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Abstract

EEG spikes and focal epileptic seizures are generated in circumscribed cerebral networks
that have been insufficiently described. For precise time and spatial domain networks
characterization we applied in patients with focal epilepsy dense array 256-channel EEG
recordings with causal connectivity estimation using time resolved partial
directed coherence and 3T-MRI derived cortical and thalamus integrity reconstruction.
Prior to spike generation significant theta and alpha bands driven information flows
alterations were noted from both temporal and frontal lobes to thalamus and from
thalamus to the frontal lobe. Medial dorsal and ventral anterior nuclei of the thalamus
were delimited as possible pacemakers. Markedly reduced thalamic volumes and impaired
cortical integrity in widespread areas predicted the altered information flows. Our data
reveal distinct patterns of connectivity involving the thalamus and frontal cortex directly
and causally involved in spike generation. These structures might play an essential role for

epileptogenesis and could be targeted in future therapeutic approaches.
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Introduction

Focal epileptogenesis relies on perturbations of neuronal activity regionally and in a
network of interconnected anatomical regions. Modified excitatory/inhibitory interactions
within cortico-cortical or subcortical networks potentiate the local activity, generating
long-range synchronizations. Pathologic synchronization could lead to interictal spikes,
which are bursts of action potentials generated by recurrent excitation, followed by a
period of inhibition (McCormick and Contreras 2001). This synchronization of electric
activities recorded non-invasively is therefore an essential phenomenon that could help to
resolve epileptogenic networks (Bartolomei, Wendling et al. 2001, de Curtis and Avanzini
2001). Recent studies investigating pathological synchronous neuronal activity and its
structural correlates have led to a paradigm shift from “epileptogenic focus” to
“epileptogenic network” (Siniatchkin, Groppa et al. 2007, Richardson 2012, Yaffe, Borger et
al. 2015). One of the remote structures of the epileptogenic networks that is involved early
in the temporal and spatial synchronization leading to seizure generation might be the
thalamus; however its precise role in the propagation of focal seizures is not clear
(Rosenberg, Mauguiére et al. 2006, Groppa, Siebner et al. 2008, Groppa, Moeller et al.
2012). The thalamus as a network node not only receives substantial neuronal input from
different brain regions, but has also strong reciprocal connections to other subcortical and
cortical areas (Groppa, Siebner et al. 2008, Groppa, Moeller et al. 2012). Insausti et al.
(Insausti, Amaral et al. 1987) showed that the mediodorsal nucleus (MD) of the thalamus
has rich reciprocal interconnections with neocortical areas, such as with frontal and
prefrontal cortex through anterior thalamic peduncle (Tanaka 1976) and with temporal
regions like amygdala and olfactory cortex (Russchen, Amaral et al. 1987) through inferior
thalamic peduncle. These pathways might be of special importance for seizure generation.
As shown recently (Guye, Régis et al. 2006, Mueller, Laxer et al. 2010, Bernhardt,
Bernasconi et al. 2012), the thalamus might also be involved in the long-range coupling in
temporal lobe epilepsy (TLE), the most common type of focal epilepsy. However, it is still
not known which thalamic subregions in humans modulate the information flows related
to epileptogenesis and which frequency bands are involved. For the development of new
therapeutic techniques such as invasive or non-invasive stimulation or neurosurgical

methods, it is of utmost importance to characterize these functional and structural
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abnormalities and describe the entire network involved (Groppa, Herzog et al. 2014,

Muthuraman, Groppa et al. 2016). In the adopted approach of structural and functional
network characterization we aimed to obtain an exact and causal estimation of the
temporal and spatial properties of the involved networks. Moreover, the adopted
approach describes the directionality of the information flows and achieves an exact
temporal dissection of the connectivity dynamics. The proposed frequency domain
analysis has a unique feature to describe time- and space-specific processes linked to
distinct frequency bands that drive the long-range connectivity.

We hypothesize (1) frequency- and time domain-specific changes in connectivity prior to
spike generation and (2) clear structural abnormalities involving the epileptogenic network

that are related to the long-range synchronization and not solely to the primary focus.
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Methods
Ethics statement. The study protocol was approved by the local ethical board at National

Center of Epileptology institutional review board, Chisinau, Moldova.

