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ABSTRACT: Background: Deep brain stimulation (DBS)
is an effective evidence-based therapy for dystonia. How-
ever, no unequivocal predictors of therapy responses exist.
We investigated whether patients optimally responding to
DBS present distinct brain network organization and struc-
tural patterns.
Methods: From a German multicenter cohort of 82 dysto-
nia patients with segmental and generalized dystonia
who received DBS implantation in the globus pallidus
internus, we classified patients based on the clinical
response 3 years after DBS. Patients were assigned
to the superior-outcome group or moderate-outcome
group, depending on whether they had above or below
70% motor improvement, respectively. Fifty-one patients
met MRI-quality and treatment response requirements
(mean age, 51.3 � 13.2 years; 25 female) and were
included in further analysis. From preoperative MRI we
assessed cortical thickness and structural covariance,
which were then fed into network analysis using graph
theory. We designed a support vector machine to

classify subjects for the clinical response based on indi-
vidual gray-matter fingerprints.
Results: The moderate-outcome group showed cortical
atrophy mainly in the sensorimotor and visuomotor areas
and disturbed network topology in these regions. The struc-
tural integrity of the cortical mantle explained about 45% of
the DBS stimulation amplitude for optimal response in indi-
vidual subjects. Classification analyses achieved up to 88%
of accuracy using individual gray-matter atrophy patterns to
predict DBS outcomes.
Conclusions: The analysis of cortical integrity, informed by
group-level network properties, could be developed into
independent predictors to identify dystonia patients who
benefit from DBS. © 2019 The Authors. Movement Disor-
ders published by Wiley Periodicals, Inc. on behalf of Inter-
national Parkinson andMovement Disorder Society
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Deep brain stimulation (DBS) is a well-established treat-
ment for patients with medically intractable segmental and
generalized dystonia, for which the globus pallidus inter-
nus (GPi-DBS) is an efficient target.1,2 However, the degree
of improvement varies among patients. Here, we postu-
lated that structural brain network properties as derived
fromMRImay act as predictors in dystonia patients under-
going DBS. Furthermore, elucidating the neuroanatomical
basis for network dysfunction in dystonia would have
direct implications for surgical intervention3-5 and is a criti-
cal first step toward developing personalized therapeutic
solutions and effective neuromodulation paradigms. An
individualized characterization of abnormal anatomical
and physiological networks in each patient could lead to
risk minimization for those patients who might be
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susceptible to poor DBS outcomes because of specific dis-
ease fingerprints or irreversible secondary abnormalities in
the brain circuits or periphery.
Brain circuit alterations have been attested to in patients

with dystonia in several brain regions,6,7 leading to the
notion that the disease cannot arise from damage of a sin-
gle structure, but rather from network dysfunction.8,9 This
network dysfunction leads to excessive movement that is
normalized under DBS.10 In addition, recent neuroimaging
studies have suggested that the network of brain structures,
including the basal ganglia and the cortex, present abnor-
mal activation patterns both at rest and during voluntary
movements in patients with dystonia.7,11 Electrophysiolog-
ical evaluations have further suggested that the loss of
intracortical inhibition, increased cortical excitability in a
cortico-subcortical network, and abnormal sensorimotor
integration play a causal role in the pathophysiology of
dystonia.10 Importantly, GPi-DBS stimulation can attenu-
ate this cortical hypersynchrony12,13 and this effect has
been shown to be dependent on the stimulation ampli-
tude.14,15 However, the extent to which these DBS-related
effects rely on the structural integrity of the underlying cor-
tical circuits remains unknown.
Here, we investigated how preoperative brain network

properties relate to structural integrity fingerprints commit-
ting to the clinical outcome of GPi-DBS. For this, we
reconstructed gray-matter cerebral networks using graph
theory to quantify local and global structural patterns in
patients with segmental and generalized dystonia.
Graph theory has become a relevant tool for exploring

brain circuit abnormalities in neuropsychiatric disorders
and for quantifying patterns of disease-related reorganiza-
tion.16,17 Small-world properties, which have been related
to physiological brain functioning and reflect a clustered
network with short paths, offer a basis for maintained net-
work functionality and efficiency.18,19 Despite the growing
interest in DBS, much still remains unknown about the
network-level impact of neuromodulatory effects. In this
study, we sought to identify structural fingerprints that are
related to network reorganization patterns and to predict
the response and maintenance of benefit in a stable clinical
state after 3 years of GPi-DBS using a novel computational
approach consisting of graph theory and machine-learning
techniques.

