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INTRODUCTION

Multiple sclerosis (MS) is a chronic and heterogeneous

autoimmune disease of the central nervous system

leading to progressive clinical disability. The underlying

pathology is characterized by inflammation and

demyelination. Further processes of remyelination,

repair, and functional and structural reorganization are
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important hallmarks of the disease (Filippi and Agosta,

2009). The sensitivity of magnetic resonance imaging

(MRI) to acute and chronic white matter (WM) lesions

has made this tool essential for diagnosis and treatment

monitoring (Igra et al., 2017). However, conventional

MRI techniques do not depict processes of brain reorga-

nization and poorly reflect the clinical long-term course.

Standard MRI protocols (i.e. T2-weighted lesion load)

only weakly correlate with the emerging clinical disability

(Li et al., 2006). Besides T2-visible lesions, the normal-

appearing WM (NAWM) and gray matter (GM) are also

diffusely affected in MS (Droby et al., 2015). This wide-

spread pathology leads to altered connectivity between

interacting brain regions and emerging functional impair-

ment (e.g., motor and cognitive deficits, fatigue, psychi-

atric comorbidities such as depression or anxiety).

Further adaptive processes of plasticity and metaplastic-

ity may play an important role for the clinical course and

disability progression. A holistic characterization of the

focal lesions, WM and GM properties is of essential

importance for forecasting the disease course and moni-

toring the efficacy of possible preventive or therapeutic

interventions.
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Focal demyelination is spread over the entire brain

mainly involving WM, with predilection sites in the

periventricular regions, while GM lesions are increasingly

considered as significant hallmarks of the disease and

play an important role for the long-term functional

outcome (Seewann et al., 2011; Droby et al., 2015,

2016). It is entirely conceivable that WM and GM lesions

have an essential effect on the interaction between brain

regions. Despite predilection sites, the occurrence, loca-

tion, shape and size of inflammatory lesions vary unpre-

dictably. Furthermore, as of yet, no analytical strategies

besides lesion counts or volume measurements have

been adequately applied to quantify the lesion load to

account for topographic, neuroanatomical particularities

(De Stefano et al., 2002). Moreover, appropriate longitudi-

nal analytical strategies for lesion mapping are needed.

Network-based approaches offer a possible solution

to depict the topological organization of the brain of MS

patients (Bullmore and Sporns, 2012). This not only

allows to visualize the overall connectivity patterns, but

also allows to quantitatively characterize the brain’s global

organization, further providing a framework to elucidate

the relationship between brain structure and function.

Functional networks are commonly reconstructed

based on the blood-oxygen-level-dependent (BOLD)

signal, which is obtained from functional MRI (fMRI)

(Logothetis, 2008). This approach has become vital to

study the changes in blood oxygenation, which is closely

linked to neural activity. Additionally, networks can be

reconstructed from the electric potentials and magnetic

fields generated by the brain, measured with electroen-

cephalography (EEG) or magnetoencephalography

(MEG) (Stam, 2004).

Structural networks can be reconstructed e.g., from

T1-weighted MR images (He et al., 2007). Differences in

image intensities arise from the latency, which is required

by spinning protons to realign with an external magnetic

field. As a result, the dominant signal intensities within

the brain differ between GM, WM tissue and cere-

brospinal fluid. Moreover, diffusion-tensor imaging (DTI)

measures the diffusion of water molecules to generate

contrast in MR images (Basser et al., 1994). For example,

the DTI metric fractional anisotropy (FA) describes how

probable it is that water diffusion is restricted to a specific

orientation, and is thought to reflect fiber density, axonal

diameter, and myelination in WM. This technique has

the potential to map the WM integrity in vivo and non-

invasively (Basser et al., 2000).

In recent years, graph theory has become an

important approach to model brain networks as an

interconnected and dynamic system (Bassett and

Sporns, 2017). Current applications showed exceptional

utility to characterize physiological and pathological cere-

bral processes and offer a more comprehensive model of

neurological disorders. The graph theoretical analysis of

brain networks in patients with MS has also introduced

new avenues for the non-invasive characterization of

disease-related structural and functional alterations that

robustly mirror the disease course and clinical pheno-

types (Hawellek et al., 2011). Given that most of the anal-

yses on brain networks using graph theory have been
conducted on clinically isolated syndrome (CIS) and

relapsing-remitting MS (RRMS), in the present review

we focus on these MS types, and discuss only selected

findings in progressive types of MS. In this review, we pre-

sent an introduction to graph theoretical metrics, review

the latest functional and structural studies of MS, and dis-

cuss the clinical implications and future directions.
BASIC CONCEPT OF GRAPH THEORY AND
PITFALLS IN MS

Modelling brain connectivity using graph theory

In graph theory, the brain is modeled in terms of nodes, as

defined by distinct anatomical regions, and edges or

connections, representing the existence or the strength

of interactions between two regions (Fornito et al.,

2016). The brain parcellation into nodes commonly fol-

lows a neuroanatomical scheme reflecting functional spe-

cialization. Strategies for node definition are emerging

and are an active field of research, as the choice of par-

cellation scheme alters the resulting network structure

(Zalesky et al., 2010). Moreover, it is important to keep

in mind that while the nodes are considered in the geo-

metrical representation, the anatomical distance between

regions is not directly considered for the reconstruction of

the network. The presentation of the general available

software resources to reconstruct the brain networks is

out of the scope of the present review. For more detailed

information we invite the reader to consider recent

reviews covering these topics (Bassett and Sporns,

2017; Liao et al., 2017). Only relevant aspects for MS

imaging will be presented.

Possible connections between anatomical regions can

be depicted through functional or structural imaging.

Functional connectivity measures are obtained from time-

dependent statistical associations between signals (e.g.,

from fMRI) (Friston, 2011). In this context, brain activity

can be divided into task-directed or resting state (no-

task) activity, each with specific activation profiles and dif-

ferent sets of involved regions. Analyses can be conducted

in both the time and frequency domain, and based on that,

numerous methods are applicable to construct brain func-

tional networks. For example, analytical methods such as

independent component analysis, seed-based and gran-

ger causality analyses have been widely applied

(McKeown et al., 1998; Fox et al., 2005; Roebroeck

et al., 2005), whereas graph theory has become increas-

ingly important in the last years (Aerts et al., 2016).

Structural connectivity as reconstructed from diffusion

imaging can be defined by the strength of anatomical

connections between pairs of regions, mirroring

properties of fiber bundles (Hagmann et al., 2008). In order

to estimateWM fascicles and their projections, determinis-

tic or probabilistic tractography analyses obtained from

diffusion MRI are commonly performed, such that inferred

structural connections can be fed into connectivity matri-

ces (Behrens et al., 2007). A second possibility for the

structural graph reconstruction is the use of structural

covariance parameters, i.e. volume or cortical thickness



                                             
measurements, which allows for the calculation of inter-

regional correlations (Lerch et al., 2006).