Participants. 15 patients (mean age * standard deviation: 28.1 + 8.3 years, 9 males) with
focal epilepsy (12 TLE patients) without seizures in the month prior to investigation and 15
age-matched healthy subjects (27.9 + 4.0 years, 7 males) were included. The diagnosis of
epilepsy was established on the basis of clinical history and EEG findings according to
revised International League Against Epilepsy (ILAE) classification (Berg, Berkovic et al.
2010). The recruited patients were referred to the National Center of Epileptology,
Chisinau, Moldova. The demographic and clinical characteristics of each patient are

summarized in Table 1. The analysis pipeline is presented in Figure 1.

EEG data acquisition. We performed interictal dense array video-EEG of epilepsy patients
at rest and in an alert state for 2 hours in a dimly lit and quite room. The EEG electrodes
were included in a cap with 20-25 mm interelectrode distances placed according to the
international 10/5 system (Jurcak, Tsuzuki et al. 2007) (Hydrogel Geodesic Sensor Net 130
routine, 256 electrodes, Electrical Geodesic, Inc., Eugene, OR, USA). The sampling rate was
1000 Hz, with low and high frequency filters (0.3 Hz and 70 Hz, respectively) and stored
using Net Station 5 software package (Electrical Geodesic). The obtained electrodes’
impedance was below 10 kQ. All patients were under continuous observation throughout

the recording.

MRI data acquisition. Structural MR data were acquired using a 3T SIEMENS Skyra
scanner, with a 32-channel head coil (Wellmer, Quesada et al. 2013). T1-weighted images
(repetition time [TR] = 2000 msec, echo time [TE] = 9 msec, 4 mm slice thickness, flip angle
= 150°), T2-weighted images (TR = 3800 msec, TE = 117 msec, 4 mm slice thickness, flip
angle = 190°) and fluid attenuated inversion recovery (FLAIR) sequences were acquired.

Data Processing. EEG preprocessing and analysis was performed using FieldTrip toolbox
and in-house Matlab scripts. Muscle artifacts were first removed using manual data

inspection by an experienced neurophysiologist. An infomax Independent Component
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Analysis (ICA) (Delorme and Makeig 2004) was then applied and ICA components were

profiled by their topography, activation time course and spectrogram. Components clearly
assigned to e.g., (rarely occurring) eye blinks (Jung, Makeig et al. 2000) were excluded
from the back projection. EEG from all scalp channels were then transformed to the
average reference (Lehmann and Skrandies 1980) and EEG segments with remaining
artifacts were removed. Typical interictal spikes with the same morphology were marked
manually at the time of maximum positivity or negativity, the detected spikes were
checked individually, and some were excluded. In train interictal events like polyspikes or
spikes riding on a preceding slow wave were also rejected in order to avoid pre-onset
baseline contamination. For each patient 5-10 interictal spikes were selected. The EEG
signal was parsed 15 seconds before the spike peak for each patient separately. The time
interval of 10 seconds before the spike was defined as the activation period and the time
period from 10 to 15 seconds before the spike was defined as the baseline period for all
the following analyses. Source power and synchronization analysis (see below) across all
sources was examined at theta (4-7 Hz), alpha (8-13 Hz) and beta (14-30 Hz) frequency

bands separately.

Source analysis

A full description of the coherence analysis is given elsewhere (Muthuraman, Heute et al.
2012, Michels, Muthuraman et al. 2013). There are two major constraints in this analysis:
first, the analysis is created on a single dipole model, which is not linearly correlated to
other dipoles and second, the signal-to-noise ratio must be sufficiently high (GroR, Kujala
et al. 2001). The fixed dipole model was used in which the dipole source responsible for
the measured EEG potentials during an epoch remains at a constant location, the dipole
moment vector maintains a constant orientation throughout the epoch, and only the
magnitude varies. The output of the beamformer at a voxel in the brain can be defined as
a weighted sum of the output of all EEG channels (Van Veen, Van Drongelen et al. 1997).
The weights determine the spatial filtering characteristics of the beamformer and are
selected to increase the sensitivity to signals from a voxel and reduce the contributions of
signals from (noise) sources at different locations. The frequency components and their

linear interaction are represented as a cross-spectral density (CSD) matrix. In order to
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visualize power at a given frequency range, a linear transformation was used based on a