Methods
Standard Protocol Approvals, Registrations,

and Patient Consents
This retrospective study was approved by the institu-

tional review and ethics boards at each participating
center and was carried out in accordance with the Dec-
laration of Helsinki. All patients provided written
informed consent.

Study Participants and Data Acquisition
For a multicenter study including 82 primary dystonia

patients who underwent GPi-DBS, 31 patients were not eli-
gible because of poorMR image quality, namely, excessive
imagemovement or ringing,20 leaving a total of 51 patients
(mean age, 51.3 � 13.2 years; 25 female) to be included in
further analyses. This included a discovery cohort of
patients treated at the University Clinic of Kiel (n = 36;
mean age � SD, 50.1 � 12.1 years; 16 female) and an
independent test cohort from the University Clinic
Würzburg (n = 15; mean age � SD, 54.2 � 9.3 years;
9 female). None of the patients presented secondary dysto-
nia. A more detailed description of these cohorts has been
published previously.1,2

For the discovery dystonia cohort, patients underwent a
T1-weighted magnetization-prepared rapid gradient-echo
(MP-RAGE) MRI (repetition time [TR], 1140 millisec-
onds; echo time [TE], 4.4 milliseconds; inversion time [TI],
300 milliseconds; flip angle, 8�; slice thickness, 1 mm;
acquisition matrix, 256 × 256; in-plane resolution, 1 mm)
using a 1.5T Philips Achieva scanner with an 8-channel
SENSE head coil. For the second cohort, again, high-
resolution T1-weighted MP-RAGE images were acquired
(TR, 1100milliseconds; TE, 4.92milliseconds; TI, 900mil-
liseconds; flip angle, 20�; slice thickness, 1 mm; acquisition
matrix, 256 × 256; in-plane resolution, 1 mm) with a 3T
Siemens TrioTim scanner, using a 32-channel SENSE
head coil.

GPi-DBS Electrode Implantation and Clinical
Outcomes

Criteria for DBS indication comprised patient fail on
anticholinergic treatment with at least 3 sessions of botuli-
num toxin treatment that resulted in unsatisfactory control
of the dystonia. Patients with other neurologic or psychiat-
ric disorders were further discarded from inclusion. All
patients were implanted with bilateral electrodes (model
3387, Medtronic) in the posterior-ventral portion of the
internal globus pallidus. The exact neurosurgical proce-
dure has been described previously.1,21 Standard stereotac-
tic coordinates for anatomical targeting were individually
adapted by direct visualization of the GPi on the MR
images. Stimulation parameters including amplitude, fre-
quency, and pulse width were adjusted for each individual
patient. The effects of DBS on clinical outcomeswere quan-
tified as the improvement percentage in themovement scale
of the Burke–Fahn–Marsden Dystonia Rating Scale for
generalized dystonia2 and the TorontoWestern Spasmodic
Torticollis Rating Scale for torticollis,1 assessed before and
3 years after surgery. The improvement percentage at
follow-up was further used to classify the patients as
superior-outcome group (SOG) and moderate-outcome
group (MOG). Stimulation adjustment and clinical evalua-
tion were performed by clinicians who were blinded to the
hypothesis and goals of this study.