Regardless of whether structural or functional imaging

is applied, the result is a connectivity matrix with a set of

elements representing the implicit strength of the

connections. This matrix can be thresholded and

additionally binarized in order to reduce spurious or

false positive connections.

The network’s topological architecture is defined

based on the relations of nodes and edges (Fig. 1).

Different measures can be computed in order to quantify

the global or local network organization. Global

measures (e.g., path length and efficiency, see

Table 1), provide an indication of the entire network’s

capability for information integration. Additionally,

segregation measures, like clustering or modularity, are

of particular interest for information processing at the

local level, as they characterize the interactions of an

individual node with its immediate neighbors (see

Rubinov and Sporns, 2010 for a detailed description of

network parameters). Moreover, measures of small-

worldness can be used to assess the trade-off between

local and global connectivity which enables efficient com-

munication (Watts and Strogatz, 1998). An overview of

selected network parameters, with description and related

results is provided in Table 1. These network measures

can be used to reveal fundamental aspects of normal

and abnormal brain organization that are linked to under-

lying brain pathology.

Network analysis and pitfalls in MS

Distinct connectivity patterns have been increasingly

linked to specific MS phenotypes using graph theory

(Kocevar et al., 2016; Muthuraman et al., 2016). A pre-

ponderant pattern of decreased global connectivity due

to acute neuroinflammation (Kocevar et al., 2016) or

increased lesion load (He et al., 2009) can be attributed

to the disease course. In addition, possible adaptation

patterns with increased local and modular connectivity,

reflecting compensatory mechanisms and network reor-

ganization have been described (Fleischer et al., 2017).

This complex interaction of long-range disconnection with

a less efficient information transfer and a local reorganiza-

tion might be of essential importance for the long-term

outcome. The exact influence of these mechanisms on

the interplay between focal demyelination and diffuse tis-

sue damage for the entire network function and long-term

disability is however still unclear.

The algorithms used to estimate the cortical thickness

for structural network reconstruction are mainly based on

T1-weighted sequences (Dale et al., 1999; Han et al.,

2004; Kim et al., 2005), commonly assuming the absence

of brain pathology (Shiee et al., 2014). However, morpho-

metric measures like cortical thickness correlate with

lesion load in MS (Charil et al., 2007). Hence, the cortical

reconstruction may be biased by the presence of focal

lesions, necessitating paradigms to quantify lesion load

and topography. Nowadays, tools such as FreeSurfer

(Dale et al., 1999) have integrated the possibility to use

previously mapped lesions (cortical and juxtacortical) to

correct the surface topology. This correction step has
been shown to improve the surface reconstruction and

further measures of cortical thickness (Shiee et al.,

2014). The evaluation and appraisal of focal lesions on

the network reconstruction is of great importance, since

new lesions in specific regions could significantly influ-

ence structural (Droby et al., 2015) and functional brain

networks (Droby et al., 2016). Due to the variety of net-

work alterations seen in different MS populations, disease

courses and disease durations, the value of longitudinal

network studies to open new avenues for understanding

MS pathophysiology is rising.

FUNCTIONAL NETWORK CONNECTIVITY IN MS

Important insights into cerebral reorganization processes

due to acute and chronic inflammatory activity have

become possible through fMRI studies. Functional

connectivity alterations explain functional deficits and

mirror the disease course (Rocca et al., 2017). Most of

the performed studies analyzed brain networks during

the resting-state. This task-free approach has the advan-

tage of being independent from patients’ disability levels

and performance in the task-based MRI. Besides graph

theoretical analyses, other methods such as independent

component analysis or large-scale Granger causality

(Abidin et al., 2017) have been previously used for the

identification of the specific networks, typically in compar-

ison to healthy controls (e.g., Gamboa et al., 2014; Faivre

et al., 2016; Rocca et al., 2016). In this way, an increased

functional activation of the basal ganglia and thalamus, as

part of the motor network and relay centers for cortico-

subcortical interactions, has been detected in comparison

to healthy controls (Dogonowski et al., 2013). In a subse-

quent study, the authors found increased connectivity in

primary and secondary motor regions after an acute

relapse, while connectivity decreased following the recov-

ery of motor functions (Dogonowski et al., 2016). In line

with that, increased connectivity has been reported adja-

cent and contralateral to lesions, suggesting that function-

ally linked brain regions compensate for the focal

structural damage (Droby et al., 2016).

Remarkably, not only a functional connectivity

increase was detected as a possible compensatory

mechanism in MS patients (Hawellek et al., 2011;

Rocca et al., 2012; Basile et al., 2014), but also functional

connectivity reductions were reported (Rocca et al.,

2010b, 2012; Bonavita et al., 2011), potentially appearing

as a consequence of reorganization or adaptation to

acute or chronic inflammation. However, connectivity

levels alone cannot differentiate between these mecha-

nisms, and hence are not informative for ongoing patho-

logical processes. The seemingly contradictory findings

arise mainly because of the dynamical nature of connec-

tions, which is mostly disregarded. For instance, the con-

nectivity levels calculated from the fMRI signal do not take

into account that functional connectivity increases are

evoked by activation of both inhibitory and excitatory neu-

ron populations (Logothetis, 2008).

After highlighting the pitfalls of studying the

connections between brain regions in an isolated

manner, it becomes evident that addressing the entire

brain network and its efficiency in MS patients using



Fig. 1. (A) Brain networks are described as a graph, comprising a collection of nodes

(representing brain anatomical regions) and edges (representing structural connections or

functional relationships). (B) The network can be represented as binary (upper left) or weighted

(upper right) graphs and can contain information about the direction of causal inference (lower

row) between anatomical regions. (C) Graphical representation of some key graph theory metrics.

Distance measures (upper row) like path length measure the average shortest distance between

region a and region b; Segregation measures (lower row) like clustering coefficient represent the

number of existing connections between a brain region and its nearest neighbors.

                                             
graph theory could provide a more integrative

characterization of its connectivity dynamics and

topological organization.

Currently, only few studies have applied graph theory

to fMRI data in MS, and these mostly investigated the

brain’s resting-state activity. Schoonheim et al. (2014)

used eigenvector centrality mapping to select clusters of

interest and reported an increase in centrality in the
posterior cingulate gyrus and

decreased centrality in the sensorimo-

tor and ventral stream areas. Since

the thalamus, an area exhibiting

increased centrality, showed a higher

connectivity to areas with decreased

centrality, a rerouting of thalamic con-

nections as a response to continuous

inflammatory activity was proposed

(Schoonheim et al., 2014). Further-

more, a recent study determined that

network centrality abnormalities are

related to the level of cognitive impair-

ment (visuospatial and working mem-

ory, executive functioning, verbal

memory and fluency, information pro-

cessing speed and attention) in MS

patients who were relapse-free for at

least two months (Eijlers et al., 2017).

