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A B S T R A C T

Objective: To localise and characterise changes in cognitive networks in Amyotrophic Lateral Sclerosis (ALS)
using source analysis of mismatch negativity (MMN) waveforms.
Rationale: The MMN waveform has an increased average delay in ALS. MMN has been attributed to change
detection and involuntary attention switching. This therefore indicates pathological impairment of the neural
network components which generate these functions. Source localisation can mitigate the poor spatial resolution
of sensor-level EEG analysis by associating the sensor-level signals to the contributing brain sources. The
functional activity in each generating source can therefore be individually measured and investigated as a
quantitative biomarker of impairment in ALS or its sub-phenotypes.
Methods: MMN responses from 128-channel electroencephalography (EEG) recordings in 58 ALS patients and 39
healthy controls were localised to source by three separate localisation methods, including beamforming, dipole
fitting and exact low resolution brain electromagnetic tomography.
Results: Compared with controls, ALS patients showed significant increase in power of the left posterior parietal,
central and dorsolateral prefrontal cortices (false discovery rate= 0.1). This change correlated with impaired
cognitive flexibility (rho= 0.45, 0.45, 0.47, p= .042, .055, .031 respectively). ALS patients also exhibited a
decrease in the power of dipoles representing activity in the inferior frontal (left: p=5.16×10−6, right:
p=1.07×10−5) and left superior temporal gyri (p=9.30× 10−6). These patterns were detected across three
source localisation methods. Decrease in right inferior frontal gyrus activity was a good discriminator of ALS
patients from controls (AUROC=0.77) and an excellent discriminator of C9ORF72 expansion-positive patients
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from controls (AUROC=0.95).
Interpretation: Source localization of evoked potentials can reliably discriminate patterns of functional network
impairment in ALS and ALS subgroups during involuntary attention switching. The discriminative ability of the
detected cognitive changes in specific brain regions are comparable to those of functional magnetic resonance
imaging (fMRI).

Source analysis of high-density EEG patterns has excellent potential to provide non-invasive, data-driven
quantitative biomarkers of network disruption that could be harnessed as novel neurophysiology-based outcome
measures in clinical trials.

1. Introduction

Amyotrophic lateral sclerosis is a progressive neurodegenerative
condition characterized by upper and lower motor neuron degeneration
(Kiernan et al., 2011). Extra-motor behavioural and cognitive symp-
toms are common in ALS (Phukan et al., 2007), and imaging technol-
ogies have provided early evidence of broader network disruption
(Bede et al., 2015, 2018).

Although structural imaging can reliably record changes in grey and
white matter integrity (Schuster et al., 2016) and functional imaging
detects resting and activated states of metabolic activity (Erdoğan et al.,
2016), there remains an unmet need for real-time measurement of
different patterns of network disruption.

1.1. EEG for assessing neural function

Electrophysiological measurement of network activity during cog-
nitive performance allows for direct objective quantification of dys-
function (Katada et al., 2004) with excellent temporal resolution
(Teplan, 2002). These measures, captured by EEG or MEG, are distinct
from secondary blood flow or oxygen content measures upon which
fMRI is based (Erdoğan et al., 2016). EEG measures the electrical di-
poles produced by transmembrane ion flow in large numbers of si-
multaneously-active, aligned cortical neurons, while MEG measures the
concurrently generated magnetic fields (da Silva, 2013). EEG/MEG
measurements have traditionally been limited by noise from extra-
cerebral (such as facial muscles, ocular, and cardiac) artefacts, in ad-
dition to poor spatial resolution (Reis et al., 2014). However, the use of
improved recording instrumentation with up to 256 sensors, combined
with digitized data processing (Dukic et al., 2017; Muthuraman et al.,
2018; Nasseroleslami et al., 2017), has substantially improved the
signal to noise ratio.

Due to volume conduction, EEG sensors capture electrical currents
propagated from both adjacent and distant sources in the conductive
human head medium. However, source localisation of EEG sensor re-
cordings localises the activity underlying these signals with spatial re-
solution comparable to fMRI (Moeller et al., 2013) and source localised
MEG (Muthuraman et al., 2014). Furthermore, as EEG does not require
expensive superconductive systems needed for MEG (Wendel et al.,
2009), it is more cost effective and therefore more suited to day-to-day
clinical application.

As EEG/MEG directly measure the functional neuronal activity at a
network level, they can capture cognitive network dysfunction in the
absence of cognitive symptoms (Döring et al., 2016), and therefore may
provide greater sensitivity to cognitive pathology than psychological
(behavioural) task parameters. Correlating these measures with specific
domains of cognitive impairment could provide quantifiable cognitive
biomarkers to improve neurodegenerative disease diagnostics, and ad-
ditional outcome measures for clinical trials.

