
A Fecal Metabolite Signature of Impaired Fasting
Glucose: Results From Two Independent
Population-Based Cohorts
Ana Nogal,1 Francesca Tettamanzi,1,2 Qiuling Dong,3 Panayiotis Louca,1 Alessia Visconti,1

Colette Christiansen,1,4 Taylor Breuninger,5 Jakob Linseisen,5,6,7 Harald Grallert,3,8 Nina Wawro,5,9

Francesco Asnicar,10 Kari Wong,11 Andrei-Florin Baleanu,1 Gregory A. Michelotti,11 Nicola Segata,10

Mario Falchi,1 Annette Peters,8,9,12 Paul W. Franks,13,14 Vincenzo Bagnardi,15 Tim D. Spector,1

Jordana T. Bell,1 Christian Gieger,3,8 Ana M. Valdes,16 and Cristina Menni1

                                                           

Prediabetes is ametabolic condition associatedwith gutmi-
crobiome composition, although mechanisms remain elu-
sive. We searched for fecal metabolites, a readout of gut
microbiome function, associated with impaired fasting glu-
cose (IFG) in 142 individuals with IFG and 1,105 healthy indi-
viduals from the UKAdult Twin Registry (TwinsUK). We used
the Cooperative Health Research in the Region of Augsburg
(KORA) cohort (318 IFG individuals, 689 healthy individuals)
to replicate our findings. We linearly combined eight IFG-
positively associatedmetabolites (1-methylxantine, nicoti-
nate, glucuronate, uridine, cholesterol, serine, caffeine,
and protoporphyrin IX) into an IFG-metabolite score, which
was significantly associated with higher odds ratios (ORs)
for IFG (TwinsUK: OR 3.9 [95% CI 3.02–5.02], P < 0.0001,
KORA: OR 1.3 [95% CI 1.16–1.52], P < 0.0001) and incident
type 2 diabetes (T2D; TwinsUK: hazard ratio 4 [95% CI
1.97–8], P = 0.0002). Although these are host-producedme-
tabolites, we found that the gut microbiome is strongly as-
sociated with their fecal levels (area under the curve
>70%). Abundances of Faecalibacillus intestinalis, Dorea
formicigenerans, Ruminococcus torques, and Dorea sp.
AF24-7LB were positively associated with IFG, and such
associations were partially mediated by 1-methylxanthine
and nicotinate (variance accounted for mean 14.4% [SD
5.1], P < 0.05). Our results suggest that the gut microbiome
is linked to prediabetes not only via the production of
microbial metabolites but also by affecting intestinal
absorption/excretion of host-produced metabolites and

xenobiotics, which are correlated with the risk of IFG.
Fecal metabolites enablemodeling of anothermechanism
of gutmicrobiome effect on prediabetes and T2D onset.

Type 2 diabetes (T2D) is a leading cause of mortality and
morbidity (1), affecting >536.6 million people (10.5% of
the total population) worldwide (2), thus representing a
huge public health burden (1). The causation of T2D is mul-
tifactorial, influenced by host genetics and environmental
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factors, including diet, obesity, inactivity, and smoking, and
the interaction between these factors (3). Furthermore, its
onset is gradual, with people progressing through a state of
prediabetes (4), and is defined as impaired levels of fasting
glucose (IFG), and/or glucose intolerance, and/or elevated
hemoglobin A1c (HbA1c) (5).

Over the past decade, T2D and prediabetes have been
linked by us and others (6–8) to changes in the gutmicrobiota,
and we have recently demonstrated that T2D development is
preceded by an alteration in gut microbiota composition (7). A
critical challenge in human microbiome research, however, is
to characterize and quantify metabolic activity across the full
microbial ecosystem (9). The gut microbiome is highly vari-
able, and different bacterial types may have similar metabolic
effects on the host. Microbial metabolites are now widely seen
as keymediators of the effects of gut microbiome composition
on human physiology (10). Fecal metabolites provide a func-
tional readout of the gut microbiome (11,12) and are a novel
tool to explore links between gut microbiome composition
and activity, host phenotypes, and heritable complex traits,
thus improving our understanding of the impact that the gut
microbiome can have on its host (11). As the gut microbiome
is modifiable with nutritional and lifestyle interventions (13),
it is of utmost importance to identify alterations in the fecal
metabolites abundances, which reflect metabolic activity per-
turbations of the human gut microbial ecosystem that might
lead to T2D onset.

