (3.4) and Ep(up,) < Ep(Lup) prove |G upllrr ) < Cs
for the positive root C4 of the function

c1xP = cq|Qf - (CdFHfHLP/(Q) + Cdtr”gHLp’(rN))x — Co — En(lup)

inx > 0. The L” stability of the L? projection My, from Lemma 2.7 leads to |[onll . (q) <
s, 1| £ (e (@avy) P W(G un)ll Lp () With the operator norm [[e|| ;o' ()~ This and the growth

of DW from Lemma 2.11.a confirm Ho-hlllli;”(g) < ||H2h||i,(LP’(Q;M))(CSCf + c9|Ql) = C;v', O

Remark 3.1 (global H(div)). The H(div) conformity of the discrete stress o, € X N X is solely
a consequence of the discrete Euler-Lagrange equations (2.12). In particular, any 7, € X, that
satisfies the discrete Euler-Lagrange equations (3.2) for all test functions v, € Vj p, is H(div)
conform with 7, € Q. This is exploited in the a posteriori error analysis of the stabilized
HHO method on simplicial meshes in Chapter 5. Theorem 3.1 is not restricted to this class of
minimization problems with (1.2), but also applies to the example in [AEP18].

Remark 3.2 (Marini identity). The solution u € Hé (Q) to the Poisson model problem —Au = f €
L*(Q) with homogenous boundary conditions u|gq = 0 minimizes E in (1.3) with W(a) = |a|*/2
for all @ € R". The mixed method for the Poisson model problem seeks (o, um) € RTx(77) X
P (7)) such that any (v, vm) € RT(77) X Pr(7) satisfies

/O'M-Tde+/uMdivTde:0,
Q Q

/deiv(J'de+/vadx:0.
Q Q

The unique minimizer up = (ug,ug) € Ap of Ep in Ay = Pr(T) X Pr(F (L)) leads to the
discrete stress 0, = Guyp € Qp. The definition of G from (2.17), [opve]r = 0on F € F(Q),
and div o, + HkT f =0 prove that (o, ug) € RTi(7) X P (7) is the unique solution to the mixed
system (3.7). In particular, oy = o and up = ug. This is the Marini identity [Mar85] for
higher-order discretizations.

(3.7)
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The remaining remarks compare the unstabilized HHO method to the Crouzeix-Raviart FEM
in [Ort11; OP11; CL15] and the classical mixed method in [CGR12b].

Remark 3.3 (comparison to CR-FEM). For k = 0, the trace variable vF € Po(F;R™) of vy, =
(vs, vF) € Vj, can be identified with a Crouzeix-Raviart finite element function vcg € CR!(77; R™)
with ver(mid(F)) = ve|p for all F € . This leads to the identification V;, = Po(7;R™) X
Po(F;R™) = Po(T;R™) x CR'(7;R™). Given v;, = (vs, vcr) € Vj, an integration by parts in
(2.17) proves

/ Gy tpdx = /(HOTUCR —vy) - divpy 1 dx + / Dpw vcRr : HOTTh dx.
Q Q Q

This and the characterization 7, = Hg.‘l'h + divpy 74 ® (o —mid(77))/n of lowest-order Raviart-
Thomas finite element functions 1;, € RTgW(T; M) verify the explicit formula

n(Il%vcg — v7) o
Iy ((e — mid(7))?)

G v = Dpw vcr + (e —mid(7))

for the gradient reconstruction. The minimization of the nonconforming energy
Enc(vcr) = /(W(Dpw ver) = II9-f - ver) dx — / H%g - vcR ds (3.8)
Q I'n

amongst vcr € Anc = {vcr € CR! (T:R™) : ver(mid(F)) = H%uD forall F € p} in
[CL15] leads to the unique discrete stress ocr = DW(Dpwucr) € Po(7 ;M) with ucr €
arg min Exc(Anc). Since Dpy vcr = G v, with v, = (Hg.UCR, vcr) € Vi, min Ep(Ap) <
min Exc(Anc) and equality is not confirmed by numerical examples in Chapter 6.

The choice v, = (Hg_vCR,vCR) € Vup in (3.2) for all vcr € CR})(T; R™) and the dis-
crete Euler-Lagrange equations from the minimization of Exc from (3.8) in Anc prove the L2
orthogonality 1107 — ocr L Dpy CRL(73R™) with CRL(7:R™) = {vck € CR'(7T;R™) :
ver(mid(F)) = 0 for any F € Fp}. However, this does not imply Ho,rcrh = ocr due to the discrete
Helmholtz decomposition Py (7 ;M) = Dy, CR(I)(T :R™) @ Curl S'(77; M) on simply connected
domains € with pure Dirichlet boundary I'p = 9Q [AF89, Theorem 4.1].

Remark 3.4 (comparison to mixed FEM). For pure homogenous Dirichlet boundary conditions
I'y = 0, the solution o to the mixed FEM in [CGR12b] maximizes the dual energy

E*(trr) = —/ W*(trr) dx amongst TrT € Qp,
Q

so it’s subdifferential 0 € L?' (Q; M) with o € dW*(om) a.e. in Q is orthogonal to Q(0,7") :=
{trr € RTx(7;M) : divtgr = 0}. In particular, [Ty, 0 € Q(0,7)* in ;. This and the
orthogonal split X, = GV, p ® Q(0, 7") lead to an equivalent formulation of the mixed FEM: Find
(oM, um) € Qn X Vi p such that G uy € Iy, OW*(om). On the other hand, the unstabilized HHO
method can be rewritten to seek o, € Q, and uy, € Vi p with o, = Iy, D W(G uy,). But since 2,
consists of non-constant functions, G = Ily, D W(A) is not equivalent to A € Ily, OW*(G). Thus,
the two schemes coincide for linear problems, but are different in general.

3.2 A priori error analysis

Suppose that 1 +s/p <t <r,1/t+1/t' =1, and p < r/(r —t). This standard assumption on the
parameters p,r,s,t [CP97; CMO02; Kne(08] follows a rule of thumb on the growth of W in (1.2)
and holds in all examples of [CMO02; KneO8] and, in particular, in all examples of Section 1.2.
Recall the continuous energy E from (1.3), the discrete energy Ej, from (3.1), and the dual energy
E* from (2.11). The a priori error estimates in Theorem 3.3 are analog to [CP97, Theorem 2] for
conforming FEMs.
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Theorem 3.3 (a priori). Suppose that u € W'/~ (Q:R™) and let u, € Ay be a discrete
minimizer of Ey, in Ay. The (unique) discrete stress o, = Iy, DW(G uy) € Qy satisfies (a)—(b)
with positive constants Cq, . ..,Ci.

(@) max(C;"llo = ully, 0 > G llm = DW(G ),
< E*(0) —max E*(Qp) + Cyosc(f,T)

+Cro OSCN(g’ ?N) +Ciy ||(1 - HE;,) Du”z’r/(r—z) Q) =: RHS.

r/t(g)}

(b) |E () — En(up)| < max {E*(a) — max EX(Qp),

r’ /
—RHS + Gy ose(f, T) + Croosen(g, Fn) + Cull(1 - y,) Dull}, /o (Q)}-

The subsequent lemma summarizes technical tools for the error analysis. The proof is found
in [CT21, Lemma 4.2] and is included below.

Lemma 3.4 (convexity control in integral form). If 1+s/p <t <rand 1/t+1/t' = 1, then (a)—(c)
hold.

(a) For any t,¢ € LV (Q;M), there exist £, 0 € LP(Q; M) such that ¢ € OW*(1) a.e. and
0 € OW* (@) a.e. in Q with

t/t’

17 = 811 ) < Max{3.37 es (11 + €17, ) + el )

3.9)
< [ -wn-g: (6-m)an
(b) Any £, 0 € LP (M) satisfy
IDW(E) = DW(OI, 1 < max(3, 377 Jes (1224 12117, g + 0l )"
< [Wie)-W(©)-DW© : (- )ar. e
(¢c) Any &, 0 € LP(Q: M) satisfy
IDW (&) =DW(},1 g < 27" max{3,3" }es (11 + €117, o +llell}, )" o

x /(DW@) “DW(0)): (£ - o) dr.
Q

Proof of Lemma 3.4. The convex conjugate W* of W is continuous in M and dW* : M — 2™ is an
outer semicontinuous set-valued, pointwise non-empty function [RW98, Proposition 8.6]. Since
OW™ is close-valued, 0W™ is measurable [RW98, Exercise 14.9] and there exists a measurable
selection g of dW*, i.e., the function g : M — M is Borel measurable and g(F) € oW*(F) for
any F € M [RW98, Corollary 14.6]. In particular, g(7) € dW*(7) a.e. in Q and g(7) is Lebesgue
measurable. The growth of 6W* in Lemma 2.11.c leads to g(7) € L? (Q; M).

The proof of (3.9) can follow that of [CP97, Theorem 2]. If t = 1, then s = 0 and there is
nothing to show. Suppose that r > 1. The choice G =7, H = ¢, A =&, B = o in (2.6) leads in the
power 1/t to

7 =61 ) < cé”/g(l HEP + 1ol (W (@) =W (1) =€+ (9 - 1) d.

Notice from (2.5) that W*(¢) — W*(7) — & : (¢ — 7) is non-negative a.e in Q. A Hdolder inequality
with the exponents ¢ and ¢’ on the right-hand side shows

_ 1/t )t
7= l1% 0 g < call(T+1E + 10l 1

X[[W (@) =W (1) =& : (¢ =Dl

(3.12)
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If 1 < t'/t, then | o |’//’ is convex and Jensen’s inequality proves that (1 + |£]° + |Q|s)t,/t <
3N £+ | /1). If ¢/t < 1, an elementary calculation provides (1 + |£]* + |o]*)!/* <
1+[£]5"/" +]0|*"'/*. Since st’/t < pand 0 < st’/(pt) < 1 by assumption, Jensen’s inequality for

the concave function | e |["/(P!) shows that
L+ (€)1 4 o7/ < 318TWPD (1 4 1P + 10]P)*"(PD < 3(1 + |£]P + | o]P).

Hence, [|(1+[£1°+10I) 117, o) < max{3, 3 }(IQI+II£II7, ) +Il@l17 5 q)"/""- This and (3.12)

conclude the proof of (3.9). The proofs of (3.10)—(3.11) are similar, whence omitted. ]

Proof of Theorem 3.3.a. The proof of Theorem 3.3.a departs from a stress error estimate in terms
of the energy difference E (1) — Ej,(uy) and data oscillations.

Step 1: A temporary error estimate. The choice ¢ = Gup, 0 = Du in (3.10), the bounds
IDullrr@) < Ci from Theorem 2.12.c, and ||G up||rr (@) < Cs4 from Theorem 3.1.d show that

Cs = max{3,3'/"}c5(|Q| + C7 + Cf)t/t/ satisfies

Cs'llo =DW(Gunll}, g
(3.13)
< /Q<W<Du> CW(Gup) ~DW(Gup) : (Du—Gup) d.
The L2-orthogonality o, — DW(G uy,) L X, proves
—/DW(Quh) :(Du—-Guy)dx
Q (3.14)

:/(Uh—DW(Quh)):(I—th)Dudx—‘/O'h:(Du—guh)dx
Q Q

The definition of &G in (2.17) and an integration by parts provide

/Uh:(Du—guh)dx:‘/l'[frf-(u—uﬂdx+ Z /Hlkpg-(u—up)ds. (3.15)
Q Q F

FE?’N

The combination of (3.13)—(3.15) leads to

Gl = DW(G 1 gy < B = En(u) + [ (115} f -ude

(3.16)
+/ (1 —H%)g-udH/(ah ~DW(Guyp)) : (1 -Tly,)Dudx.
I'n Q
A piecewise application of the Poincaré inequality prove, for allv € V,
/(1—H,kr)f-vdxstosc(f,‘T)HDvlle(g). (3.17)
Q

For any Neumann boundary side F € ¥y, there is a unique 7 € 7 with F € F(T). The
trace inequality from Lemma 2.5 and the approximation property of the L? projection HkT from

. -1 1/p’
Lemma 2.8 imply [|v = (TThv) | llLr ry < Bz P N1 = TE)ll oy + /P IID(L = T )0l o (1) <
th/p IIDv||r (). This confirms

1 ’
Ja-nbg-vas= [ a-1bg- @=Ll ds < I8P (1 =gl gy ID ol
Hence, there exists a positive constant Cy > 0 such that

(1-TI5 )g - vds < Cyosen(g, Fn) D vll e (g)- (3.18)
I'n
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The choice v = u in (3.17)—(3.18) and the bound ||D u||;» @) < C; from Theorem 2.12.d confirm

/(1—n,’;)f-udx+/ (1-TI§ )g - uds < Coosc(f,T) + Cig 0sen(g, FN) (3.19)
Q I'n

with Cg := CpC) and Cjg := CnC;. Since there is no duality gap E(u) = E* (o) on the continuous
level, this and (3.16) verify

Cy'llc =DW(G up)|l < E*(0) = En(up) + Coosc(f,T)

rLr/’(Q)
(3.20)
+C1()OSCN(g,‘7'T\1) +/(0’h —DW(Quh)) : (1 —th)Dudx.
Q

Step 2: Comparison with MFEM. In the context of convex minimization problems, the dual
energy can be utilized for a lower bound of the discrete energy Ep, (1) [Barl5; CL15; CT21]. Let
oM € Qj, be the unique solution of the mixed FEM [CGR12b; CL15], i.e. oy maximizes E* in Qp,
from Theorem 3.1.c. The two-sided p’-growth of W* from Lemma2.11.aand E*(o,)—E*(om) < 0
show

ool gy = Il gy = (st e+ [ up (o =onwds 0. 321
D

An integration by parts, div(oy, — om) = 0 in , a Holder, and a triangle inequality prove

/ uD-(Uh—UM)VdsszuD:(O'h—a'M)dx
I'n Q

IA

Dl @ (ol o g + llowll Lo a)-

This and (3.21) confirm ||owm]| L@ < C12 with the positive root Cj; of the function cexP —

IID upllzr(@)(Cs +x) — C7C§7, — (¢4 +¢5)|Q] in x > 0. Lemma 3.4.b allows for the selection of
0 € LP(Q; M) with ¢ € OW*(om) a.e. in Q. The growth of 0W* from Lemma 2.11.c provides
||Q||€p(g) < c12Cf’2 +c13|Q|. The choice T := DW(G uy,), ¢ := om, and € = G uy, in (3.9) proves

that C3 := max{3, 3/ }e3((1 +c13)|Q| + ¢1oCy + C1)'/" satisfies

C1_31 ”CTM - DW(g Mh)||2r/t Q)

(3.22)
< /Q (W* (o) = W (DW(G un)) - G up : (i — DW(G ) d.

The L? orthogonality o, — D W(G uy,) L X, the definition of G in (2.17), div(ow — o7,) = 0, and
(om —op)vp =0o0n F € Fy imply

/Quhi(UM—DW(QMh))dX=/§MhI(O'M—O'h)dx
Q Q

(3.23)
= Z /w—-' [(U'M—O'h)VF]FdS"'/ up - (om — op)vds.
FeF(Q) F I'p

Since oy — o, € Z, the normal jump [(om — o) vr]F across F vanishes a.e. on any inner side
F € F(Q). This and (3.22)—(3.23) verify

C1_31 ||O-M -D W(g uh)”z;’/t(g)

| (3.24)
< —-E*(om) - / W*(DW(G uy)) dx +/ up - opv ds.
Q o
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The duality G uy, € OW*(DW(G up)) shows Guy, : DW(Guy) = WD W(G up)) + W(G up)
a.e. in Q [Roc70, Corollary 12.2.2]. Hence, the definition of G in (2.17) proves

/f-qux+/ uD-O'hvds+/ g - ugds
Q I'p I'v

- [Gun:DWGuas= [ WOWGu) ds+ [ WG
This leads to the duality on the discrete level
En(up) =-— /g; W*(DW(G up)) dx +/F up - opvds. (3.25)
D
The combination of (3.24)—(3.25) results in
Cisllom =DW(G un)llyn () < Enlun) = E*(owm). (3.26)

Step 3: Final error estimate. The sum of (3.20) and (3.26), a Cauchy, a Holder, and a Young
inequality on the right-hand side of (3.20) verify, for Cy; = CJ;7/r’,
Cg_l ”O- -D W(g uh)||2r/t Q) + (I‘/C13)_1 ”O-M -D W(g uh)||2r/t(g)

< E*(0) — E*(om) + Cyosc(f, T) + Crgosen(g, Fn) + Ciil|(1 - Ig,) Du||zr/<r7,>(9)-

(3.27)

The triangle inequality and the L"/* stability of the L* projection 15, from Lemma 2.7 show

lon =DW(G un)ll iy < llow = omllprie ) + llom =D W(G up)ll e (o

(3.28)
< (1 + ||y, ||£(Lr/t(g;M)))||0'M -DW(g Mh)HLr/t(sz)

with the operator norm ||[IIs, || £/ (ar))- A triangle inequality and the Jensen inequality applied
to the convex function | e | imply

||O- - O—I’lHrLr/t(Q) < 2r—1(”0_ - DW(g uh)ler/t(Q> + ”0—11 - DW(Q uh)”rLr/t(Q))'

The combination of this with (3.27)—(3.28) concludes the proof of (a) with the constant C; :=
2" max {Cg, r’Ci3(1 + s, | £ (e ()" }-

Proof of Theorem 3.3.b. Recall the maximizer o € Qj, of E* in @y, from the proof of (a) and
0 < En(up) — E* (o) from (3.26). This implies

E*(0) — Ep(up) < E*(0) — E*(om). (3.29)
A Young inequality on the right-hand side of (3.20) leads to

Ep(up) — E*(0) < Coosc(f,T) + Ciposen(g, Fn)

+(rC13) lom — DW(G up)|| +Cy||(1 - My,) Dull”’

. (3.30)
Lr/(r-t) (Q) N

-
L/t Q)
The combination of (3.27) with (3.29)—(3.30) concludes the proof of (b). ]

Remark 3.5 (stress estimate in L”" norm). The choice 7 = 1 + s/p in any examples of Section 1.2
leads to r/t = p’ and r/(r — t) = p. Hence, the a priori error estimates in Theorem 3.3 bounds the
stress error |- — o[ 7 () in the natural Lebesgue norm.

The a priori error estimates in Theorem 3.3 are proven without further assumption on the primal
variable and lead to the convergence rates ||o- — || 07 () < hr(,ﬁlil)/ " for smooth solutions in the
examples of Section 1.2.
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Theorem 3.5 (convergence rates). Consider the examples of of Section 1.2 and adopt the notation
of Theorem 3.3. Suppose that & € WHP'(Q; M) N WKLP (T M) and u € A N WK2P (T, R™)
for a minimizer u of E in A, then any discrete minimizer uy of Ey, in Ay, and the discrete stress
op =1y, DW(G up) € Xy, satisfy

llo =DW(G un)ll;

Lp’(Q) + |E(l/t) - Eh(uh)|

+ ||0- - a-hllzlﬂ(g)

n "(k+1)

k+ 2k+1
Sh ax|a—|W’~+1 r’ (7’) max | |Wk+2p(7-) hma; |0—|Wk+lsP'('7‘)|u|Wk+1gP(7’)

with the semi norms |0'|W“| v =Drerlo |Wk+1 (1) and |u|Wk+2p(7,) ZTe7’|”|ka+z,p(T)-

Proof. The convergence rates are derived from Theorem 3.3 as below. For smooth functions
u € WP (7 R™) and —dive = f € WP (7;R™), the approximation property of the L>
projection IT%. from Lemma 2.8 proves

/Qf (1 =T udx < hpt! o lyrepr o lulwiono (7. (3.31)

This replaces the volume data oscillation osc( f, 7) in Theorem 3.3. Since o is sufficiently smooth,
the Neumann boundary conditions ov = g € LP (I'x;R™) a.e on Iy is exact. The LP and LP'
stability of the L? projection H% from Lemma 2.7, the trace inequality from Lemma 2.5, and the

approximation property of the L? projection H,kr from Lemma 2.8 show

/F g (1=T15 uds < llo = (M) Iyl o iy e = (&) gl
N

-1/p’ 1
< (1027 (1 =T o |l o @ + 10 (1 =TT o |y ()
-1 1/p’
+ (AP (1 =TTl o oy + 1R (1 =T ulyr ()
S Mo o Lyt (o |t lyesn (7 - (3.32)

for the Neumann data oscillation in Theorem 3.3. The approximation property of the L? projection
H,kr from Lemma 2.8 verifies

(1= TIs,) Dullze(9) S A&k lulweep (- (3.33)
(7)

It remains to estimate the energy error E*(o-) — max E*(Qp,). The smoothness of o= well defines
the Fortin-interpolation Iro- € Q@ in (2.1)—(2.2). Lemma 3.4.a provides o € L?(Q;M) with
o € IW*(Igo) ae. 1n Q. The growth of dW* from Lemma 2.11.c and the stability of Ir show

llollLr @) < Ik 0'||’L’p ot 1 < 1. The definition of 9W* in (2.5) and an integration by parts imply

E*(0) — E*(Ip o)

_/Q:(I_IF)O'C[X+/ u-(1-Ip)ovds

Q I'p

—/(Q—Du):(1—Ip)adx—/(1—n,’;)f-udx— (1-TI5 )g-uds.  (3.34)
Q Q I'n

This, a Holder inequality, the boundedness of o — D u in the L? norm, the approximation property
of Ir from Lemma 2.10, and (3.31)—(3.32) lead to

E*(0) - max E*(Qp) < E*(0) = E*(Ip o) < B o |ywonr ()
+ h2 max (lO’ka+1 p (7-)|M|Wk+1 P (T) + |O'|Wk+l p (7-)|M|Wk+2 ])(7‘”)) (335)

The combination of (3.31)—(3.35) concludes the proof. O
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Remark 3.6 (reduced convergence rates). The a priori error analysis of HHO methods for elliptic
PDEs leads to the optimal convergence rates 4%l of the displacement error [DPEL14; DPE1S;

max
EZ20], but Theorem 3.5 only guarantees hr(rﬁil)/ " due to the lack of control over the primal
variable. This reduction is also observed in [CGR12b, Theorem 5.2] for a lowest-order Raviart-
Thomas discretization of the optimal design problem in Subsection 1.2.2. Additional control over
the primal variable in the p-Laplace problem leads to improved convergence rates in Corollary 3.9.
Numerical results in Chapter 6 suggest that, for smooth o and u, the optimal convergence rates

h*+1 are obtained for uniform mesh refinement.