The authors reported significantly

decreased centrality in middle temporal

regions and an increase in the default

mode network (DMN) and frontal

regions when comparing cognitively

impaired patients with both cognitively

preserved MS patients and healthy

subjects. In comparison with the

healthy group, further centrality

decreases were observed in occipital,

sensorimotor, hippocampal and cau-

date areas in the cognitively impaired

MS patients, while centrality was

increased in cerebellum and thalamus.

The thalamus, among GM structures,

is one of the earliest regions showing

microstructural degeneration in MS

(Deppe et al., 2016), hence its func-

tional connectivity is of significant inter-

est. Accordingly, one recent study

found increased seed-based average

thalamo-cortical connectivity in a

heterogeneous sample of MS patients

compared with healthy subjects, how-

ever, network parameters derived from

graph theoretical analysis were not dif-

ferent between the groups (Tewarie

et al., 2015). Liu et al. (2017) also

investigated resting-state network alter-

ations, reporting a decrease in local

and global efficiency in RRMS patients.

Nodal efficiency was decreased in the

superior temporal gyrus, left rolandic

operculum and left insula in both CIS
and RRMS patients. Furthermore, the mean connectivity

strength, which was related to disease duration, allowed

the separation of RRMS and CIS patients from healthy

controls with an accuracy of 77% for each group, but

could not distinguish between the two groups of patients.

In a dual structural and functional network approach,

RRMS but not CIS patients demonstrated a significant

decrease in local efficiency and clustering relative to



                                             
controls, while no differences emerged on the global level

for either group (Shu et al., 2016). The lack of significant

network changes in the CIS group was suggested to mir-

ror subtle functional changes during the early stage of the

disease (Shu et al., 2016).

In a further resting-state fMRI study including a

heterogeneous sample of RRMS and CIS patients with

no or only low disability status, indicated by Expanded

Disability Status Scale (EDSS) scores lower than 3 and

T2 lesion volume below 15 ml, network reorganization

was found, as reflected by increased modularity

(Gamboa et al., 2014). Since increased modularity is

related to decreased long-range paths and increased

local connectivity, the authors suggested that this may

be the result of the disseminated focal lesions, leading

to an adaptive rewiring of previously interconnected

areas. The functional correlate of the modularity levels

was demonstrated by better performance on neuropsy-

chological testing (working memory, attention and speed

of information processing) corresponding to lower modu-

larity. Using a support vector machine classifier they were

further able to differentiate patients from controls with an

accuracy of 75% based on the modularity values

(Gamboa et al., 2014). Rocca et al. (2016) showed that

cognitively impaired MS patients, as determined with the

paced auditory serial addition test (PASAT), can possibly

be distinguished from cognitively preserved MS patients

by a lower global network efficiency (Rocca et al.,

2016). In this study, MS patients with cognitive impair-

ment showed a reduction in centrality in the thalamus

and left frontal lobes.

As previously discussed, most of these results point to

a disruption of global information transfer in patients with

MS, indicated mainly by abnormal network degree, global

efficiency and path length, which is associated with the

ongoing cognitive decline. However, on the local level

the results are not always unequivocal. Recent evidence

suggests local network efficiency disruption, however no

differences in clustering coefficient or local efficiency

compared to healthy individuals have been reported as

well, indicating a preserved local network efficiency

(Rocca et al., 2016). This controversy can result from

the heterogeneity of the studied population, as different

disease phenotypes were included in the specific studies.

For example, Gamboa et al. (2014) specifically investi-

gated network alterations in patients in the initial phase

of MS (CIS and early RRMS) compared to healthy sub-

jects, while Liu et al. (2017) and Shu et al. (2016) focused

on comparisons between RRMS and CIS patients. Most

other studies, however, included diverse disease sub-

types including CIS, RRMS, primary progressive (PPMS)

and secondary progressive MS (SPMS) (Schoonheim

et al., 2014; Tewarie et al., 2015; Rocca et al., 2016;

Eijlers et al., 2017). Furthermore, important clinical hall-

marks such as acute relapses, disease duration or sever-

ity might be essential as well for dynamic changes of

network properties.

Moreover, one further study focused on gender

differences in MS, reporting a lower path length but

normal clustering in male patients compared to male
healthy controls, while no differences were detectable in

females (Schoonheim et al., 2012). Yet, the interpretation

is challenging as a decreased network efficiency in

patients was inferred, while a lower path length along with

preserved clustering usually suggests an efficiency

increase (Watts and Strogatz, 1998).

Only one study used graph theoretical analyses on

functional RRMS data obtained at different time points

(Faivre et al., 2016). At baseline, nodal and local effi-

ciency was higher in patients than healthy controls, while

after two years efficiency values were decreased, and no

longer differed from healthy controls. Patients were fur-

ther stratified according to their baseline disability status,

as assessed by the EDSS and Multiple Sclerosis Func-

tional Composite (MSFC) scores. Thereby, the authors

determined that the increase in nodal and local efficiency

was related to the level of disability. The observed

decrease in nodal and local efficiency after two years

was detected for disabled MS patients, whereas patients

with a less severe disease course showed an efficiency

increase. In this study, differences in resting-state func-

tional connectivity were most evident in the thalamus

and the fronto-temporal and cingulate cortices, conferring

those regions a pivotal role for the clinical progression.

Early occurring, but progressively failing compensatory

mechanisms were hypothesized to be responsible for this

network change over time (Faivre et al., 2016).

In general, alterations of network parameters have

been found predominantly in the sensorimotor cortex,

cingulate and fronto-temporal regions, as well as in the

thalamus (Schoonheim et al., 2014; Faivre et al., 2016;

Rocca et al., 2016; Eijlers et al., 2017). The thalamus is

known to transmit information between a number of corti-

cal and subcortical structures and is involved in motor,

integrative and higher cortical functions (Minagar et al.,

2013), hence loss of connectivity of this region is very

likely to translate into the clinical disability observed in

MS patients. Indeed, thalamic degeneration has been

shown to correlate with the functional decline even at

early stages of MS (Benedict et al., 2013). Similarly,

fronto-temporal and cingulate cortical atrophy has been

associated with clinical disability and WM lesion load

(Charil et al., 2007) and directly related to neuropsycho-

logical dysfunction in MS (Morgen et al., 2006). Moreover,

the presence of focal lesions and atrophy in these regions

is correlated with fatigue in MS patients (Rocca et al.,

2014).

However, combining all the reported findings to define

one clear network setup is elusive, as there is

heterogeneity of the results due to several influencing

factors differing across the studies. For example, by

creating the connectivity matrix neglecting all negative

correlations, a loss of information is provoked (Shu

et al., 2016). Additionally, patient characteristics strongly

differ between studies regarding disease duration, disabil-

ity level, age, gender, disease course and further demo-

graphic and disease-specific variables. Also, most

studies have been performed with data acquired cross-

sectionally, which do not allow inferences to be made

about the dynamics of brain networks in MS. Jack et al.