In the first fecal metabolomics study of prediabetes to
date, we aim to identify a fecal metabolite signature of this
condition in two independent cohorts to shed light on
mechanisms of action underlying T2D onset and develop-
ment. Addressing this challenge also has long-term im-
plications for future studies into therapies and lifestyle
interventions that alter microbial metabolic activity to
improve human health.

RESEARCH DESIGN AND METHODS

A flowchart of the study design with the main results is
presented in Fig. 1.

Discovery Cohort
We analyzed data from 1,247 nonrelated individuals fromUK
Adult Twin Registry (TwinsUK) (14), for whom concurrent

nontargeted fecal metabolomic profiling (526 metabolites
at fasting) and glucose/diabetes information were available
(cross-sectional design). Concurrent metagenome sequencing
(as a measure of the gut microbiome composition) was also
available for a subset of 342 individuals. Subjects were classi-
fied into three groups following the American Diabetes As-
sociation criteria based on isolated fasting glucose levels
(15) at the time of the initial sampling and at subsequent
visits (on average, 3.5 [SD 2.0] visits, 4.6 [SD 2.7] years
apart): individuals with T2D (fasting glucose $7 mmol/L or
physician’s letter confirming diabetes diagnosis), individuals
with IFG (fasting glucose>5.5 to<7mmol/L, not on diabetes
medication), and subjects without IFG and T2D (fasting glu-
cose>3.9 to#5.5mmol/L) (see Table 1). We refer to “healthy
individuals” to indicate individuals without IFG and/or T2D.

Only one twin per twin pair was included in the analyses
to eliminate potential bias through correlated error, which
might inflate effect estimates.

In a small subanalysis, we included individuals with inci-
dent T2D (average follow-up time 2.1 [SD 1.3] years) and an
independent subset of healthy individuals who remained
healthy during follow-up.

All twins provided informed written consent and the
study was approved by St Thomas’ Hospital Research Ethics
Committee (REC Ref: EC04/015).

Replication Cohort
The Cooperative Health Research in the Region of Augsburg
(KORA) study is a population-based cohort study. The
KORA FF4 study (2013–2014) is the second follow-up of
KORA S4 (1999–2001). The 1,007 samples included in the
study were collected in the morning between 8:00 A.M. and
10:30 A.M. after at least 8 h of fasting. Metabolon untargeted
liquid chromatography/mass spectrometry (MS)-based tech-
niques were applied to measure the metabolites in the
KORA cohort (a different version of the platform used in
TwinsUK). Healthy individuals and IFG individuals were as-
signed based on the same criteria as in TwinsUK (described
in the above section and in Table 1).

Fecal Metabolomics Profiling
Metabolomics profiling was conducted using ultrahigh-
performance liquid chromatography-tandem MS (MS/MS)
by the metabolomics provider Metabolon Inc. (Morrisville,
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NC) on fecal samples from participants in the TwinsUK
and KORA cohorts (Supplementary Material). The metabo-
lomic data set measured by Metabolon includes 526 known
metabolites for TwinsUK belonging to the following broad
categories—amino acids, peptides, carbohydrates, energy in-
termediates, lipids, nucleotides, cofactors and vitamins, and
xenobiotics—of which 357 were also measured in KORA.
These include metabolites of established microbial origin
(16). A complete list of the included metabolites with their
superpathways, subpathways, Kyoto Encyclopedia of Genes
and Genomes and Human Metabolome Database identifiers
are reported in Supplementary Table 1. We imputed to the
day minimum metabolites with <20% missing.

Metagenomic Assessment
Gut microbiota composition was generated from fecal shot-
gun metagenomes for a subset of the discovery cohort. DNA
extraction, library preparation, and sequencing were

conducted as detailed in Visconti et al. (11). For details see
the Supplementary Material. Of note, gut microbiota com-
position is described by species-level genome bins (SGBs),
which is the best proxy to define microbial species (17).