3.3 A posteriori error analysis

For conforming FEMs, the stress error can be bounded by the energy error. Suppose that u
minimizes E in A, then the choice ¢ := Du and o := Dw in (3.10), and the Euler-Lagrange
equations (2.12) prove, for any v € A,

”O- -D W(D ’U) “rLr/t(Q)

< max{3,3"/"}e5(|Q| + C" + ||Dv||u,(g))’/” (E(v) — E(u)).
Provided E(u) = min E((A) has a known lower energy bound, this leads to an a posteriori error
estimate for the stress error in a conforming discretization for the approximation v € V (even for
inexact solve) and its (computable) energy E (v). This concept is more general than the application
to this class of degenerate convex minimization problems with (1.2) and is employed, e.g., in
[Ortl1; OP11] and [Bar15, Section 10.2.5]. Nonconforming, mixed, and HHO discretizations can
be utilized for lower energy bounds (LEBs). This is the point of departure of the a posteriori error
analysis in this section.

Theorem 3.6 (a posteriori). Suppose that up € WY/ =D(Q:R™) and let uy, minimize Ej, in

Ap. Then there exist positive constants C\y, . . ., Cie such that the (unique) discrete stress oy, =
Iy, DW(G uy) and any v € up + W]]) or/(r=1) (Q, Rm) satisfy

(@) Cillo =l 0 g + E*(00) = Co05e(, T) = Cig osex(g, Fx) < min E(A);

(0) Cisllo = anlly g+ Cs ' llo =DW(Gunll} g

+Coosc(f,T)+ Ciposen(g, Fn) + CisllG un — Dv||’L',/(,_,)(Q)
—/(I—HkT)f-vdx—/ (1-TI5 )g - vds;
Q I'n
(c) |E(u) = Ep(up)| < Ep(up) — E* (o) + Coosc(f,T) + Croosen(g, n)

+ max {0, (L+ (/1) HCi6lIG up - DU”Zr/(r—t)(Q)

< Ep(up) — E* (o)

—/Qu ~nyvae- [ (1-m g va,

Proof of Theorem 3.6.a. Let o € LP(Q;M) be a measurable selection of dW*(o7,) with o €
OW* (o) a.e.in Q from Lemma 3.4.b. The growth of W from Lemma 2.11.c and |[o[ 7 () <

Cs from Theorem 3.1.d provide ||Q||LP(Q) < c]ZC? + ¢13|Q|. The choice 7 = o, ¢ = o}, and
&= Du in (3.9) prove, for Ci4 = max{3, 3"/ }c3((1 +c13)|Q| + Cf + clgcg’,)t/",

C1_41||0' - 0'h||2,/,(9) < /(W*(o-h) -W*(o)—Du: (o, — o)) dx. (3.36)
Q
An integration by parts, oy, € Qp, and (3.19) confirm
—/Du (op—0o)dx = (o-—o-h,uD>rD+/(1 —H’,;—)f-udx+/ (1 —Hkﬁ)g-uds
Q Q I'n

< <a' - oy, ”D>FD +Cyosc(f,T )+ Cioosen(g, FN)- (3.37)
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The combination of (3.36)—(3.37) with E* (o) = E(u) implies the LEB

Ciillo = anll < E(u) - E"(on) + Coosc(f,T) + Cio 0sen(g, FN). (3.38)

r
Lrit Q)

Proof of Theorem 3.6.b. The choice T .= DW(Guyp), ¢ = 0, & = Gup, and o = Du in
(3.9), and the L? orthogonality o, — DW(G uj) L Xj, show

Ci'llo =DW(G un)l] 1 o) < /Q (W* (o) =W DW(Gun)) - Gup : (o —03))dx. (3.39)
For any v € up + Wll)’r/ (r=2) (Q;R™), an integration by parts proves

—/Dv:(O'—O'h)dxz—/(l—Hlfr)f-vdx
Q Q

(3.40)
- (I—H%)g-vds—(a—o-h,u]))r]).
I'v
The combination of (3.39)—(3.40) with (3.25) verifies
Ci'llo-DW(G )l e ) < En(un) = E* (o)
(3.41)

—‘/Q(l—H’;-)f-vdx—/rN(l—H’,;_-N)g-vds—/g(guh—Dv):(O'—O'h)dx.

The sum of (3.38) and (3.41), and the Young inequality (0" — 0%, G up =D v)2(q) < (rCia) o -
o, ||2,/t(g) +Ci6l||Gup, — D v||’L'r/(H) @ conclude the proof of (b) with the constants C5 = r'Cy4
and Ci¢ = Cﬂl‘l/r’.

Proof of Theorem 3.6.c. The LEB in (a) proves the bound
Ep(up) — E(u) < Ep(up) — E*(0n) + Coosc(f, T) + Cio 0sen(g, In)- (3.42)
On the other hand, a Young inequality on the right-hand side of (3.41) leads to
E(u) = En(un) < Cillo = anlly, 0 g + 071 ' CigllG tn = DIl 0y

—/(1—H§.)f-vdx—/ (1-TI5 )g - vds. (3.43)
Q I'n

for all v € up + Wé’r/ ("=1)(Q; R™). The combination of (3.42)(3.43) with the a posteriori error
estimate from (b) concludes the proof of (c). ]

Remark 3.7 (discrete duality gap). The discrete lowest-order mixed FEM for the optimal design
problem in [CL15] has no discrete duality gap to a nonconforming Crouzeix-Raviart FEM for the
primal minimization problem [CL15, Theorem 3.1]. This is restricted to the lowest-order case and
cannot be expected here. In fact, recall the unique maximizer oy of E* in Q) and (3.26) proves
lom —DW(G “h)||2r/t(g) < En(up) — E*(owm). In general, DW(G uy,) ¢ Xy, has to be expected.
Thus, Ep(up) — E*(03) = Ep(up) — E*(om) > 0 and there is a discrete duality gap.

3.4 The p-Laplace equation

The energy density W(a) = |a|?/p fora € R", 1 < p < coin Subsection 1.2.1 allows for additional
control over the displacement error in the natural norm ||Vu — G uy||1r (@) that leads to improved
error analysis in the example of the p-Laplace problem. There are numerous contributions on
the p-Laplace equation in the literature and the author only provides some references concerning
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the standard conforming FEMs. A priori estimates have been established in, e.g., [GM75; BL93;
BL94; CKO03], a posteriori estimates in [CK03; CLY06] for the lowest-order FEM, and convergent
adaptive algorithms in [DKO8; BDK12]. The application of the HHO methodology to the p-
Laplace equation in [DPD17a; DPD17b; DDM18] provide a priori estimates and convergence
results on uniform meshes. The proofs in this section utilize the estimates with explicit constants
summarized below.

Lemma 3.7 (convexity control for p-Laplace). Let2 < p < co. Any a, b € R" satisfy
VW (a) — VW (b)|* < (1 +max{l, p — 2}*)(Ja|’~2 + |b|P7?)
X (VW (a) — VW (b)) - (a — b);
la — b|P < max{2,2P"2}(VW(a) — VW(b)) - (a — b); (3.45)
VW (a) — VW (b)|* < 3max{1,2P3}(|a|’~2 + |b|P72)

(3.44)

X (W(b) ~ W(a) ~ VW(a) - (b - a): (340
la — b|P < pmax{2,2P 2} (W(b) - W(a) - VW(a) - (b - a)). (3.47)
If1 < p <2, then it holds, for all x,y € R",
VW (x) = VW ()P < max{2,27 2} (VW (x) = VW () - (x = y); (3.48)
e = yI* < (1+max{1, p" = 2}*)(|x[* "7 + |y[*"P) (3.49)

X (VW(x) = VW(y)) - (x = y);
VW (x) = VW ()P < p’ max{2,27 2} (W (y) - W(x) = VW(x) - (y = x)); (3.50)
e = yI? < 3max{1, 27 }(|x[*P + |[y[*P)
X (W(y) = W(x) - VW(x) - (y - x)).

Proof. Let2 < p < oo. The estimates (3.44)—(3.45) are from [CKO03, Lemmas 2.2, 2.3, 2.5]. The
Hessian V2W(a) = (p-2)|alP *a®@a+|a|PLx, € R™" satisfies |V2W (a)b| < (p—1)|a|?~2|b|
for all @, b € R". This and the fundamental theorem of calculus prove

(3.51)

1
VW (a) = VW(b)| < /O |V2W(a +t(b - a))(b — a)|dt

1
< (p- 1)|a—b|/ la +t(b—a)|P~2dt. (3.52)
0

On the other hand, (3.44) confirms #(|a|? >+ |a +t(b —a)|P~)|a — b|?/2 < (VW (a+1t(b—a)) —
VW(a)) - (b —a) for any 0 < t < 1. Hence,

1
W(b)-W(a)—VW(a)-(b—-a) = ./0 (VW(a+t(b—a))-VW(a)) - (b—a)dt

1
> |a — b|2/ t(alP2 +la+1t(b—a)|P7?)dt/2. (3.53)
0
The Taylor expansion and |a|?~2|b|> < V2W (a)b show

1
W(b) - W(a) - VW(a) - (b-a) = /O (1=1)(b—a)-V*W(a+1(b—a))(b—a)dt

1
> |a—b|2/ (1=0a+t(b-a)P~%dr. (3.54)
0

The sum 2 x (3.53) + (3.54) and (3.52) lead to

VW (a) — VW (b)|?

1 3.55
<3(p - DEW(b) - W(a) - VW(a) - (b — a))/o la+1(b - a)|P2dt. (-3
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This and the bound |a+t(b—a)|P~? < max{1, 2P 3} ((1-1)P~2|a|P~2+tP~2|b|P~2) verify (3.46) and
c3 =3(p —1)max{l,2P73} in Figure 1.1. The application of the fundamental theorem of calculus
to W(b) — W(a) in (3.53) and t”~!|a — b|P < max{2,2P2}(VW(a+t(b—-a))-VW(a))-(b—a)
from (3.45) confirm

la = b|P < pmax{2,2P2}(W(b) — W(a) —VW(a) - (b —a)) foralla,beR".

This proves (3.47). The proofs of (3.48)—(3.51) for 1 < p < 2 utilize the convex conjugate
W*(a) = |a|P’/p’, a € R", of W with 2 < p’ < co. Since W* satisfies (3.47), the choice
a:=VW(y)and b := VW(x) in (3.47) for given x, y € R" leads to

VW (x) — VW(y)|pl < p’ max{2, 21”_2}(W*(b) - W*(a) = VW*(a) - (b —a)).

This, the duality W*(a) = VW (y) - y—=W(y), W*(b) = VW(x) - x — W(x), and VW*(a) - (b—a) =
y - (VW (x) — VW(y)) imply (3.50). The same arguments confirm (3.48)—(3.49) and (3.51). O

The strict convexity of W in (3.47) and (3.51) leads to a unique minimizer # of E in A and
control over the displacement error.

Theorem 3.8 (a priori for p-Laplace). Suppose that 2 < p < oo, then the (unique) discrete
minimizer uy, and the (unique) discrete stress oy, = Iy, VW(G uy) satisfy

”0— - O—h”ip’(g) + ||O' - VW(Q uh)”ip’(g) + ||V1/l - guh”ip(g)
S0 =TI3,)or 17, o + 101 =TIy, )Vull g + 05(£, )7 + 0sen (s, 7).

If1 < p <2, then it holds

’ ’ 2
lo = ol o)+l = VWG uIY), ) +11Vu = Gl g
<=5, )2 g + (1 =TI, )Vull7, ) + 05 (£, T + osen(g, 7).

Proof. The proof departs from the split of the monotonicity condition of W on the right-hand side
of (2.9)

/Q (o = VW(G up)) - (Vi — G up) dx

(3.56)
< /(0’ —on) - (Vu—-Gup)dx - /(1 -y, )VW(G up) - (1 =1z, ) Vu dx.
Q Q
The commutativity property Iy, Vu = G Iu from Lemma 3.2.d leads to
[ =) (Fu-gunas
@ (3.57)

= [=T)o (1 Ty Fudrs [ (o - ) G(1u-w,) dx.
Q Q

For v, = (v, v¢) € Vi p, set A vy, from Subsection 2.5.3 to zero. Hence, J vj, € Vp with the
L? orthogonality J vy, — vy L Pr(T;R™), (T vn)|lF — vk L Pr(F;R™) for any F € ¥, and the
stability from Lemma 2.13 holds verbatim [EZ20]. This and the discrete Euler-Lagrange equations
(3.2) imply

/Uh'g(uh—lu)dXZ/f-(u«r—H];—u)dx+/ g-(u¢—H'}u)ds
Q Q I'n
Z—/f-J(Iu—uh)dx— g - JTu—up)ds (3.58)
Q I'n

+/(1—H§-)f-j(lu—uh)dx+/ (l—H;)g-j(Iu—uh)ds.
Q 'y
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The stability ||V T Tu—up)llrr (@) < [1u = upl|ln = ||[Hs, Vu—G upllLr (), the triangle inequality,
and the L” stability of the L? projection Ty, from Lemma 2.7 show

VT Tu—up)llrr

(3.59)
< [[(1 = TIs,)VullLr @) + [|Vu = G unl|lLr @) < [IVu = G unllrr @)
This and the choice v := J (Iu — uy,) in (3.17)—(3.18) verify
(1 —Hk)f-j(Iu—uh)dx+/ (1-T8)g - T(Tu - up)ds
/g 4 I 4 (3.60)

< (osc(f,T) +osen(g, Fn))IIVu — G unllLr @)-

The Euler-Lagrange equations (2.12) and the L? orthogonality V.7 (1u — up) — G(1u — up) L X,
prove

/QHZ,IO'-Q(Iu—uh)dx—/gf-j(lu—uh)dx—/r ¢ T(lu—up)ds 3.61)
:/Q(tha-g(lu—uh)—o--Vj(Iu—uh))dx:—/Q(l—l'[zh)O'-Vj(Iu—uh)dx.
The combination of (3.57)~(3.61) leads to
/Q(a—ah) (V= Gup) dx < /9(1 ~ My, )o - (1 -y, )Vudx (3.62)
- [ =T)0 9.7 (1= ) -+ Corlose( 1,7+ osens. TR IV = Gl

for a positive constant C;7 > 0. A triangle inequality and the L stability of the L? projection s,
from Lemma 2.7 show

1(1 = Ty, )YW(G )l 0y S s, 0 = YW(G un)ll o
< (1 =Tig )Nl g+l = VWG unllr (). (3:63)

Since |V I Tu—up)|lLr ) < IVu—GupllLe () in (3.59), the combination of (3.63) with (3.56),
(3.62), and a Holder inequality confirm

/Q (o = VW(G up)) - (Vi — G up) dx

S (11 =1y, )0 ll Ly () +0se(f, T) + osen(g, Fn)IIVu — G unllLr ()
+([(1 =y, ol Lo ) + lo = YW(G un)ll Lo (@) I (1 = Iy, ) Vul| e ().

Let2 < p < oo. The choice a := Vu and b := G uy, in (3.44) proves that Cig = (2 + 2a2)(Cf +
Cf)’/t' with ¢ := 2(p — 1)/ p satisfies

(3.64)

C1—81||o- -VW(G uh)llip,(g) < /9(0' - VW(G up)) - (Vu — Guy) dx. (3.65)
On the other hand, the choice @ := Du and b := G uy, in (3.45) leads to
Vi = G unlly, g < max{2,2P"2) /Q (o = VW(G un)) - (Vu = G up) d. (3.66)

The sum of (3.65)—(3.66) and a Young inequality on the right-hand side of (3.64) result in

llo = VW(G un)ll} g + IV = G unll}, g

S (1 - th)0'||§;,(g) + osc(f, ‘T)p' +oscn(g, ﬁ)l" +|1(1 - th)VuHZLP(Q). (3.67)
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The triangle inequality and (3.63) lead to

llo = ll oy < Nl = YW(G wil o (g + 11 = T, )YW(G i)l
< llo = VW(G un) o ( + 11 =TI, )l (3.68)

This and (3.67) conclude the proof for 2 < p < co0. For 1 < p < 2, the choice x := Vu and
y = Guy in (3.48) and (3.49) verify

lr =DW(G UL,y o +11Vu = Gunll} o ) < /Q (o = YW(G un)) - (Vu — G up) d.
This, (3.64), and (3.68) imply the a priori estimate for 1 < p < 2. ]

The a priori error estimates in Theorem 3.8 allow for the convergence rates || — o ||, » @ *
k+1)p’/2 k 1

lo = VW(G un)llpr ) < hbs?"* and |V ~ Guplizr@) < b/ P for 2 < p < oo

and smooth solutions u, o~ on uniform meshes. If 1 < p < 2, then [|o- = ol (q) + llo —

VW(G un)llpr (@) S hg;;l)(p Y and IVu — Gupllir@ < hg;l)p/z. These convergence rates

coincide with the results in [DPD17b; DDM18] for 2 < p < oo, but is superior to the convergence

rates ||Vu — Gup|lrr @) < hgﬁ;l)(”_l) for 1 < p < 2 therein.

Corollary 3.9 (convergence rates for p-Laplace). Suppose that o € WhP (Q; R")nW*+L.P' (77, R")
and u € AN WP (7)), then

llo = anllpr () + loo = VW(G un)ll L' (o)

k+1 2 /2 .
B " 101012y + WAl o) if2<p <o,
2(k+1 2/p! k+1) (p-1 .
el Y o T A R
(k+1)/(p=1); _1/(p-1) Rt/ 12/p ;
IV = G unl| < Fima lo’lwk%ﬁ’(g) max Nl F2SP <o,
U= GURILP (@) = )k L &+Dp/2) 1p/2 1 2
maxlo-lwkﬂ,p'(‘]') T Nmax |M|Wk+2,p(-7~) fl<p<2,
|E(u) = En(un)| < higi o lyion, p'((r)|u|wk+l P (T)
+1 2(k+1 :
hr(na; 24 lo Wk+l P (7) + hm(axJr )lulwk+2 2(T) if2<p<oo,
2(k+1 k+1 .
m(ax+ )l W"H p (ﬂ hﬁna; )p|ulwk+2 1)(7‘) lf‘l < p < 2

Proof. The convergence rates of the stress error ||o0 = VW(G up)ll L () + lo = onll L (q) and
of the displacement error ||[Vu — G up||rr (@) in Corollary 3.9 follow directly from the a priori
estimates from Theorem 3.8, the approximation property of the L? projection from Lemma 2.8,
and the computation in (3.32).

It remains to prove the convergence rates of the energy error |E(u) — Ep(uy)|. Recall o =
VW*(Ig o) from (3.34). For 2 < p < oo, the choice a := ¢ and b := Vu in (3.45) leads to
llo = Vullrr @) < (1 - IF)O_”ZP_(Q) This, (3.34), and (3.31)—(3.32) imply

E(u) - max E°(@n) s KD (o |0 o+ B 10 i ol it ().