Movement Disorders, Vol. 34, No. 10, 2019 1537

S T R U C T U R A L N E T W O R K S A N D G P I - D B S F O R D Y S T O N I A

 15318257, 2019, 10, D
ow

nloaded from
 https://m

ovem
entdisorders.onlinelibrary.w

iley.com
/doi/10.1002/m

ds.27808 by U
niversitaetsbibl A

ugsburg, W
iley O

nline L
ibrary on [12/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Multiple independent reports have shown that in pri-
mary generalized and focal dystonias the average
responses to GPi-DBS are up to of 60% to 70% of impro-
vement in the respective motor scales after 3 years.22-24

Accordingly, patients were classified based on their
sustained clinical improvement into 2 demographically
equivalent groups of MOG (lower than 70% in motor
improvement, n = 26, 19 in the discovery cohort and 7 in
the independent cohort) or SOG (motor improvement
higher than 70%, n = 25; 17 and 8 from each cohort
respectively), see Table 1 for more details on the group
distributions and demographics.

Cortical Thickness Maps and Structural
Covariance Network Measures

All T1 images were preprocessed using the automatic
surface-based pipeline of FreeSurfer (v6.0, http://surfer.
nmr.mgh.harvard.edu), which included: skull stripping,
image affine registration, bias correction, and segmenta-
tion of gray- and white-matter tissue compartments,
separation of brain hemispheres, and subcortical struc-
tures. At the end of the MRI preprocessing, 2 smooth
surfaces were modeled per hemisphere, namely, the
white (gray-to-white interface) and pial (gray-to-CSF
interface) surfaces.25 After reconstruction of the cortical
surfaces, the distance from white to pial was used as a
measure of cortical thickness at each vertex.
The cortical thicknesses of the 68 regions conforming the

Desikan-Killiany atlas26 was used to model the brain net-
works using graph theory.27 First, for each group, the mor-
phometric similarity, estimated as the Pearson product
moment coefficient, was computed between each possible
pair of regions across subjects. These pair-wise correlations
were compiled into a covariance matrix with zero diagonal
elements. Subsequently, the covariance matrix of each
group was binarized with a network-derived threshold, in
which an entry is 1 if the correlation weighting between a
pair of regions is greater than a minimum density thresh-
old, that is, the density at which all the regions are fully
connected in the network of each group. This ensured that
the networks in both groups had the same number of edges

and that the between-group differences reflected alterations
in topological organization rather than differences in spuri-
ous correlations.28 Consistent with previous studies,29 the
covariance matrices were thresholded at a range of net-
work densities (n = 20) from the minimum density in steps
of 0.5% across a 10% degree range. This was done to
allow for group differences testing and further construction
of predictive models, while ensuring that such differences
were not confounded by differing numbers of nodes and
edges because of an absolute threshold at a single density.
Related to graph theory based on covariance not yielding
individual values of networkmeasures, we first evaluated if
the network behavior at the group level (using the metric
values from all densities) was able to demask differences
for the specific groups (MOG and SOG). Then, to go one
step further, we took advantage of group-specific measures
being created at different network densities (n = 20) and
extracted the values for each density to extend this model
to evaluate, this time at the individual level, whether the
structural integrity of the cortical regions showing network
reorganization between the groups could be used as finger-
prints of the DBS outcomes (see Fig. 1).
To evaluate network topology, the small-world index

was calculated based on 2 key measures: the clustering
coefficient (C, defined as the fraction of a node’s neighbors
that are also neighbors of each other); and the characteristic
path length (PL, the average minimum number of edges
needed to cross from one node to all others). PL and Cwere
further normalized compared with a random network to
avoid the influence of other topological characteristics,
leading to the parameters “lambda” and “gamma,” respec-
tively. The network small-worldness, “sigma,” was then
calculated as the ratio of gamma to lambda (sigma =
gamma/lambda).27 Compared with a random graph, a
small-world network is characterized as being highly clus-
tered (clustering coefficient > 1, with higher values indicat-
ing large-scale network segregation) yet having a small
characteristic path length (~1, indicating large-scale net-
work integration). Therefore, sigma >1 describes optimal
and efficient network topology.
In addition, the network’s local efficiency (Elocal,

inverse of the average shortest path length; similar to C,

TABLE 1. Group demographics

Discovery cohort (1.5T MRI) Validation cohort (3T MRI)