constrained optimization problem, which acts as a spatial filter (Van Veen, Van Drongelen
et al. 1997). The spatial filter was applied to a large number of voxels covering the entire
brain, assigning a specific value of power to each voxel. A voxel size of 5 mm was used in
this study. The beamformer weights for a given source (at a location of interest) are
determined by the data covariance matrix and the forward-solution (lead-field matrix -
LFM). The LFM was estimated with specified models for the brain. In this study, the brain
was modeled by a boundary element method (Fuchs, Kastner et al. 2002) with three
layers, namely brain, skull and skin. The volume conductor model was created using
individual T1 magnetic resonance images. Part of the forward modeling and the source
analysis were done using the open source software FieldTrip (Oostenveld, Fries et al.
2010). For both groups, the head was modeled using the individual electrode locations.
The LFM contains information about the geometry and conductivity of the model. The
complete description of the solution for the forward problem has been described
previously (Muthuraman, Heute et al. 2010). The brain regions were defined according to
the Automatic Anatomic Labeling Atlas (AAL) 116 regions of interest (ROIs) (Whitfield-
Gabrieli and Nieto-Castanon 2012). To address major anatomically relevant regions, the
ROIs were subdivided into seven separate regions, namely prefrontal, frontal, parietal,
occipital, temporal, thalamus and cerebellum. The thalamus parcellation was done based
on the connectivity probability to cortical masks (Behrens, Johansen-Berg et al. 2003,
Jones 2012). The activated voxels were selected by a within-subject surrogate analysis to
define the significance level, which was then used to identify voxels in the regions as
activated voxels. Once brain region voxels were identified, their activity was extracted
from the surface EEG (source space). In a further analysis, all the original source signals for
each region with several activated voxels were combined by estimating the second order
spectra and employing a weighting scheme depending on the analyzed frequency range to
form a pooled source signal estimate for each region as previously described (Rosenberg,

Amjad et al. 1989, Amjad, Halliday et al. 1997).
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Connectivity analysis

Using time-frequency causality we can not only focus on a particular frequency, but can
also analyze the time-dynamics of the causality at that frequency. Based on the state-
space modeling, the time-frequency causality estimation method of time-resolved partial
directed coherence (TPDC) utilizes dual-extended Kalman filtering (DEKF) (Haykin 2001,
Wan and Nelson 2001). We can estimate the time-varying dependent autoregressive (AR)
coefficients. One extended Kalman Filter (EKF) will estimate the states and feed this
information to the other EKF; the second EKF will estimate the model parameters and will
also share this information with the first EKF. By concurrently using two Kalman filters,
working in parallel with one another, we can estimate both states and model parameters
of the system at each time instance. After estimating the time-varying multivariate (MVAR)
coefficients, the next step is to use those coefficients for the calculation of causality
between the time series. Since DEKF can give us the time-varying MVAR coefficients at
each time point, we can calculate the partial directed coherence (PDC) at each time point

as well. The general expression for the PDC is given as follows:

L@

poy (@)=
\ Zk‘Akj (w) ‘

In equation (1), r is the magnitude of PDC from time series j to i at frequency» , which

are the Fourier transform coefficients of the causal coefficients. Afterwards, time-
frequency plots of all PDCs can be concatenated to produce a single time-frequency plot.
The precise distribution of the MVAR coefficients is not known; we used the surrogate
method to check for the significance of the results. This method is based on the random
shuffling of the subjected time series and hence it is data-driven. In short, we divided the
original time series into smaller non-overlapping windows and randomly shuffled the order
of these windows to create a new time series. The MVAR model is fitted to this shuffled
time series and the TPDC is estimated. This process is repeated 100 times and the average
TPDC is calculated. The resulting value is the significance threshold value for all our

connections. This process is performed separately for each patient.
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The mean TPDC values for the significant connections from the different time windows

were compared with a repeated-measure ANOVA. The significance level was set to p <