Statistical Analysis
Statistical analyses were conducted using R 4.2.2 software.
To identify a fecal metabolite signature of prediabetes, we
ran logistic regressions adjusting for age, BMI, sex, and mul-
tiple testing using the Benjamini and Hochberg method (18)
(false discovery rate [FDR]<0.05). We then checked whether
the metabolites significantly associated with IFG in the dis-
covery set were also replicated in KORA (P< 0.1). We used a
less stringent threshold for KORA because of the winner’s
curse (the effect sizes of the most strongly associated variables
within a cohort-specific analysis are inflated) (19). Results
were meta-analyzed using inverse-variance random-effect
meta-analysis. We then created the IFG-metabolite score

Figure 1—Flowchart of the study design with the main results. Data, aims, methods, and results are shown in gray, blue, green, and pink
squares, respectively. Mediation analyses were also performed for the metabolites making up the score that was predicted by the gut mi-
crobiome composition with an AUC>70%. Cov, covariates (age, BMI, and sex).
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by linearly combining the replicated metabolites along
with covariates. To assess the performance of the score in
predicting prevalent IFG and incident T2D, we calculated
the area under the curve (AUC) values obtained using five-
fold cross-validation (caret package implemented in R [20]).
Finally, logistic and Cox regressions were used to investigate
the association between the IFG score (Z-scaled) and preva-
lent IFG risk and incident T2D risk, respectively.

Given the strong association between fecal metabolites
and gut microbiome composition (12), we investigated to
what extent the gut microbiota composition was associated
with each of the replicated metabolites using random for-
est regressors and classifiers with compositional data and
fivefold cross-validation. The performance was calculated
using the average of the obtained Spearman correlations
between the observed metabolite levels and the levels pre-
dicted by the model (denoted as r) over the fivefolds used
as a test set for the regressors and the average of the ob-
tained AUC values over the testing folds for the classifiers.
For details see the Supplementary Material.

We further investigated the associations between their
top 100 bacterial features and IFG by running logistic regres-
sionmodels adjusting for covariates andmultiple testing spe-
cies (FDR <0.05). Specifically, we included all of the fecal
metabolites that could be predicted by the gut microbiome
with an AUC >70%, and we then focused on those that had
an outstanding prediction performance (AUC>90%).

Finally, we used formal mediation analysis as implemented
in the R package “mediation” with 1,000 nonparametric boot-
strap samples (21) to test themediation effects of themetabo-
lites on the total effect of the gut bacteria on IFG. The
mediationmodel was used to quantify both the direct effect of
these gut bacterial species on IFG and the indirect (mediated)
effects mentioned above while controlling for age, BMI, and
sex. The variance accounted for (VAF) score, which represents
the ratio of indirect-to-total effect and determines the propor-
tion of the variance explained by the mediation process, was
used to determine the significance of themediation effect.

Data and Resource Availability
The data used in this study are held by the Department of
Twin Research at King’s College London. The data can be
released to bona fide researchers using our normal proce-
dures overseen by the Wellcome Trust and its guidelines as
part of our core funding (https://twinsuk.ac.uk/resources-
for-researchers/access-our-data/). The gut microbiome data
are available on EBI (https://www.ebi.ac.uk/) under accession
number PRJEB32731 (TwinsUK). The KORA FF4 datasets
are available upon application through the KORA-PASST
(project application self-service tool, https://www.helmholtz-
munich.de/epi/research/cohorts/kora-cohort/data-use-and-
access-via-korapasst/index.html).

RESULTS

We included 1,247 unrelated individuals from the TwinsUK
cohort who had fecal metabolite measures along with

glucose/diabetes and prediabetes information. Of these, 142
individuals had IFG (mean fasting glucose 5.9 mmol/L
[SD 0.4]) and 1,105 were healthy individuals (mean fasting
glucose 4.5 mmol/L [SD 0.3]). Descriptive characteristics of
the discovery and replication populations are included in
Table 1.