Table 1. Selected graph theoretical parameters and their description as well as related findings in studies which investigated alterations in structural

and functional networks. Unless otherwise indicated, Cohen’s d is stated in brackets (in some cases, it was averaged over regions or densities). From

each study and group, sample sizes are specified. " increase, ; decrease, � no alteration in graph theoretical parameter.
p

Studies supporting our

hypothetical model of early network compensation. MS, multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; PPMS, primary progressive

multiple sclerosis; SPMS, secondary progressive multiple sclerosis; CIS, clinically isolated syndrome; HC, healthy controls; CI, cognitively impaired;

CP, cognitively preserved; WM, white matter; DMN, default mode network

Measures Description & interpretation Alterations in structural

networks

Alterations in functional networks

Measures of centrality

Degree centrality

(Freeman,

1977, 1979)

Quantification of the importance of a node in the

network based on the number of connections that it

exhibits to others, thus a measure of the extent to

which a graph is connected. Nodes termed ‘hubs’

have a higher degree than other nodes in the

network.
? An increase indicates a higher influence of the

corresponding region in the network

Eijlers et al. (2017)

87 CI MS, 180 CP MS, 96 HC

" CI MS vs. CP MS (0.51; 0.41) and HC

(0.82; 0.42) in DMN and frontal regions

" CI MS vs. HC in cerebellum (0.48)

and thalamus (0.48)

; CI MS vs. CP MS (0.49) and HC

(0.73) in middle temporal areas

; CI MS vs. HC in occipital (0.97) and

sensorimotor areas (0.58), hippocam-

pus (0.67) and caudate nucleus (0.65)

Eigenvector

centrality

(Bonacich,

1972; Newman,

2006a)

Nodes are weighted considering not only their

number, but also quality of connections.
? Brain regions with higher eigenvector centrality

are connected to regions that themselves are

central in the network

Schoonheim et al. (2014)

128 MS, 50 HC

" MS vs. HC in thalamus (0.44), pos-

terior cingulate gyrus (0.68)

; MS vs. HC in sensorimotor (0.71) and

ventral stream areas (0.74)

Nodal efficiency

(Freeman,

1977; Achard

and Bullmore,

2007)

The minimum shortest path length between a

particular node and all other nodes in the network.
? An increase represents a higher ability of a

region to propagate information with the other

nodes

Liu et al. (2017)

34 MS, 34 CIS, 36 HC

; MS and CIS vs. HC in superior

temporal gyrus, left rolandic operculum

and insula

Faivre et al. (2016)

8 CI RRMS, 16 CP RRMS, 38 RRMS,

24 HC

" Early RRMS vs. HC at baseline (0.34)

; CI RRMS after two years vs. CI

RRMS at baseline in thalamus and

fronto-temporal regions (0.832)

Measures of segregation

Clustering

coefficient

(Watts and

Strogatz, 1998;

Onnela et al.,

2005)

The fraction of a node’s neighbors that also

neighbor each other.

A measure of cluster formation, resulting in dense

interconnection with neighboring regions in order to

maintain local information flow.
? An increase represents a cost-efficient organi-

zation principle of the brain with increased local

cliquishness

Tewarie et al. (2014b)

102 MS, 42 HC

" MS vs. HCp
Muthuraman et al.

(2016)

33 RRMS, 20 CIS, 40

HC

" RRMS vs. CIS (0.60)

and HC (0.92)

" CIS vs. HC (1.00)

Shu et al. (2016)

32 RRMS, 41 CIS, 35

HC

; RRMS and CIS vs. HCp
Fleischer et al. (2017)

33 early RRMS, 32 HC

" RRMS vs. HC (1.00)

Shu et al. (2016)

32 RRMS, 41 CIS, 35 HC

; RRMS and CIS vs. HC

� CIS vs. HC

Tewarie et al. (2015)

86 MS, 21 HC

� MS vs. HC

Rocca et al. (2016)

246 MS, 55 HC

� MS vs. HC

Schoonheim et al. (2012)

30 MS, 30 HC (each 15 female)

� male MS vs. male HC

� female MS vs. female HC

Transitivity

(Newman and

Park, 2003)

The probability that two nodes neighbor each other

based on the relative number of triangles in the

graph, compared to the total number of connected

triples of nodes. A variant of the clustering

coefficient.

p
Kocevar et al. (2016)

24 RRMS, 17 PPMS, 24

SPMS, 64 CIS, 26 HC

; HC vs. RRMS and

SPMS

                                             



Table 1 (continued)

Measures Description & interpretation Alterations in structural

networks

Alterations in functional networks

? An increase represents a cost-efficient organi-

zation principle of the brain with increased local

cliquishness

Llufriu et al. (2017)

72 MS, 38 HC

" MS vs. HC (0.50)

Local efficiency

(Latora and

Marchiori, 2001;

Vragovic et al.,

2005)

The average of the inverse shortest path length

between all neighbors of a given node, but

considering that the node is taken out from the

network.
? An increase shows that the network capacity for

local information transfer between neighboring

regions is strengthened

p
He et al. (2009)

330 RRMS

; RRMS with increasing

WM lesion load

Shu et al. (2011)

39 MS, 39 HC

; RRMS vs. HC (0.86)

; RRMS with increasing

EDSS score (0.63) and

WM lesion load (0.66)p
Fleischer et al. (2017)

33 early RRMS, 32 HC

" RRMS vs. HC (3.39)

Shu et al. (2016)

32 RRMS, 41 CIS, 35

HC

; RRMS and CIS vs. HC

; RRMS vs. CIS

Liu et al. (2017)

34 MS, 34 CIS, 36 HC

; RRMS vs. HC

� CIS vs. HC

Shu et al. (2016)

32 RRMS, 41 CIS, 35 HC

; RRMS vs. HC

� CIS vs. HC

Rocca et al. (2016)

246 MS, 55 HC

� MS vs. HCp
Faivre et al. (2016)

8 CI RRMS, 16 CP RRMS, 38 RRMS,

24 HC

" RRMS vs. HC at baseline (0.88)

" CI RRMS vs. HC after two years

(0.68)

; CI RRMS after two years vs. CI

RRMS at baseline (0.81)

" CP RRMS vs. HC after two years

(0.78)

" CP RRMS after two years vs. CP

RRMS at baseline (0.41)

Modularity

(Girvan and

Newman, 2002;

Newman,

2006b)

A module is a set of densely connected nodes that

are sparsely connected to the rest of the network.

Higher modularity implies a stronger subdivision

into segregated groups of nodes.
? An increase in modularity indicates an opti-

mized network organization principle of the

brain in response to changing environments

p
Muthuraman et al.

(2016)

33 RRMS, 20 CIS, 40

HC

" RRMS vs. CIS (0.56)

and HC (1.03)

" CIS vs. HC (0.99)p
Fleischer et al. (2017)

33 early RRMS, 32 HC

" RRMS vs. HC (0.68)p
Kocevar et al. (2016)

24 RRMS, 17 PPMS, 24

SPMS, 64 CIS, 26 HC

; HC vs. RRMS (1.18)

; CIS vs. RRMS (2.00),

SPMS (1.33) and PPMS

(1.18)

" RRMS vs. SPMS

(0.67) and PPMS (1.18)

p
Gamboa et al. (2014)

16 early RRMS, 20 HC

" MS vs. HC (3.54)

Measures of integration

Global efficiency

(Latora and

Marchiori,

2001)

The average of the inverse shortest path length

between all nodes in the network.