0.05. Post-hoc tests with Tukey-Kramer correction for multiple comparisons were applied.

Cortical thickness analysis

Cortical reconstruction and volumetric segmentation were performed with the Freesurfer
image analysis suite (version 5.3.0), which is documented and freely available for
download online (http://surfer.nmr.mgh.harvard.edu/). The detailed procedure for surface
and volumetric reconstruction has been described and validated in previous studies (Dale,
Fischl et al. 1999, Fischl and Dale 2000, Reuter, Schmansky et al. 2012). In brief, cortical
thickness was calculated (in mm) as the shortest distance between grey matter/white
matter boundary and pial surface across the cortical mantle. Thalamus volume was
calculated using the automated procedure and checked visually. Cortical thickness was
smoothed with a 10-mm full width at half height Gaussian kernel to reduce local variations
in the measurements (Du, Schuff et al. 2007). Statistical difference was computed using a
random effects model with t-tests for each cortical location. For statistical difference maps
the significant threshold was set to an uncorrected p-value of p < 0.05 (two-tailed) (Lyoo,
Sung et al. 2006).

In order to relate information flow changes and structure we computed the difference

(V = max —minrpdv) in connectivity dynamics prior to spike generation and cortical

Tpdc

thickness and thalamic volume values.

Results

Clinical description

In this study, a total of 15 epilepsy patients and 15 age-matched healthy controls were
analyzed. The healthy controls did not present any history of seizures or other neurologic
abnormalities. There was no significant difference in age (p > 0.05) between the two
cohorts. All patients except one were right handed. Thirteen patients had dyscognitive
seizures and three patients presented focal motor seizures with evolution in bilateral

convulsive seizures. Among 15 patients, the radiological MRI assessment showed no
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morphological correlate in one case, the others presented different structural lesions (see

Table 1).

Temporal dynamics of effective connectivity

The analysis of the focused frequency bands (theta, alpha and beta) in the period prior to
spike generation showed significant information flows only in theta (t = 4.06, p = 0.005)
and alpha (t = 4.36, p = 0.003) frequency bands. These survived the data driven surrogate
significance analysis and will be discussed further in this section.

In patients we detect a significant decrease in connectivity strength from temporal and
frontal lobes to thalamus and from thalamus to the frontal lobe in the theta domain with a
maximum peak five seconds prior to spike generation (Figure 2a). Moreover, just prior to
spike appearance (in the last four seconds) the connectivity from the temporal lobe to
thalamus increases significantly. Furthermore, we see a similar pattern of connectivity
dynamics in the alpha band (Figure 2b). Here, we see a clear information flow increase
from temporal lobe to thalamus that also peaks five seconds prior to spike generation. A
further significant breakdown of information flows between the temporal and frontal lobe
to thalamus was noted.

The strength of temporo-thalamic connectivity change (five seconds prior to spike)
significantly correlated with fronto-thalamic connectivity dynamics (r = 0.73, p = 0.001). In
the same band and time window, the thalamo-frontal connectivity values showed no
significant interrelations with temporo-thalamic (p = 0.06) and fronto-thalamic (p = 0.5)
connectivity variations.

In the alpha band, thalamo-frontal connectivity correlated significantly with the
modulation of fronto-thalamic (r = 0.63, p = 0.01) and not significantly with the temporo-
thalamic (p = 0.7) information flows. Temporo-thalamic connectivity also did not correlate
with the fronto-thalamic connectivity dynamics (p = 0.5).

No other significant changes of connectivity were noted between the further analyzed
cerebral regions (i.e., occipital, parietal, prefrontal).

In healthy subjects for the analyzed frequency bands (theta, alpha and beta) we found
significant information flows only in alpha frequency band. Bidirectional connections were

attested between frontal lobe and thalamus (t = 4.01, p = 0.006) and between frontal and
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parietal lobes (t = 4.16, p = 0.004) that survived the data driven surrogate significance

analysis. In the analyzed time window of 10 seconds, no significant changes in information
flows were detected for these connections, which were stable over the entire time
interval.

Thalamic parcellation related connectivity dynamics

In the theta frequency band, we found significant bidirectional connections from the
medial dorsal and ventral anterior thalamus to the frontal lobe (Figure 3). The temporal
dynamics of connectivity changes were similar to the above described changes of
connectivity involving the entire thalamus structure. In the alpha frequency band we see a
similar breakdown of the connectivity strength involving the frontal lobe and the medial
dorsal and ventral anterior nuclei of the thalamus. A significant reduction in information
flows was detected ca. 5 seconds before spike generation from temporal lobe to the

anterior, lateral and inferior nuclei of pulvinar of thalamus as shown in Figures 5 and 6.