MOG (n = 17) SOG (n = 19) P MOG (n = 8) SOG (n = 7) P

Generalized/cervical dystonia 9/8 10/9 0.98 1/7 5/2 0.02
Motor score (pre-DBS) 34.4 � 15.9 27 � 6.8 0.7 22.5 � 1.7 24 � 4.3 0.2
Motor score (follow-up) 21.2 � 17.8 3 � 1.3 0.001 16 � 2.2 6 � 1.5 0.004
% Motor improvement 40.4 � 26.3 85 � 2 1.8 × 10-8 36.4 � 9.6 80.2 � 9.5 0.001
Disease duration 17.5 � 11.9 12.4 � 9.7 0.25 11.6 � 10.4 12.35 � 10.4 0.89
Female/male 7/10 9/10 0.7 5/3 4/3 0.8
Age � SD 52.8 � 11.4 47.7 � 12.3 0.2 62.1 � 9.3 45.1 � 17.4 0.05

All clinical scores are presented as median � standard error of the mean. MOG, moderate-outcome group; SOG, superior-outcome group. P values correspond
to the comparison of SOG versus MOG in each cohort. The t test for continuous variables and chi-square for categorical variables (ie, dystonia type and sex).
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with larger values indicating a more segregated net-
work), the nodal degree centrality (count of how many
edges a single region has with the rest of the network)
and nodal clustering (clustering coefficient of every sin-
gle region) were used to evaluate the network topology
from each region to its immediate neighbors. Detailed
mathematical definitions of graph theory measures are
found in the supplementary information. All network
metrics and analyses were conducted in Matlab
(R2013b, The MathWorks, Inc.) using the freely avail-
able brain connectivity toolbox.27

GPi-DBI Outcome-Based Classification
Prior to further analyses, effects of age and sex were

removed using the residuals of the GLM model as
corrected estimates. First, the area under the curve (AUC)
from receiver operating characteristic (ROC) curves was
adopted to ensure the sensitivity of the network measures
and cortical thickness of regions showing network differ-
ences to stratify the dystonia patients according to their
GPi-DBS responsiveness.

Further, a nonprobabilistic binary support vector
machine (SVM) classifier was used to test whether the DBS
outcome can be predicted. Two different SVM models
were conducted: (1) for the subcortical regions, the individ-
ual volume of each region that was significant in the group
analysis was included in the first SVM; (2) after the
regional network analyses, in which regions showing topo-
logical differences between MOG and SOG groups were
identified, the individual cortical thickness values of these
regions were included as features into the SVM. This latter
variable is referred to as “network-selected cortical
regions.” Briefly, the SVM algorithm looks for an opti-
mally separating hyperplane that separates between the
2 data classes by maximizing the margin between the clas-
ses’ closest points. The points lying on the boundaries are
called support vectors, and the middle of the margin is the
optimal separating hyperplane (see Supplementary Infor-
mation for further details). Here, we have used the polyno-
mial function kernel for this projection because of its good
performance.30 We used a grid search (min = 1; max = 10)
to find the few optimal input parameters, namely, C
(capacity; 1 to 1000) and gamma (0.33). The SVM model

FIG. 1. General workflow for identifying putative image predictor markers of GPi-DBS clinical outcomes. From left to right: the MRI data were
processed in FreeSurfer to obtain a regional estimation of cortical thickness (CT) and to construct the group covariance matrices. In each of the
2 cohorts, group-wise analyses between patients showing moderate outcome (MOG) and superior outcome (SOG) 3 years after GPi-DBS were then
conducted for CT, subcortical volumes, and network topology (metrics: gamma, lambda, and sigma). For predicting the GPi-DBS responsiveness, as
the network analyses do not straightforwardly allow deriving individual measures, we took advantage of the group-specific metrics being created at dif-
ferent network densities (n = 20 for each group) and extracted the values for each density to create a group-level SVM to test the network parameters.
To further bridge the connection between the individual structural markers and the network connectivity, the cortical thickness of the regions showing
altered local connectivity and that in turn also showed decreased structure were used as individual “network-derived” features into the SVM. These
2 kinds of features (network metrics for all single densities and network-derived) were compared against a third model in which the volume of the sub-
cortical structures showing group differences was used as features in the SVM. [Color figure can be viewed at wileyonlinelibrary.com]
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parameter selection was checked using 10-fold cross-vali-
dation. The support vectors from the input features were
extracted and tested for the optimal parameter allowing
computation of the correct classification ratio (CCR) and
the model’s precision and recall as indicators of success of
prediction. To overcome the possibility that the classifier
may be overfitted to the trained data and to have a more
robust testing phase, the SVMclassifier first constructed on
the discovery cohortwas then tested on an independent test
data set (Würzburg cohort), hence, allowing direct com-
parison between the discovery and independent test
cohorts while proving themodel’s generalizability.