A network integration parameter to describe

information flow over the entire network.
? An increase indicates that brain units are well

integrated and that information transfer across

the whole brain is more efficient

He et al. (2009)

330 RRMS

; RRMS with increasing

WM lesion load

Shu et al. (2011)

39 MS, 39 HC

; RRMS vs. HC (0.99)

; RRMS with increasing

EDSS score (0.66) and

Liu et al. (2017)

34 MS, 34 CIS, 36 HC

; RRMS vs. HC

� CIS vs. HC

Shu et al. (2016)

32 RRMS, 41 CIS, 35 HC

� MS and CIS vs. HC

Rocca et al. (2016)

246 MS, 55 HC

(continued on next page)

                                             



Table 1 (continued)

Measures Description & interpretation Alterations in structural

networks

Alterations in functional networks

WM lesion load (0.99)

Muthuraman et al.

(2016)

33 RRMS, 20 CIS, 40

HC

" RRMS vs. CIS (0.84)

" CIS vs. HC (0.98)

� MS vs. HC

Shu et al. (2016)

32 RRMS, 41 CIS, 35

HC

; RRMS and CIS vs. HC

; (RRMS vs. CIS)

Fleischer et al. (2017)

33 early RRMS, 32 HC

� RRMS vs. HC

Llufriu et al. (2017)

72 MS, 38 HC

; MS vs. HC (1.00)

Kocevar et al. (2016)

24 RRMS, 17 PPMS, 24

SPMS, 64 CIS, 26 HC

" HC vs. CIS, RRMS,

SPMS and PPMS

; CI MS vs. CP MS (0.51)

Path length

(Watts and

Strogatz, 1998)

The shortest distance between pairs of nodes.

A measure of the efficiency of information transfer

within a network.
? An increase reflects an impaired global integra-

tion and a lower ability of the brain network to

propagate information in parallel

Tewarie et al. (2014b)

102 MS, 42 HC

" MS vs. HC

Llufriu et al. (2017)

72 MS, 38 HC

" MS vs. HC (0.81)

Kocevar et al. (2016)

24 RRMS, 17 PPMS, 24

SPMS, 64 CIS, 26 HC

; HC vs. CIS (2.00),

RRMS (1.00) and SPMS

(2.00)

Shu et al. (2016)

32 RRMS, 41 CIS, 35 HC

� MS and CIS vs. HC

Schoonheim et al. (2012)

30 MS, 30 HC (each 15 female)

; male MS vs. male HC (0.95)

� female MS vs. female HC

Tewarie et al. (2015)

86 MS, 21 HC

� MS vs. HC

Rocca et al. (2016)

246 MS, 55 HC

" CI MS vs. CP MS (0.47)

Communicability

(Estrada and

Hatano, 2008)

The count of the total number of walks between two

nodes, considering that the longer walks have less

influence than the shorter walks.

A measure of the efficiency with which information

can spread across a network by taking indirect

connections into account.
? An increase indicates a protective mechanism

of the brain from errors in transmission (and

thus is presumably sensitive to reorganizational

changes after a lesion)

Li et al. (2013)

24 RRMS, 30 HC

" HC vs. RRMS in fron-

tal regions

; HC vs. RRMS in the

deep gray matter

Measures of network resilience

Assortativity

(Newman,

2002)

The tendency of a network’s node to attach to

nodes with the same degree. A measure of

resilience of a network.
? An increase describes the improved ability of

the network brain to maintain functioning as

response to continuous damage

Llufriu et al. (2017)

72 MS, 38 HC

� MS vs. HC (0.50)

Kocevar et al. (2016)

24 RRMS, 17 PPMS, 24

SPMS, 64 CIS, 26 HC

; HC vs. SPMS (1.61)

and PPMS (1.98)

; CIS vs. SPMS (1.00)

; RRMS vs. SPMS

(1.28) and PPMS (1.76)

Rocca et al. (2016)

246 MS, 55 HC

" CI MS vs. CP MS (0.21)

                                             



                                             
(2010) linked potential imaging, biological and clinical

markers to depict their alterations over the time course

of Alzheimer’s disease. This theoretical model has been

adapted to MS, relating ongoing structural damage to

changes in network efficiency that ultimately cause cogni-

tive dysfunction (Schoonheim et al., 2015). From the cur-

rent perspective of network analysis over time, we

propose a modification of this model by including network

compensation mechanisms in addition to clinical impair-

ment and tissue damage (Fig. 2). Our model is based

on evidence suggesting that an increased or maintained

modular and local connectivity may represent an impor-

tant hallmark of the network reorganization that is thought

to mediate robustness and efficiency instead of functional

deterioration (Gamboa et al., 2014; Faivre et al., 2016;

Rocca et al., 2016). As soon as this network adaption

cannot be sustained due to ongoing tissue damage, the

network collapses and clinical impairment occurs.
STRUCTURAL NETWORK CONNECTIVITY IN
MS

Analysis of structural networks through graph theory

could indeed offer new tools that mirror ongoing

pathological processes at different anatomical sites

more precisely (Stam, 2014). For the exact characteriza-

tion of tissue phenomena such as demyelination, remyeli-

nation and neurodegeneration, it is imperative to model

GM (He et al., 2009) and WM properties (Shu et al.,

2011). For the description of GM networks, correlations

of cortical thicknesses or GM intensities as derived from

voxel-based morphometry across brain areas at the group

level are used. Regions with similar microstructural prop-

erties have a higher probability to show structural connec-

tions (Mechelli et al., 2005; Lerch et al., 2006). This is,

however, an indirect degree of inter-regional interactions

that cannot be directly applied to measure connectivity

at the single-subject level. Several procedures have been

proposed to overcome methodological drawbacks and

quantify structural connectivity at the single-subject level

(Tijms et al., 2012; Kim et al., 2016; Wang et al., 2016).

One additional problem is the implication of semi-

quantitative measures (i.e. GM intensity analysis of T1-

weighted images) for the structural covariance. The use

of direct quantitative measures (e.g., proton density or

magnetization transfer ratio) could offer a more reliable

assessment of tissue properties; however the specificity

to biological changes is still a matter of debate. Moreover,

because of longer scanning times and the still existing

need to establish the exact link between the measured

values and histological properties (e.g., to axon density

or myelin concentration), these techniques have not yet

found entrance into the network analysis or clinical

practice.

An impressive step toward the development of

biologically meaningful network reconstruction methods

has been achieved by the use of diffusion imaging (van

den Heuvel et al., 2010). WM structural connectivity can

be reconstructed from diffusion tensor imaging (DTI) with

either deterministic or probabilistic tractography (Khalsa

et al., 2014). The significant advantage of WM network
reconstruction is the ability to assess connectivity proper-

ties at the single-subject level (Filippi et al., 2011).