Cortical thickness and thalamic volume

Cortical thickness analysis showed a significant cortical thinning of wide spread regions in
patients with epilepsy (p < 0.05, FDR [false discovery rate] corrected; > 50 voxels) mainly in
the frontal and temporal regions (Figure 7). A cortical thickness increase was detected in
the occipital cortex. The complete results are presented in Table 2 and Figure 7. No

significant correlations were found between cortical thickness and disease duration.

Thalamic volumes were markedly reduced in epilepsy patients compared to healthy
subjects. Volumes of left (7362.1 + 848.3 mm?, p = 0.00005) and right (7186 + 848.3 mm?,
p = 0.0037) thalami of FE patients were significantly smaller in comparison with healthy

controls (left thalamus 9360.5 + 1382 mm?, right thalamus 8088.7 + 683 mm?).

Correlation effective connectivity and thalamic volume

In theta band the temporo-thalamic effective connectivity significantly correlated with the
volumes of both thalami (r = 0.8981, p <0 .001), while fronto-thalamic connectivity did not
show significant correlations with the thalamic volumes (p > 0.1) or only a trend for the
thalamo-frontal connection (r = — 0.5 p = 0.058). In the alpha band, only fronto-thalamic

effective connectivity significantly correlated with the volumes of both thalami (r = —0.61,
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p < 0.01); while the correlations between temporo-thalamic and thalamo-frontal effective

connectivities and thalamic volumes did not reach statistical significance (p > 0.1 and p >

0.5 respectively).
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Discussion

In this work, we analyze information flows and structural integrity as network fingerprints
of the circuits that drive the spike generation and seizure evolvement. Establishing the
directionality and the causality of cerebral dynamics is essential for linking network
connectivity and seizure prediction. Therefore, we investigated non-invasively the
alterations of effective connectivity in a group of patients with focal epilepsy during the
interictal period and specifically focused on the narrow time period prior to spike
appearance on scalp EEG. Moreover, we dissected the cortical and subcortical integrity
within these networks that modulate the long-range information flows and
synchronizations. We see clear connectivity alterations in the theta and alpha bands
before spike generation. Our analysis addressed bidirectional information flows among
cortical regions and thalamus. Significant information flows were detected in a network
formed by temporal and frontal cortices and thalamus. The performed analyses
demonstrate a clear breakdown of connectivity patterns five seconds prior to spike
generation with a subsequent increase. Medial dorsal and ventral anterior nuclei of the
thalamus were mainly involved. Widespread cortical integrity abnormalities and thalamic
atrophy were attested in the patient group.

Frequency band specificity

The main effective connectivity variations were identified in theta and alpha bands. A clear
physiological framework explains our results. Theta oscillations synchronize mesial
temporal lobe (MTL) with distant cortical and subcortical regions (Zaveri, Duckrow et al.
2001, Bettus, Wendling et al. 2008), while pathological synchronization phenomena
involving MTL could be as well mirrored in this frequency band. The underlying cause of
these connectivity alterations has not yet been described. One putative explanation could
be that the breakdown of effective connectivity from temporal and frontal lobes towards
the thalamus in theta band is caused by an altered physiological synchronization. The state
of decreased synchronization could lead to vulnerability to following information flows
increasing the probability of spikes or seizures (Mormann, Kreuz et al. 2003).
Consequently, we see an increase of information flows in the temporo-thalamic

connections thereafter.
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A recent study investigating information flows in patients with TLE by the aid of EEG-

functional fMRI analysis (Faizo, Burianova et al. 2014) showed similarly significant
reductions in information flows before spike occurrence. A decreased connectivity
between both temporal lobes has been attested prior to spike generation. Summated, it
can be postulated that putative breakdowns of information flows in the involved
structures lead to vulnerable states of decreased synchronization that can drive
epileptogenesis.