Fecal Metabolites Associated Cross-sectionally to IFG
Of the 526 known fecal metabolites analyzed in TwinsUK,
the fecal abundances of 26 compounds were associated
with IFG after adjusting for age, BMI, sex, and multiple
testing (FDR <0.05) (Fig. 2). Identified metabolites were
mainly amino acids (n = 7) and lipids (n = 7), but also in-
cluded xenobiotics (n = 4), cofactors and vitamins (n = 3),
nucleotides (n = 2), carbohydrates (n = 2), and one energy-
related metabolite (Fig. 2). All significant metabolites, but
3-hydroxyoleate, octadecanedioate (C18-DC), azelate (C9-
DC), g-tocotrienol, and enterolactone, were positively asso-
ciated with IFG (Fig. 2). Of the 26 metabolites, 18 were
alsomeasured in KORA (Supplementary Table 1), and 8me-
tabolites were replicated (P < 0.1) (Fig. 3). These were the
lipid cholesterol (sterol metabolism), the carbohydrate glu-
curonate (aminosugar metabolism), the cofactors/vitamins
nicotinate (nicotinate and nicotinamide metabolism) and pro-
toporphyrin IX (hemoglobin and porphyrin metabolism),
the xenobiotics caffeine and 1-methylxanthine (both in-
volved in the xanthine metabolism), the amino acid serine
(glycine, serine, and threonine metabolism), and the nucleo-
tide uridine (pyrimidine metabolism). The correlation matri-
ces for the eight fecal metabolites in TwinsUK and KORA
are depicted in Supplementary Fig. 1. We combined the
results from both cohorts using inverse-variance random-
effect meta-analysis (Fig. 3).

IFG-Metabolite Score and Predictive Power
We then generated the IFG-metabolite score using TwinsUK
individuals:

IFG-metabolite score = �8.79 1 0.07 × glucuronate 1
0.25 × protoporphyrin IX 1 0.09 × 1-methylxanthine 1
0.14 × cholesterol 1 0.04 × serine 1 0.07 × uridine 1 0.04 ×
nicotinate 1 0.17 × caffeine 1 0.07 × age 1 0.1 × BMI �
0.6 × sex (female = 1)

The IFG-metabolite score was associated with an in-
creased risk of IFG in TwinsUK (odds ratio [OR] 3.9
[95% CI 43.02–5.02], P < 0.0001) and in KORA (OR 1.3
[95% CI 1.16–1.52], P < 0.0001). The association re-
mained significant when further adjusting for clinical cova-
riates (i.e., systolic and diastolic blood pressure, circulating
levels of HDL, total cholesterol, and triglycerides, alter-
native health eating index [aHEI – not available in
KORA], activity levels and smoking status) (Table 1) in
both cohorts (TwinsUK: OR 3.4 [95% CI 2.65–4.49], P <
0.0001; KORA: OR 1.2 [95% CI 1.06–1.41], P = 0.008).
Finally, the IFG-metabolite score accurately predicted
prevalent IFG in TwinsUK with an AUC of 79.8% (95% CI
76.3–83.3) in fivefold stratified cross-validation and
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outperformed the model including only covariates (AUC
77.2% [95% CI = 73.6–81]) by 2.6% (D95% CI 2.7–2.1).
In KORA, the IFG-metabolite score (top vs. lowest dec-
ile) could satisfactory predict prevalent IFG (AUC 65.4
[95% CI 57.9–73]).

Subanalysis: Incident T2D
In a small independent sample from TwinsUK (descrip-
tive characteristics are shown in Table 1) consisting of
17 healthy individuals (different from the healthy sub-
jects of the IFG data set) and 10 individuals with inci-
dent T2D (follow-up time between fecal metabolite
measurements and incident events: mean 2.1 [SD 1.3] years),
the IFG-metabolite score was also predictive of an in-
creased risk of incident T2D (hazard ratio 4 [95% CI
1.97–8], P = 0.0002) in TwinsUK after further adjusting
for baseline circulating glucose levels. It also accurately pre-
dicted incident T2D (AUC 83.3% [95% CI 74.4–92.2]),
while a model using baseline circulating glucose levels as
predictor presented a lower prediction power (AUC 72.4%
[95% CI 51.8–92.9]).

Gut Microbiome–Fecal Metabolites Association
We further evaluated the extent to which the gut microbiota
was associated with the fecal abundances of the eight repli-
cated metabolites using the AUC obtained by the random
forest classifiers and the Spearman correlations (denoted as
r) between the real abundances and predicted values by the
random forest regressors. We included a subset of 342 indi-
viduals from TwinsUK with concurrent gut microbiota com-
position assessed by shotgun metagenomics and fecal
metabolites measurements. Descriptive characteristics of
this subset are shown in Supplementary Table 2.