If 1 < p < 2, then the equivalence of the convexity control (1.2) and the monotonicity of VW
in (2.9), and (3.51) imply |x — y|> < (|x|>77 + [y|>P) x (VW(x) — VW(y)) - (x — y). The
choice x = p and y := Du therein, and the arguments from the proof of Lemma 3.4 show
lo = Vullr@) < I(1 =1F)ollpm - Hence, (3.34) and (3.31)~(3.32) lead to

E(u) —max E*(Qn) 5 hz(k+l)|0'|wk+1 P () hrzrf;; |0-|Wk+1,p'(7')|u|Wk+1,P('7')-

The combination of this with (3.31)—(3.33) and the a priori error estimate for |E(u) — Ep(up)|
from Theorem 3.3.b confirm the convergence rates of the energy error in Corollary 3.9. m|
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Additional control over the primal variable in the p-Laplace problem leads to a posteriori error
estimates for the displacement error ||Vu — G up||r (q).

Theorem 3.10 (a posteriori for p-Laplace). Suppose that 2 < p < oo, then the (unique) discrete
minimizer uy, and the (unique) discrete stress oy, = Ils, VW(G uy,) satisfy

lo = Gull )+ lm = VWG w2, ) + IVt = G unll? g
< En(un) = E"(03) +0s0( £, T) + osox(g, ) 4 min [Gun = VollZp g (369)

If1 < p <2, then it holds

lo = ull s o+l = TW(Gun)lIZ, ) + 11V = G unl} g
< En(un) = E"(00) +0se( £, T) + osex(g, ) + min [Gun = Voll}, . (370)

Proof. The duality W(a) = VW(a) - a - W(VW(a)), W(b) = VW(b) - b — W*(VW (b)), and
(3.47) confirm

la = b|” < max{2, 2p‘2}/p(W*(VW(a)) - W*(VW (b)) — b - (VW(a) — VW(b))).
The choice a := Vu and b := G uy, in the ultimate formula lead to

IVu -G ”h”IL)p(g) < max{2,2”7%}/p ‘/Q(W*((r) -W (VW (G up)) — Gup - (o — op)) dx.

This replaces (3.39) in the proof of Theorem 3.6. The remaining arguments therein apply verbatim
and confirm (3.69). For 1 < p < 2, W*(a) := |a|""/p’ satisfies (1.2) with the constant ¢3 =
3max{1,2773} and so, (3.10) holds for W* instead of W. The choice & := VW(Guj,) and

0 = VW(Vu) in (3.10), [VW(G w7, = G unll} q» and VW (Va)lIZ,, o = IVull, g
imply, for Ci9 = max{2, 2(2‘1’)/1’}03(Clp + Cf)(z_p)/p,
IV = Gunl gy < Cio [ (W' (0) =W/ (TW(G 1) = Gy - (o = ) .
Q
This and the arguments from the proof of Theorem 3.6 conclude (3.70). ]

Remark 3.8 (strongly convex minimization problems). In the class of strongly convex minimization
problems [Barl5, Section 4.1.4], the energy density W € C'(M) satisfies the two-sided growth
|A]> =1 < W(A) < |A]> + 1 and the uniform monotonicity of D W

|A- B> < (DW(A)-DW(B)): (A—B) forany A,B € M.

Although this class is not considered in the thesis, some straight-forward modification of the proofs
in Section 3.4 under the assumption |D W(A) — D W(B)| < |A — B| leads to, up to some oscillation,
the best approximation result
”Du - g uh”i}(g) + ”0- - VW(g uh)lliZ(Q) < ”(1 - th)O-HZLZ(Q)
+[1(1 = TIy,) Dull?, g +o0sc(f, T)* +osen(g, ).

max
0 € L*(€;M) is a measurable selection of dW* (o), then the convexity control |A — B> <

(DW(A) —DW(B)) : (A — B) for any A,B € M and the duality o € dW*(oy,) if and only if
on = DW(p) verify [[o = Gunll2q) S (1 = Zp) DW(G un)l|12(q)- This and the convexity
W*(op) =W (DW(Gup)) <o:(1-Ixg,) DW(G up) a.e. in Q imply

This guarantees optimal rates ||[Du — G upll;2q) < hk*! for smooth u and o. Suppose that

En(up) - E* (o) < /Q (W (on) = W (DW(G un))) dx < (1 = T5,) DW(G un) 122 .
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In particular, an a posteriori error control is given by

IDu~Gunl}s g < (1 =Mx,) DW(G un)li7s g,

+ min |G up, - Dv||i2 +osc(f,T)* +osen(g, Fn)2.
vEA

(Q)

3.5 Remarks on the relaxed two-well computational benchmark

The computational benchmark in [CP97; CJ03] involves an additional quadratic term 1/2||¢ —
uq—||i2 @ in (1.3) that leads to uniqueness of the continuous minimizer u# and of the volume
component uq- of the discrete minimizer uy, = (uqg, ug). The error analysis in Chapter 3—5 can be
extended to this model problem as outlined below. For the sake of brevity, this section assumes
pure Dirichlet boundary I'p = 0Q. Givena > 0,2 < p < oo, f,{ € L2(Q;Rm), and up € V, the
continuous problem minimizes the energy

E(v) = /(W(Dv) —fru)ydx+a|l —vlliz(g) amongst v € A. (3.71)
Q

The computation of the dual energy follows a similar ansatz to [Barl5, Section 10.1.3]. Given
7€ Xand v € A, the duality 7 : Dv < W(Dwv) + W*(7) a.e. in Q leads to

sup | inf (/Q(T:Dv—f-v)dx+a/||§—v||iz(g)) —/S;W*(T)dx]

ey LveA (3.72)
< inf ‘Du-W ) dx— | f-vdx — )2 ]<'fE.
< int [swp [(r:Dv=w e de= [ oodvrald=olg | < inf @)
An integration by parts proves
/(T:Dv—f-v)dx+a/||{—v||iz(g)
Q@ (3.73)

= {1V, up)oq — ‘/Q(div‘r+f) . vdx+a||§—v||iz(g).

The minimum of (3.73) amongst v € L*(Q;R™) is attained at v = { + %(divT + f). This and
(3.72) lead to sup, .y E*(7) < inf,c# E(v) with the dual energy

E*(1) =- /(W*(T) +¢ - (divt+ f))dx + (tv,up)og — L||div‘r + f||2L2 (3.74)
Q 4a ()

forany 1 € Q := {r € X : divt € L*(Q;R™)}.

Theorem 3.11. The minimal energy min E (A) is attained in A. The unique minimizer u € A
and the stress o := D W(D u) satisfy (a)—(d) with positive constants Coy and C;.

(a) Any v € Vp satisfies the Euler-Lagrange equations
/U:Dvdx=/(f+2a(§—u))-vdx. (3.75)
Q Q

(b) o0 € Qwithdivo + f +2a({ —u) =0.

(c) The stress o is the unique maximizer of E* in Q without duality gap in the sense that
max E*(Q) = E*(0) = E(u) = inf E(A).

(d) IDullLr() < Caoand |||l () < Ca.
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Proof. The existence of a minimizer u of E in A is proven in [CP97, Theorem 2]. For @ > 0,
the energy functional E is strictly convex and the minimizer u is unique. The Gateaux derivative
of E at u in any direction v € Vp proves the Euler-Lagrange equations (3.75) that imply (b).
The preceding computation verifies E*(7) < E(v) for any 7 € Q and v € A. The duality
o :Du=W*(o)+W(Du) ae.in Q and (b) show E*(o) = E(u). The constant Cy in (d) is from
[CP97] and CZ| = ¢5Ch + colQ. o

Recall the discrete ansatz space Vi p = Pr(7;R™) X Pr(F (Q);R™), the affine space Ay, =
Tup + Vi, p of discrete admissible functions, and the gradient reconstruction G : V,, — X from
(2.17) with £, = RTY"(7;M). The discrete problem seeks a (possibly non-unique) discrete
minimizer uy, = (uq, ug) € Ay of the discrete energy

En(on) = [ (W(Gu) = vr) devalle = vl (3.76)

amongst v, = (vy, vg) € Ap. (Notice that the quadratic term in (3.76) only implies the uniqueness
of the volume variable u 4, but not of uj, in general.) The proof of the subsequent theorem follows
the lines of the proof of Theorem 3.1; further details are omitted.

Theorem 3.12 (uniqueness of oy,). Let up € Ay minimize Ep, in Ayp. The discrete stress op, =
Iy, D W(G uy) satisfies (a)—(d) with the constants Cay and Ca3.

(a) Any v, = (v, vg) € Vp j, satisfies the discrete Euler-Lagrange equations
/o-h :gvhdx:/(f+2a({—u7—))-v7-dx. (3.77)
Q Q

(b) The discrete stress oy, is unique in the sense that the definition does not depend on the
choice of the (possibly non-unique) discrete minimizer uj,.

(c) on € Qy =Ty N T with div oy, + 5 f +2a(TT5L —ug) =0in Q.
(d) |G unllLr (@) < Cx and ||owllr q) < Cas.

The error analysis involves the data oscillation oscy(£,7) = ||hs(1 — HkT)f l2(q) of & €
L*(Q;R™) and the discrete dual energy

Ej(th) = — /(W*(Th) + ¢ - (div Ty +H,krf)) dx
@ . (3.78)
+ /asz up - tpr ds — Elldiv Th + Hf‘rfllizm) for any 7, € Qp,.

Theorem 3.13 (a priori). There exist positive constants Caa, . . ., Cag such that any discrete mini-
mizer up, of Ep, in Ay, and the discrete stress o, = Iy, D W(G up) satisfy

(:2_41 ||O— - O-h”rLr/t(Q) + C2_51||0' - DW(g uh)“rLr/r(Q) + CL’”M - u‘T”iZ(Q)

< E*(0) —max Ej(Qp) + Cag 0sc(f, T) + Ca708¢2(L, T) + Casl|(1 — Ty, ) D u”:r/(r—t)(g)'

Proof. The proof can follow the lines in the proof of Theorem 3.3.

Step 1: A temporary error estimate. The choice & '= G up, and o := Du in (3.10) proves

Cz_sl ”0- -D W(g uh)”Zr/z(Q)

(3.79)
< /g}(W(D@ “W(Gu) ~DW(Gup) : (Du -G up))dx
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with the constant C»s := max{3, 3"/ }¢3(|Q| + Ch+ C2)!/"". The commutativity Iy, Du = G1u
from Lemma 3.2.b, the discrete Euler-Lagrange equations (3.77), and a piecewise application of
the Poincaré inequality show, for Cys := CpCyp and Cyr7 = 2a|§2|(p‘2)/(2p)C20/7r,

- [on: Ou-gunar=- [ (ks 420015 ~ur) - (o - ur) e
Q Q (3.80)
< —/Q(f +2a(¢ —ug)) - (u—ug)dx + Cyosc(f,T )+ Cr708¢c2(g,T).

The combination of (3.79)—(3.80), the identity —2a({ —ug, u —ug)2(q) = @||{ - u||2L2(Q) —a|l¢ -

”THiz(g) —allu - ”THZLz(g)’ and the L? orthogonality o, - DW(G uy,) L Xy imply

Ciillor =DW(G un)lf 0 g + el = urlZa g < Ew) = En(un)

+ Cysosc(f,T)+ Carosca(L,T) —/Q(DW(guh) —oy) (1 =Iy,) Dudx.

Step 2: Comparison with MFEM. Let o maximize Ej in Qp, and let o € LP(Q;M) be a
measurable selection of dW* (o) from Lemma 3.4.b. An integration by parts provides

/ up - opmrds = /uD . (diva‘M+H'7‘-f)dx—/H’;-f-uDdx+/DuD comdx.  (3.81)
8Q Q Q Q
This, the growth of W* in Lemma 2.11.b, a Holder, and a Young inequality lead to

E4(0) < Ei(ow) < ~collowll

+ D up e e llowl o gy + 5191 + 20121120 - /g 1 £ - up dx.

This proves |[owmll» () < 1 and the growth of 0W* in Lemma 2.11.c shows [[ol|Lr (@) < 1. The
choice 7 :== DW(G up), ¢ = om, and &€ := G uy, in (3.9) verifies

Cz_()l “UM -D W(g uh)HZr/t(Q)

" (3.82)
< [0V (0w - W OW(G ) - G : (o - DW(G ) dx
Q
with a constant Cp9 > max{3, 3'/"'}¢3 (12 +llellLr @) + sz)z/t,. The definition of G in (2.17) and
op = H',;.D W(G uy) imply

/guh . (DW(G up) - o) e
Q (3.83)

:/(f+2&(§—u7-)+diU0'M)-u7~dx+/ up - (o, — om)v ds.
Q 80

The duality Gup, : DW(G up) = W(Gup) + W (DW(G uyp)) a.e. in Q and (3.83) prove
- /Q W (DW(G up)) dx + /6Q up - o ds = Ex(up) + @llugll3s g — alidlls g (3:84)

The combination of (3.82)—(3.84) and 2a/({ — us, u7)2(q) +a||u¢||2Lz(Q) - all{lliz(g) =—qa||¢ -

uﬂliz(g) lead to

Cogllom =DW(G un)lly e () < Enun) = Eg(om) = allZ — urllzs g
di X £) - (g — £) dx — || di e £)12 -8
+ | (@ivon +TI7f) - (ur = ) de = 7ol divow + T7-f 17 ).
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A Holder and a Young inequality on the right-hand side of (3.85) result in
Cig ot =DW(G un)lly, gy < Enlun) = Ej(om).

The remaining parts of the proof are similar to Step 3 in the proof of Theorem 3.3.a and hence
omitted. O

Theorem 3.14 (a posteriori). Any discrete minimizer uy, of Ey in Ay, the discrete stress o =
Iy, DW(G up), and any v € A satisfy (a)—(b) with positive constants C3, . . ., Cz.

(a) (LEB) C3g o7 = 0y ) + @l = urll]s ) + Eg(om)

— Cy0sc(f,T) —Cr708¢2(L,T) < min E(A).

(b) C3_11 ||O- - O-h||2r/t(g) + C2_51 ”0- - DW(Q uh)ler/t(Q) + (Z”M - MT”ZLZ(Q) + G’H’U - MHZLZ(Q)

< En(un) — Eg(n) + Cag 0s¢(f, T) + Cor 05¢2(, T) + allv — ur |72 g
+C2llG un =DVl gy = /Q v (=T f +2a(1 - TI7)Z) dx.

Proof of Theorem 3.14.a. Suppose that o € LP (Q; M) is a measurable selection of 9W*(o,) from
Lemma 3.4.b with [|o]|zr (@) < 1. The choice 7 := o, ¢ = 0, and ¢ := Du in (3.9) verifies

CiAlle = Ol gy < [ (W' (o) = W' (@) =D (0~ ) v (3.86)

with a constant C3o > max{3,3"/" }e3(|Q| + ||Q||Z,,(Q) + Cé’o)’/”. An integration by parts and a

piecewise application of the Poincaré inequality lead to
- [Du @1 =) s (o = pw)an
= /Q((1 ~T5)f+2e(1 -5 —u+ur) - udx
<2« /Q(urr —u)-udx+ Cryosc(f,T )+ Cyoscr(L,T). (3.87)
The combination of (3.87) with (3.36) imply

Cyollo = ol < E*(0) = Ej(on) + Cys0sc(f,T) + Cay0s¢2(L,T)

r
Lrit (Q)

‘ / Qaur —u) - u+ (div o — divoy, + (1 - TE) £) - £) dx (3.88)
Q

|div o, +n§f||iz(g).

. ) 1
+ Endlvo--i'f”LZ(g) - El

The identities f + 2a({ — u) + div o = 0 and H,’}f + Za/(H(krg“ — uq) +div oy, = 0 show

[ 2 [ k 712
E”dlv o+ f”LZ(Q) - Endlv Opt+ HTf”LZ(Q) (3 8)
= a(””“iZ(Q) - ||”‘7'||iz(g) + ||H]f;’§||22(g) - ||§“§‘2(Q)) - 20[}(”7’ - ”) ' gdx
Since ||u||iz(g) - ||u¢||iz(g) +2(ur —u,u)p2q) = —llu— u7-||iz(9), (3.88)—(3.89) prove
C}‘_()1 ”0- - o-h“;//t(g) + (Z”M - u‘THZLZ(Q)
< E*(0) = Eg(an) + Cag 05¢(f, T) + Co105¢2(4, T) = @ll 172y + @7 1172 -
This and ||HkT§||i2(Q) - ||§||i2(m < 0 conclude the proof of (a).
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Proof of Theorem 3.14.b. The choice 7 := DW(G uy), ¢ = 0, & = Guy, and ¢ = Du in
(3.9), and the L? orthogonality o, — D W(G u,) L X5 show that any v € A satisfies

Ctllo =DW(G un)lly g < /Q (W* (o) = W (DW(G up))) dx

(3.90)
—/(Quh—Dv) : (O'—O'h)dx—/Dv : (o= o) dx.
Q Q
The duality Du : 0 = W(Du) + W*(o) a.e. in Q and an integration by parts verify
- /Q W (o) dx + {0, up)aq = E(u) +allull3, g — all¢ll?: q)- (3.91)
The combination of (3.91) with (3.84) and an integration by parts imply
/(W*(Cf) ~WDOW(Gup)-Duv: (o —on)dx = Ep(up) - E(u)
e (3.92)
+allurys g — @llull?s g — /Q v (1 =TT £ +2a((1 =T —u+ug)) dx.
The ldentlty a”uTHiZ(Q) - a”u”%}(g) + 20,(1}’ u-— MT)LZ(Q) = CY”U - MT“%](Q) - CZ”U - MHiZ(Q),
(3.90), and (3.92) lead to
Cilllo = DW(G un) 1+ llo — ull2sy ) < Enun) ~ Eu)

—/g(guh—m) : (a—ah)dx+a||v—u¢||§2(m—/Qv-(a—n!;)f+2a(1—ni;)g)dx.

This, a Holder, a Young inequality, and the LEB in (a) conclude the proof of (b). ]



Chapter 4

Convergence analysis

On uniform meshes, plain convergence of an HHO method for the class of Leray-Lions equations
are proven in [DPD17a]. This chapter provides a convergent HHO adaptive scheme for a class
of convex minimization problems. There are only few results concerning convergent adaptive
algorithms for stationary nonlinear variational PDEs in the literature. A large part [BCOS8; CarO8b;
DKO8; CD15] focuses on lowest-order conforming FEMs with plain convergence. An exception
is the optimal convergence rates of a quasi-norm [BL94] for the p-Laplace problem in [BDK12].
This section aims to extend the convergence results of [OP11] from the (lowest-order) Crouzeix-
Raviart FEM to arbitrary polynomial degree. Suppose that W € C!(M) is convex and satisfies the
two-sided p-growth ¢1|A|? —c4 < W(A) < ¢2]A|P +¢csoforder 1 < p < co forall A € M. This
is a stronger assumption than that imposed in [OP11] as discussed in Section 4.4 below.

The convergence results are established under the assumption of exact solve on each level of
the adaptive algorithm in Section 4.1. In this chapter, the convexity control (1.2) is not required for
the convergence of the energy, but additionally leads to convergence results for the stress variable
in the Lebesgue norm.

4.1 Adaptive mesh-refining algorithm

Given an initial regular triangulation 7y, fixed positive parameters 0 < J,& < k+ 1, and a
bulk parameter 0 < 8 < 1, the adaptive algorithm computes on each level £ = 0,1,2,...
discrete minimizer uy of E, in A, and the (unique) discrete stress oy == Iy, DW (G ur) € Z¢ :
RTiW(T ; M) on a regular triangulation 7, in a successive loop over the steps outlined below.

Il o

INPUT: The input of the adaptive algorithm is a shape regular initial triangulation 7, positive
parameters 0 < 0, & < k + 1, a positive bulk parameter 0 < 6 < 1, and a polynomial degree k > 0.

1.SOLVE: On each level ¢ with a given triangulation 7, of Q into simplices, let ¥, denote the
set of sides, ¥ p the set of Dirichlet sides, and ¢ N the set of Neumann sides of the triangulation
77 with the mesh size function h, € Po(77), helr = |T|'/" for T € F;. The discrete space
Ve = Pr(T¢; R™) X Pr(Fe; R™) is endowed with the discrete seminorm || e ||, from (2.13)—(2.14).
The projection I, : V — Vy maps v € V onto I, v = (H%v,l’[%v) € Vy. Recall Gy : Vp, — Zp
with 2, := RT}" (7: M) from (2.17). Compute a discrete minimizer u; = (ug;, ug,) of

Ee(ve) = /Q (W(Gyve) — f - vgy) dx — /F g - vs, ds @.1)

amongst v = (vg;,vs;) in the affine space A, = Irup + V,p of admissible functions with
Vep = {ve = (v7;,v7) € Ve vyl =0on F € Fep}tand set oy =Mz, DW(Gpur) € Qp =
{tp € RTx(7¢; M) : div 7 + H%f =0in Qand 7,v = H(,kr[, Jgon I'n}.