Statistical Analyses
Differences in cortical thickness between the 2 groups

(SOG vs MOG) as well as associations between cortical
thickness and stimulation parameters were statistically
determined using the general linear model (GLM), with
age and sex as nuisance variables using a threshold of
P < 0.05 corrected for multiple comparisons with 10,000
Monte Carlo Z simulations. Because of the bilateral
implantation of the DBS electrodes, we assumed similarity
in the morphometric integrity of the subcortical structures
across left and right hemispheres. Hence, volumetric differ-
ences in the subcortical structures were studied without
hemispheric differentiation. This allowed minimization of
the problem of multiple comparisons. Nonetheless, results
were correctedwith a false discovery rate (P < 0.05).
According to our aim of identifying structural finger-

prints of GPi-DBS outcomes and under the hypothesis that
the targeted regions may not be mainly responsible for the
clinical outcomes, but the cortical regions associated with
them,we address the dependence of the stimulation param-
eters from the structural integrity of the cortical mantle.
For this we performed regression analyses between cortical
thickness and stimulation intensity. Coefficients of determi-
nation (r2) are presented.
A GLM was used to test for between-group differences

in each measure of network topology (C, PL, sigma, Elocal)
via a 2-sample t test. The statistical threshold for esta-
blishing significancewas set at P < 0.05.
All statistical analyses between the 2 groups of inter-

est (SOG vs MOG) were conducted independently in
the 2 study cohorts (discovery and independent tests).
Therefore, figures and tables summarize the results for
each group in the discovery population and that were
replicated/generalized aftermath to the second cohort.

Data Availability
The data sets generated during and/or analyzed dur-

ing the current study will be made available from the
corresponding author on reasonable request.

Results
Demographics

When comparing the group ages, there was no signifi-
cant difference between SOG and MOG in the discovery
cohort (P = 0.2, t = 1.3) or the validated cohort (P = 0.05,
t = 2.2). Similarly, no sex differences were found between
SOG andMOG in the discovery (chi-square, 0.13; P = 0.7)
or independent test cohorts (chi-square, 0.04, P = 0.8).
Noteworthy, age and sex were still included as con-
founders in the statistical models to account for possible
remaining effects. Further, no statistical differences in dis-
ease duration were observed between SOG and MOG in
the discovery cohort (P = 0.3, t = 1.17) or the validated
cohort (P = 0.9, t = 0.14).

Preoperative Anatomical and Network
Fingerprints

Correspondence of between-group differences in cortical
thickness among populations (Fig. 2) was shown for cortical
thinning in the superior, middle, and inferior (ventral motor
area) frontal, paracentral, parietal (precuneus), and occipital
(pericalcarine and lateral occipital) regions in MOG com-
pared with SOG (discovery cohort, P = 1.5 × 10-05, t = 4.8;
independent test cohort, P = 8.3 × 10-05, t = 5.22). Accord-
ingly, in SOGpatients the regression analyses showed a neg-
ative association between the mean cortical thickness of
these areas and the DBS stimulation amplitude for the left
(r2 = 0.32, P = 0.006) and the right (r2 = 0.2, P = 0.03) hemi-
spheres, meaning that patients with more preserved cortical
integrity require less intensity amplitudes to achieve the best
clinical improvement. Such associations were only margin-
ally seen in MOG (left: r2 = 0.06, P = 0.18; right: r2 = 0.17,
P = 0.06).When using the average cortical thickness of both
hemispheres (ie, assuming symmetry in the left/right pathol-
ogy), we observed the same tendency: for SOG, r2 = 0.27
and P = 0.02; and for MOG, r2 = 0.13 and P = 0.18. Sub-
cortically, MOG also showed reduced volumes restricted
to the caudate and putamen regions of the basal ganglia
system (Table 2).No differences in the cerebellar greymatter
were attested to.
For the discovery and the independent test cohorts,