Region specificity

In our study, we see a direct involvement of thalamus, temporal and frontal lobes, sparing
occipital and parietal cortices and other studied areas. The described information flows
involving thalamus utilizes physiological circuits. Different thalamic nuclei are involved and
modulate long-range synchronizations at distinct frequency bands (Wang 2010). Anterior
thalamus is involved in theta synchronization, while pulvinar is responsible for alpha driven
information flows (Ketz, Jensen et al. 2015). Through theta synchronization anterior
thalamus modulates the information flows between hippocampus and medial prefrontal
cortex (PFC), while pulvinar nuclei synchronize parietal and visual cortex with medial,
lateral and orbital PFC within alpha band (Ketz, Jensen et al. 2015). In our analysis relating
to thalamic nuclei and temporo-thalamo-frontal connections, anterior nucleus of thalamus
displayed significant alterations of effective connectivity in theta and alpha ranges, while
medial dorsal nucleus showed long-range synchronizations in theta and alpha bands, but
not in beta. Lateral and inferior nuclei of pulvinar showed a connectivity increase in theta
and a decrease in alpha synchronization range.

The described connectivity dynamics show some similarities to known network
determinants in generalized epilepsies. In this type of epilepsies fronto-thalamic
synchronizations are a typical hallmarks of very early absence seizure activity as evidenced
by EEG and MEG (Holmes, Brown et al. 2004, Groppa, Siebner et al. 2008, Groppa, Moeller
et al. 2012, Tenney, Fujiwara et al. 2013). Disruptions of synchrony-limiting mechanisms in
thalamus might lead to hypersynchrony with cortical areas and predispose to spike-wave
discharges and absence seizures (Paz, Bryant et al. 2011).

Some of the regions identified in our study like medial temporal and frontal lobes are a

part of the so called default mode network (DMN). Studies analyzing structural and
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functional connectivity abnormalities within medial temporal lobe and DMN brain areas

with (Pittau, Grova et al. 2012, Kay, DiFrancesco et al. 2013) or without (Morgan,
Sonmezturk et al. 2012, Voets, Beckmann et al. 2012) simultaneous EEG recording suggest
the presence of important disconnections in DMN sites in TLE patients. Moreover,
interictal discharges might be associated with significant deactivation in default mode

brain areas (Laufs, Hamandi et al. 2007).

In the comparison of grey matter structural integrity between patients and healthy
controls, we depict wide spread areas in the temporal and fronal regions but also parietal
and prefrontal cortex, suggesting a putative relation to long-range synchronization and
connectivity breakdown. However, cortical thinning was more evident in the neocortical
regions. Cortical changes within distant regions, like frontal or parietal cortex could be
related to the effects of persistent changed connectivity flows, appearing epileptiform
discharges or seizures (Keller, Mackay et al. 2002, Lin, Salamon et al. 2007). Our patients
showed bilateral thinning of sensorimotor regions; while the reasons for these changes
still need to be clarified, one possible explanation could play the modified information
flows between thalamus and frontal areas with subsequent cortico-cortical connections to
the sensorimotor cortex. The fact that pre- and postcentral cortical thinning is mentioned
in studies assessing cortical thickness in TLE (Lin, Salamon et al. 2007, Bernhardt, Worsley

et al. 2008), suggests that these regions are directly involved in the focal epileptogenesis.

Thalamic volume and connectivity

Thalamus might be one of most strongly affected region of extratemporal grey matter in
patients with focal epilepsies (Barron, Fox et al. 2013), while its role for seizure
propagation is still unclear (Cassidy and Gale 1998, Guye, Régis et al. 2006). In our study
thalamic volumes showed bilateral reductions and a strong negative correlation between
the duration of epilepsy and volumetric values. Of particular interest is the significant
relationship between temporo-thalamic cross-talk in theta frequency band and fronto-
thalamic connectivity in alpha frequency bands and the volume of both thalami.

Thalamic regions most commonly associated with TLE are pulvinar, anterior nucleus, and
medial dorsal nucleus (Barron, Fox et al. 2013), which have dense reciprocal connections

with MTL. Volume loss in all three nuclei has been correlated with duration and severity of
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medial TLE (Bernhardt, Bernasconi et al. 2012), further supporting their conspicuous