48
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2.ESTIMATE: Let u, be a discrete minimizer of E, in A, computed in SOLVE. Recall the
conforming companion J, : Vo — V from Subsection 2.5.3 with I, 9, vy = v, for all vy € V.
Compute 77?"’3 = DTeT n?’S(T) with the local refinement indicator, for each simplex T € 7; with
the volume |T'| and the sides % (T),

0 *(1) = [T1% " oe =DW(Geue)ly, oy + 1T N =TI AN

LP'(T)
HT1EPMGoue =D T el oy + IT1OPHP N\ T pug = upll?
FeFe(T)NFe,p
sty A =Tl - (4.2)
FeFe(T)NFen

3.MARK AND REFINE: Given the input O < 6 < 1 and the local refinement indicator nf’g(T)
for T € 97 computed in ESTIMATE, select a subset M, C 77 of minimal cardinality such that

Ong e <nlC(Me) = Y nde(T), 43)
TeM,

This marking strategy is also known as Dorfler marking. The marked simplices are refined by the
newest vertex bisection [Ste08]. This generates an admissible refinement 741 of 7.

OUTPUT: The output of this algorithm is a sequence of shape regular triangulations (7¢)¢en,,
the associated discrete minimizers (u¢)¢en,, and discrete stresses (07)zen -

Remark 4.1 (refinement indicator). The refinement indicator ng’g is motivated by the discrete
compactness result in Theorem 4.1 below, but its contributions are essentially well-known from
the a posteriori analysis in Section 3.3. For instance, if d,& ~\, 0, then up to some scaling, all
contributions of 77?’8 are part of the a posteriori estimates in Theorem 3.6. The positive parameters
0, € are crucial so that the n?’g vanishes in the limit as £ — oo in Section 4.3. This restriction
cannot be dropped in general, cf. Remark 4.3.

4.2 Discrete compactness

A key argument in the convergence analysis is the discrete compactness result in Theorem 4.1
below. Similar results on uniform meshes are established in [BO09; DPE10] for the DG and in
[DPD17a] for the HHO methodology.

Theorem 4.1 (discrete compactness). Given a sequence (7¢)¢en, of shape regular triangulations
and (ve)een, With ve = (vg;, vy,) € Ae for all € € No. Suppose that (||velle)een, is uniformly
bounded with the discrete seminorm || e ||z of V¢ from (2.13)—(2.14) and

k+1
1 (Geve =D T v)lly, o+ >, B T cue—uplll, ) =0 ast— oo, (44)
FE?”&D

Then there existv € A and a (not relabelled) subsequence of (v¢)een, such that J ¢ ve — v weakly
inV=W\rP(Q;R™) and G, ve — Do weakly in LP (; M) as £ — oo.

Proof. The right inverse 7, of the interpolation I, preserves the moments H’;. J¢ve =vg;. This,
a Poincaré inequality, a triangle inequality, and ||h¢|| 1~ (@) < diam(Q) lead to

1T ¢ve —vrller @ < e Dpw (T ¢ ve — va) e @)
SIIDJevellLr (@) + IDpw v7: llLr () - 4.5)
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A triangle inequality, the stability of J , from Lemma 2.13, the norm equivalence from Lemma 3.2.a,
and the uniformly boundedness ||ve|l¢ < 1 prove
IDT e vellLr@) S 1Geve =D T evellir @) +11GevellLr (@) = llvelle < 1. (4.6)

This, (4.5), and the discrete Sobolev embedding [[v; [|Lr (@) < llvelle +||1e uplle + |lupllLr (@) from
Remark 2.5 confirm that (¢ v¢)een, is a bounded sequence in V. Since V is a reflexive Banach
space, there exist a (not relabelled) subsequence of (J, v¢)¢een, and v € V such that Jpve — v
weakly in V as { — oo [Brell, Theorem 3.18]. The norm equivalence from Lemma 3.2.a
shows that the sequence (G, v¢)¢en, is uniformly bounded in L” (Q;M). Hence, there are a (not
relabelled) subsequence of (v¢)sen, and G € LP (Q; M) such that G, v, — G weakly in LP (€2; M)
as { — oo. It remains to prove Dv = G in Q and v = up on I'p (and so v € A). Since
I, J ¢ ve = ve, the commutativity property of G, from Lemma 3.2.b proves the L? orthogonality
Geve — D Jpve L Xp. This and an integration by parts verify, for all ¢ € C*(Q; M) with ¢ =0
on Iy,

/Q{WisﬂdX:/(Qfo—DjeW)i¢dx+/Dj£W¢90dX
Q Q Q
- [(Geve-DI v (1-Ts)pes

—/jgvg-divgodx+ Jeve - prds. 4.7
Q I'o
A Holder inequality and the approximation property of the L? projection Iy, from Lemma 2.8
imply
/(Qg ve =D T eve) : (1-My)edx < |7 (Grve =D T ve)llr @ lelwrnr -
Q

The L?’ stability of the L? projection Hfé from Lemma 2.7, the trace inequality from Lemma 2.5,
and the approximation property of Hi from Lemma 2.8 for all F € Fyp, T € T¢ with F € F¢(T),
lead to

_1 /
1 =Tl gy < e = TEQ el ) < 7PN =TIl
1 k+1
+ hT/p|(1 - H;C")‘lel,p’(T) S hT+ /p|90lwk+1,p’(7")-
This, the L? orthogonality J,ve — up L Px(F¢ p;R™) from (2.19), a Holder inequality, and a
Cauchy inequality verify

(T ¢ ve —up) 'SWdS=/ (T ¢ ve —up) - (1 =TI )pr ds
FD I“D

I/p

k+1

<| X NI cue—unlly | elwiir o @48)
F€7'_(,D

The combination of (4.7)-(4.8) with (4.4) results in
|/(§gw : cp+jgvg~divgo)dx—/ uD'(pyds’
Q I'o

k+1
< (1 Geve =D T e+ D WEIT rve = upllfy g ) 1elwaerr @) = 0
FEﬁ»D

as { — oo, Since J,vp — v weakly in LP(Q;R™) and G, v — G weakly in LP(Q; M) as
{ — oo, this implies, for all test functions ¢ € C*(Q; M) with ¢ =0 on I'y,

/(G:go+v-divgp)dx—/ up - evds =0.
Q I'v

In particular, Dv = G in Q and v = up on I'p. This concludes the proof of Theorem 4.1. O
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Remark 4.2 (stabilized HHO method). The proof of Theorem 4.1 does not rely on the choice
%¢ = RT}" (7z; M) in (2.17), but rather utilizes the orthogonality G, v; — D J ¢ v L Z¢ and the
approximation property [|(1 — Iz, )¢l 1» (q) S |h’g+l¢lwk+1,p/(g) for all ¢ € C*(Q;M). Hence,
the discrete compactness result in Theorem 4.1 is not restricted to the unstabilized HHO method,
but also applies to the stabilized version in Chapter 5 with a gradient reconstruction in Py (7z; M).

4.3 Convergence of the adaptive algorithm

It is observed in [OP11] that a (computable) lower energy bound, the control over the refinement
indicator nf’g — 0 as { — oo, and a discrete compactness result lead to the convergence of
the energy min E¢(Ay) — min E(A) as £ — co. The observation is that the consistency error
lloe =D W(G¢ue)llLr () is a fixed part of the a posteriori error analysis and requires some control
on the dual variable D W(G, u,). This is enforced by the assumption W(A) < ¢,|A|P + ¢5 and so,
the analysis of this section excludes examples with the Lavrentiev gap [Lav27].

Theorem 4.2 (plain convergence). Given the input Ty, positive parameters 0 < 6,& < k + 1, and
0 <0 <1, let (Te)eeny (Ue)eew, = (Ugg, ug,)een,, and (0¢)cen, be the output of the adaptive
algorithm in Section 4.1. Any weak accumulation point of (J ¢ u¢)een, in V minimizes E in A
and limy_,o E¢(ue) = E(u). If W satisfies (1.1), then limy_,.o DW (G, ur) = o (strongly) in
L""(Q; M) and o¢ — o weakly in LP' (€; M).

Proof. The proof is motivated by [Car08a; MSV08; OP11] and is divided into four steps.

Step 1: Prove limy_,q, 17?’8(7} \ Tz+1) = 0. Let Q := int(UT¢ \ T¢+1). The mesh-size of any
refined simplex is reduced by a fixed factor 0 <y < 1, i.e., |K| < y|T| forany T € Tz, K € Tp41,
and K C T. (Notice v = 1/2 for the newest-vertex bisection.) Hence, [NV12, Lemma 9] implies
the convergence

fli_)rglo lhellL= (o, = 0. 4.9)

This, a Holder inequality, Ils, D I, u; = G, u¢, a triangle inequality, and the LP" stability of the
L? projections IT7 and Iy, from Lemma 2.7 prove

e (1 =T Fll o oy + 1BE(L=TIs,) DW(Gr o)l ) + 1HE (G e =D T p ) o ey
< el @ + Ihellw o, (IDW(Ge )l g + ID T uellLr).  (4.10)

The growth of D W from Lemma 2.11.b and the bound [|G, u¢||1r (@) < C4 from Theorem 3.1.d

imply [[DW(G, W)||Zp/(g) < ¢3C} + ¢olQ|. This, D Jpucllr@ < lluclle < 1 from (4.6),

(4.9), and (4.10) verify the limit

e (1 =T fll Lo ) + 1AE(1 =TI ) DW(G o)l 1o

(4.11)
+ by (Geue =D Jrue)llr@) — 0 asl — oo,
The L’ stability of the L? projection TTX for all F € 7 from Lemma 2.7 and (4.9) prove
1/n 1ok P’ 24 1/n
T =T8S 8N gy sup [T =0 (412)
TeTo\Tert FeF7 (T)NFe N TeTe\Ten

as { — oo. Since Jpve —up L Pr(Frp;R™) from (2.19), the LP stability of the L? projection
H;f_ from Lemma 2.7, the trace inequality from Lemma 2.5, and the approximation property of H;ﬂ
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from Lemma 2.8 show that

|| P+ =P T g
TeTe\Ter1 FeFe(T)NFe b

Y D AT N g = up = (5T e = upDIENS oy

TeT\Te+1 FeFe(T)NFep

s
< TP/ ID(T ¢ ue = up)1? p oy < NWellS8 o ID(T ce —up)ll?, - (4.13)
(T) (Q¢) (Q)
TeTe\Te+1

p
- MD”LP(F)

The bound [|D Jcusllrr@) < 1 from (4.6) and (4.9) imply that the right-hand side of (4.13)
vanishes as { — oco. This, (4.11), and (4.12) conclude limg_, e, n?’g("/} \ T¢41) = 0.

Step 2: Prove limy_,q ng’g = 0. Recall the set M, of marked simplices on level £ € Ny. Since
all marked simplices are refined, M, C ¢ \ 77,1 holds. Thus, the Dorfler marking in (4.3) provides
o < ndF(Me) < 2% (T¢ \ Teur) for all level € € Ny. This and limg—e ) ? (7 \ Tz+1) = 0

from Step 1 conclude limg_,o, ng’g =0.

Step 3: LEB. The duality DW(G,us) : Du < W (DW(G,ur)) + W(Du) ae. in Q leads to

/(D W(Grue) —oy) : Dudx < /(W*(D W(Geue)) + W(Du) — oy : Du) dx. (4.14)
Q Q
An integration by parts, o € Qp, and (3.19) imply
—‘/O'g:Dudx:—/H%f-udx— uD-O'guds—/ H(Iktfg-uds
Q Q o v
< —/f-udx—/ uD-O',guds—/ g-uds
Q Ip I'n
+ Coosc(f,Te) + Croosen(g, Fe.N)- (4.15)
The combination of (4.14)—(4.15) with (3.25) results in
LEB; = E¢(u¢) — Coosc(f, 7¢) — Cio osen(g, Fr.N)

(4.16)
+/(DW(Q€W) —oy):Dudx < E(u).
Q

Step 4: Prove limy_,o, E¢(uy) = E(u). Given ¢ € C*(Q; M), the approximation property of
the L? projection ITx, from Lemma 2.8 leads to

/(DW(@ ue) — o) : pdr = /(DW(gf ue) = o) - (1- Ty, g dx
Q Q

< g (or =DW(Geue))ll o @ elwrep (7

(4.17)

Since lim/—eo 17 *"**" < limy—0n?*® = 0 from Step 2, the right-hand side of (4.17) vanishes

as £ — oo. This, the density of C*(Q;M) in L?(Q; M), and the uniform boundedness of the
sequence (o =D W(G,ue))een, in LP' (Q; M) prove oy —DW (G, ur) — 0 weakly in LP' (Q; M)
as £ — oo, In particular,

}im ‘/(DW(QK ue) —oy¢) : Dudx =0. (4.18)
- Jo

For all level ¢ € Ny, the bound [[u¢|l¢ = |G uellrr (@) < C4 from Theorem 3.1.d, lim/_,o 17?"9 =0
from Step 2, and the discrete compactness result from Theorem 4.1 lead to a (not relabelled)
subsequence of (u¢)¢en, and v € A such that Jpu, — v weakly in V and G, u, — D v weakly
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in LP(Q;M) as £ — oo. Since the trace operator y : V — LP(9Q;R™) from [AF03, Theorem
5.36] is a bounded linear operator, I, us|ry, — v|ry weakly in LP (I'v; R™) as £ — oco. This and
the weak lower semi-continuity of the energy verifies

E() <timint | [ (W(Geuo) -1+ Teuoax- [ g Fourds
—00 Q FN
= lim inf [Eg(ug) - /Qf (1 -T15) T ug dx — /FN(I - H%’N)g ~Jeueds|.  (4.19)
The choice v = J ¢ ue in (3.17)=(3.18) and the bound ||[D ¢ u¢||1r (@) < 1 from (4.6) lead to

Ja-1) g [ (=115, g T urds < osel 1.0 + osex(e. T
Q I'n ”

This, limg_,« (0sc( f, 77)P" + osen (g, Fz.n)P) = 0 from (4.11)—~(4.12), and (4.18)—(4.19) confirm

E(u) < E(v) < 1il§n inf LEB, < E(u).

Hence, lim/_,o, LEB, = limy_,0o E¢(ur) = E(u).

Suppose that W satisfies (1.2), then lim—,o (0sc(f, T¢) + osen(g, Fe.N)) = 0, limg_oo E¢(ug) =
E(u), and 0y — DW(G,ur) — 0 weakly in LP' (€; M) imply that the right-hand side of (3.20)
vanishes for £ — co. This confirms limy_,., DW(G, uz) = o in L™/ (Q; M). O

Remark 4.3 (6 = € = 0). Although undisplayed numerical results in Chapter 6 suggest 772’0 -0
as { — oo in the numerical benchmarks of Chapter 6, the proof of Theorem 4.2 relies on a positive
power of the mesh size h, provided by positive parameters J, & > 0. In fact, the counterexample
from [OP11, Subsection 3.4] shows that the restriction ¢, € > 0 is necessary.

4.4 The Lavrentiev gap phenomenon

A particular challenge in the minimization of convex energies is the Lavrentiev gap phenomenon
inf E(A) < inf E(A N WH*(Q;R™)), which is equivalent to the failure of standard conforming
FEMs [CO10, Theorem 2.1] in the sense that a wrong solution is approximated.

Example 4.1 (modified Foss-Hrusa-Mizel benchmark [FHMO03; OP11]). Let Q = {x = (x1,x») €
R? : |x| < 1 and x, > 0} denote the half disk in R? with the boundary dQ = T'; UT, U T3 for

[} == [-1,0] x {0}, 1% := [0,1] x {0}, and '3 := {x = (x1,x2) € R?: x| = 1, x5 > O}

Define the energy density
1
W(A) = (JA]> - 2det A)* + 5|A|2 forall A € M = R**?,

the Dirichlet data u]()l ) = u]()z ) = 0, u](; ) = (cos(6/2),sin(0/2)) in polar coordinates, and the affine
set

(2)

B on a0 =ul) on T3} (4.20)

A = {vz(vl,vz)eV:vl=u]()l)onF1,vz=u D

of admissible functions in V := W!-2(Q; R?). The minimization of the energy functional
E(v) = / W(Dwv)dx amongstv e A 4.21)
Q

attains its minimum at u := r'/2(cos(6/2), sin(#/2)) in polar coordinates with min E (A) = E (u) =
7/4. The numerical results from [OP11] suggest that this modified Foss-Hrusa-Mizel benchmark
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exhibits the Lavrentiev gap inf E(A) < inf E(A N WH*(Q;R™)). Notice that W satisfies the
lower 2-growth |A|> < W(A), but not the upper 2-growth W(A) < |A|*>+ 1 and so, the convergence
analysis in Section 4.3 does not apply to the situation at hand. Additionally, the lack of an upper
growth (possibly) leads to a duality gap max E*(Q) < min E(A). Hence, the lower energy bound
in Theorem 3.6.a will not converge towards min E (A) in general.

As a remedy, the nonconforming Crouzeix-Raviart FEM in [Ort11; OP11] can overcome the
Lavrentiev gap under fairly general assumptions on W: W € C! (M) is convex with the lower growth
c1|Al? —c4 S W(A) forall A € Mand 1 < p < oo. The challenge for higher-order methods is the
design of a lower energy bound without the consistency error |lop = DW(Gp ue)ll L (q)- It has
to be expected that ||y — DW(G, ue)|| L’ () 1 unbounded as £ — oo because there is no upper
growth of W. For k = 0, the unstabilized HHO method can overcome the Lavrentiev gap because
the Crouzeix-Raviart FEM can.

Proposition 4.1 (lower energy bound for k = 0). For k = 0 and all level { € Ny, there exists a
positive constant Cszz such that any discrete minimizer ue of E¢ in Ay satisfies

E¢(ue) = Css(lhe fll Lo () — 0sen (8, Fe,N)) < min E(A).

Proof. Recall the identification V, =~ Po(77;R™) x CR!(77;R"™) from Remark 3.3 and let u(ci)

minimize E\ (f) in ﬂ(f) associated with the level £ € Ny. The piecewise gradient Dy, uélg coincides

with G, ve for v = (H0 ugg, (g)) € Ay and so, E,(ve) = E(f)( ([)) This is restricted to the

lowest order k = 0, because for k > 1, Hﬁ Gerve =Dpwu (CR), but G, ve # Dpw uci in general. A
straight-forward modification of the proof of [OP11, Lemma 4] shows

EL @) = C3(lhe fllr o) — osen(g, Fon)) < min E(A) (4.22)

for a posmve constant C33 > 0. Notice that the nonconforming interpolation operator I(g) :
V — CRY(77;R™) in the proof of [OP11, Lemma 4] does not provide the L> orthogonahty
Il(\fg v—v L Po(T7;R™), but (Il(\fc) v—v)|F L Po(F;R™) forall F € Fy n and v € V. Thus, there is
no volume data oscillation osc( f, 7¢), but Neumann boundary data oscillation oscn (g, 7 n) arises
in (4.22). The combination of (4.22) with E¢(u¢) < E¢(ve) = Ey ) (u(g)) concludes the proof. O

The discrete compactness result from Theorem 4.1, the LEB in Proposition 4.1, and the
arguments in the proof of Theorem 4.2 confirm limy_,. E¢(ue) = min E(A) for the output
(u¢)een, of the adaptive algorithm in Section 4.1 with the refinement indicator

ng (1) = T1PMIGeue =D T uellly ooy + 717 Nl

O R SR T P | | LD SN [C I 5P L
FeFe(T)NFe.p FeFe(T)NFe N

For k > 0, there is no theoretical verification of the convergence lim;_,o, E¢(tt¢) = min E (A),
but the numerical results from Section 6.5 provide empirical evidence that the unstabilized HHO
method can overcome the Lavrentiev gap.



Chapter 5

The stabilized HHO method

The reconstruction of the gradient in the discrete space Xy, = Pr (7 ; M) of piecewise polynomials
of order at most k give rise to the stabilized HHO method in this chapter. The lack of the norm
equivalence in Lemma 3.2.a leads to the introduction of an additional penalizations : V, XV, — R
from (2.18) of the volume variable vs and the face variable vg#. The first part of this chapter
utilizes the results from Chapter 3 to derive error estimates on triangulations into simplices, while
the second part outlines an error analysis on general polyhedral meshes.