1.2. MMN an index of cognitive decline

MMN is a measure typically elicited and recorded during an audi-
tory oddball task, wherein the participant receives series of auditory
stimuli (tones). These tones are of one pitch, except for a fraction of

cases (e.g. 10% in this study) which are of higher “deviant” frequency
(pitch). The MMN is a negative waveform, found by the difference
between the auditory evoked potentials generated by these deviant and
standard tones at 100-300ms post-stimulus (Iyer et al., 2017; Näätänen
et al., 2007; Naatanen, 1995).

Multiple hypotheses have been proposed regarding the cortical
function(s) measured by MMN, including both sensory and cognitive
components of auditory processing. MMN was first described by
Näätänen et al. in 1978, who hypothesised that the waveform resulted
from comparison of a deviant input to a sensory memory template. It
was also suggested that MMN might represent recognition of target
criteria fulfilment (Näätänen et al., 1978), however such a “relevance
effect” was considered unlikely as attention to the stimulus did not
affect the waveform (Näätänen, 1995). This was subsequently sup-
ported by multiple studies demonstrating MMN in the absence of at-
tention (Winkler et al., 1996), including in sleeping infants (Ruusuvirta
et al., 2009) or those in a vegetative state (Wijnen et al., 2007). The
MMN was therefore proposed to reflect an automatic detection of
sensory change and modification of the physiological model of the
environment to incorporate this new stimulus, referred to as the model
adjustment hypothesis (Winkler et al., 1996).

An additional automatic attention-switching process related to the
frontal generators was then proposed to occur on the basis that right
frontal sources were activated irrespective of the ear detecting the sti-
mulus change (Giard et al., 1990). This is believed to reflect the call to
switch attention to changes in the unattended environment (Winkler
et al., 1996), the occurrence of which is supported by autonomic re-
sponses such as heart rate and skin conductance changes following
MMN (Lyytinen et al., 1992) as well as many other studies (Escera
et al., 2001, 2003; Schröger, 1996).

An alternative adaptation hypothesis, first proposed by May et al. in
1999 (May et al., 1999; May and Tiitinen, 2001, 2004), proposes that
the MMN response results from cortical adaptation to monotonous sti-
muli, with MMN reflecting the difference between N1 to a novel sound
and a lower amplitude, higher latency N1 generated by repetitive
standard tones. This hypothesis was supported by later studies, such as
those of Jääskeläinen et al. (Jääskeläinen et al., 2004) and Ulanovsky
et al., (Ulanovsky et al., 2003) (for review see (May and Tiitinen,
2010)). However, an exclusively auditory hypotheses cannot account
for the established prefrontal activation during MMN. Indeed, source
localisation of PET, EEG, fMRI and MEG-derived MMN has reliably
highlighted both the superior temporal and inferior frontal gyri as
important sources of this signal (Rinne et al., 2000; Opitz et al., 2002;
Yago et al., 2001; Müller et al., 2002), demonstrating that volume
conduction alone does not account for frontal MMN. Furthermore,
those with lesions of the dorsolateral prefrontal cortex have also been
found to have reduced MMN amplitudes (Alho et al., 1994).

Source localisation across the MMN timeframe has additionally re-
vealed two subcomponents, an early, sensory component that is max-
imal in the late N1 range (105-125ms post-stimulus) generated by
temporal sources and a later, cognitive component (170-200ms post-
stimulus), generated by frontal and temporal sources (Giard et al.,
1990; Rinne et al., 2000; Maess et al., 2007). These temporal sources
are attributed to sensory memory and change detection while the later
active, frontal sources are attributed to involuntary attention switching
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in response to change (Giard et al., 1990; Rinne et al., 2000; Alho,
1995; Näätänen and Michie, 1979). As this early component overlaps
with the N1 range, temporal activity may also represent sensory de-
tection (May and Tiitinen, 2010).

Hence, source-localised MMN affords the benefit of separately in-
terrogating each of these functions and the neural network which
generate them, both in healthy individuals and those with neurological
diseases. This is supported by several previous studies in different
neurological and neuropsychiatric diseases, where MMN has been used
as an index of abnormal auditory perception, involuntary attention
switching, pathological brain excitability and cognitive and functional
decline (see (Näätänen et al., 2012, 2014; Schall, 2016; Todd et al.,
2013; Kujala and Leminen, 2017) for reviews).