involvement in the epileptogenic network. The pulvinar part of the thalamus has several
nuclear subgroups and the most medial-dorsal part is connected to associative cortices of
the frontal and temporal lobes (Rosenberg, Mauguiére et al. 2006). Extensive and
reciprocal interconnections with the cortex implies that pulvinar serves in facilitation of
cortico-cortical transmission through thalamic loops (Saalmann and Kastner 2011). Local
pulvinar subnetworks receiving strong extrathalamic excitatory and inhibitory inputs are
more susceptible to rhythmic bursting and respectively to integration into remote
oscillations (Wei, Bonjean et al. 2011, Fogerson and Huguenard 2016). The nuclear
subgroups identified in our study were medial dorsal and ventral anterior nuclei with
frontal projections, and lateral and inferior nuclei of pulvinar with temporal connections
which are in a very good agreement with existing data (Behrens, Johansen-Berg et al.
2003, Bernhardt, Bernasconi et al. 2012). Therefore it is of high importance to reveal and
characterize the contributions of extrathalamic associated cortices to initiation and
generalization of hypersynchronous oscillations in thalamic nuclei (Fogerson and
Huguenard 2016).

Different nuclei of thalamus might have specific roles in temporo-thalamic epileptogenic
synchronization. The anterior nucleus of thalamus projects to superior frontal and
temporal lobe structures and bilateral stimulation of this nucleus reduces seizure
frequency (Fisher, Salanova et al. 2010), thus displaying an essential modulatory role in
focal epileptogenesis. Quick generalization of seizures stimulated from medial dorsal
nucleus of thalamus implies this region the role in spreading of TLE seizures (Bertram,

Zhang et al. 2008).

Conclusions

Our combined approach of connectivity and microstructural integrity analysis of focal
epileptogenic networks identified the temporal and spatial domain specificity and the
frequency spectrum of synchronization leading to spikes. These networks involving the
temporal and frontal cortical areas and thalamus are hallmarks of interictal pathological
activity generation utilizing mostly physiological connection but leading to a spread to

adjacent regions forming the epileptogenic network. Our findings offer clear insights into
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the function and structure of brain networks underlying the genesis of spikes and seizures

in focal epilepsy and can be possibly targeted by future therapeutic strategies.
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Tables:
Table 1. Demographic, clinical and MRI data of epilepsy patients.
Patient Handedness Age Gender Age at Seizure MRI findings
No onset type

1 R 22 M 15 DS->BCS Normal

2 R 24 F 17 DS->BCS R temporoparietal GMH

3 R 14 M 6 DS->BCS L MTS

4 R 32 F 10 EMS->BCS L MTS

5. L 15 ™M 2 EMS->BCS L parieto-occipital EM

6. R 27 F 9 DS->BCS R temporal glial scar

7. R 26 M 12 DS—->BCS L temporal glial scars

8. R 32 M 15 DS->BCS Nonspecific WM lesions

9. R 32 M 11 DS->BCS L MTS

10. R 22 F 13 DS—>BCS L MTS

11. R 31 F 7 DS—->BCS R temporal

subarachnoid cyst

12. R 26 F 9 EMS->BCS R MTS

13. R 38 M 35 DS->BCS Nonspecific WM lesions

14. R 36 F 2 DS->BCS L MTS

15. R 45 M 41 DS->BCS WM, L PHG foci of

demyelination

R — right; L — left; MRI - magnetic resonance imaging; DS - dyscognitive seizures; BCS —
bilateral convulsive seizures; EMS — elementary motor seizures; GMH - grey matter
heterotopia; MTS - mesial temporal sclerosis; WM - white matter; EM -
encephalomalacia; PHG —parahippocampal gyrus.




Page 26 of 34

26

Table 2. Significant clusters derived from comparison between focal epilepsy patients and
healthy controls, tabulated with the corresponding t-values, surface area (mm?) and

Talairach coordinates.

