
                                       
                                     

                       

                                              
         
Advanced technologies for detecting tremor in Parkinson’s disease
                                            
                                                                                                         
                       
The introduction of deep brain stimulation (DBS) has probably
been one of the most illustrious advances of the last 30 years for
the management of neurologic disorders like Parkinson’s disease
(PD), essential tremor, and dystonia. The delivery of low electric
currents via stereotactically implanted electrodes to a specific
brain target preferentially modulates distinct neural networks,
providing clear clinical benefit (Muthuraman et al., 2018a). In PD,
e.g., conventional DBS continuously stimulates the subthalamic
nucleus (STN), a region within the cortico-basal ganglia network,
with frequencies between 130 and 180 Hz, efficiently reducing car-
dinal symptoms like bradykinesia or resting tremor in eligible
patients.

Despite its clinical efficiency, the exact mechanisms by which
DBS modulates local and long-range neural activity to improve
motor symptoms remain elusive. Accumulating evidence demon-
strates that DBS decreases pathologically enhanced beta-band
power (i.e. oscillatory activity with frequencies between 13 Hz
and 30 Hz) within the basal ganglia–cortical loops. These modula-
tions correlate with ameliorated bradykinesia and rigor, suggesting
a possible causal relationship between oscillations and these
symptoms (Brittain and Brown, 2014; Tinkhauser et al., 2018).
However, the pathophysiology of tremor generation clearly differs
from that of bradykinesia and rigidity, given that the magnitude of
tremor is not correlated to dopamine deficiency in the striatum or
the beta-band power in the STN or pallidum (Hallett, 2012; Beudel
and Brown, 2016).

In addition to the challenges arising from different pathological
mechanisms, PD symptoms often fluctuate dynamically, depend-
ing on factors such as cognitive and motor load and concurrent
pharmacological treatment (Little et al., 2013). The continuous
delivery of pulses in conventional DBS rigidly modulates the net-
works even at times when it might not be necessary, potentially
increasing the risk of side effects or exhibiting less efficient long-
term results. The unnecessary high power consumption means that
the battery has to be recharged more often and replacement surg-
eries have to be carried out sooner. Tailoring DBS to specifically
target distinct symptoms individually and dynamically could sub-
stantially improve its clinical efficiency while preserving battery
life and limiting side effects. For example, it could prove useful
to have different DBS parameters for different symptoms, which
are only turned on when these symptoms appear.

A novel approach to address such issues consists of uncovering
patient-inherent bio-signals to control the stimulation in a
closed-loop fashion, called adaptive DBS (aDBS) (Muthuraman
et al., 2018a). Continuously recording and analyzing biophysical
signals that have been previously linked to disease related symp-
toms should be provided in a robust framework that may guide
decisions about when to turn DBS on or off, or adapt the stimula-
tion parameters. Local field potentials (LFP), which can be readily
and easily recorded by DBS-electrodes, provide the possibility to
analyze continuous electrophysiological responses that may carry
sufficient information to detect and discriminate PD-symptoms.
Thorough work has been done to investigate gamma oscillations
or STN-beta-band power as potential markers for aDBS to specifi-
cally target hyperkinesia or bradykinesia, respectively (Swann
et al., 2016; Tinkhauser et al., 2017). However, so far no parameter
has been found that can solely identify tremor or robustly detect
different tremor types.

In this issue of Clinical Neurophysiology, Yao et al. (2020) address
the feasibility of using machine learning algorithms to detect clin-
ical episodes of resting tremor in PD patients on the basis of tre-
mor-specific LFP-features. Tremor is clinically defined as an
involuntary rhythmic, oscillatory movement of a body part that
functionally impairs the coordination and execution of targeted
movement. Although different types of tremor may occur in PD,
resting tremor is the most prevalent form, referring to a 4- to 6-
Hz oscillating movement of a relaxed limb, which is suppressed
during movement initiation. Both the basal ganglia and the cere-
bellum are involved in Parkinsonian tremor (Hallett, 2012). Cur-
rent models suggest that the dopaminergic dysfunction in the
basal ganglia triggers the onset of tremor, while the cerebello-tha-
lamo-cortical circuits are responsible for regulating the tremor
amplitude (Chen et al., 2017). It has been shown, e.g., that the
amount of information outflow from the cerebellum to cortical
regions correlates with tremor severity (Muthuraman et al.,
2018b).

Machine learning algorithms use multidimensional information
of the data of interest to train a classification- or regression model
(Camacho et al., 2018). The main advantage is that features with
individually low discriminative power can achieve better classifi-
cation performance when analyzed synergistically. Previous
research presented the general feasibility of machine learning
algorithms using LFP-derived features to classify tremorous and
non-tremorous episodes (Bakstein et al., 2012; Hirschmann et al.,
2017; Shah et al., 2018). An artificial neural network algorithm
trained with features of the LFP was able to detect tremor and



                                                    
non-tremor episodes relatively accurately in 4 out of 8 patients
(Bakstein et al., 2012). Recently, Hirschmann et al. (2017) showed
that a Hidden Markov model based on four frequency domain fea-
tures provides good accuracy, sensitivity, and specificity in PD rest-
ing tremor state-estimation. Aside from that, a logistic regression
has also been able to detect Parkinsonian rest tremor combining
both frequency and time domain features (Shah et al., 2018).

Following these studies, Yao et al. (2020) compared the perfor-
mance of several machine learning algorithms based on a variety of
features derived from LFP recordings of 12 PD-patients. Addition-
ally, the application of a Kalman filter to the feature time-series
to reduce nonlinear noise inherent to neural systems improved
the specificity. Furthermore, limiting the number of features based
on evaluating their discriminative power further improved the best
performing classifiers’ detection rate.

Importantly, the time required to analyze and detect symptoms
is a crucial aspect for successful implementation of machine learn-
ing algorithms into closed-loop DBS, where the stimulation should
ideally anticipate the occurrence of specific symptoms. In this con-
text, Yao et al. (2020) are the first to report the detection latency of
their classifiers. However, it should be noted that the LFP-signals
recorded were subjected to offline-analyses. Given the relatively
high processing demands of the applied machine learning algo-
rithms, further research needs to be done to evaluate and optimize
the latencies for analytical steps online. Moreover, additional
emphasis should lie on selecting electrophysiological or analytical
features that could be robustly translated into the clinics.
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