5.1 Discrete minimization problem

Suppose that £; = Pr(7;M). Recall the discrete ansatz space Vi p = Pr(7T;R™) X Pr(F \
9p; R™) from Subsection 2.5.1, the affine space A; = lup + V;, p of admissible discrete func-
tions, and the gradient reconstruction G from (2.17) in the space X; = Pr(7 ;M) of piecewise
polynomials. The discrete problem minimizes

En(vn) = /g (W(G vn) — f - vp) dx — /F g - vy ds +s(unvn) /p 5.1)

amongst v, = (vg, vy) € Ap with the stabilization s : Vj, X V), — R from (2.18). In the class of
degenerate convex minimization problem with (1.2), the monotonicity of D W leads to a unique
discrete stress o, = H’;_D W(G up) € Pr(7 ;M) for any discrete minimizer u;, € Ay,.

Theorem 5.1 (uniqueness of o). The minimal discrete energy min Ey(Ay,) is attained. Any
discrete minimizer uy, and the discrete stress o, = HkTD W(G uy,) satisfy (a)—(c) with positive
constants Cz4 and Css.

(a) Any v, = (v, vg) € Vy p satisfies the discrete Euler-Lagrange equations
/a’h:gvhdx+s(uh;vh):/f-v¢dx+/ g - vgds. (5.2)
Q Q I'n

(b) The discrete stress oy, is unique in the sense that the definition of oy, does not depend on
the choice of the (possibly non-unique) discrete minimizer uy,.

(©) (IG unllyp gy +sunsun))''? < Csa and ||onl i gy < Css.

Any choice v, = (vs,0) € Vj, with v& € Pi(7;R™) and the L? orthogonality vy L
Pi—1(7;R™) in the definition of the gradient reconstruction G from (2.17) verifies that the kernel
of G is not trivial. In particular, the gradient reconstruction in P (7 ; M) is not stable in the sense
that the norm equivalence from Lemma 3.2.a fails. The introduction of an additional penalization
s in (5.1) guarantees the coercivity of Ej in Ay. The properties of G and s are summarized in
Lemma 5.2 and used in the proof of Theorem 5.1.

55
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Lemma 5.2 (stabilization). Any v, € V, and v € V satisfy

p

@ T s(vpson)'/P,

(a) (norm equivalence) ||vp|ln = (|G vnl|

(b) (commutativity) HkTDv =Gl
There exist positive constants Cyqr and Cqy depending only on Q, the shape regularity of T, k, and
p such that any vy, = (v, vF) € Vy.p satisfies

(c) (discrete Friedrichs) ||vrllLr (@) < Car(IG Uh||IZp(Q) + S(Uh;vh))l/l’,

(d) (discrete trace) ||vFllLr (ry) < Can (G Uh||€p(g) +s(vp;op) VP

Proof of Lemma 5.2. For p = 2, (a)-(b) are well known [DPEL14; DPE15] and is extended to the
case 1 < p < oo in [DPD17a, Lemma 5.2]. The discrete Friedrichs and discrete trace inequalities
in Lemma 5.2.c—d for all vj, € Vj, p follow from (a) and |[vr||rr (@) + [lvFllLe (ry) < llVnlln in the
proof of Lemma 3.2. |

Proof of Theorem 5.1. A triangle inequality and the application of the Jensen inequality from
Lemma 2.3 to the convex function | e |” in R proves
I1G (un = Tup)|7 ) +S(un = Tup;up = Tup)
< 2PN (IG unlly ) + G Lunll}, g +s(un;un) +s(Lup; Lup)).

This, the two-sided p-growth of W from (1.1), the discrete Friedrichs inequality, and the discrete
trace inequality from Lemma 5.2 verify the boundedness of £}, in Ay, as in the proof of Theorem 3.1.
In particular, any vy, € Ay, satisfies

En(vn) 2 cillG vall}, g +5(vns va) /p = cal @l = 27 (Carll fll v (0 + Canllgll o )
X (1G wnll} p ) + 1G Tunlly ) + (s un) +s(Tup; Lup))/? = Cs

with Cg from (3.4). (Notice that the exact value of Cg may differ from that in (3.4).) The direct
method in the calculus of variations proves the existence of a discrete minimizer. The arguments
from the proof of Theorem 3.1 apply verbatim to (a) and (c). For instance, the constant C34 from
Theorem 5.1.c is the positive root of the function

min{cy, 1/p}x? = 4@l = 277 (Carll fll Lo ey + Callgl Lo 1)

X ( +1G Tunll} , ) +3(Tup;1up))'/? = Ej(lup) = Cs inx >0

and Cj; = ||kar||i;(Lp'(g;M))(c8C3€1 + c9|Q[) with the operator norm ||H’fr||£(L,,f(Q;M)). Suppose

that vy, = (vs, v#) and wy, = (Wwg, we) minimize Ej, in Aj,. The choice A = G vy, and B = G wy,
in (1.2) leads to

IDW(G vi) ~DW(Gwill o) < c3(1+11G vnllfe ey + 16 Wallye o)

x /Q (W(Gwn) - W(Gon) ~DW(Gu): (Gw - Gundr.
The discrete Euler-Lagrange equations (5.2) show
- [DWG ) : Gwi-Guas
= —/Qf - (wg —vg) dx — /F g - (we—vg) ds+s(vn; wh — vp). (5.4
Holder and Young inequalities on the right—hanstide of (2.18) lead to
|s(urs wi)| < s(unsvn)/p" +s(wnswn)/p- (5.5)

This and (5.3)—(5.4) prove that the integral on the right-hand side of (5.3) is equal to E,(wp) —
Ep(vp) = 0. Thus, DW(Gvp) = DW(Gwp) ae. in Q and TS DW(G vp) = TEDW(G wy).
This proves (b). O
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5.2 A priori error analysis

In contrast to the a priori analysis in Section 3.2, the discrete Euler-Lagrange equations (5.2) does
not lead to a discrete analogue of Q due to the lack of a Fortin-typed interpolation operator I o
such that Iz o satisfies (5.2). The naive choice Qp = {t, € P (T ;M) NZ : divt, + Hf;:lf =
Oand v = H’;N gonI'N} does not reflect the correct data oscillation in the discrete Euler-
Lagrange equations (5.2). This approach leads to |4 (1 — H,kr‘l) fllLr () in the error estimates,
which is not a higher-order term even if the solution u# and the right-hand side f are smooth.
A remedy is the comparison to the unstabilized HHO method from Chapter 3 but is restricted
to simplicial meshes. The stabilization s arises in the error estimates of this chapter. Recall
Qp = {t, € RT( (7 M) : divt, + Hka =0inQ and v = H%g on I'y} from Theorem 3.1.c
and suppose that u € W/ /=1 (Q; R™).

Theorem 5.3 (a priori). Let o maximizes E* in Q. Any discrete minimizer up, of Ey in Ay and
the (unique) discrete stress oy, = H,krD W(G up) € Pr(T ;M) satisfy (a)—(b).

(a) max {C5lle = onl} 0 gy o1l = DW(Gun) s )} +SCunsun) [ 2p")

< E*(0) - E*(om) + Coose(f,T) + Cro osen(g, Fx) + Csll (1 =TI D[, @

+ Cao max {[|(1 = ) omll}, - 11 =) omall o} +277" s(Luz1u)/p =: RHS.

(b) |E@) = Enun)] < max {E(u) — E*(own) + Caoll (1 = )wll?

r’ ,

—RHS + Cy osc(f, ) + Cro osen(g, Tn) + Cssll(1 - ) Dull}, @
k -1 .

+ I =TI omlly e g /7 + 277" s(TuzTu)/p}.

Recall the gradient reconstruction operator Grr in the space of piecewise Raviart-Thomas
finite element functions RTiW(T; M) > X, = Pr(7 ;M) from (2.17). The proof of Theorem 5.3
requires a link between G and Gyt provided in the subsequent lemma.

Lemma 5.4. Any vy, € V), satisfies ||Grrvn — G vhlllzp(g) < Cyo s(vp; vp) with a positive constant
Cyo that depends only on the dimension n, the shape regularity of T, k, and p.

Proof of Lemma 5.4. Given vy, = (vg, vg) € Vi, set P oy, = ve+ (1 — H’(;_) Rup € Pry1 (T;R™)
with the potential reconstruction operator R from (2.15)—(2.16). The definition of G in (2.17)
with ¥ = RTZW (7°; M) and an integration by parts confirm, for any 75, € RTiW(T ; M),

/(QRth—DpWth) :Thdxzf(th—UT)-divaThdx
Q Q

(5.6)

+ (vr = (Pop)lr) - Thlrvr|F ds.

TeT Fer(T) Y F
Since 7 |rvr € Pr(F(T);R™), the term vr — (P vy)|r on the right-hand side of (5.6) can be

replaced by St F vp, = H;‘: (v = (Puop)|r) forany F € F(T) and T € 7. A Holder inequality and
the discrete trace inequality from Lemma 2.6 lead to

_l 4
/ST,F on - tnlrvrle ds < 0P Sep vnllLe ) lITnllLe (7)-
F

This, the L? orthogonality P v, — v L Px(7;R™) = div RTiW(‘T; M), (5.6), and a Cauchy
inequality imply, for all 1, € RTiW(T; M),

/(QRT vp = Dpw P vp) : T dx < s(ons o)l tall e (q)- (5.7)
Q



5.2. A PRIORI ERROR ANALYSIS 58

Since Grr vp — Dpw P vy € RTZW (77; M), this proves

IGrr vh — Dpw P vnllLr @) < s(vn;vp) /7. (5.8)

The choice 7, € X, = P (7 ;M) in (5.6)~(5.7) verifies ||G v, — Dpw P vpllLr (@) < s(vn; o) YP.
This, (5.8), and the triangle inequality ||Grrvh — G UnllLr (@ < l|Grr vh — Dpw P vnllLr (@) +
|G vi — Dpw P vpllLr (@) conclude the proof. O

Proof of Theorem 5.3.a. The choice ¢ '= Guy and o '= Du in (3.10) lead to

C3_71 ”0- -D W(g uh)HZr/t(Q)

(5.9
< /Q<W(Du) “W(Gun) ~DW(Gun) : (Du - Gup))d

for the constant C3; = max{3, 3'/" }¢3(|Q|+ cr +C§’4)’/t'. The arguments from Step 1 of the proof
of Theorem 3.3.a apply to the right-hand side of (5.9) with the modified discrete Euler-Lagrange

equations that lead to

/a'h :(Du-Guy)dx
Q

=/H],;-f-(u—ufr)dx+ Z /Hll,‘,g-(u—up)ds—s(uh;lu—uh).
Q Fern F

This, |s(up;Tu)| < s(up;up)/(2p") +2P~Vs(1u;1u)/p, and the remaining arguments from Step 1
in the proof of Theorem 3.3 verify

Cilc -DW(G Ul e g + SCunsun) [ (2p") < E*(0) = En(un) + Coose(f, T)

5.10
+ Cyposen(g, FN) +/(o-h -DW(Gup)): (1 —H';‘.)Dudx+2p_1 s(Tu;Tu)/p 10
Q

It remains to derive a lower bound of the minimal discrete energy Ej(up). Let o € Qp be the
unique maximizer of E* in @, and let o € L”(Q; M) be a measurable selection of dW* (o) with
llollLr @) < 1 from Step 2 of the proof of Theorem 3.3.a. The choice 7 := DW(G uy), ¢ = owm,
and & := Guy in (3.9) confirms

Cz?]l ||O-M -D W(g Mh)||2r/t(g)
(5.11)
< /Q (W* (o) = W(DW(G un)) - G un : (o — DW(G up))) d.

for a constant C4; > max{3,3""}(|Q| + ||Q||€1)(Q) +CP)!"/"". Notice that any 7, € Ty is a
feasible test function in the definition of Ggr from (2.17) with respect to RTzW(T ; M) because

Xp =Pr(T ;M) C RTiW(T; M). In particular, this implies the approximation property
M5 Grron = Gup,  forall vy, € V. (5.12)

This and (5.11) prove

Cillow = DW(G Ul gy < [ (W (o) = W (DW(G )
@ (5.13)
+/Q((1 ~T1%) Grrun : (1 =) om = Grrun : om + G uyp, = o) dx.
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The definition of Gry in (2.17) and oy € Q) C RTZW(T; M) imply

L(W*(m)—gmuh:aM)dx=/Q<W*<am—f-w)dx—/FDuD-chuds—/rNg-ufds

=—E*(0'M)—‘/f-u7~dx—'/ g -ugds. (5.14)
Q I'n
Lemma 5.4, a Holder, and a Young inequality prove
J0=1) G s (1= )ondx < stunian) /o + Call(1 =)ol ) (515
Q

with the positive constant Cyp = Cf(; /p’. The combination of (5.13)—(5.15) results in

—E*(ow) + Caal| (1 = TTE) o |/

Cllom = DW(G up)ll @

Zr/t(g) <
(5.16)
—/Q(W*(DW(guh»—guh:<rh+f-u¢>dx—/r g - ugds +s(un: un) /.

The duality DW(G up) : Gup = W(Gup) + W (DW(G uy)) a.e. in Q verifies
- [V OWGu) -G+ fur)de= [ gurds st /p = Entu).

This and (5.16) lead to

Ciilllom =DW(G un)ll} () < Enlun) = E*(om) + Caol(1 = Ip)omlly, - (517

A Holder inequality in the sum of (5.10) and (5.17) result in

C’j_71 ||O- -D W(g uh)ler/r(Q) + C4Tll ”(TM -D W(g uh)H}I:r/t Q + S(uh; Mh)/(zpl)

< () = B (o) + Coose(,7) + Croosen (6,730 + Coll L= ol g

+llow =DW(G up)|| e (@ (1 =T Dl priry @y + 2P~ s(Lus Tu) [ p.

The L"/* stability of the L* projection HkT from Lemma 2.7 and a triangle inequality lead to

(1 =TI5) DW(G up)ll e ()
< |lom —DW(G Mh)“Lr/t(Q) +[(1 - Hrkr)O'M”Lr/t(Q) + ||HI(;—0'M - O'h”Lr/t(Q)
< (L+ T g (@amy) lom = DWAG un) | e gy + 111 =TI omll e (- (5.19)

This and a Young inequality on the right-hand side of (5.18) confirm

C3 Nl =DW(Gunl}, g + (' Cat) ™ llows = DW(G i)}, g+ S(utns un) /(2p")
< E*(0) = E*(ow) + Co 0sc(f, T) + Cig osex (g, Fx) + Can | (1 = &) o |7

LP'(Q)
/7 +Casll (1 -T17) Dull

+(1 - Hlf;')‘f” rLr/(H)(Q) +2P Y s(Tu;Tu)/p

-
Lrit
with the constant C3g = (1 + ||HkT||L(Lr/t(Q;M)))r’Cji_l/r'. This and the arguments from Step 3
of the proof of Theorem 3.3.a conclude the proof of (a) with the constants C3g = max{1/r,Cs}
and Cs6 = 2r-1 max {C37, I"C41 (1 + ||H]7<-||£(Lr/t(Q;M)))r}.

Proof,ofTheorem 5.3.b. Recall the bound E(u) — Ep(up) < E(u) — E*(om) + Cao||(1 —
HkT)O'M”i,,/ @ from (5.17). This, a Young inequality on the right-hand side of (5.10), and (5.19)
conclude the proof of (b). O
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The a priori error estimates from Theorem 5.3 allow for the convergence rates

k+1
llo = onll o gy + llo = DW(G un) | o ) < rime'”

for smooth functions o and u in all examples of Section 1.2.

Theorem 5.5 (convergence rates). Suppose that o € W“P'(Q;M) N WKL.P' (7 M) and u €
ANW2r (T R™) for a minimizer u of E in A, then any discrete minimizer uy, of Ey, in Ay, and
the discrete stress oy, = H],;.D W(G up) € Pr(T ;M) satisfy

llo =DW(G un)ll}

r
Lp’(g) + ||O— - O-h“

Lp’(Q) + |E(I/l) - Eh(u/’l)l
k+ k+1) min{p,r’ in{p,r’ 2k+1
S Moo + i ™ G+ bl ol (g Ll e -
The a priori estimate from Theorem 5.3.a involves the stabilization s(Iu;1u) with the conver-
gence rates below.

Lemma 5.6 (interpolation error). Any v € V satisfies, for all T € T,

D I +sr(Iv:Iv) < inf D(v — L
” U= g v“LP(T) ST( v ’U) (,Ok+|€P1]f41.|(T;Rm) ” (U on"'l)”LP(T)

In particular, ||[Dv — G1v||Lr (@) + s(Iv;Tv)!/P < hk+l [Vl () ifv EVN WP (T, R™).

max

Proof of Lemma 5.6. The arguments from the proof of [EZ20, Lemma 3.2] (for the case p = 2)
apply, up to some standard scaling argument, to the situation at hand and lead to

”Dpw(v R v)lle (T) + ST(IU;IU) (/Jk+1€P1kIJ1rl(T Rm) ” (U Q0k+])”Lp(T) (520)
Since H;Dv = (G1v)|r and D iy € Pr(T;M), the LP stability of the L? projection H;i
from Lemma 2.7 implies [|[Dv — G1v|lrr (1) < ID(v — @is1)llze(r) forall T € 7 and @iy €
Pi+1(T;R™). This and (5.20) conclude the proof. |

Proof of Theorem 5.5. The parameters p, r, s in the examples of Section 1.2 and the choice ¢ :=
1+s/pleadtor/t = p’ and r/(r —t) = p in Theorem 5.3. The arguments from the proof of
Theorem 3.5 and Lemma 5.6 confirm

E*(0) = E*(om) +0sc(f, T) +osen(g, Fx) + | (1 =TI Dull7, ) +s(u; Tu)

(k+l)mm{p r’}l |mm{p r'}

k+ 2k+
< h aX|O-|W’**1 P (T) + h WA, (7) + h max |0'|Wk+l p’ 7')|u|Wk+l P(T)-

It remains to bound min{||(1 — )0'M|| (@) (1 = )a'M||p }. The key observation in

LP' (Q)
the proof of Theorem 5.3.a is that o can be replaced by the Fortm 1nterpolat10n Ir o of o from
(2.1)=(2.2) under the assumption oo € WP (Q;M). The LP stability of the L? projection Hl‘r
from Lemma 2.7 and a triangle inequality imply ||(1 — HkT) ol g S eo - HkTa'lle/ @ <

(1 =TIl o (q) + [1(1 - Hrkr)o'”Lp’(Q) s hl’]i’l-;}(|a-|wk+1,1),(7")' o

5.3 A posteriori error analysis

The a posteriori error analysis in this section departs from a post-processing orr € Q@ of the
discrete stress o,. The construction of orr is closely related to the equilibrated tractions principle
[AEP18, Lemma 6] and is basqgl on a rewritting of the stabilization s in [AEP18, Eqn. (28)]. Fix
T € 7 and define the operator St : Px(F(T);R™) — P (¥ (T);R™) by

St = H’;:(T)(go — (1 =TI5) R7(0, ) € PR (F(T);R™) forall p € Pr(F(T);R™).
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The linearity of the local potential reconstruction Ry in (2.15)—(2.16) verifies the identity Rt wy, —
Rr(0,wer)y — wrlor) = Rr(wr,wrlsr) = wr for all w = (wr,we(r)) € Vh(T) Hence,
(1- H?) Rrwp = (1- H;f) R1(0,we(r) — wrlar). This and the adjoint operator ST of St give
rise to the alternative formulation of the local stabilization in 7 € 7~ with

st(unson) = ) (5.21)

FeF(T)
[ St b 1S = rlon) P Sty = urlor)e - (or = vrle) d

for any u, = (ug,ug), vy = (v, vg) € Vj and the mesh size function he1)y € Po(F(T)) with
her)|F = hp for F € ¥(T). Suppose that u;, minimizes Ej, in Ay, then (5.21) motivates the
definition of the piecewise Raviart-Thomas finite element function o, € RTiW (7;M) with the
weights HZ}‘IE;, =0 and

(onlrvr)|F = ST(chm ¢(T)|ST(MT(T) —urlor)|’” ST(”?—'(T) —urlsr))|F (5.22)

on F € F(T) forall T € 7. The post-processing oRr = 0 + 0, € RTiW(T; M) of the discrete
stress satisfies orr € @y, and enables a guaranteed lower energy bound.