1.3. Identifying the sources of MMN change in ALS

Using qEEG to measure MMN, we recently have shown a functional
change in the underlying networks in ALS, with MMN being significant
in healthy controls from 105 to 271ms post-stimulus and having an
increased average delay within the 100-300ms post-stimulus window
in ALS (Iyer et al., 2017). Due to the limited spatial resolution of sensor
space studies, however, the specific sources contributing to MMN
change and the nature of their dysfunction in ALS remains unclear. We
therefore were unable to specify which network components indexed by
MMN are affected by ALS pathology.

In this study we have used high-density qEEG in combination with
each of three source localisation methods to determine and cross-vali-
date the locations of MMN generators, and to measure differences in
their activity between ALS patients and healthy controls. Here we show
how the dysfunction of each source of MMN is affected by ALS, char-
acterized by both under-active and over-active sources contributing to
the abnormal response.

2. Methods

2.1. Ethical approval

Ethical approval was obtained from the ethics committee of
Beaumont Hospital (REC reference: (Nasseroleslami et al., 2017)/102)
and the St. James's Hospital (REC reference: 2017–02). All participants
provided written informed consent before participation. All work was
performed in accordance with the Declaration of Helsinki.

2.2. Participants

2.2.1. Recruitment
Patient recruitment was undertaken from the National ALS specialty

clinic in Beaumont Hospital. Healthy controls included neurologically-
normal spouses of ALS patients and neurologically-normal, age- and
sex-matched individuals recruited from an existing cohort of popula-
tion-based controls.

2.2.2. Inclusion criteria
Patients were over 18 years of age and diagnosed within the pre-

vious 18months with Possible, Probable or Definite ALS in accordance
with the El Escorial Revised Diagnostic Criteria.

2.2.3. Exclusion criteria
Patients with Transient Ischemic Attack, Multiple Sclerosis, stroke,

seizure disorders, brain tumours, structural brain diseases and other
comorbidities were excluded.

2.2.4. Demographics of patients and controls
A total of 95 ALS patients and 43 controls underwent recording. 58

ALS patients (f/m: 20/38; age: 59.2 years, range: 29–81 years) and 39
healthy controls (f/m: 28/11; age: 58.9 years, range: 36–78 years) were

included in final analyses. Data with poor recording quality (de-
termined by the lack of auditory evoked potentials), were excluded.
Eight controls and 44 patients were also included in our previous
sensor-space analysis (Iyer et al., 2017).

2.2.5. Medical profile
Within the ALS group, 44 patients had spinal onset, 12 bulbar, and 2

thoracic onset. All patients were tested for the hexanucleotide repeat
expansion in C9ORF72, of whom 7 were positive (C9ORF72+). Twelve
patients had a known family history of at least one first or second de-
gree relative with ALS, 3 of whom carried the C9ORF72 repeat ex-
pansion. One additional patient had a known family history of at least
one first or second degree relative with frontotemporal dementia (Byrne
et al., 2012a). A contemporaneous ALSFRS-R score was available in 51
patients. Mean ALSFRS-R was 37.8 with an IQR of 33.5–42. Mean
disease duration was 1.83 years (IQR: 0.89–2.09) from estimated
symptom onset.

2.3. Experimental paradigm

EEG was recorded across 128-channels in 3 consecutive, 8 min
sessions, during which an auditory frequency-mismatch oddball para-
digm was delivered as described in our previously reported methods
(Iyer et al., 2017). In total, 1350 standard trials and 150 deviant trials
were presented.

2.4. Data acquisition

EEG recordings were conducted in the Clinical Research Facility at
St. James's Hospital, Dublin using a BioSemi® ActiveTwo system
(BioSemi B.V., Amsterdam, The Netherlands) within a Faraday cage.
Subjects were measured with an appropriately-sized EEG cap. Data
were online filtered to a bandwidth of 0–134 Hz and digitized at
512 Hz. Common average referencing was used. 27 patients also un-
dertook the Colour-Word Interference Test from the Delis-Kaplan
Executive Function System (Delis et al., 2001), which is a test of at-
tention shift, inhibitory control, error monitoring and cognitive flex-
ibility.

2.5. Data analysis

Data were preprocessed as described in our previous sensor space
analysis (Iyer et al., 2017) using custom MATLAB (version R2014a and
R2016a, Mathworks Inc., Natick, MA, USA) scripts and the FieldTrip
Toolbox (Oostenveld et al., 2011). Mean number of included artefact-
free standard/deviant trials was 1267/144 for patients and 1223/146
for controls. For source analyses the number of standard trials was
matched to that of deviant trials by random selection.

