and [18F]FDG PET/CT within median 2 days, without treatment between scans. We performed a visual and quantitative analysis of the total lymphoma volume by identifying target lesions (TL). For the latter investigation, maximum/peak standardized uptake values (SUV $_{\mbox{max/peak}}\xspace$), and target-to-background ratio (TBR) were calculated. TBR was defined as $\mathsf{SUV}_{\scriptscriptstyle\mathsf{peak}}$ from TL divided by SUV_{mean} from blood pool serving as reference. *Results:* [68Ga] Ga-PentixaFor identified MZL manifestations in 33 (100%) patients (vs. [18F]FDG, 25/33 patients [75.8%]), and substantially more MZL manifestations were evident on CXCR4-directed imaging compared to [18F]FDG (274 vs. 154). For a quantitative head-to-head comparison, we identified 143 identical TL on both scans. For concordant lesions, SUV_{peak} on [68Ga]Ga-PentixaFor was 7.1±4.0, which was significantly elevated when compared to [18F] FDG (5.3±4.3, P<0.0001). Similar results were observed for SUV____ ([68Ga]Ga-PentixaFor, 11.2±5.4 vs. [18F]FDG, 7.8±5.7, P<0.0001), indicative that a substantial portion of patients may be eligible for CXCR4-directed therapy. TBR was also approximately 1.7-fold higher on [68Ga]Ga-PentixaFor (median, 3.8) when compared to [18F]FDG (2.1, P<0.0001), suggestive for an improved contrast on chemokine receptor PET. Conclusion: CXCR4-directed PET/CT identifies more sites of disease in patients with newly diagnosed MZL. On a quantitative assessment, a substantial portion of patients would also be suitable for "cold" or "hot" CXCR4-targeted treatment. Last, TBR-derived image contrast was markedly higher on [68Ga]Ga-PentixaFor PET, thereby suggesting improved diagnostic read-out when compared to [18F]FDG.

EP-0319

C-X-C Motif Chemokine Receptor 4-directed PET/CT provides improved Diagnostic Performance relative to [18F]FDG in Newly Diagnosed Patients with Marginal Zone Lymphoma

A. Kosmala¹, S. E. Serfling¹, S. Schneid¹, T. Higuchi^{1,2}, A. Weich³, C. Lapa⁴, P. E. Hartrampf¹, M. Raderer⁵, H. Einsele³, A. K. Buck¹, M. S. Topp³, J. Duell³, R. A. Werner^{1,6};

¹Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, GERMANY, ²Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, JAPAN, ³Department of Internal Medicine II, University Hospital Würzburg, Würzburg, GERMANY, ⁴Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, GERMANY, ⁵Department of Internal Medicine I, Medical University Vienna, Vienna, AUSTRIA, ⁶Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Sciences, Baltimore, MD, UNITED STATES OF AMERICA.

Aim/Introduction: C-X-C motif chemokine receptor 4 (CXCR4) is overexpressed in marginal zone lymphoma (MZL) and thus, may emerge as a theranostic target. We aimed to evaluate the diagnostic performance of CXCR4-targeting [68Ga]Ga-PentixaFor when compared to [18F]FDG PET/CT in newly diagnosed MZL. *Materials and Methods:* 33 MZL patients (subtypes: nodal, n=20; extranodal, n=12; splenic, n=1) received [68Ga]Ga-PentixaFor