Theorem 5.7 (lower energy bound). The post-processing orr = o + o, With oy, € RTpvv (7, M)
defined in (5.22) satisfies ||owr|l 1r (@) < 0wl Lo () + s(up;up)''P < Cp + C35 and

/o-RT :Grrupdx = / f - vgdx +/ g -vgds  forall vy, = (v, vg) € Vi p. (5.23)
Q Q I'n

In particular, ot € Qp and any positive constant C43 > max{3,3"" }e3((1 + ¢13)|Q| + Cf? +

C12||0'RT”Z, (Q))t/t satisfy

Ciillo - ORTl} /e () + E"(0rT) = Co0sc(f, T) = Croosen(g, Fn) < min E(A).  (5.24)

Proof. The definition of the gradient reconstruction Ggrt in (2.17) with X, = RTiW(T ;M) and the
L? orthogonality o, L Dpw v from the canonical degrees of freedom of 7, in (5.22) prove

/E'hZQRTUth
Q

—/Dpva U'hdx"'Z /(UF—UT) (orlrvr)|F ds = s(up; vy)

TeT FeF(T)

for any v, = (vg, vy) € V. The sum of this and the discrete Euler-Lagrange equations (5.2), and
HkT GrrVh = G vy, from (5.12) imply (5.23). It is observed in Remark 3.1 that, if ogrr satisfies
(5.23), orr € 2, divogy + 115 f = 0in Q, and ogrv = H()ktNg on I'y, hence orr € Qp,. The proof
of Theorem 3.6.a points out that any ort € Qp, leads to the LEB in (5.24). It remains to prove
llowrllpp (@) < 1 for a positive constant independent of the mesh size. Given any T € 7, the
equivalence of norms in finite dimensional spaces and the choice vy, = (0, ve(7)) € Vi (T) with
vr = heTTE (1@ lrvn) [F|P2@alrvr) F) € Pe(F;R™) for F e F(T) in (5.21) prove

Nonll Loy lorllLe (1) = ||(Th||Lz(T) Z /UF (@nlrvr)|rds = sp(upsvn).  (5.25)
FeF(T)

The weights in (5.22) correspond to the canonical degrees of freedom of Raviart-Thomas finite
element functions [BBF13, Lemma 2.3.4]. In particular, the choice g := p in (2.3) verifies

st(onion) = D hell@alrvn) el oy ~ 1T, - (5.26)
FeF(T)
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The hidden constant in ~ depend only on the shape regularity of 7, the dimension n, and the param-
eters k, p. A Holder inequality implies s7(up; vn) < sp(up;un)'? sy(vp;vp)'/P. This, (5.25)—
(5.26), and s(up;up) < C§’4 from Theorem 5.1.c confirm [0 || 1p () < s(up;up)'? < C§4_1.
This, a triangle inequality ||orrll L (o) < llonllLr () + ||5'h||L,,f<Q), and the bound ||o | pp' () <
Cs3s from Theorem 5.1.c conclude |logrrl| v (q) < 1. O

The lower energy bound from (5.24) allows for the following a posteriori error control.

Theorem 5.8 (a posteriori). Suppose that up € W"/"=0(Q;R™), then any discrete minimizer
up of Ep in Ay, the (unique) discrete stress oy, = H’;.D W(G up) € Pr(T:;M), and any v €

up + W];’r/(r_t) (Q; R™) satisfy

max{cz:}‘l ”O- - O-RT“Zr/t(Q) + 614_.41 ”O- -D W(g uh)||2r/t Q) C;sl ||O- - O-h||2r/t (Q)}

< En(up) — E*(owr) + s(upsup)/p’ + Cagll(1 -TI5) DW(G un)llpr (g

+Coosc(f, T) + Cioosen(g, 7n) + Carl|G up = Dll7, @
—/(I—H,kr)f-vdx— (I—H%)gmds—s(uh;lv) =: RHS.
Q I'n

Proof. The choice 7 == DW(Guy), ¢ = o, & = Guyp, and o = Du in (3.9), and the L?
orthogonality G uy, L oy, — D W(G uy,) verify, for all v € up + Wé’r/(r_’) (Q;R™),

Cillo =DW(Gun)lly, 1 ) < /Q (W* (o) =W (DW(G un)) = Gup : (o = 03)) dx
- [ - W OWGm) &
Q (5.27)
—/Q((Quh -Dv):(oc—-0p)—-Dwv: (0 —o0p))dx.
with the constant C3; from (5.10). An integration by parts proves

—/Dv:o-dxz—/f-vdx—(m/,uD)rD—/ g -vds. (5.28)
Q Q I'n

The discrete Euler-Lagrange equations (5.2) with the test function v, = Iv — uy, € Vi p and the
commutativity IT& Dv = G 1v from Lemma 3.2.b imply

—/Q(Dv—guh):ahdx:‘/g(glv—guh):o-hdx (5.29)
= /QH’;—f-(’u—urr)dx+/F H];_.Ng (v —ug)ds —s(up; Tv —up).
N
The combination of (5.28)—(5.29) with the definition of E* in (2.11) leads to
‘/Q(W*(O')—DUI(O’—O’h)—guh:O'h)dx
=—E*(0')—/(1—H(kr)f-vdx—/ (I—H%g)-vds
Q I'n

—/f-w;—dx—/ g ugds —s(up;Iv—up)
Q I'n

This, the duality DW(Guy) : Gup — W (DW(Gup)) = W(G uy) ae. in Q, and the identity
(DW(Gun), G Mh)Lz(Q) =(on, G uh)Lz(Q) verify

/(W*(U) —~WDW(Gup) -Dv: (0 —o0op))dx = Ep(up) — E*(0)

@ (5.30)

+s(upsup)/p’ —s(up;Iv) — /(1 —HkT)f ~vdx —/ (1 —H’(}N)g -vds.
Q I'v
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The combination of (5.27) with (5.30) and a Holder inequality lead to
Cillc -DW(G U)oy < Enun) = E(0) + [lo = onll prie @ IG un =D vl prio-n (g

+s(uh;uh)/p’—/(1—H(kr)f-vdx—‘/ (I—kaN)g-vds—s(uh;Iv). (5.31)
Q I'n

The sum of (5.31) and (5.24), the triangle inequality |0 — o || .r/e () < ([0 =D WI(G un)llrir () +
[(1- H(kr) DW(G un)|| /1 (q)- and a Young inequality conclude

Cisllo = orelly, i g, + Crillo =DW(G un)ll7,, ) < RHS (5.32)

with the constants Cyy := r'C37, Cas = (rC37)7}, Cy7 = 2C3r;‘1/r’. This and the application of
the Jensen inequality from Lemma 2.3 to | e |” prove

lo = oully o) < 27 llr =DWGunlly, ) + 11 = Y DW(G w1 )

< 21 (Cyq + 1/C46)RHS = C4sRHS. O

r
Lr/t(Q)

5.4 Error analysis for polyhedral meshes

The stabilized HHO method in Section 5.1 allows for general mesh design with (possibly) hanging
nodes. The advantages over simplicial meshes are faster refining algorithm and accurate approx-
imation of complex geometries. This section outlines the error analysis for a class of polyhedral
meshes below, cf., e.g., [DPE12; DPEL14; DPE15]. Let 7 be a finite collection of nonempty
closed polyhedra (called cells) such that |[K N T| = O for all distinct cells K # T and Q= UresT.
A side F of the mesh 7 is a closed connected hyperplanar subset of Q such that either (a) there
exist Ty, T- € 7 with F c T, N T_ (inner side) or there exists T, € 7 with F = T, N Q (boundary
side). The notations F (T), F, ¥ (Q), b, and F also apply to polyhedral meshes. Assume that 7~
admits a regular simplicial subtriangulation T with the shape regularity o from Subsection 2.1.3
and, for each triangle K € T, the unique cell T € 7 with K C T satisfies ohr < hk.

Throughout this section, assume that (p — 1)r = p + 5. It is observed in Remark 2.3 that
(p — Dr < p +s. Equality holds if the growth on both sides of the convexity control (1.2) are
equal. This assumption on the parameters p, r, s holds in all examples of [CM02; Kne08], and in
particular, in all examples of Section 1.2.

Theorem 5.9 (a priori). Any discrete minimizer uy of Ey in Ay and the discrete stress oy, =
N5 DW(G up) satisfy

lo = DW(G )l g + 1 = nlly ) + 1E () = EnCaan)| + (s )

S N =T [l (g +0se(f, T) +osen(g, ) + (1 =TI Dully ) +s(Tu; Tuw).

The proof follows the a priori analysis of the Crouzeix-Raviart FEM in [CL15] and is similar
to the proof of standard conforming FEMs [CP97].

Proof. The conforming companion J : Vj, — V can be constructed on polyhedral meshes as
discussed in [EZ20, Section 5]. The constant in the stability of J from Lemma 2.13 additionally
depends on 0. The choice ¢ := Du, 0 '= Gup,andt == 1+ s/p in (3.11) leads to

Csillo =DW(G un)ly, g < /Q(o— ~DW(Gup)) : (Du— G uy) dx. (5.33)

The arguments in (3.56)—(3.62) can be utilized to estimate the right-hand side of (5.33). The
only modification required is the application of the discrete Euler-Lagrange equations (5.2) to
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(on, G(1u — up))2(q) on the left-hand side of (3.58) with

[on G -tac=- [ - gu-wac- [ ¢ T0u-us)ds=suniw, - 10
Q Q I'n
+/(1 —H',})f-j(lu—uh)dx+/ (1 —Hkﬁ)g-j(lu—uh)dx.
Q I'n
This, (3.57), (3.59)—(3.61), a Holder inequality, and (5.5) confirm

/Q(cr —op) - Du—Gup) dx +s(upiup)/p’ < 11 =T |l L o I(1 =TT DullLr q)
+(]](1 - HkT)a'HL,,I(Q) +osc(f,7T) +osen(g, FN)IIDu — Gupllir (@ +s(Tu;1u).  (5.34)

The combination of (5.34) with (3.56) leads to

lo =DW(G unll} g, +(utniun)
< (11 =TI o[l Lo (g +0se(f- T) +osen(g. T ID u = G upllLr () (5.35)
+ (11 =TI [l Lo (g + llo =DW(G up) |l Lo (@)l (1 = T5) D el Lo + s(Tuz Tur).

Since there is no control over the primal variable, [|[Du — G up||r» () can only be bounded by
IDu—-Gupllrr@ < IDullLr@ + G unllLr@ < Ci+ Cs4. This, a Young inequality on the
right-hand side of (5.35), and ||o = oull v () S lo =DW(G un)llpr g + II(1 - Hf‘r)o'IIL,,f(Q)
from (3.68) conclude

llo =DW(G un)lly g+l =l ) +(utniun) (5.36)
S (=T [l g +0se(f, T) +osen(g, ) + (1 =TI Dully ) +s(Lu; L),

The remaining part of this proof is devoted to the a priori estimate of |E («)—Ej, (up)| in Theorem 5.9.
The commutativity H,kr Du = G 1ufrom Lemma 5.2.b, the discrete Euler-Lagrange equations (5.2),
and (3.19) imply

- [ @un=Duw - w=urndx= [ g u-up)ds
=—‘/(1—H’7<-)f-udx—‘/ (1—H%)g-uds+s(uh;uh—lu)
Q I'n
< Coosc(f,T)+ Ciposen(g, Fn) + s(up;up —Lu). (5.37)

The convexity of the energy density W implies 0 < W(G uy) —W(Du) — o : (Gup —Du) ae.in
Q. This, (5.37), and |s(up; Tup)| < s(upsup)/p’ +s(Lu;Lu)/p verify

E(M)—Eh(uh)S—/Q(Ui(Quh—DM)Jrf‘(M—MT))dX— g g (u—ug)ds—s(up;up)/p

< /(O'h—a') :(Gup —Du)dx+Cyosc(f,7)
Q

+ Ciposen(g, FN) +2s(upsup)/p” +s(LusTu)/p.

(5.38)

The combination of (5.38) with (5.34), a Young inequality, and |[Du — G upl|rr () < 1 lead to

E(u) - En(un) < (1= Tl o)
+osc(f,T)+osen(g, ) +||(1 - HkT) DullrL/p(Q) +S(up;up) +s(Tu;lu). (5.39)
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On the otherhand, 0 < W(Du)-W(G up)-DW(G uy) : (Du—Guy) a.e. in Q from the convexity
of W, (5.37), a Holder inequality, and the L? orthogonality o, — DW(G uy) L Py (7 ; M) prove

Ep(upn) — E(u)

—/Q(Dwguh):(Du—guh>+f-<u¢—u>>dx— gty = ds+stunsun) Iy

IA

IA

lon =DW(G un)ll L (oIl (1 = %) Dullrr )
+Cyosc(f,T)+Cioosen(g, FN) — s(unsup)/p’ + s(up; Lu)

for all vy, € Ayp. This, (5.39), (5.36), and (3.63) conclude the proof. ]

The a priori error estimate from Theorem 5.9 leads to the convergence rates

k+1
max

llo =DW(G un)ll +[lo — ol +|E(u) = Ep(up)| +s(upsun) < h

r r
LP'(Q) LP'(Q)

for sufficiently smooth oo € W**L.P"(Q; M) and u € A N W*+2P (Q;R™). The proof can follow
the lines of the proof of Theorem 3.5 and of Theorem 5.5; further details are therefore omitted.

Theorem 5.10 (a posteriori). Any discrete minimizer up of Ep in Ay and the discrete stress
op = Hf‘rD W(G up,) satisfy

o = omll +[lo =DW(G un)ll +|E(u) — Ep(un)l

r r
LP'(Q) LP'(Q)

< [ Wi [ wOWEum)
Q Q
+0se(f, T) + osen(g, ) +min |G un = D vl g +S(unsun)7'.

Proof. Let p € LP(Q;M) be a measurable selection of dW*(oy,) from Lemma 3.4.a with o €
OW*(op) a.e. in Q. It is, observed in the proof of Theorem 3.6.a that o is bounded in the L? norm,
ie. ||Q||IL7P(Q) < 012C§5 + ¢13|Q| with C35 from Theorem 5.1.c. The choice 7 = o, ¢ = oy,
&:=Du,andt=1+s/pin (3.9) leads to

Ciglllo- - O—h”;,p’(g) < ‘/Q(W*(O-h) - W*(O') —Du: (O'h - 0')) dx (5.40)

with Cusg = max{3,3"}c3((1 + ¢13)|Q[ + C7 + clzcg”s')f/f'. On the other hand, the choice
T :=DW(Gup), ¢ = o, & = Guy, and o = Du in (3.9), and the L? orthogonality G uj, L
on — DW(G up) verify
Cillo -DW(G Mh)”er’(Q) < /(W*(o-) -W'DOW(Gup)) —Gup: (0 —op))dx. (5.41)
Q

Let v € A minimize (|G u, — Dw||rr ) amongst w € A. The sum of (5.40) and (5.41) proves
Cisllo = nll i) + C37 lo =DW(G un)ll} g < /Q (W*(on) = W (DW(G up))) dx

—/(Quh—Dv):(U—Gh)dx—/D(u—v):(Gh—U)dx. (5.42)
Q Q

The Euler-Lagrange equations (2.12), the discrete Euler-Lagrange equations (5.2), the choice
v = u —vin (3.17)—(3.18), and a Holder inequality imply

—/D(u—v):(o-h—O')dx
Q

:/(I—H(kr)f-(u—v)dx+/ (1—HZ}N)g~(u—v)ds+s(uh;l(u—v)) (5.43)
Q I'n

< (osc(f, T) +osen(g, N ID(u = 0) || Lo () + 5 (s wn) VP s(Uu = 0); T — v)) VP
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The convexity of the dual functional W* and the L? orthogonality G u;, L o, —D W(G u,) confirm
0= [ Gun: (@u-DWGu)ax < [ W (1) - W OW(G ) .
Q Q
The combination of this with (5.42)—(5.43) leads to
lo = aully g + lm = DWG Ui ) S /Q (W* () - W' (DW(G up)) dx

+11G un = DollLr @ llo = onll L () +0se(f. T)ID( = v)[|Lr @)
+0sc(g, F)ID(u — ) || Lo @) + s(ups up) 1P s(L(u — v); (u — v)) /P, (5.44)

Since [|G up — Dl r (@) £ |G un —Dup|lrr(q). the reverse triangle inequality provides

IDvllrr @) <G unller ) + G un —Dupllrr @) < 2C +||Dupllrr(q)-

In particular, D(u — v) is bounded in the L? norm. This, s(I{(u# — v); I(u — v)) < ||D(u — v)||1L’1,(Q)
from Lemma 5.6, and the LP stability of the L? projection Hfr from Lemma 2.7 prove s(I(u —
v); I(u —v)) < ||ID(u - v)||€p(g) < 1. Hence, a Young inequality on the right-hand side of (5.44)
leads to

llo = nlly ) + lo =DW(G un)ll} g < /Q(W*(O'h) - W (D W(G up))) dx
+osc(f,T) +oscen(g, F) + 11}1;1;[} |G up, — DfullrL',,(Q) + s(up; up) 7.

It remains to derive an a posteriori estimate for the energy error |E(u) — Ep,(up)|. An integration
by parts in (5.28), (5.40), (2.11), and E(u) = E*(o) from Theorem 2.12.c imply

Cllr =l gy < E@+ [ W' () -Dut o foware [ gouds 6545)
The duality W(G uz) = DW(G un) : G un — W*(DW(G un)) ae. in Q show
En() = EG) == [ (W (DW(Gw) = s Gun+ f - ur) d
—/r g - ugds +s(ups un)/p — E (). (5.46)
The sum of (5.45)—(5.46) confirms N

Cle =l gy + Entin) = E) < [ (W' () = W (D W(G )
+ @ @un =D+ S Gu-ur)ars [ g up)dsesuim)/p. (547
Q I'v
The combination of (5.37) with (5.47) and a Holder inequality result in

Citllo = onlf g + Enlun) = E(u) < /Q (W* (on) = W (DW(G up))) dx

+Coosc(f,T) + Ciposen(g, Fn) — s(upsun)/p’ +sQupsun)'P sQu; Lu)'/P.

(5.48)

Recall the minimizer v of ||Gup —Dw||Lr@ amongst w € A with ||[Dv||rr@ < 2C3s +
IID up||zr (@) from (5.42). This, (5.31), a Holder inequality, and a Young inequality verify

Cillo =DW(Guy)|l +E*(0) — En(up) < |lo = oull

r r
LP'(Q) LP'(Q)

+11G un =Dl p gy +5(unsun)/p’ +0se(f, T) +osen(g, Fn) + s (uns up) /7"

This, (5.48), and the bound s(Iu;1u)'/? < ||D ullpr(@ < 1 from Lemma 5.6 conclude the
proof. m|
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Remark 5.1 (reliability-efficiency gap). Since the proof of Theorem 5.9-5.10 relies on arguments
in the error analysis of conforming FEMs [CP97; CP0O0], the estimates therein suffer from the
reliability-efficiency gap [CKO3]. In fact, they are suboptimal for elliptic linear PDEs, in contrast
to the estimates provided in Section 5.2—5.3. For instance, the a priori error analysis for the Laplace
problem [EZ20] proves, under the assumption that the data oscillation vanishes,

IV = G unll3s ) + |E(u) = Epun)| +s(uniun) < 1(1=T5) Dull, o +s(Lus Lu).

(Notice that o = Vu and o, = DW(G uy) = G uy, for the Laplace problem.)

5.5 A convergent adaptive mesh-refining algorithm

The discrete compactness result from Theorem 4.1 holds for any choice Xj, with P (7 ;M) C %,
in the definition of the gradient reconstruction G from (2.17) and applies to G for the stabilized
HHO method of this chapter, cf. Remark 4.2. Adopt the notation from Chapter 4, e.g. 7 is
the triangulation associated to the level ¢ € Ny, u, minimizes the discrete energy E, in A,
oy = H% DW(Gy, ue), etc. Theorem 4.1 motivates the refinement indicator, for all T € 7,

0y (1) = TP Mloe =DW(Geu)lly,, ) + TP I =TI 117, (5.49)
HT1PMGrue =D T el gy +ITIOPHP N T pug = upll?,
FeFe(T)NFep
+|T|Mm Z (1 - H’,g)gnfL’p,(F) +|T1%P" 1" sp 1 (ues ue).

Fefe(T)NFe N

The convergence of the adaptive algorithm is established under the assumption that the refining
algorithm satisfies some mesh reduction property, i.e., there exists a universal constant 0 <y < 1
such that, on all level £ € Ny, any children K € 7¢,; of T € 7p with K C T satisfies |K| < y|T]|.

Theorem 5.11 (plain convergence). Given the input 7y, 0 < 6,& < k+ 1, and 0 < 6 < 1, let
(Te)eewy (ue)eew, = (g, ug,)een, and (o¢)een, be the output of the adaptive algorithm in
Section 4.1 driven by 17?’8 from (5.49). Then limy_,o E¢(ug) = E(u). If W satisfies (1.1), then
limy—,eo DW (G, ue) = o (strongly) in L™/* (Q; M) and o¢ — o weakly in LP (Q; M).