2.6. EEG signal processing

The mean standard and deviant auditory evoked potentials were
calculated for each participant from 100ms before the stimulus to
500ms post-stimulus as previously reported (Iyer et al., 2017). MMN
waveforms were calculated for each electrode in each individual as the
difference between mean deviant and standard AEPs. Channels with
continuously noisy data were excluded (mean excluded channels±
standard deviation in controls: 1.59 ± 1.65, patients: 1.52 ± 1.55)
and data from these channels were modelled by spline interpolation of
neighbouring channels.

2.7. Source localisation and analysis

Source localisation was implemented using custom MATLAB (ver-
sion R2016a) scripts and the FieldTrip Toolbox for linearly constrained
minimum variance (Van Veen et al., 1997) beamforming and dipole
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fitting, as well as LORETA-KEY software (version 20170220, The KEY
Institute for Brain-Mind Research, Zurich, Switzerland) for exact low-
resolution electrotomography (Pascual-Marqui et al., 2011). Three
different source localisation methods were used to circumvent the
limitations imposed by different mathematical assumptions for finding
a unique solution to the ‘inverse problem’ by each single method
(Darvas et al., 2004) (Table 1). Head models incorporating individual
geometries for the brain, skull and scalp tissues were constructed for 41
patients. Boundary-element head models (Fuchs et al., 2002) were
generated using T1 images from contemporaneous MRI (3-Tesla Philips
Achieva scanner, Best, The Netherlands), acquired at the Centre of
Advanced Medical Imaging, St. James' Hospital (Schuster et al., 2016).
For other subjects with no personal MRI, the ICBM152 head model
(Fonov et al., 2011) was used, as template-based and individualised
boundary-element head models are found to provide comparable lo-
calisation accuracy (Fuchs et al., 2002; Douw et al., 2018).

2.7.1. Linearly constrained minimum variance (LCMV)
LCMV is a beamforming source localisation method wherein the

covariance of the signals recorded from the electrodes is used to gen-
erate a spatial filter formed by a linear combination of electrode
weights, for each grid point in the brain. The identified solution is that
which affords minimum experimental variance of data when projected
to the source, thus minimising the amount of activity from other
sources (Van Veen et al., 1997). LCMV was used to calculate brain maps
of mean power for the average AEP 100-300ms after standard and
deviant cues, based on a common spatial filter. A time window of 100-
300ms was utilised to ensure accurate calculation of the covariance
matrix from which the spatial filter is calculated and avoid high func-
tional correlation between the sources which would hinder localisation
of such distinct sources. Covariance matrices were also calculated for
individual trials to minimise such correlations. Regularisation of the
covariance matrix was implemented at 5% of the average variance of
EEG electrodes to account for reduced dimensionality caused by in-
dependent component analysis during preprocessing. Sources within
the brain volume were modelled by a grid with 10mm resolution. The
leadfield matrix was normalised to avoid potential norm artefacts.
Sources of MMN activity were identified by the locations of the max-
imal logarithm of the power ratio between deviant and standard maps.

2.7.2. Exact low resolution brain electromagnetic tomography (eLORETA)
ELORETA (Pascual-Marqui et al., 2011) identifies a unique source

power map based on the implicit assumption that neighbouring dipoles
have similar activity (low spatial resolution). This is achieved by
identifying the solution with the least activity norm, subject to mini-
mising the Laplacian (spatial gradient or derivative) of the sources. This
assumption yields solutions with a relatively low spatial resolution.
ELORETA was also used to calculate mean source power maps of the
average auditory evoked potential 100-300ms after standard and de-
viant cues to match the data input to LCMV. LORETA-KEY software
models sources at 5mm resolution within the brain volume of a
boundary-element headmodel based on the Colin27 average brain
(Holmes et al., 1998), excluding sources located within white matter.
For statistical comparison, grid resolution was reduced to 10mm to
avoid the loss of discriminatory power that may result from correction
of over 6000 comparisons. Regularisation was implemented for a signal
to noise ratio of 10. Sources of MMN activity were identified as de-
scribed for LCMV.