MS as a disconnection syndrome

One of the first graph theoretical studies in patients with

RRMS reconstructed the GM networks from cortical

thickness correlation measures, showing specific

network properties with increased lesion load (He et al.,

2009). MS patients exhibited significantly decreased local

and global efficiency in cortical thickness covariance net-

works with increasing total T2-hyperintensive WM lesion

load (TWMLL). Several regional correlation strengths

(measuring the average correlation extent by which a

node is connected to the rest of the network) also showed

significant decreases with increasing TWMLL. This

inverse correlation was particularly observed in the insula,

precentral gyrus, prefrontal and temporal association cor-

tices. Due to previous findings having shown pronounced

cortical thinning (Charil et al., 2007) and cortical lesions

(Kutzelnigg and Lassmann, 2006) in these regions, the

authors suggested that the cortical regions with

decreased local efficiency might be more vulnerable to

cortical or adjacent WM lesions (He et al., 2009).

In a further analysis of the structural covariance

networks reconstructed from T1-weighted images

supplied by functional networks analysis reconstructed

from MEG, Tewarie et al. (2014b) tested the disruption

hypothesis on both network types. The group of MS

patients displayed a higher clustering coefficient and a

higher shortest path length compared to healthy controls

in the structural covariance network, both indicative of a

network architecture that is preferentially locally clustered.

To account for the possibility that connections

between two adjacent regions may be disrupted by MS

lesions, a new network parameter called

communicability, depicting both direct and indirect

connections between two regions, was recently applied

in a DTI-based network analysis within MS patients (Li

et al., 2013). The comparison between RRMS patients

and healthy controls revealed a decrease in communica-

bility, predominantly within frontal lobe regions.

Moreover, it was recently shown that the disruption of

structural networks is associated with impaired cognitive

performance, especially involving attention and

executive functions (Llufriu et al., 2017). In the analysis

of structural networks reconstructed through probabilistic

tractography, a decline of structural connectivity was

depicted by decreased global efficiency and nodal

strength in a mixed group of RRMS and SPMS patients.

The repeatedly observed network disruption and the loss

of network efficiency have led to the notion of MS as a so-

called disconnection syndrome (Rocca et al., 2015) – a

network pattern that was also seen in other brain diseases

like dementia and schizophrenia (Filippi et al., 2013).

In MS, diffuse changes in WM tissue have been

confirmed adjacent to but also distant from the lesion

site (Kutzelnigg et al., 2005; Droby et al., 2015). To depict

changes within the WM, DTI has been repeatedly used to

describe impaired microstructural integrity of WM tracts in

the course of MS (Rovaris et al., 2009). Comparative

analyses between MS patients and healthy controls have



Fig. 2. (A) Exemplified altered network behavior with an initial increase in local and modular

processing, which cannot be maintained over time and is followed by a ‘network collapse’. (B)

Model of network reorganization processes over the disease course including clinical impairment,

network efficiency and network compensation as well as tissue damage. Modified from

Schoonheim et al. (2015).

                                             
shown a reduction in fractional anisotropy and increased

diffusivity within WM fiber tracts in NAWM (Roosendaal

et al., 2009). Several attempts have been made to model

WM connectivity in MS (Shu et al., 2011; Zhou et al.,

2014). Using deterministic tractography, Shu and col-

leagues revealed significant associations between

decreased global and local network efficiencies and clini-

cal disability measured by EDSS scores as well as T2

lesion burden in patients with RRMS (Shu et al., 2011).

The most pronounced efficiency reduction was observed

in regions belonging to the DMN, sensorimotor, visual,

and language networks.
Early structural compensation processes

In addition to showing disruption patterns, network

analyses have also suggested increased connectivity,

which might be of great interest, potentially mirroring

aspects of compensation and adaptive reorganization

in early MS phases (Rocca et al., 2010a; Muthuraman

et al., 2016; Shu et al., 2016; Fleischer et al., 2017).
Indeed, specific topology patterns

have been linked to adaptability in

the normal brain (Fan et al., 2011),

and some parameters are closely

related to the disease course and clin-

ical progression, as recently shown in

Alzheimer’s (de Haan et al., 2012),

and in Parkinson’s diseases (Baggio

et al., 2014).

Structural network alterations in the

initial phase of MS were observed by

our group in the earliest disease

stages (CIS and RRMS patients with a

disease onset of less than 6 months)

(Muthuraman et al., 2016). A combined

GM and WM structural network analy-

sis in subjects with CIS in comparison

to patients with early RRMS revealed

distinguishable network deviations

already in the initial scan after the first

demyelinating event (Muthuraman

et al., 2016). The structural network

reorganization at the very beginning of

the disease implied an increased local

and modular connectivity and a con-

comitant decrease in long-range paths

(Muthuraman et al., 2016). These find-

ings suggest that the networks in

patients with early definite RRMS

undergo continuous reorganization pro-

cesses that either do not or have not

yet occurred in those with CIS. Further-

more, by reconstructing structural net-

works based on DTI, Shu et al. found

reduced global and local efficiency as

well as decreased clustering in RRMS

and CIS in comparison to healthy con-

trols (Shu et al., 2016). In these

patients, all of the network properties
exhibited intermediate values between healthy controls

and MS patients; likely depicting a transition stage before

passing over to the relapsing-remitting state of the

disease.

Although a loss of communicability in an early MS

cohort was seen in comparison to controls in frontal

regions (see section ‘MS as a disconnection

syndrome’), Li et al. (2013) also identified increased com-

municability between deep GM structures with major

inter- and intra-hemispheric WM tracts. These foci of

increased communicability were thought to demonstrate

early compensatory effects.

Recently, we evaluated the reorganization of

structural networks in 138 RRMS patients grouped by

their disease duration (Fleischer et al., 2017 and see

Fig. 3). We could show that both WM and GM recon-

structed networks presented a breakdown of long-range

connectivity, but also an increased clustering and modular

connectivity pattern, in particular 6 and 12 months after

the first clinical event. Cluster formation and brain modu-

larization occurred, although neither lesion load nor brain



                                             
volume was significantly altered between the disease

duration groups.

Since a relationship between modularity and

adaptability of brain was proposed (Kashtan and Alon,

2005; Meunier et al., 2010), these processes of network

reorganization presumably represent mechanisms to

compensate for ongoing focal damage and are essential

to maintain network functioning. Indeed, several studies

have presented evidence that community structure prop-

erties of the brain (e.g., modularity increase) can be linked

to maintenance of function despite continuous damage as

shown in neurodegenerative disorders (Meunier et al.,

2010, 2014). The observations emphasize that the net-

work architecture changes are not merely a consequence

of diffuse tissue damage, but should be seen as integra-

tive processes for optimal network functioning.
Longitudinal approaches

Longitudinal network approaches afford an opportunity to

appropriately investigate whether network alterations

constitute processes that partially or entirely

compensate for tissue damage so that no clinical

decline occurs. Since adaptive mechanisms likely

emerge in the first year after disease onset (Fleischer

et al., 2017), while no other quantifiable differences exist,

it is imperative to gain information on the network behav-

ior of MS patients followed-up over months and years.