Proof. The proof of Theorem 5.11 can follow that of Theorem 4.2.

Step 1: Prove limg_,q, nf’s = 0. Recall the mesh-size function i, € Po(77) with he|y = |T|'/"
forall T € 77 and lim/ . ||A¢||1~(q,) = O from (4.9). The bound s, (us;ur) < 1 from Theo-
rem 5.1.c proves

’ ’
Do T s (uesug) < NhellfE g, se(uesue) =0 as € — oo
TeTe\Te+1

This and Step 1 of the proof of Theorem 4.2 verify limy_,q 77?"9 =0.

Step 2: LEB. The convexity of W and the L?-orthogonality oy — DW (G, ur) L Pr(77; M)
imply

0< ‘/Q(W(D u) —W(Geue)+ (o —DW(Gpur)) :Du—o¢: (Du—Grue))dx. (5.50)

The discrete Euler-Lagrange equations (5.2) and the commutativity H% Du = G¢lyu from
Lemma 5.2.b lead to

—/Gf :(Du—Gpue)dx =se(ue;lpu—ue)
Q

—/f-(H%u—uT)dx—/ g-(H%u—uf)ds.
Q I'n
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This, (5.50), and (3.19) confirm
LEB¢ := E¢(u¢) — Coosc(f,T¢) — Cio 0sen(g, Fe.N)

5.51
—/(U[—DW(ggug)) :Dudx —sg(ue;Tpu) < min E(A). ©51)
Q
Notice that an additional term sg(u¢;ue)/p’ arises on the left-hand side of (5.51), but is omitted
because s¢(ug;ue)/p’ = 0.

Step 3: liminf,_,, E¢(ue) = E(u). The arguments from Step 3 of the proof of Theorem 4.2
apply verbatim and so, it is sufficient to verify lims—, s¢(u¢; 1o ) = 0. Givenany ¢ € C*(Q;R™),
a Holder inequality and the interpolation error from Lemma 5.6 prove

Ise.r(uesTe 9| < ser(uesue)' P ser(e 0310 @)VP < ITI %D s 2 (uesue) P @l (1

This, a Cauchy inequality, and limg_,o nf’g =0 from Step 1 lead to

, 1/p’
Is¢(uesTe @)| < ( Z |7 |+ Dp'n Sf,T(W;W)) lelwrrp @) — 0 (5.52)
TeT

as { — oo. The bound sg(ue;up) < C§’4 from Theorem 5.1.c and the density of C*(Q;R™) in
WP (Q; R™) imply limg—_,e S¢(ug;1u) = 0 as follows. Given & > 0, there exists ¢ € C*(Q;R™)
such that ||D(u — ¢)||Lr(@) < &. The interpolation error in Lemma 5.6 and the L? stability of
the L? projection ITp Pro (72Rmy onto the discrete space D Py, (7;R™) from Lemma 2.7 prove
se(Te(u — ) Ie(u — @) < C59||D(u - go)||’L’p(Q) with a positive constant C49 > 0 that does not
depend on the level £ € Ny. Since limy—,c S¢(1g; Ir @) = 0 from (5.52), there is a N € Ny with
Is¢(ue;1r )| < e forall € > N. This, a triangle inequality, and a Holder inequality verify

[se(uesTeu)| < lseue;Te(u — @) + Ise(ue; e @)l

< se(uesue) "7 se(e(u = @); e (u — )P + [se(ue 1o @) < (1+ C§4_1C49)8-

This concludes the proof of Theorem 5.11. O



Chapter 6

Numerical examples

This chapter displays numerical results for the unstabilized HHO method applied to the examples in
Section 1.2. Throughout this chapter, let Vj, = Pi(7") X Pi(F), £, := RT} (T;R?), 1= 1+s/p,
r/t=p’,and r/(r —t) = p with r = v’ = 2 in all scalar examples of Section 1.2 in 2D with pure
Dirichlet boundary I'p = 9Q.

6.1 Numerical realization

Some remarks on the implementation, the adaptive mesh-refinements, and the output precede the
numerical examples.

6.1.1 Implementation

The discrete Euler-Lagrange equations (3.2) for the unstabilized HHO method from Section 3.1
have been realized with an iterative solver fminunc from the MATLAB standard library in an
extension of the data structures and the short MATLAB programs in [ACF99; CB17; Car+10].
The first and (piecewise) second derivatives of W have been provided for the trust-region quasi-
Newton scheme. Since exact solve is required in the error analysis of this thesis, the parameters of
fminunc are set to FunctionTolerance = OptimalityTolerance = StepTolerance = 1013
and MaxIterations = Inf for improved accuracy.

The class of minimization problems at hand allows, in general, for multiple exact and discrete
solutions. The numerical experiments select one (of those) by the approximation in fminunc with
the initial value computed as follows. On the coarse initial triangulations 7y from Figure 6.1-6.2
and Figure 6.25, the initial value v, = (vy, v¢) € Ay is defined by v = 1 and vg|p = 1 on
any F € ¥\ ¥p. On each refinement 7 of some triangulation 7, the initial approximation is
defined by a prolongation of the output (vs, v#) of the call fminunc on the coarse triangulation
7. The prolongation maps (v, vs) onto (v, vz) such that vy = Héfj vpforall T € T
and vz|p = Hf, Jupforall F e 9/1:\ Fp with the conforming companion J v, € S¥(T) =
Prins1(T) N C(Q) of (v, vg) from (2.5.3).

The numerical integration of polynomials is exact with the quadrature formula in [HMSS56].
For non-polynomial functions such as W(G vy,) with v, € Ay, the number of chosen quadrature
points allows for exact integration of polynomials of order p(k + 1) with the growth p of W
and the polynomial order k of the discretization; the same quadrature formula also applies to the
integration of the dual energy density W*. The implementation is based on the in-house AFEM
software package in MATLAB [Car+10].

69
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1r = 1+ B
0.5 N
0 y 0.5 N
0.5+ 4
-1+ — 0 |
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Figure 6.1: Initial triangulation 7y of the square (left) and of the L-shaped (right) domain

1h | 1 |
0.5 | 051 |
0 | 0 |
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Figure 6.2: Initial triangulation 7y of € for the relaxed two-well benchmark in Subsection 6.4.1
(left) and in Subsection 6.4.2 (right)

6.1.2 Adaptive scheme

The a posteriori estimate in Theorem 3.6 motivates the refinement-indicator

— _ p’ 2-p)/ _ 2
ue(T) = Nloe = VWG uoll oy +ITEPPNGeue =V T e uellyo (6.1)
£ TP M1 - ni;)fnip,m +|T|m Z (1 - Hf,)g”ip,(g) forall T € 77
FeFe(T)NFeN

with the post-processing v = J,uy from Subsection 2.5.3 on each level £ € Ny. Since
IGeue =V Teuellpzqy = ITI VPN Grue =V T e uellLe (). the weights |T|2P)/P mimics the
LP norm. The adaptive mesh-refining algorithm in Section 4.1 is either driven by nf’g from (4.2)
or by p, from (6.1) with the default input 6 = 0.01 and the bulk parameter 6 = 0.5. Computer
experiments suggest that the choice of ¢ has no significant impact on the convergence rates. This
matches the expectation because the Dirichlet boundary data up in the numerical benchmarks of
this chapter is piecewise smooth. Notice that the refinement-indicator y, has a different scaling
than 17?"8 from (4.2) for p # 2: The difference is the contribution ||G¢ ug =D Jpuc|l?y, () in 172,5"9
fore - Oand |Gour —D Ty Mgllip(T) in pe. The numerical results in Section 6.2—6.4 suggest
that the refinement indicator u, leads to better convergence rates of the a posteriori estimate RHS
from (6.2) below.

6.1.3 Output

The numerical approximation of the solution to the three model problems in Section 1.2 is analysed
with the focus (i) on the convergence rate of the lower energy bound (LEB) from Theorem 3.6.a
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towards the exact energy min £ (V) — LEB and (ii) on the a posteriori error estimate with
RHS := Ej(up) = E*(0n) +0se(f, T) +0sen (8, FN) + |G wn =V T unllf p g (6.2)

from Theorem 3.6.b (and J uj, from Subsection 2.5.3) and its comparison with the stress error

[l = o-h||ip, @ (if available). The uniform or adaptive mesh-refinement leads to convergence
history plots of RHS, [lo — o7, ||? E(u) — LEB, and Ej, (uy,) — E*(0p,) against the number of

o
degrees of freedom (ndof) displl.edlye(éz )in Figure 6.4-6.29 below for different polynomial degrees k
of Figure 6.3. (Recall the scaling ndof « A2, in 2D for uniform mesh refinements with constant
mesh-size hpyax in a log-log plot.) In the numerical experiments without a priori knowledge of u,
the reference value min E ((A) stems from an Aitken extrapolation of the numerical results for a

sequence of uniformly refined triangulations with k = 0.

k=0 -eo-k=1 k=2 —+k=3 —+-k=4 o k=5

Figure 6.3: Polynomial degrees k =0, ..., 5 in the numerical benchmarks of Chapter 6

6.2 p-Laplace equation

Letp=4,r=s=2,andt =1+ (p —2)/p = 3/2 in the first example of Section 1.2.

6.2.1 Academic example

Let f := —div(|Vu|?Vu) be defined by u € P4(7) N C(Q) with
u(xi,x2) = x1x2(x1 — 1)(xp — 1) forany (x1,x2) € Q = (0, 1)°.

The energy functional E is strictly convex, so the minimal energy min E(A) = min E(u) =

—5.10204 x 104 is attained at the unique minimizer . The interest is on the errors ||o — o7, ||i B

and ||Vu - G uh||2L4 @ For the smooth solution u at hand, the data oscillation osc(f,7") in (6.2)
is replaced by ||hkT+1(1 - HkT)f||L4/3(Q) to mimic (3.31).

: e :
1072 i
1074 i
1076 - Ny
-9 | |
10 10—10 [ -
10714 - o A e A N 10~14 |- |
1 o N
19 v M %00
107 [ T VA SR 108 b il )

cvnl vl vl vl vl vl 3l I ool ol vl vl 3 i LL
10 10' 10% 10%® 10* 10° 105 107 10 10' 10% 10%® 10* 10° 106 107
ndof ndof

Figure 6.4: Convergence history plot of RHS (solid line left), ||Vu — G uy, ||?~4 @ (dashed line left),

[lom = 0'h||2L4/3 @ (dotted line left), E(u) — LEB (solid line right), Ej(up) — E*(0p,) (dashed line

right), and |E (1) — Ej(up,)| (dotted line right) for the 4-Laplace in Subsection 6.2.1 with k from
Figure 6.3 on uniform meshes
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Figure 6.4 displays optimal convergence rates k + 1 for the stress error ||o — Uh||i4/3 @’
the energy error |E(u) — Ep(up)|, and the discrete duality gap Ej(up) — E*(op) on uniform
meshes, although Corollary 3.9 only guarantees the convergence rates 2(k + 1)/3. The error

|Vu — G up ||2L4 @ and RHS from (6.2) converge with the same convergences rates. For the lowest

order k = 0, the convergence rates of |0 — O'hlli4/3(g) and ||Vu - G ”h||2L4(gz) coincide, the latter
is better than 1/3 predicted in Corollary 3.9. For k > 0, ||o — O'hlli4/3 () converges faster than

||Vu—G up ||i4 @ The lower energy bound LEB converges optimally towards the minimal energy
E(u) in the sense that the error E(u#) — LEB is dominated by the data oscillation osc(f, 7). In
particular, £ (u) — LEB converges superlinearly with the convergence rates 1 + k/2 as shown in
Figure 6.4. Notice that, for higher order methods, the data oscillation is in general not a term of
higher order.

(AL AL 1 11 1 1 11 B B LB 11 1 11 1 L 111
107° ) 10721
10-11 | 10—10 [
10_17 H 10—15 [
10723 R V| A 0 T AR 0 | SR O K A0 111 S MR | S W s 10720 ¥ Y S B 1 BT
10 10t 10* 10° 10* 10° 10° 10 10t 10* 10° 10* 10° 10°
ndof ndof

Figure 6.5: Convergence history plot of RHS (solid line left), |[Vu — G uy, ||2L4 @ (dashed line left),

[lom — 0'h||i4/3(9) (dotted line left), E(u) — LEB (solid line right), Ej,(uy) — E*(0,) (dashed line
right), and |E (u) — Ej (uy,)| (dotted line right) for the 4-Laplace in Subsection 6.2.1 with k from
Figure 6.3 in (adaptive) Algorithm 4.1 driven by u

AL L AL 1 1 1 1 A 11 (LU 11 1 11 o A1 e
1072 8
1074}
1077 | 8
1078 |
10712 [ 10—12 [
10717 o, B y —16 |-
1 2 OS%AAAAA 10
%o
10722 T O O A1 1 S v | 1 —20 berpnleowegopppnbep gl bl el
10 10t 10* 10®* 10* 10° 10° 10 10" 10* 10®° 10* 10° 10°
ndof ndof

Figure 6.6: Convergence history plot of RHS (solid line left), ||Vu — G uj, ||2L4 @ (dashed line left),

[lom — O-h||i4/3(g) (dotted line left), E(u) — LEB (solid line right), Ej(up) — E*(op,) (dashed line
right), and |E(u) — Ej (up)| (dotted line right) for the 4-Laplace in Subsection 6.2.1 with k from

Figure 6.3 in (adaptive) Algorithm 4.1 driven by n°:¢ (¢ = (k +1)/100)

Adaptive computation driven by u from (6.1) surprisingly recovers optimal convergence rates
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k + 1 for [[Vu — G upl|14(q) and RHS in Figure 6.5, but Figure 6.6 displays no improvement for
adaptive computation driven by %% with & = (k + 1)/100 from (4.2). Since |E(u) — Ej,(up)|
and E(u) — LEB already converge optimally on uniform meshes, no further improvement can be
expected on adaptive meshes. Adaptive computation driven by u refines towards the vertexes of
the unit square, while 7% leads to quasi uniform meshes in Figure 6.7. Although the numerical
results throughout this chapter provide empirical evidence that RHS is a reliable and efficient bound

for [|Vu — G uy, ||i4 @’ it cannot be verified theoretically as observed in Theorem 3.10.
1) | 1) y
0.5 - * 0.5 B
o | o |
| | | | | |
0 0.5 1 0 0.5 1

Figure 6.7: Adaptive triangulation of the unit square into 639 triangles (left) and into 600 triangles
(right) for the 4-Laplace in Subsection 6.2.1 with k = 2 in (adaptive) Algorithm 4.1 driven by u
(left) and by %% (¢ = 0.03) (right)

6.2.2 L-shaped domain with corner singularity

100 - i
1072 2
10~ | 7
107 | |
108 Il P P i it sl vl v v il mw\i

10t 102 10% 10* 10° 10 107 10t 102 10% 10* 10° 10°® 107
ndof ndof

Figure 6.8: Convergence history plot of RHS (left) and E(u) — LEB (right) for the 4-Laplace in
Subsection 6.2.2 with k from Figure 6.3 on uniform meshes (dashed line) and on adaptive meshes
(solid line) generated by (adaptive) Algorithm 4.1 with the refinement indicator u

LetQ = (—1,1)%\[0, 1)x(-1,0] and f = 1 with the reference value min E (V) = —0.34333420855.
Theorem 2 in [Dob85] indicates a split # = v + w of the exact solution u into a singular part
v(r,¢) = r%(yp) in terms of polar coordinates (r, ), where w is a smooth function around
the origin. The parameter @ = (11 — V13)/9 = 0.8216 depends on the angle w = 37/2 of
the corner and p. The scaling |Vu| o< 7%~ and |o| o (@D (P~ indicates o € WA (Q;R") for
B<2/(1-(a=1)(p-1)) = 1.3028 and we expect a convergence rate min{1/2,1-1/8} = 0.2324

for the stress error |0 — o7, ||i4 53 ON uniformly refined triangulations.
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Figure 6.9: Adaptive triangulation of L-shaped domain into 444 triangles (left) and into 370
triangles (right) for the 4-Laplace in Subsection 6.2.2 with k = 0 (left) and k = 2 (right) in
(adaptive) Algorithm 4.1 driven by u
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Figure 6.10: Convergence history plot of RHS (left) and E(#) — LEB (right) for the 4-Laplace in
Subsection 6.2.2 with k from Figure 6.3 in (adaptive) Algorithm 4.1 driven by n%-¢ (& = (k+1)/100)
(solid line) and by u (dashed line)
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Figure 6.11: Convergence history plot of RHS (left) and |E (u) — Ej (uy)| (right) for the 4-Laplace
in Subsection 6.2.2 with & = 0 (solid line), k = 1 (dashed line), and k = 3 (dotted line) in (adaptive)
Algorithm 4.1 driven by %% with various &
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Figure 6.8 displays the convergence rate 0.3 for RHS and 0.7 for E(u) — LEB on uniform
meshes. Undisplayed numerical experiments confirm that the convergence rates of the energy
error |E(u) — Ep(up)|, the discrete duality gap Ej(up,) — E*(0p,), and E (1) — LEB coincide in
all numerical examples if the data oscillation osc(f,7 ) vanishes. It has to expected that the
solution u is singular at the origin. Hence, there is no improvement for higher polynomial degree
k. The adaptive algorithm driven by u and 1%? refines towards the reentrant corner as depicted in
Figure 6.9 and Figure 6.12, respectively, with focus towards the singularity of u for higher k.

Adaptive computation driven by u improves the convergence rates of RHS (resp. E (u) — LEB)
to 0.9 (resp. 1) for £ = 0 and 2 (resp. 2.7) for k = 5. This coincides with the convergence rates
of E(u) — LEB, but is superior to the convergence rates of RHS obtained by adaptive computation
with the refinement indicator 7%¢ and the parameter & = (k + 1)/100 as depicted in Figure 6.10.
A higher polynomial degree k leads to a better convergence rates, but undisplayed computer
experiments suggest that the gain is more significant for p close to 2. The choice of the parameter €
is significant for higher polynomial degrees k. The best convergence rates for RHS and £ (1) —LEB
in Figure 6.11 are obtained by & close to 0.

1h | 1 |
0.5 | 0.5( i
0 . 0 .
—0.5 | | —0.5 | |
1| , 10 4

l l l l l l l l l l

-1 —05 o0 05 1 -1 05 0 05 1

Figure 6.12: Adaptive triangulation of L-shaped domain into 592 triangles (left) and into 525
triangles (right) for the 4-Laplace in Subsection 6.2.2 with k = 0 (left) and & = 2 (right) in
(adaptive) Algorithm 4.1 driven by n%¢ (g = (k +1)/100)

6.3 Optimal design problem

Recall the parameters p = r = 2, s = 0, and ¢ = 1 from Subsection 1.2.2 for the optimal design
problem (ODP) in topology optimization. Let u; = 1, up = 2, &1 = /241 / uy for a fixed parameter
A >0, & = uxé1/uy, and f = 1. The values of A in the following benchmarks are from [BCOS,
Figure 1.1].

6.3.1 Material distribution and volume fraction

The material distribution in the next two benchmarks consists of an interior region (red), a boundary
region (yellow), and a transition layer, also called microstructure zone with a fine mixture of the
two materials as depicted in Figure 6.13. The approximated volume fractions A( |Hg_ G uy)) for a
discrete minimizer ujy with

0 if0 <& <&y,
AE) ==&/ -¢&1) ifé <éE<8,
1 ifé& <&

define the colour map for the fraction plot of Figure 6.13.
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Figure 6.13: Material distribution for the ODP in Section 6.3 on an adaptive mesh of the unit
square (left) and of the L-shaped domain (right)
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Figure 6.14: Convergence history plot of RHS (left) and Ej, (up,) — E* (o) (right) for the ODP in
Subsection 6.3.2 with k from Figure 6.3 on uniform meshes (dashed line) and on adaptive meshes
(solid line) generated by (adaptive) Algorithm 4.1 with the refinement indicator u
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Figure 6.15: Adaptive triangulation of the unit square into 1555 triangles (left) and into 1596
triangles (right) for the ODP in Subsection 6.3.2 with k = 0 (left) and k = 2 (right) in (adaptive)
Algorithm 4.1 driven by u
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6.3.2 Unit square

Let Q = (0,1)% and A = 0.0084 with the reference value min E(A) = —0.0111813. Figure 6.14.a
shows that RHS converges with a convergence rate 0.9 for k = 0 and 1.2 for k = 5. Undisplayed
numerical results suggest equal convergence rates for |E(u) — Ep(up)|, E(u) — E*(op), and
Epn(up) — E* (o). The latter is displayed in Figure 6.14.b with the convergence rate 0.6 for k = 0
and 1.3 for k = 5. Higher polynomial degrees k slightly improve the convergence rate of RHS
and of Ej(up) — E*(op,). The adaptive algorithm driven by u refines towards the microstructure
zone as depicted in Figure 6.15 and leads to marginal improvement of the convergence rates on
adaptive meshes. In this example, p = 2 and so, % ~ u for £ and ¢ close to 0. Undisplayed
computer experiments show no further improvement for adaptive computation with %€ and larger
&. The convergence rates of RHS and Ej, (uy,) — E* (o) improve with smaller transition layer in
undisplayed computer experiments and attain the (best possible) values k + 1 if the measure of the
transition layer vanishes. This coincides with the numerical observations in [CGR12b, Section 6].
Notice that the optimal convergence rates k + 1 for E(u#) — LEB can only be obtained if the data
oscillation osc(f, ") vanishes.