2.7.3. Dipole fitting
Dipole fitting can be used to generate least-square error models of

the contributions of electrical dipoles to an EEG topographic distribu-
tion, given a-priori estimation of the number and location of con-
tributing dipoles (Scherg and Berg, 1991). Residual variance (the var-
iance in the data not explained by the model) is used as a goodness-of-
fit measure. Previous studies (Jemel et al., 2002; Oknina et al., 2005;

Oades et al., 2006) have repeatedly identified MMN sources in the in-
ferior frontal gyri and superior temporal gyri. As non-linear optimisa-
tion of the dipole location repetitively produced fits at local rather than
global residual variance minima, four fixed dipoles were modelled at
the centroid coordinates of the bilateral superior temporal gyri and pars
triangularis of the inferior frontal gyri, as determined from an AAL atlas
(Tzourio-Mazoyer et al., 2002). Models were estimated based on the
average MMN response (mean{deviant response}-mean{standard re-
sponse}) for 40ms surrounding the global field power peak between
105 and 271ms post-stimulus, the period for which we previously
found MMN to be significant (Iyer et al., 2017). Subsequently, mean
power for each dipole was calculated. The rationale for using this
shorter time frame was based upon findings that these four sources
better accounted for the data in this window (i.e. had smaller residual
variance) than the longer time window of data 100-300ms post-sti-
mulus, as used for LCMV and eLORETA. A model generated using the
longer 200ms time window provided the same results as the model
reported here.

2.8. Statistics

2.8.1. LCMV and eLORETA
A 10mm grid in the brain volume yields 733 sources excluding

white matter (as modelled by eLORETA) and 1726 sources including
white matter (as modelled by LCMV). To analyse these high-dimen-
sional data, 10% False Discovery Rate (Benjamini, 2010) was used as a
frequentist methods for preliminary screening. Subsequently, Empirical
Bayesian Inference (EBI) (Efron, 2009) was used to find Bayesian pos-
terior probabilities, as well as achieved statistical power and AUROC.
AUROC is a measure of how well the test separates patient and control
groups (Hajian-Tilaki, 2013) which ranges from 0 to 1, where if the null
hypothesis of no separation is true, AUROC equals 0.5. Therefore, the
further the value of AUROC from 0.5, the greater the separation.

2.8.2. Dipole fitting
Dipole power for each of the four modelled dipoles in the complete

ALS group as well as C9ORF72+, C9ORF72−, bulbar-onset and spinal-
onset subgroups were compared by Mann-Whitney U test. Bonferroni
correction for multiple comparisons established a significance threshold
of p < .0025. AUROC and statistics were also calculated for each di-
pole by empirical bootstrapping-based inference (Nasseroleslami,
2018).

2.8.3. Neuropsychology correlation
Spearman's rank partial correlation (which is inherently robust to

outliers) was used to individually compare changes in EEG source
power to CWIT performance (colour naming, word reading, inhibition
and inhibition switching times in seconds) while correcting for speech
impairment (ALS-FRS speech score on the day of testing) and age. CWIT
was investigated on the basis of a previously identified correlation
between sensor-level MMN average delay and performance in this task
(Iyer et al., 2017). Correlations were performed for power in each fitted
dipoles and for the mean power in the left superior and medial frontal
gyri (combined), primary motor cortex and posterior parietal cortex,
according to the AAL atlas (Tzourio-Mazoyer et al., 2002). Multiple
comparison correction was by Bonferroni correction. Beaumont

Table 1
Limitations and advantages of different source localisation methods.

Method Dipole fitting LCMV eLORETA

Spatial resolution Excellent Good Low
Temporally correlated source detection No limitation Limited No limitation
Prior knowledge required Yes No No
Full brain map estimate No Yes Grey-matter
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Behavioural Inventory (Elamin et al., 2017) and Edinburgh Cognitive
Assessment Score (Pinto-Grau et al., 2017) data were also available,
however the main scores of these measures showed no significant
correlation to source activity and were, therefore, not investigated
further.

3. Results

3.1. Dipole fitting

Locations of dipole fits are illustrated in Fig. 1. Control and patient
groups showed similar goodness of fit (median (IQR): patients: 23.32%
(15.24–30.2%), controls: 24.39% (15.55–35.49%)). P-values obtained

by Mann-Whitney U test comparison of dipole power between ALS
patients and healthy controls are summarised in Table 2. Power was
significantly lower in the IFG bilaterally as well as the left STG. AUROC
demonstrated that power in each of these three dipoles has good group
discrimination ability (Table 2, Fig. 2). No differences were found be-
tween male and female patients for any dipole (p= .27–.75,
AUROC=0.42–0.58). The discrepancy from complete fit indicated the
presence of additional sources, which were subsequently aggregated by
eLORETA and LCMV.

3.2. eLORETA

ELORETA identified maximal intensity of neural activity during

Fig. 1. Location of dipoles modelled by dipole fitting. Centroids of the left (blue) and right (orange) superior temporal gyri and left (red) and right (green) inferior
frontal pars triangularis were used to seed dipoles for dipole fitting. Axial MRI view is from above (L-Left, R-Right).