compared with SOG, MOG showed decreased small-
worldness (sigma, t = 4.7, P = 1.8 × 10-5) and lambda
(t = 3.82, P = 0.0002), and increased gamma (t = 3.81,
P = 0.005) and Elocal (t = 1.6, P = 0.05). This indicates a
less efficient network with fewer long-range connections
(ie, more disconnected) for MOG and a preserved efficient
topology in SOG (Fig. 3A). Consistent with the loss of
long-range connections, the regional analyses revealed
an increased degree of centrality in the central and
frontoparietal regions in MOG (Fig. 3B). An increased
clustering coefficient was also observed in the central
and frontoparietal regions (Fig. 3C), evidencing a more
divided network with higher density of local neighboring
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connectedness and low to no connection to distant regions
(ie, segregation) inMOG. Given the high overlap between
regions showing nodal network and cortical thickness
differences between MOG and SOG, further SVM ana-
lyses were conducted to assess the ability of these network-
identified regions to predict GPi-DBS responsively after
3 years.

Predictors of GPi-DBS Responsiveness
Careful review of postoperative images showing the

electrode location did not reveal any obvious deviation
of the target in SOG and MOG patients.
When testing the ability of the network measures (across

densities) to differentiate the patient groups for their clini-
cal outcome (Fig. 3D), the highest AUC was for sigma
(AUC, 0.86), followed by lambda (AUC, 0.7) and gamma
(AUC, 0.73), with a mean accuracy (AUC, 0.73) for the

concatenated variable. For the individual measures the
cortical regions with the highest power were left inferior-
frontal (AUC, 0.82), left lateraloccipital (AUC, 0.85), and

FIG. 2. Cortical thinning in the brain of the moderate-outcome group. (A) Overlap map depicting the regions where GPi-DBS moderate-outcome dysto-
nia patients showed decreased cortical thickness compared with the superior-outcome group in both discovery and independent test cohorts. Top
row, lateral hemisphere surfaces; bottom row, medial hemisphere surfaces. Fp, frontal pole; infF, inferior frontal; SupF, superior frontal; latOcc, lateral
occipital; SoM, sensorimotor area (paracentral); PrC, precuneus; pCal, pericalcarine; vPM, ventral primary motor; midF, middle frontal. (B) Regression
plots showing that patients with higher structural integrity require lower DBS stimulation amplitudes to achieve superior outcomes (red line). The same
trend is observed for moderate-outcome (blue) groups. Nuisance variables: age and sex; P corrected for multiple comparisons using Monte Carlo Z
simulations at P < 0.05. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2. Group differences in GM subcortical volumes
between GPi-DBS superior-outcome and moderate-

outcome groups

Discovery cohort Validation cohort

GM nuclei P T stat P T stat

Thalamus 0.21 0.83 0.24 0.7
Caudate 0.015 2.26 0.017 2.19
Putamen 0.014 2.31 0.062 1.57
Pallidum 0.44 0.14 0.2 0.84