6.3.3 L-shaped domain with corner singularity

Let Q = (=1, 1)%\ [0, 1) x (~1, 0] with the reference value min E (A) = —0.0745512. On uniform
meshes, Figure 6.16 depicts the (suboptimal) convergence rate 0.6 of RHS and Ej, (uy) — E*(07,)
for k = 0. Higher polynomial degrees k increase the convergence rate of Ej (1) — E* (o) to 0.8
for k£ = 5, but do not improve the convergence rate of RHS. The adaptive algorithm driven by u
refines towards the reentrant corner as well as the microstructure zone as shown in Figure 6.17.
This leads to the improved convergence rate 1.5 of RHS and 1.2 of Ej,(up,) — E*(0y,) for k = 5.
Similar to the previous experiment, the convergence rates of RHS and Ej, (uy,) — E*(07,) improve
with higher polynomial degrees k, but the gain is more significant for small transition layers.
Adaptive computation driven by %> with different parameters & leads to comparable results.
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Figure 6.16: Convergence history plot of RHS (left) and Ej, (uy,) — E*(op,) (right) for the ODP in
Subsection 6.3.3 with k from Figure 6.3 on uniform meshes (dashed line) and on adaptive meshes
(solid line) generated by (adaptive) Algorithm 4.1 with the refinement indicator u

6.4 'Two-well computational benchmark

Recall the parameters p = 4, r = s =2, and t = 1 + s/p = 3/2 from Subsection 1.2.3 for the
relaxed two-well problem. Given the two distinct wells F; := —(3,2)/ V13 and F> := —F; from
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Figure 6.17: Adaptive triangulation of the L-shaped domain into 1078 triangles (left) and into 1082
triangles (right) for the ODP in Subsection 6.3.3 with k = 0 (left) and k£ = 2 (right) in (adaptive)
Algorithm 4.1 driven by u

the computational benchmark in [CJ03], the energy density
W(F) = max{0, |F|” = 1}* +4(|F* = ((3,2) - F)*/13)

is the convex envelope of |F — Fi|?|F — F»|> for F € R? [CP97, Proposition 1]. Let Q =
(0,1) x (0,3/2) and set o := (3(x — 1) +2y)/V13 for all (x,y) € R2. Define the data
f(x,y) ==30°/128 - /3,
{(x,y) =024+ 0,
flx,y) if —1/2<0 <0,
u(x,y) =

{(x,y) if0<po<1/2

2

The computational benchmark in [CJ03] involves an additional quadratic term 1/2||¢ — v|| 12(0) in

the energy
1
E(v) = /(W(Vv) — fu)dx + EH{ - vlliz(g) amongst v € A = u+ WS"‘(Q).
Q

The strict convexity of E leads to the uniqueness of the continuous minimizer # with minimal energy
E(u) = min E(A) = 0.1078147674 [CJ03, Theorem 2.1], but the minimizer uy, = (us, us) of the
discrete energy

Ep(vp) = /Q(W(Q vp) — for)dx +[|{ - U‘THZLZ(Q) amongst vy, = (v, vy) € Ay

is only unique in the volume component u 4. The a posteriori analysis in Section 3.3 can be extended
to the situation at hand as outlined in Section 3.5. This leads to the lower energy bound E}}(07,) —
Crosc(f,T) — Cr70sca(L,T) < min E(A) with the data oscillation oscy (£, T) = ||hs(1 —
H,kr)g“ lz2(q) and the discrete dual energy Ej(o) from (3.78). The extension of Theorem 3.6
provides the a posteriori error estimate

lo = 0nl s gy + o7 = TW(G un) P s )+l = s

< En(up) = Ej(0n) +0se(f,T) +0502(£, T) + G un = V T uplls ) = RHS.  (6.3)

6.4.1 Aligned mesh

The exact solution u € W3/2-%-4(Q) (for any § > 0) is piecewise smooth, but the derivative D u
jumps across the interface S = conv{(0,0), (0,3/2)}. The initial triangulation 7y in Figure 6.2.a
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is chosen such that the interface S coincides with the sides of 7~ and so, u# (and o) behaves as a

smooth solution. The a priori estimate in Theorem 3.3 predicts optimal rates for ||o- — o, ||24 @)
2

[|lu — MT”LZ(Q)’ and |E(u) — Ep(up)| on uniform meshes. This is observed in Figure 6.18.
The lower energy bound LEB converges optimally towards the minimal energy min E (A) with
the convergence rates k/2 + 1. Since u is piecewise smooth, the data oscillations osc(f,7")
and oscy(£, 7)) in (6.3) can be replaced by [|h5*! (1 — TI%) £l 143 ) and [R5 (1 - TIE) 2112
respectively. Throughout this section, undisplayed numerical results confirm that RHS converges
with the same convergence rates as ||Vu — G ”h||2L4/3 @ Although no control is imposed on the

primal variable, the convergence rates of |Vu — G uy, ||2L4 (@) Are optimal. Since optimal results are

already obtained on uniform meshes, adaptive computation does not lead to further improvements
as depicted in Figure 6.19-6.20.

L L L B AL L L] 100 A A U AU

1072 )
—4 [ -
1077 i 10
10712 [ - 1078 [ B
10,17 [ B 10—12 [ -
10*22 bbb peop gl gl byl 10—16 Lol \H;WH\ OO T Y T OSSO O O W 11| RO N B W
10 10t 10*  10® 10 10° 10° 10 10t 10* 10® 10* 10° 10°
ndof ndof
Figure 6.18: Convergence history plot of || — 0';1||2L4 B @) (solid line left), ||u — urrlli2 @ (dashed

line left), ||Vu - G uh||i4(g) (dotted line left), E (u) — LEB (solid line right), and |E («) — Ej, (up)|
(dashed line right) for the relaxed two-well benchmark in Subsection 6.4.1 with k from Figure 6.3
on uniform meshes

100 |- :
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Figure 6.19: Convergence history plot of || — 0'h||i4 P (solid line left), ||u — u7—||i2 @ (dashed

line left), ||Vu - G ”h”iét(g) (dotted line left), E(u) — LEB (solid line right), and |E () — Ep (up)|
(dashed line right) for the relaxed two-well benchmark in Subsection 6.4.1 with k from Figure 6.3
in (adaptive) Algorithm 4.1 driven by u
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Figure 6.20: Convergence history plot of ||o- — o7|| (solid line left), |ju — uq||? (dashed

line left), ||Vi — G up]|?

LY(Q

L43(Q)
) (dotted line left), E (1) — LEB (solid line right), and |E (u«) — Ep, (up,)]

L*(Q)

(dashed line right) for the relaxed two-well benchmark in Subsection 6.4.1 with k from Figure 6.3
in (adaptive) Algorithm 4.1 driven by n%¢ (g = (k + 1)/100)
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Figure 6.21: Convergence history plot of |0 — o || 145 (Q) (solid line left), ||u — u(rlliz @ (dashed

line left), ||Vu - G uh||i4(g) (dotted line left), E(u) — LEB (solid line right), and |E («) — Ej, (up,)|

(dashed line right) for the relaxed two-well benchmark in Subsection 6.4.2 with k from Figure 6.3
on uniform meshes

6.4.2 Non-aligned mesh

A priori information on the continuous solution u# is not known in general and so, it will not
be possible to design a matching mesh as in Subsection 6.4.1. The initial triangulation 7 in
Figure 6.2.b cannot resolve the interface S exactly. In this case, [CJ03] predicted

3/2
llu —Inull sy S s

11 =T Vael s ) < gl

max>»
||(1 - Hg')o-”[,‘m(g) < hmax

on uniform meshes with the nodal interpolation Iy : V — S(7°) := P{(7) N V. Itis surprising

that these (optimal) results are obtained for k = 0 as depicted in Figure 6.21: ||u — ur;—||i4 @’
||o—a, ||i4/3, |E (u)—E} (up,)| converge with the convergence rate 1 and ||Vu—G uy, ||i4(9) converges
2

with the convergence rate 1/4. This improves the convergence rate 3/4 of ||o— o7 || obtained

L3 (Q)
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by the lowest order conforming (Courant) FEM in [CJO3]. Higher polynomial degrees k improve

_ 2 _ 2
the convergence rate of ||u ”‘T||L4(Q) and of ||o O-hllL4/3(Q) to 1.4.
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Figure 6.22: Convergence history plot of ||o — o7 | 145 (solid line left), ||u — u|| 12(9) (dashed

line left), ||Vu - G uh||i4(g) (dotted line left), E(u) — LEB (solid line right), and |E () — Ej, (uy,)|
(dashed line right) for the relaxed two-well benchmark in Subsection 6.4.2 with k from Figure 6.3
in (adaptive) Algorithm 4.1 driven by u
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Figure 6.23: Adaptive triangulation of Q into 1816 triangles (left) and into 1690 triangles (right)
for the two-well benchmark in Subsection 6.4.2 with k = 2 in (adaptive) Algorithm 4.1 driven by
u (left) and by r]‘s"”~ with & = 0.9 (right)

Adaptive computation driven by u refines towards the interface S as displayed in Figure 6.23.a,
but Figure 6.22 depicts no improvement to the convergence rates for k = 0 and £k = 1. For
higher polynomial degrees k > 2, adaptive mesh refinements improve the convergence rates of
[|lu — u7-||i4(9) and |0 — (Th||2L4/3(Q) (resp. of |E(u) — E(up)| and E(u) — LEB) to 2.4 (resp. to
1.6) for k = 5.

Adaptive triangulations generated by (adaptive) Algorithm 4.1 with the refinement indicator
9. approximate the interface S more accurately as depicted in Figure 6.23. Plain convergence of

14/3(9) and |E (1) — Ep(up)| towards zero is observed in Figure 6.24 forall 0 < & < k+1
d

and polynomial degree k. Larger &£ improves the convergence rates of |[o — 0'h||2L4/3( g an
|E(u) — Ep(up)| for k = 0and k = 1. For k > 2, the choice € = 3(k + 1)/10 leads to significant
improvements of the convergence rates of ||o-— o, ||i4 B (with 3 for k = 3) and of |E(u) —Ep (up,)|
(with 2.5 for £ = 3) as shown in Figure 6.24. Further increase in the polynomial degree k only
leads to marginal improvements of the convergence rates.

n
llo-—omll
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) (left) and |E(u) — E(up)| (right) for
the relaxed two-well benchmark in Subsection 6.4.2 with k = 0 (solid line), k = 1 (dashed line),
and k = 3 (dotted line) in (adaptive) Algorithm 4.1 driven by % with various &

6.5 Modified Foss-Hrusa-Mizel benchmark

Figure 6.25: Initial triangulation 7y for a

modified Foss-Hrusa-Mizel benchmark in
Section 6.5

N,
w0 1
| e
107 F 1
1073 | E
L covvnl vl el vl vl uu:
10 10t 102 10®  10* 10°
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Figure 6.26: Convergence history plot of
|E (1) — Ey, (up)| for a modified Foss-Hrusa-
Mizel benchmark in Section 6.5 with k = 0
0.01, solid line) and
on uniform (dashed line) meshes, and of
|E(u) — E(uc)| with the solution uc to the
Courant FEM on uniform meshes (dotted

on adaptive (e

line)

The computational benchmark in this section minimizes the energy functional Ej, from (4.21) in a
modified Foss-Hrusa-Mizel benchmark [FHMO03; OP11] on the extended domain Q := (—1,1) X
(0, 1) with I'y, T’ from Example 4.1, I's := {1} x [0, 1] U [-1,1] x {1} U {1} x [0, 1], and the
initial triangulation 7y in Figure 6.25. The Dirichlet boundary conditions in (4.20) is imposed on
a subset of 9Q with free boundary condition on dQ \ (I'; U I'3) for the first component and on
0Q \ (I'; UT3) for the second component. The extension of Theorem 4.1 to this model problem
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motivates the refinement indicator, forall 7 € 7,

g (1) = T1°IG e ue =D T cuellys i, +

D, TP T w64

FeFe(T)NFe ()

_ — 3
LD SR [T 270 [ S (A G N P 7R )

FeFe(T)nF¢(I2)

FeFe(T)nF(I3)

with the conforming companion J ¢ ur = ((J ¢ ue), (T ¢ te)2) € Prsz(T7; R?).

Figure 6.27: Adaptive triangulation of € into 630 triangles (left) and into 504 triangles (right) for

a modified Foss-Hrusa-Mizel benchmark in S
(left), and k = 2 (right)
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Figure 6.28: Convergence history plot of
|E(u) — Ep(up)| for a modified Foss-Hrusa-
Mizel benchmark in Section 6.5 with k from
Figure 6.3 and ¢ = (k + 1)/100 on adap-
tive (solid line) and on uniform (dashed line)
meshes

ection 6.5 with the input € = (k +1)/100, k = 0
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Figure 6.29: Convergence history plot of
|E(u) — Ep(up,)| for a modified Foss-Hrusa-
Mizel benchmark in Section 6.5 with k = 0
(solid line), k = 1 (dashed line), k = 3 (dot-
ted line), and various & on adaptive meshes

It is shown in Proposition 4.1 that the lowest-order unstabilized HHO method approximates
the correct energy. Since the presence of a Lavrentiev gap is equivalent to the failure of standard

conforming FEMs [CO10, Theorem 2.1], the t
Numerical results indicate that u = r'/2(cos

wo methods can detect the existence of such a gap.
(6/2),sin(6/2)) in polar coordinates from Exam-

ple 4.1 minimizes E in A on the extended domain Q with E(«) = min E(A) = 0.8813702355.
Figure 6.26 displays the convergence rates 1/2 of |E (u)— Ej, (uy,)| for the lowest-order HHO method
on uniform meshes, while the P1-conforming (Courant) FEM approximates a wrong energy. This
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provides empirical evidence that there is a Lavrentiev gap for this numerical benchmark. The
adaptive algorithm from Section 4.1 driven by ¢ from (6.4) refines towards the singularity of
u at the origin (0, 0) as displayed in Figure 6.27. It is surprising that adaptive computation with
& = (k +1)/100 recovers the optimal convergence rates k + 1 from linear elliptic problems for the
energy error |E(u) — E(up)| as depicted in Figure 6.28. Figure 6.29 shows no significant changes
to the convergence rates of |E(u) — Ep(uy,)| for different choices of €.

6.6 Conclusions

The computer experiments provide empirical evidence for improved convergence rates of the
unstabilized HHO methods for examples of degenerate convex minimization. The lower energy
bound in Theorem 3.6.a are confirmed guaranteed bounds and converge superlinearly to the exact
energy min E (A) in all examples. Optimal convergence rates are observed for piecewise smooth
solutions from Subsection 6.2.1 and Subsection 6.4.1. The a posteriori estimate in Theorem 3.6.b
and the discrete compactness result from Theorem 4.1 motivate adaptive mesh-refining algorithms
that improve the convergence rates of the stress and the energy error for singular solutions. A higher
polynomial degree k provides better convergence rates. The adaptive algorithm from Section 4.1
driven by £%¢ from (4.2) leads to plain convergence of the energy in all examples. The numerical
results from a modified Foss-Hrusa-Mizel benchmark in Section 6.5 suggest that unstabilized HHO
provides the first higher-order methodology that may overcome the Lavrentiev gap.
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Appendix A

Software

The software consists of two stand-alone packages: matlab-uhho-degenerate-convex for the
realization of the unstabilized HHO method from Chapter 3 applied to scalar convex minimization
problems and matlab-uhho-FHM for the application to the modified Foss-Hrusa-Mizel benchmark
from Section 6.5. It is compatible with MATLAB version 9.8.0.1380330 (R2020a) and requires a
computer with multiple local workers for parallel computing.

examples file input parameters

4-Laplace in Sub- | benchmark_pLaplace_Sq.m theta, delta, varepsilon,
section 6.2.1 minDof, k, p, ref

4-Laplace in Sub- | benchmark_pLaplace_Ls.m theta, delta, varepsilon,
section 6.2.2 minDof, k, p, ref

ODP in Subsec- | benchmark_ODP_Sq.m theta, delta, varepsilon,
tion 6.3.2 minDof, k, ref

ODP in Subsec- | benchmark_ODP_Ls.m theta, delta, varepsilon,
tion 6.3.3 minDof, k, ref

2-well in Subsec- | benchmark_2well_aligned.m theta, delta, varepsilon,
tion 6.4.1 minDof, k, ref

2-well in Subsec- | benchmark_2well_nonaligned.m | theta, delta, varepsilon,
tion 6.4.2 minDof, k, ref

FHM in Sec- | benchmark_FHM.m theta, delta, varepsilon,
tion 6.5 minDof, k

Figure A.1: MATLAB routines for the numerical benchmarks in Chapter 6 with their input
parameters

parameter | default value description
theta 0.5 bulk parameter 6 in adaptive algorithm of Section 4.1
delta 0.01 parameter ¢ of %%
epsilon 0.01 parameter & of %
minDof 10* minimal number of degrees of freedom
k 2 polynomial degree k of discretization
p 4 parameter for p-Laplace
ref 1 0 for computation with y, 1 for n°-*

Figure A.2: Default values of input parameters for MATLAB routines in Figure A.1

The MATLAB routines in Figure A.1 correspond to the numerical benchmarks in Chapter 6 and
are executable without further input. All arguments are optional with default values in Figure A.2.
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The implementation in MATLAB extends the in-house AFEM software package [Car+10] by the
routines outlined in Figure A.3 below.

/matlab-uhho-degenerate-convex /matlab-uhho-FHM
+— /common +— /common
t— /estimates t— /estimates
— computeApprError.m computeEta.m
— computeDiscreteDualFunctional.m computeOsc.m
— computeErrGrU.m computeOscDb.m
— computeErrorControl.m +— /examples
+— computeErrSigma.m tbenchmarkFHM.m
benchmark FHM Courant.m
— computeErrU.m
t— /fem basis
+— computelsc.m
+— computeDofSk.m
+— computeOscDb.m

+— computelLagrangelDRef.m

+— /examples
+— computeLagrange2DRef .m

— benchmark 2well_aligned.m

«— computeRTRef.m
+— benchmark_2well nonaligned.m

+— /geometries
+— benchmark ODP_Ls.m lf

/FHM_Rectangle
+— benchmark_ODP_Sq.m
+— /integrate

+— benchmark plLaplace_Ls.m
+— computeExactEnergy.m

+— benchmark_pLaplace_Sq.m
+— computeGaussPoints4e.m

t— /fem_basis
— getConProdGaussPoints.m

+— computeDofSk.m
— getGaussPoints.m
+— computelLagrangelDRef.m

«+— integrate.m
+— computeLagrange2DRef .m

— /mark
+— computeRTRef .m
+— /plot
+— /geometries

+— /Lshape +— /prolongation

+— computeAverage.m
+— /Rectangle_aligned
+— computeConformingCompanion.m
+— /Rectangle nonaligned
— computeInterpolationUExact.m

+— /Square
+— computePotRec4e.m

+— /integrate

+— computeProlongation.m
computeExactEnergy.m

+— /refine

computeGaussPoints4e.m
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getConProdGaussPoints.m Lf/solve

getGaussPoints.m t— afem.m

) t— computeDiscreteEnergy.m
integrate.m

/mark +— LBFGS.m
t— /mar
t— computeDiscreteStress.m
+— /plot

| kramerplot.m +— minimizeDiscreteEnergy.m

+— plotConvergence.m — solveCourantFiM

+— plotTriangulation.m

— yvolumefraction.m

+— /prolongation

+— computeAverage.m
+— computeConformingCompanion.m

+— computePotRec4e.m

+— computeProlongation.m

+— /refine

— /solve

+— afem.m

+— computeDiscreteEnergy.m

+— computeDiscreteStress.m

»+— minimizeDiscreteEnergy.m

Figure A.3: Directory tree of the implementation of the unstabilized HHO method for convex
minimization problems in MATLAB; grey entries are from the afem base package
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