Table 2
Summary of P-values and AUROCs for each source modelled by dipole fitting in ALS patients and subgroups compared to controls. All subgroups show decreased
power in inferior frontal and left temporal dipoles compared to controls. Inferior frontal activity has excellent discrimination ability between C9ORF72+patients and
controls and good discriminating ability in other groups. P-values were obtained by Mann-Whitney U test. AUROC given in parentheses. Bold indicates statistical
significance (p < .0025).

Dipole Location All C9orf72+ C9orf72- Bulbar-onset Spinal-onset

Left IFG 5.16×10−6 6.87×10−4 1.98×10−5 1.22×10−3 1.22×10−3

(0.7741) (0.9084) (0.7637) (0.802) (0.769)
Right IFG 1.07×10−5 2.15×10−4 9.29×10−5 2.37×10−5 1.74×10−4

(0.7648) (0.9451) (0.7416) (0.895) (0.74)
Left STG 9.30×10−6 0.016 2.30×10−6 2.64×10−3 2.40×10−4

(0.7666) (0.7912) (0.761) (0.795) (0.738)
Right STG 0.081 0.39 0.118 0.035 0.23

(0.6052) (0.6044) (0.5968) (0.698) (0.576)

Fig. 2. ALS patients show decreased power in both
inferior frontal gyri and the left superior temporal
gyrus. Boxes illustrate the interquartile range with
whiskers illustrating the maximum and minimum
power (A-m) within twice the interquartile range for
ALS patients (P) and controls (C), determined by
dipole fitting. Outliers are illustrated in black.
Dashed line caps up to two outliers beyond this
value. L – Left, R – Right, IFG – Inferior frontal gyrus,
STG – Superior Temporal Gyrus.
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MMN in the left IFG and bilateral STG and MTG in controls (Fig. 3a),
confirming the localisation of major sources to those previously estab-
lished, with the exception of the right IFG (Jemel et al., 2002; Oknina
et al., 2005; Oades et al., 2006). ALS patients showed a pattern of re-
duced activity in these sources, consistent with the results of dipole
fitting, as well as an increase in activity in posterior sources (Fig. 3b).
While the eLORETA estimated the general distribution pattern of ac-
tivity, the method's low spatial resolution prevented the effects
reaching statistical significance.

3.3. LCMV

LCMV identified sources of MMN similar to the findings of eLORETA
(Fig. 4a) but also identifying the right IFG as a source, as identified by
previous studies (Jemel et al., 2002; Oknina et al., 2005; Oades et al.,
2006). LCMV also detected a trend of reduced activity in these sources
bilaterally, in keeping with the results of dipole fitting and eLORETA, as
well as an increase in activity in the left parietal, central and dorso-
lateral prefrontal cortex (Fig. 4b). This increase reached statistical
significance (Fig. 5, FDR=10%, statistical power= 0.58). Based on
interpolation with an AAL atlas, sources with significantly increased
activity included the superior parietal lobe and precuneus, left motor
structures including the primary motor cortex, supplementary motor
area and mid cingulum, as well as the mid frontal gyrus (Table 3).
Positive correlations (Fig. 6) were found between CWIT inhibition-
switching time (but not other CWIT scores) and mean power in the left
primary motor cortex (ρ=0.45, p= .055), the superior and middle
frontal gyri combined (ρ=0.47, p= .031) and the posterior parietal
cortex (ρ=0.45, p= .042), where greater inhibition-switching score
indicates more impaired cognitive flexibility and verbal inhibition
(Swanson, 2005). P-values below 0.05 in the prefrontal and parietal
cortices did not survive multiple comparison correction, likely due to
the low number of CWIT scores available. No significant differences
were found between male and female patient sources (αglobal = 0.92, β
global = 0.075) or mean power of the left posterior parietal, motor or
inferior frontal cortices (p= .56–.89).

3.4. Differences between ALS subgroups

C9ORF72+ patients were not distinguished from C9ORF72− pa-
tients by any localisation method, nor were bulbar-onset from spinal-
onset patients. This was likely due to insufficient sample size.
C9ORF72− and spinal subgroups individually showed similar patterns
of significant difference to the full patient group across each localisa-
tion method. Bulbar and C9ORF72+ subgroups significantly differed
from controls with respect to bilateral IFG dipole activity, and exhibited
better discrimination ability (summarised in Table 2). The discrimina-
tion ability of this difference was excellent for C9ORF72+ patients
(AUROC>0.9) with low AUROC variation (0.002 bilaterally). CWIT
and speech score data were insufficient (C9ORF72+ n=0, bulbar-
onset n=3) for correlation analyses.