Right hemisphere

Cluster No t-Max Size (mm?) Tal X TalyY Tal z Annotation
1 -6.7544 1475.37 60.7 -41.4 17.4 supramarginal
2 -6.4630 412.76 58.1 -49.1 3.3 bankssts
3 -5.0150 820.58 62.1 -11.2 -22.2 middletemporal
4 -4.6995 307.02 52.7 6.6 -13.5 superiortemporal
5 -4.3071 272.79 29.7 6.1 -33.2 temporalpole
6 -4.2364 439.18 36.8 -0.9 -7.0 insula
7 3.9993 317.45 5.0 -84.6 9.5 cuneus
8 -3.9980 372.07 7.0 36.2 46.9 superiorfrontal
9 -3.8235 103.50 58.2 0.6 28.8 precentral
10 -3.6384 108.07 5.9 -36.0 2.0 posteriorcingulate
11 -3.4420 182.46 2.6 12.3 4.6 parsopercularis
12 3.2205 167.34 13.5 37.0 -19.5 lateralorbitofrontal
13 3.2088 319.11 6.5 -76.7 -0.8 lingual
14 -3.1768 49.43 11.2 -63.7 61.2 superiorparietal
15 -3.1348 63.97 38.3 -334 53.9 postcentral
16 -2.9896 25.80 47.5 33.5 -12. parsorbitalis
17 -2.8765 100.05 44.4 -69.0 6.1 inferiorparietal
18 2.8507 60.53 19.1 -97.1 -13.3 lateraloccipital
19 -2.7798 88.59 6.9 -23.0 55.4 paracentral
20 -2.7326 26.22 6.6 -50.4 19.8 isthmuscingulate

Left hemisphere

1 -5.4614 192.61 -57.3 -0.5 28.8 precentral
2 -6.7544 273.72 -57.0 441 32.6 supramarginal
3 -3.7923 18.66 -52.5 -19.3 52.6 postcentral
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4 -3.7650 50.19 -39.4 4.2 51.6 caudalmiddlefrontal

5 -3.5873 20.10 -6.4 42.7 45.4 superiorfrontal
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Figure Legends:

Figure 1. Overview of the analysis pipeline: a) electroencephalography (EEG) processing

stream; b) magnetic resonance imaging (MRI) processing stream. TPDC: time-resolved

partial directed coherence.
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Figure 2. Temporal dynamics of effective connectivity in theta (a) and alpha (b) frequency
bands. Connectivity breakdown between 4 and 5 seconds before the spike in reciprocal
interconnections from frontal lobe to thalamus and from thalamus to frontal lobe.
Significant changes of information flows at *p < 0.001, **p < 0.0001. TPDC: time-resolved

partial directed coherence.
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Figure 3. Connectivity dynamics in theta frequency band from frontal lobe to medial dorsal
nucleus of thalamus (a) and vice versa (b) and from frontal lobe to ventral anterior nucleus
of thalamus (d) and vice versa (e). Connectivity breakdown between 4 and 5 seconds
before the spike (*p < 0.001, **p < 0.0001). Reciprocal flows between frontal lobe and
medial dorsal nucleus (brown colored structures) (c) and between frontal lobe and ventral
anterior nucleus (blue colored structures) (f) of thalamus. TPDC: time-resolved partial

directed coherence.
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Figure 4. Connectivity dynamics in alpha frequency band from frontal lobe to medial dorsal

nucleus of thalamus (a) and vice versa (b) and from frontal lobe to ventral anterior nucleus

of thalamus (d) and vice versa (e). Connectivity breakdown between 4 and 5 seconds
before

the spike (*p < 0.001, **p < 0.0001). Reciprocal flows between frontal lobe and medial

dorsal nucleus (brown colored structures) (c) and between frontal lobe and ventral anterior

nucleus (blue colored structures) (f) of thalamus. TPDC: time-resolved partial

directed coherence.
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Figure 5. Effective connectivity dynamics in theta frequency band from temporal lobe
towards anterior (a), lateral (b) and inferior (c) nuclei of pulvinar of thalamus. Directional
flows from temporal lobe towards lateral and inferior (green colored structures) (d) and
anterior (orange colored structures) (e) pulvinar nuclei of thalamus. (*p < 0.0001). TPDC:

time-resolved partial directed coherence.
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Figure 6. Effective connectivity dynamics in alpha frequency band from temporal lobe
towards anterior (a), lateral (b) and inferior (c) nuclei of pulvinar of thalamus. Directional
flows from temporal lobe towards lateral and inferior (green colored structures) (d) and
anterior (orange colored structures) (e) pulvinar nuclei of thalamus. (*p < 0.0001). TPDC:

time-resolved partial directed coherence.
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Figure 7. Statistical maps showing clusters (p < 0.05, FDR corrected) of cortical thinning

(blue) and thickening (red) in epilepsy patients compared to healthy subjects. The two
slices

in a) show the regions in right hemisphere and b) shows in the left hemisphere. FDR: False

Discovery Rate.