The gut microbiome composition was strongly associated
with the replicatedmetabolites, with performancemetric val-
ues ranging from an AUC of 70.7% (95% CI, 69.1–72.4) and
r = 0.24 (95% CI, 0.23–0.25) for caffeine to an AUC of
91.4% (95% CI, 90.8–91.9) and r = 0.62 (95% CI, 0.62–0.62)
for 1-methylxanthine (Fig. 4A and Supplementary Table 3).
Protoporphyrin IX was the only metabolite presenting a
moderate association (AUC 64.8% [95% CI 63.9–65.6]; r =
0.25 [95% CI 0.24–0.26]) (Fig. 4A).

We then investigated whether the abundances from
their top 100 bacterial features based on the random

Figure 2—Fecal metabolites significantly associated with IFG in 1,247 individuals from TwinsUK after adjusting for baseline age and BMI,
sex, and multiple testing (FDR<0.05). Bars represent the OR. Base labels illustrate subpathways. met., metabolism.
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forest models were also significantly associated with IFG
(Supplementary Table 4). We focused on the fecal metab-
olites that presented the strongest associations with the
gut microbiome composition (AUC >90%—outstanding
prediction performance; 1-methylxathine and nicoti-
nate). We identified four characterized gut bacterial
species for 1-methylxanthine and nicotinate, of which
three overlapping (overlapping: Dorea formicigenerans,
Ruminococcus torques, and Faecalibacillus intestinalis;
1-methylxanthine only: Dorea sp. AF24-7LB; nicotinate
only: Dorea sp. AF36-15AT), that were positively associ-
ated with IFG after adjusting for age, BMI and sex
(FDR <0.05) (Supplementary Table 4). We, therefore, per-
formed a formal mediation analysis adjusting for age, BMI,
and sex to determine whether 1-methylxanthine and/or nic-
otinate mediated the associations between these species

and IFG. The analysis revealed that 1-methylxanthine acted
as a potential mediator in the positive associations of Dorea
sp. AF24-7LB (VAF = 10.3%, P = 0.03) and R. torques (VAF
= 9.7%, P = 0.04) with IFG, while nicotinate acted as a po-
tential mediator in the positive associations of F. intesti-
nalis (VAF = 22.3%, P = 0.002), D. formicigenerans (VAF =
15.8%, P = 0.002), and R. torques (VAF = 14.1%, P = 0.03)
with IFG (Fig. 4B). We further ran mediation analyses for
the metabolites that could be predicted by the gut micro-
biome with an AUC >70%. As reported in Supplementary
Fig. 2, uridine, serine, cholesterol, and caffeine were also
mediators in the associations between different species
(e.g., Dorea spp. and Anaerobutyricum hallii) and IFG. Mod-
els were not further adjusted for other comorbidities (e.g.,
systolic and diastolic blood pressure, circulating levels of
HDL, total cholesterol and triglycerides, aHEI, activity

Figure 3—Fecal metabolites significantly associated with IFG after adjusting for age, BMI, and sex in TwinsUK (FDR <0.05), KORA (P < 0.1)
and in the overall cohort (applying inverse-variance random-effect meta-analysis). The OR and 95% CI are indicated.
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Figure 4—Associations of the gut microbiota with the eight fecal replicated metabolites and IFG in 342 TwinsUK participants. A: Influence of the gut
microbiota composition in the fecal abundances of the eight replicated metabolites estimated by random forest regressors (Spearman correlations
between the real value of eachmetabolite and the value predicted) and classifiers (AUC). Red and blue bars represent the mean AUC and Spearman
correlations with the respective 95% CIs across fivefolds, respectively.B: Mediation analyses of the associations between characterized gut bacterial
species and IFG. Models were adjusted for age, BMI, and sex. Path coefficients are shown beside each path, and indirect effects and VAF score are
indicated below eachmediator (left: nicotinate, right: 1-methylxanthine). Onlymetabolites with a predictive power of AUC>90% inA are shown.
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levels, and smoking status) as these were not significantly
associated with the identified bacterial species or with the
metabolites making up the score (Supplementary Table 5).