Hippocampus 0.08 1.43 0.11 1.22

P values are corrected for multiple comparisons using false discovery rate.
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left pericalcarine (AUC, 0.83), with the highest power for
the combination of all (concatenated variable AUC, 0.88).
For the individual subcortical volumes, both the combina-
tion of them and the caudate achieved a similar AUC
(0.67) followed by the putamen (AUC, 0.62). This demon-
strates that network topology and cortical atrophy have
themost substantial influence on clinical outcome.
An SVM was then employed to test the ability of the

individual regional morphometric integrity profiles,
either of the cortical regions showing network reorgani-
zation or subcortical volumes showing group differ-
ences, to stratify the patients according to their clinical
outcome (Fig. 3E). The analyses evidenced that group
stratification through the cortical thickness measures of
the network-selected regions achieved the maximum
CCR (72.4%), followed by differentiation of subcorti-
cal volumes (CCR, 65.5%) in the discovery cohort.
When testing the generalizability of the model in the
independent test cohort, the accuracies were highly
comparable for the subcortical volumes (CCR, 65.5%),
whereas for the network-selected cortical regions, accu-
racy was increased about 10% (CCR, 80.6%).

Discussion

Gray-matter network properties predict the clinical out-
come to GPi-DBS in patients with dystonia. SOG presented
brain circuits with a small-world topology. Patients with
atrophy in a widespread network of association, sensori-
motor, and visuomotor areas have disturbed network
architecture and aworse long-term outcome. Furthermore,
increased local connectivity was associated with worse
clinical outcome.
In the current study the classification analyses allo-

wed delimitation of superior-outcome versus moderate-
outcome groups, both at the group and single subject levels.
Network properties and regional gray-matter integrity
information therefore represent putative correlates specific
to brain behavior in patients with dystonia and are related
to functional neuromodulation.10 These shown network
abnormalities are likely caused by reorganization of the
parietal to frontal connections, with modified cortico-
cortical or cortico-subcortical visuomotor and sensory
information processing. These have been repeatedly related
to abnormal motor control and generation of dystonic
movements.31 The regression analyses showed that in the
SOGpatients stimulation intensity is tightly associatedwith
structural integrity of the cortex. Hence, the efficacy of DBS
stimulation depends not only on the integrity of the stimu-
lated region, but also on the connected regions. This
hypothesis is also endorsed by the only marginal associa-
tion found in MOG subjects, which together with the
reduced cortical integrity in the frontal and posterior/motor
regions, could limit their responsiveness to GPi-DBS. This

was further evidenced by the morphometric alterations in
the basal ganglia and thalamus inMOG.
Alterations within the sensorimotor and associative cir-

cuits, involving central, frontal, and parietal cortices, have
been reported, suggesting that dystonia may represent a
disorder of large-scale networks as opposed to local
pathology alone.6,8 In support of this novel view, a loss of
long-range connections was shown in MOG to DBS. As
increased clustering coefficients indicate a fewer number of
edges between distant regions (ie, long-range connections),
and reduced path lengths indicate that the integrative prop-
erties of the network are diminished,18,28 both findings
point toward a more segregated (ie, divided) and less effi-
cient network organization in MOG. In such segregated
network, increased local efficiency evidences that when the
long-range connections disappear, the majority of the
remaining edges will be among neighboring regions (see
Supplementary Fig. 1). Therefore, in MOG the regional
increase in degree of centrality and clustering coefficient
can be interpreted as increased susceptibility of these par-
ticular regions (corresponded with regional structural
alterations) to cause network failures, likely reducing the
systemic neuromodulatory effectiveness of GPi-DBS.
Accordingly, the ROC and SVMmodels constructed based
on the structural integrity of the regions showing network
alterations showed the best power to predict clinical out-
come, as shown by the higher AUCs and recall/precision.
This further implies that the optimal trade-off between
wiring-cost minimization and efficiency of information
transfer may play a key role in the outcome of GPi-DBS
interventions in dystonia patients.
Our results provide evidence that the balance between

short-distance and long-distance connectivity (small-world
topology) has direct implications for the GPi-DBS outcome
at 3 years. In this regard, computational studies have dem-
onstrated that small-world network architecture requires
specific control strategies allowing the enhancement of
recovery following system perturbations.32 Here, we have
shown that motor, sensorimotor, and associative regions
with impairedmicrostructure and connectivity (ie, impaired
clustering) disturb physiological motor control and coun-
teract normalization of dystonic movements to DBS.18