4. Discussion

This study demonstrates that source localization of cognitive event-
related potentials measured by EEG reliably distinguishes attentional
network changes in ALS patients compared to controls, particularly in
subgroups with higher prevalence of cognitive impairment (Byrne
et al., 2012b; Schreiber et al., 2005). Furthermore, this study indicates
for the first time a correlation between the activities of specific sources

underlying cognitive event-related potentials and cognitive perfor-
mance in a neurodegenerative disease. Compared with controls, ALS
patients show decreased activity in both inferior frontal gyri and the left
superior temporal gyrus and increased left posterior parietal and dor-
solateral prefrontal activity. ALS patients also show significantly in-
creased activity in the left motor cortex.

4.1. Imbalance of attention-regulating network activity during sensory
processing in ALS

The superior temporal and inferior frontal gyri are well established
sources of MMN activity (Maess et al., 2007; Jemel et al., 2002;
MacLean et al., 2015). In this study, decreased activity in these regions
was identified independently using each of the methods, however, di-
pole fitting allowed for a more temporally and spatially precise inter-
rogation of these sources.

Repetitive TMS (Nixon et al., 2004) and nonword rhyming task
studies (Burton, 2001) have demonstrated the role of the IFG in pho-
nological working memory, where information about one stimulus is
stored for later comparison to a second. The IFG is also known to be
active when ignoring stimuli (Bunge et al., 2001) and is functionally
connected to the default mode network (Beaty et al., 2014). This net-
work is active when directed attention is not required and is deacti-
vated by goal-directed activity, as defined by resting-state fMRI
(Raichle et al., 2001). The activity of the default mode network is anti-
correlated with that of the central executive network, where attention
needs to be directed to a task (Nekovarova et al., 2014). Inferior frontal
source activity during the MMN is therefore consistent with calling for a
switch of attention to changes in the unattended environment (i.e. in-
voluntary attention switching), to which prefrontal MMN sources have
previously been attributed (Winkler et al., 1996; Giard et al., 1990).

The observed substantial reduction in IFG activity in ALS is corre-
spondingly expected to parallel impairments in these cognitive func-
tions. As posterior parietal and dorsolateral prefrontal cortices are
nodes of the central executive network (Seeley et al., 2007), their ab-
normal activation in combination with IFG dysfunction during MMN in
ALS may represent a loss of balance between the activity of these at-
tention-regulating networks (Menon and Uddin, 2010) resulting in
dysregulation of involuntary attention switching.

As participants were asked to ignore and not respond to stimuli in
this study, attention regulation could not be behaviourally measured
during MMN recording. This hypothesis is, however, supported by our
preliminary findings of a positive correlation between increases in left
posterior parietal and dorsolateral prefrontal activity during MMN, and
the inhibition/switching score of the CWIT (and not other subscores of
the CWIT). This indicates that abnormal increase in the activity of this
network conveys cognitive inflexibility and disinhibition (Swanson,
2005). Such behavioural inflexibility and disinhibition is consistent
with incorrect orientation to irrelevant stimuli and is expected in those
with abnormal central executive network activation. Correspondingly,
change in bilateral IFG activity was shown to be an excellent dis-
criminator of C9ORF72+ and bulbar-onset ALS subgroups, which are
more prone to cognitive impairment (Byrne et al., 2012b; Schreiber
et al., 2005).

This imbalance hypothesis is also evidenced by data from previously
reported functional connectivity studies in ALS. For example, resting-
state MEG has identified increased functional connectivity between the
left posterior cingulate and prefrontal cortices, as well as within and
between posterior parietal cortices, in addition to increased overall
parietal connectivity (e.g. node weight) (Proudfoot et al., 2018).

Fig. 3. ELORETA identified a pattern of decreased activity in the left superior temporal and inferior frontal sources, and an increase in activity in posterior areas.
Location of MMN sources with (a) top 50% of power (10*log10(Deviant power / Standard power)) in healthy controls and (b) power differences> 25% of maximum
between ALS patients and healthy controls as determined by eLORETA. Red denotes increase in power, blue denotes decrease in power. Axial MRI views are from
above (L-Left, R-Right).
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Furthermore, resting state fMRI has demonstrated increased left pre-
cuneus, posterior parietal and mid cingulate cortex connectivity in
addition to decreased inferior frontal connectivity (Agosta et al., 2013)
in ALS. Accordingly, the frontoparietal hyperactivity and inferior
frontal depression observed in our study may reflect a spread in pa-
thological hyperactivity into cognitive networks, which in turn alters
the balance in normal network activity. Activation of the central cortex
in addition to cognitive network nodes during MMN in ALS may cor-
respondingly represent abnormal activation of networks connecting
motor and cognitive areas. This is consistent with previous physiolo-
gical studies which have consistently identified hyperactivity in upper
motor neurons in ALS (Vucic and Kiernan, 2006) and loss of inhibitory
control (Grieve et al., 2015).