DISCUSSION

Here we identify for the first time a fecal metabolite signa-
ture of IFG that is associated with prevalent IFG in two in-
dependent cohorts and is also predictive of incident T2D in
a small subanalysis. The fecal metabolites making up the
score are not microbial-derived metabolites but are “host
metabolites” (e.g., xenobiotics, cofactors, and vitamins).
However, the gut microbiome can accurately predict their
fecal abundances (AUC >70%). It is well known that the
gut microbiome composition can affect diseases via several
mechanisms (22). Circulating microbial metabolites have
been reported by us and others to be reflective of gut mi-
crobiome diversity and composition (6–8) and predictive
of prevalent and incident T2D (7). Taken together, this
suggests that the gut microbiome can influence T2D, not
only by producing metabolites that enter the bloodstream
(7) but also by regulating the absorption or excretion of
host-produced compounds, thereby influencing IFG and
T2D risk. This hypothesis is further supported by the re-
sults of our mediation analysis showing that metabolites
making up the score act as partial mediators on the signifi-
cant associations between several gut microbial species,
(e.g., F. intestinalis, D. formicigenerans, R. torques, and Dorea
sp. AF24-7LB) and IFG.

Studies have shown that gut microbiome composition
differs between individuals with prediabetes/diabetes and
healthy subjects (6,7), with compositional shifts correlated
with synthesis profile changes of gut bacteria-derived me-
tabolites, including short-chain fatty acids, indolepropionic
acid, and trimethylamine (7,22). These “microbial” metabo-
lites enter into the bloodstream and reach different tissues,
where they can influence glucose homeostasis and insulin
resistance by activating or inhibiting signaling pathways
(22). Nevertheless, the identified signature of prediabetes in
this study consists of eight metabolites of nonbacterial ori-
gin. Serine is a nonessential amino acid mainly obtained by
intrinsic synthesis (23). Glucuronate is a sugar acid derived
from glucose and involved in the detoxification of xenobiotic
compounds (24). Protoporphyrin IX is a cofactor ubiqui-
tously present in the human body as a heme precursor (25).
Nicotinate, also known as vitamin B3 and niacin, is a water-
soluble vitamin that can be produced by the human body
from tryptophan (26). Cholesterol, which is mainly pro-
duced by the liver, is an essential lipid of eukaryotic cell
membranes and is also a precursor of bile acids and steroid
hormones (27). Uridine is a necessary pyrimidine nucleotide
for RNA synthesis produced by several reversible reactions
(e.g., dephosphorylation of uridine monophosphate, deam-
ination of a cytidine or combination of uracil and ribose
1-phosphate) (28). Caffeine and 1-methylxanthine are xeno-
biotics involved in the caffeine metabolism pathway (29).

Strikingly, we find that the gut microbiome is strongly as-
sociated with fecal levels of these metabolites, suggesting
that the gut microbiome influences the absorption or excre-
tion of compounds involved in various metabolic pathways
(e.g., cholesterol, uridine, and glucuronate) and xenobiotics
(e.g., caffeine and its derivatives), among others, and such
levels of absorption or excretion are directly related to IFG.
Our findings lead us to speculate that individuals with predi-
abetes present gut microbiome composition perturbations,
which likewise influence the absorption or excretion of the
identified compounds. This is further supported by the me-
diation analyses, which suggest that the associations be-
tween specific gut microbial species, including F. intestinalis,
D. formicigenerans, R. torques, and Dorea sp. AF24-7LB, and
IFG are mainly reflecting the effect of the gut microbiome in
the absorption or excretion of the found compounds.