Thus, the neuromodulation provided by DBS stimulation
exerts specific effects on ongoing brain network activity,33

and its efficacy depends not only on the local stimulation
target, but also relies on the network characteristics.
A limitation of our study could be that electrode localiza-

tion is an important confounder for DBS outcomes.34 In
our patients, the position of the implant electrodeswas pro-
jected to the preoperative images and visually checked ret-
rospectively. No clinically relevant shifts of the target that
have made reimplantation necessary have been noticed in
SOG and MOG. In addition, DYT-1 status has also been
reported to be associated with treatment outcome35; how-
ever, these data were not available for our patients. Previ-
ous studies have shown that both dystonia patients with
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FIG. 3. Network and prediction analyses. (A) Between-group differences in network parameters for the discovery (left column), and independent test
(right column) cohorts, depicting high clustering and long-range disconnection in MOG (ie, increased gamma and Elocal with decreased lambda and
sigma). (B, C) Cortical regions showing a higher degree of centrality and clustering coefficient in MOG than in SOG in central and frontoparietal regions.
(D) Receiver operating characteristic (ROC) curves with their respective area under the curve (AUC) showing the performance for the network metrics
(left), individual regional cortical integrity of regions showing network differences (middle), and subcortical volumes (right) in classifying GPi-DBS out-
comes after 3 years. The concatenated variable refers to the accuracy of all the features together. (E) Correct classification ratio (CCR, left), precision
(middle), and the recall metrics of the support vector machine for the integrity of the network-selected cortical regions (purple) and the volume of sub-
cortical regions presenting group differences (yellow). latOcc, lateral occipital; pCalc, pericalcarine; inFront, inferior frontal; MOG, moderate-outcome
group, SOG: superior-outcome group. [Color figure can be viewed at wileyonlinelibrary.com]
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DYT-1 and without a known genetic cause showed mar-
ked improvement after GPi-DBS.36 Hence, future studies
should control for this in larger populations.
Despite the apparent difference between the groups in

mean age, the age distribution of the samples did not
differ between the SOG and MOG groups or the inde-
pendent test cohort and was not associated with any of
the study variables. Therefore, age was further included
in all the study analyses as a confounder. Hence, the
reported differences are unlikely to be driven by aging
or sex effects. Related to this, the cohort of patients
used in this study did not include symptomatic or sec-
ondary dystonia forms and presented a comparable dis-
ease history. Other forms of neurological or psychiatric
disorders were excluded before inclusion. Therefore,
the patient group as a whole represented a relatively
homogenous group before surgery in clinical terms.
Nevertheless, further studies should be conducted with
a focus on more specific disease trajectories and bigger
populations of patients.
A further limitation of this study is related to the covari-

ance networks being based on population variances,
which do not yield individual metrics. This hampers the
possibility of going beyond group-level networks (ie, info-
rming about topological differences between MOG and
SOG) and directly performing network-based predictions
for the DBS outcomes. Methods for generating individual
covariance networks based on single or multiple anatomi-
cal features have been proposed.37-41 However, most of
these methods are limited at evaluating grey matter inten-
sity values41 or need the use of combined andmore sophis-
ticated MRI sequences.40 The latter method further
ignores that different anatomical features depict differen-
tial nonoverlapping anatomical properties42 and have spe-
cific neurological and genetic underpinnings.43 Among
other well-documented disadvantages,44 tissue intensity
encapsulates combined tissue features, which renders this
measure largely redundant and decreases its discriminative
power, harshening the detection of some local effects that
may be relevant for studying network topology. Hence,
determination of individual network metrics remains an
open topic.
Overall, our study shows that the individual morpho-

metric integrity profiles in combination with analysis of
altered network topology at the group level have a
strong potential for better understanding disease trajec-
tories and predicting GPi-DBS outcomes in patients
with dystonia. Therefore, the proposed framework
can be extended for deciding and assessing the effects
of personalized therapeutic approaches and when
selecting patients who are likely to benefit from this
therapy.
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