ALS-FRS-R total score showed no correlation to source activity - this
is likely a reflection of the relatively low burden disease in the majority
of patients, and the study being underpowered to explore the subscores
of ALSFRS-R. However, previous studies have shown that functional
connectivity is increased with ALS and correlates with disease severity
(Sorrentino et al., 2018). A reduction in MMN in healthy individuals is
also found to parallel increased connectivity and decreased inhibitory

control between underlying sources, particularly in frontal nodes
(Cooray et al., 2014). The recently demonstrated relationship between
cognitive impairment and disease stage in ALS (Crockford et al., 2018)
is therefore likely to reflect the spread of hyperactivity from motor to
cognitive networks.

4.2. Potentially abnormal function of auditory network in ALS

Temporal source activity has been attributed predominantly to
sensory memory and change detection in early MMN (Giard et al.,
1990; Rinne et al., 2000; Alho, 1995; Näätänen and Michie, 1979);
however, it has also been found to contribute to MMN's later attention
switching component (Maess et al., 2007). Furthermore, as the differ-
ence wave early in the 100-300ms studied may also capture changes in
N1 (May and Tiitinen, 2010), temporal activity may include sensory
detection.

As STG contains the primary auditory cortex (Howard et al., 2000)
and has been shown to be active during attention control (Hopfinger
et al., 2000), the decrease in left STG activity identified here in ALS may
represent impairment in either auditory or cognitive networks. These

Fig. 4. LCMV identified a pattern of decreased activity in bilateral superior temporal and inferior frontal sources, and an increase in activity in the left hemisphere.
Location of MMN sources with (a) top 25% of power (10*log10(Deviant power / Standard power)) in healthy controls and (b) power differences> 25% of maximum
between ALS patients and healthy controls as determined by LCMV beamforming. Red denotes increase in power, blue denotes decrease in power. Axial MRI views
are from above (L-Left, R-Right).

Fig. 5. Increased activity in the left posterior parietal, central and dorsolateral prefrontal cortex in ALS is statistically significant. Statistically significant (false
discovery rate= 10%) differences in power between ALS patients and healthy controls as determined by LCMV. Heat map values are AUROC-0.5. Red denotes
AUROC>0.5, blue denotes decrease in AUROC<0.5. Axial MRI views are from above (L-Left, R-Right).
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findings, in addition to the greater number of (excluded) patients
lacking clear AEPs compared to controls, suggest the additional pre-
sence of auditory network dysfunction in ALS. An additional in-
vestigation of AEPs generated during a solely auditory task is required
to investigate this network further in ALS.

4.3. Harnessing the advantages of quantitative EEG

The detected changes in ALS reflect the additive benefits of phy-
siological investigation to those of structural imaging. The dis-
criminative ability of these changes, determined by the AUROC (up to
0.95 here) was comparable to, or better than, that achieved by fMRI
(AUROC=0.714) (Welsh et al., 2013) and sensor space qEEG
(AUROC=0.69) (Iyer et al., 2017). This methodology therefore has the
potential to provide neurodegenerative disease markers prior to the
onset of discernible structural degeneration, allowing for earlier and
more sensitive monitoring of potential interventions.

4.4. Limitations

A sample size of 58 patients and limited availability of psychological
and clinical test scores restricted exploration of the relationship be-
tween cognitive symptoms and source activity within subgroups of this
heterogeneous condition. Further studies of larger sample size are
therefore warranted to explore such relationships and ALS inter-sub-
group differences with greater statistical power.

4.5. Conclusion

In conclusion, combining multiple localisation methods to de-
termine the sources of ERPs provides high spatial resolution to com-
plement qEEGs' excellent temporal resolution in the investigation of
ALS-related network dysfunction. The use of this approach to localise
activity during other cognitive, motor and sensory tasks allows for
detailed interrogation of the location and nature of brain network dis-
ruption in neurodegenerative disorders, with the potential to provide
early, non-invasive and inexpensive biomarkers of neurodegenerations
or their subtypes.
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