Thereby, it can be determined whether changes in graph

theoretical metrics in comparison to healthy controls or to

other MS subtypes are consistent over time. For longitudi-

nal analyses, the robust reproducibility over time and low

variability of network properties as derived from DTI

(Bassett et al., 2011) or fMRI (Deuker et al., 2009) are

essential.

One functional connectivity study in CIS patients with

no cognitive impairment found increased synchronization

at rest in specific brain networks suggestive of early

reorganization (Roosendaal et al., 2010). This functional

reorganization was observed in the absence of detectable

atrophy, but was not (or no longer) detectable in patients

with definite RRMS and increased brain damage, indicat-

ing that cortical reorganization is an early and probably

finite phenomenon in MS. This may suggest that different

processes (i.e. atrophy and network alterations) do not

completely share an identical temporal pattern. Thus, lon-

gitudinal multimodal approaches measuring adaptive or

degenerative aspects of the disease are highly warranted.

In the context of reorganization toward a more locally

organized network, two studies that analyzed age-related

modularity changes of brain networks reported a

decrease in the modular structure with increasing age in

healthy controls (Meunier et al., 2009; Song et al.,

2014). On the one hand, this not only underlines the

importance of longitudinal approaches, it also stresses

that brain networks studies including MS patients

unavoidably need to be accompanied by a matched

healthy control group. On the other hand, the decrease

in modularity with increasing age in the normal brain sup-

ports the concept that the increased modular brain struc-

ture observed in MS patients is not related to early
degeneration or tissue damage, but rather to an early

adaptive response. Hence, the focus on network changes

in the initial disease stages should be specifically consid-

ered as this phase of the disease is of essential relevance

for the long-term prognosis and the development of func-

tional impairment, and thus, an optimal characterization of

the underlying processes will help to better forecast the

disease course.

Network analyses in Alzheimer’s disease presented

the first hints of adaptive mechanisms, as mirrored by

modularity increases, which are limited to the initial

phase of the disease (de Haan et al., 2012). Later, when

the network’s integrity can no longer be maintained, these

adaptive processes abate, resulting in functional

impairment.

The above-mentioned studies (see section ‘MS as a

disconnection syndrome’) observed that clinical

worsening in MS patients with longer disease duration is

accompanied by a decrease in network efficiency.

These findings, together with the reported differences

between CIS and early RRMS patients as well as the

association between disease duration and network

parameters, indicate a dynamic rather than immutable

nature of the network parameters during the disease

course (Figs. 2 and 3).
CLINICAL UTILITY

It is an essential issue to explore and validate potential

clinical applications of brain network analyses. Despite

the important value of conventional MRI measures (e.g.,

focal inflammatory lesions, lesion load or brain atrophy)

for the diagnostic setup and therapeutic monitoring, the

poor-to-moderate correlation between MRI lesion load

and patients’ clinical disability (‘‘clinical-radiological

paradox”) remains a pending issue for future studies

(Barkhof, 2002; Davis, 2014).

Addressing structural networks properties (e.g., local

and global efficiency) instead of lesion load could be

implemented to track the long-term disease burden (He

et al., 2009). Albeit the efficient small-world properties

are maintained in patients with MS, significant disruptions

of the global and local network topology could be consid-

ered as breaking points for disease progression and clin-

ical decline (Shu et al., 2016). However, clinical decline

cannot be explained solely by aberrant cortical GM prop-

erties (Tewarie et al., 2014b). Besides changes in GM

networks, the topological organization of WM networks

based on DTI tractography was shown to be linked to

the clinical status – decrease in global efficiency signifi-

cantly correlated with EDSS scores, disease duration

and TWMLL (Shu et al., 2011). Regions which displayed

decreased nodal efficiency – precentral gyrus, posterior

cingulate gyrus, precuneus, rolandic operculum – also

showed significant correlations with the above-

mentioned clinical variables (EDSS, disease duration

and TWMLL), implying that these areas play a pivotal role

in the clinical phenotype of MS patients.

In early disease stages, increased modularity, cluster

formation and local efficiency within both GM and WM

likely mirror adaptive features of brain networks,



Fig. 3. EDSS scores (lower plot) and the DTI-derived network

parameter modularity (upper plot) for the six disease duration groups.
* = p< 0.05; ** = p < 0.001. Modified from Fleischer et al. (2017).

Mean values and standard deviations are shown.

                                             
counteracting clinical decline (Fleischer et al., 2017). With

disease progression, continuous disruption of network

efficiency is accompanied by clinical impairment

(Fleischer et al., 2017). These observations suggest a

mutual evolution of network reorganization and disease

deterioration, as presented in our hypothetical model of

network compensation (Fig. 2). Although the WM struc-

tural reorganization evolved with disease onset, the

increased network parameters reached a plateau one

year later. Interestingly, EDSS follows a u-shaped curve

over the disease stages whereas modularity, clustering

coefficient and local efficiency follow an inverse u-

shaped curve (Fig. 3).

After the first clinical demyelinating event, patients as

well as clinicians are faced with the uncertainty of whether

this was an isolated, monophasic syndrome or the first

relapse of a chronic neuroinflammatory disease. This
differentiation is challenging and clinically highly

relevant, because early treatment could delay disease

progression (Comi et al., 2009). Based on initial MRI

abnormalities of patients presenting with such a first

demyelinating event, a clear distinction between CIS

and RRMS cannot always be reliably achieved

(Montalban et al., 2010), even using the revised McDon-

ald criteria (Polman et al., 2011; Milo and Miller, 2014).

Therefore, the characterization of network topology prop-

erties could impressively improve the classification of MS

clinical subtypes and track the further course or help clin-

icians to precisely adapt immune modulatory treatment.

Few studies aiming to differentiate clinical entities on the

basis of structural connectivity have been conducted,

applying algorithms for automatized discrimination

between CIS and RRMS patients (Kocevar et al., 2016;

Muthuraman et al., 2016). In one of our recent studies,

we achieved a group classification accuracy of 97%

based on clustering coefficient derived from cortical thick-

ness and single-subject performance of 65% based on

modularity obtained from probabilistic tractography

(Muthuraman et al., 2016). By focusing on the precision

of network metrics in early MS, the best performance

using a binary classification task was achieved using

modularity (F-measure (precision and recall) 88.9%) in

discriminating CIS from RRMS patients, while assortativ-

ity (F-measure 70.6%) allowed the differentiation between

CIS, RRMS and SPMS patients (Kocevar et al., 2016).