Under normal conditions, the small intestine can break
down, emulsify, and absorb most nutrients, including fats,
simple carbohydrates, and proteins (30). For instance,<5 g/day
of fat are not absorbed and reach the colon (30). Nonethe-
less, the absorption capability of the gut can be limited de-
pending on the gut microbiome composition (31). A study
conducted by Basolo et al. (31) demonstrated that changes
in participants’ gut microbiome composition, due to diet or
antibiotic use, impaired nutrient absorption. Several mecha-
nisms might explain how gut microbiome composition might
influence absorption, and thus, the disease onset (32–34).
For instance, the gut microbiome can affect the gut barrier,
which consists of a collection of physical and chemical struc-
tures that protect the host from pathogenic invasions and
harmful stimuli (32). This can be provoked by the presence of
pathogen-associated molecular patterns, such as lipopolysac-
charides, in the cell walls of some gram-negative bacteria,
which play an important role in intestinal absorption, blood
glucose, and inflammation (33). Moreover, changes in the
permeability of the gut barrier can be caused by an unbal-
anced increase in bacteria able to degrade mucin (the main
component of mucus, which covers the epithelial surfaces of
the gastrointestinal tract) (32). Indeed, in this study, we
identify that individuals with prediabetes present larger
abundances compared with healthy individuals of the mucin-
degraders D. formicigenerans (35) and R. torques (36), which
have been previously associated with lower nutrient absorp-
tion (36). Finally, some gut microbes can also reduce absorp-
tion in the jejunum by altering the expression of intestinal
transporters of different types of compounds (34).

Another possible explanation for our findings could be a
reduction of specific beneficial bacteria able to use these
compounds, thus resulting in increased excretion (27,37).
In the case of cholesterol, bacterial members of the genera
Bifidobacterium, Lactobacillus, and Peptostreptococcus are
needed to convert cholesterol into coprostanol (27). Like-
wise, an inefficient cholesterol-coprostanol conversion is
linked to cardiometabolic diseases (27). For glucuronate,
most of it is not absorbed by the small intestine; however,
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under normal conditions, the amounts that make it to the
colon are then efficiently used by Bifidobacterium (37).

This work has several strengths. Our study benefits from
a large, accurately phenotyped discovery cohort with metab-
olomic profiling and gut microbiome composition. We were
also able to replicate our findings in a large independent co-
hort, thus strengthening our findings. Finally, a machine
learning algorithm was applied to investigate the prediction
of the gut microbiota to the levels of the found eight metab-
olites, allowing us to simultaneously integrate all the species
in the models.

We also note some study limitations. First, the cross-
sectional nature of the data used for our primary analysis
does not allow us to determine the temporal link between
IFG and the identified fecal metabolites.

Second, HbA1c, postprandial glucose to derive impaired
glucose tolerance, which more closely resembles the T2D
state (38), and a clinician’s diagnosis were not available in
the discovery cohort. Thus, the division of categories in
this study is derived from IFG.

Third, the sample size for the subanalysis looking at inci-
dent T2D was limited, and we were unable to seek indepen-
dent replication as, to the best of our knowledge, there are
no other cohorts in the world that have measured this fecal
metabolome panel and incident T2D. Future studies with
larger sample size are therefore needed to test the robust-
ness of the IFGmetabolite score to predict incident T2D.

Fourth, there was not a full overlap between metabolites
measured in the discovery and validation data sets, which
might cause the loss of metabolites of interest to study.

Fifth, the included study groups were unbalanced in age
and sex. Hence, although we adjusted all analyses for them
and other important clinical variants, the confidence of the
results is lowered. In addition, gut microbiota composition
data were only available for a subset from the discovery set,
and therefore, we could not replicate the mediation analysis
in KORA. Furthermore, the Spearman correlations be-
tween the predicted (from gut microbiome composition)
and actual levels of the metabolites were modest. Indeed,
random forest models were trained based on microbial fea-
tures extracted from metagenomic data, which does not
retrieve all species present in a microbiome sample for pro-
cedural and technical reasons.

Finally, this study does not include measures of perme-
ability markers, which would contribute to a better under-
standing of the role of intestinal permeability in the
absorption or excretion of the identified compounds.

In conclusion, we are proposing a novel mechanism of how
gut microbiome composition affects prediabetes and, conse-
quently, the onset of T2D. The gut microbiome is linked to
prediabetes not only by microbial-derived metabolites but
also by affecting intestinal absorption or excretion of metabo-
lites of nonmicrobial origin, which are correlated with the risk
of IFG and incident T2D. Henceforth, to better understand
the onset of T2D, the effect of the gut microbiome in the

excretion and/or absorption of host-produced compounds
and xenobiotics also needs to be also considered.
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