Based on T1-weighted and diffusion tensor imaging to

reconstruct structural connectivity matrices, the authors

showed that modularity was lower in patients with CIS

compared to RRMS, SPMS and PPMS, and higher in

RRMS compared to SPMS and PPMS patients. These

findings suggest that we will likely make use of graph the-

ory network analysis in differentiating clinical subtypes.

Network-derived metrics from patients at initial stages of

MS, based merely on one structural MRI scan and without

a priori knowledge of clinical data or disease history, can

be used to feed data into this machine-learning-based

classification tool with the potential to be incorporated into

routine clinical practice.

Cognitive impairment is common in patients with MS,

with a prevalence ranging from 43% to 70%, at earlier or

later stages of the disease, affecting various aspects of

cognitive functioning, including sustained attention,

visuospatial perception, executive functioning, verbal

fluency and long-term memory (Chiaravalloti and

DeLuca, 2008; Patti, 2009). The origins and mechanisms

underlying cognitive impairment in MS are partly explained

by WM injury (Sanfilipo et al., 2006) and possibly to a

greater extent by GM pathology (Nocentini et al., 2014).

However, from a network point of view, cognitive decline

in MS patients can also be explained through the discon-

nection phenomena (see section ‘Structural network con-

nectivity in MS’) within cortico-cortical and cortico-

subcortical disconnection patterns (Dineen et al., 2009;

Van Schependom et al., 2014). Patients with cognitive

impairment show lower mean network degree and global

efficiency but higher path length and assortativity as

shown by functional connectivity analysis (Rocca et al.,

2016). Since cognition depends on long-range connec-



                                             
tions between brain regions (Abad et al., 2015), impaired

wiring efficiency resulting from decreased global efficiency

and increased assortativity contribute to cognitive impair-

ment. Regional network dysfunction – significantly lower

nodal degree in the thalamus, caudate nucleus, cingulate

cortex and precuneus – was also shown to be associated

with alterations of working memory and information pro-

cessing speed performance (Bonnet et al., 2010; Rocca

et al., 2016). Overall, graph theory studies interpret wors-

ening of cognitive performance in MS to be related to a

modification of network properties (Rocca et al., 2016).

Precisely, cognitive decline was attributed to decreased

modularity (Gamboa et al., 2014), decreased network cen-

trality (Schoonheim et al., 2014), impaired clustering

(Helekar et al., 2010) and changes in path length

(Schoonheim et al., 2012).

From a conceptual point of view, at disease onset,

focal structural damage to the brain might be

compensated by functional reorganization of networks

(Schoonheim et al., 2015). At some point of disease,

pronounced structural damage limits adaptive reconfigu-

ration resulting in network collapse and cognitive impair-

ment (Tewarie et al., 2015). Further explanations could

be that (i) cerebral networks respond to diffuse tissue

damage and focal lesions by a reorganization of WM

and GM compartments with strengthening of local con-

nectivity (Fleischer et al., 2017); (ii) cognitive impair-

ment is associated with exhaustion of network

compensation manifested in divergent patterns of WM

and GM connectivity or a failure of functional reorgani-

zation phenomena and subsequent breakdown of net-

work compensation patterns; (iii) the lesion pattern

could have a large impact on specific network

responses (e.g., via affecting densely interconnected

nodes) and thus on inter-individual disease courses

(Droby et al., 2016).

By mapping malfunctioning network assemblies

relevant for cognitive performance, MRI-derived

connectivity fingerprints could represent important

surrogate markers of cognitive reserve or specific

deficits for clinicians and their patients, and thus also

permit monitoring cognitive rehabilitation.

Studies of brain network organization in MS that

address network-based treatment interventions will be

essential in facing upcoming challenges. Development

of new pharmacological and non-pharmacological

approaches to MS treatment relies on the

understanding of network changes that are critical for

MS progression and long-term disability (Guye et al.,

2010). For instance, future studies might use network

fingerprints for therapeutic interventional trials in MS to

evaluate the effectiveness of disease- or symptom-

modifying treatments and monitor disease progression

(Bullmore and Sporns, 2009). Alternatively, more

advanced therapeutic approaches could be designed

to reroute the information flow from overloaded hubs

(He and Evans, 2010; Schoonheim et al., 2014). Graph

theoretical network approaches can be of emerging util-

ity to sensibly track network modifications under medical

treatment, although network-tailored treatment modali-

ties are still far from their practical use.
FUTURE PERSPECTIVES

Despite remarkable advances in the last years, network

analysis using graph theory in MS is still in its infancy,

and several issues need to be addressed before

venturing into broad clinical assessment. First, the

topological description of the brain networks modelled

by graph theory is constructed upon a set of

mathematical definitions based on the covariance of

functional or structural measures between brain regions.

Hence, one of the major challenges is to understand the

exact physiological and pathophysiological mechanisms

underlying the signals extracted by imaging methods.

Beyond that, we need to determine how these graph

theoretical measures mirror neuronal processes, i.e.

interregional communications.

From a methodological aspect, differences in the

connectivity matrix generation lead to difficulties in

rendering studies comparable. Standardized methods

are needed to facilitate the reproducibility of results

among studies. In this sense, connectivity matrices

should be generated – if possible – with a data-driven

approach as long as well-defined models are lacking.

Furthermore, a variable amount and divergent types of

network parameters are reported in different studies

(see e.g., Gamboa et al., 2014; Rocca et al., 2016). As

for fMRI studies (Poldrack et al., 2008; Nichols et al.,

2017), a guideline or recommendation on how to present

graph theory results is needed.

Reporting network parameters including measures of

integration and segregation, as well as stressing a

particular brain region’s importance would be worthwhile

for future studies. Thereby, a complete overview of

network measures characterizing several aspects of

global and local brain connectivity is offered (Rubinov

and Sporns, 2010).

Graph theory provides modality invariant information

on brain networks, and thus offers the opportunity to

quantify and relate different data types to each other.

Hence, signals acquired at different spatial levels, from

molecules to the whole brain and organism, and with

various temporal resolutions, from milliseconds to

months and years, become comparable (Bassett and

Sporns, 2017). Applying data mining (Mwangi et al.,

2014) within graph theoretical analyses, predictions can

be made by combining information captured from several

network parameters.

A promising imaging method to which graph theory

can be applied in the future is quantitative MRI (qMRI)

that is well suited for estimating the macromolecular

tissue volume as a measure of brain anatomy (Mezer

et al., 2013). For instance, the quantitative parameter

magnetization transfer ratio was found to differ between

MS subtypes, indicating distinct intensities of pathological

changes in lesional and extra-lesional GM (Yaldizli et al.,

2016). In line with this, the qMRI measures T1 relaxation

time and proton density were tested in a recent study,

thereby providing a robust framework for longitudinal tis-

sue characterization in MS (Gracien et al., 2017).

It is known that the increases in the measured signals

likely arise from an increased proportion of free water and



                                             
thereby reflect loss of neurons among other

microstructural changes (Gracien et al., 2016).

Consistency of the qMRI measures after modification

of parameters like field strength and coils are of major

concern, given that they have an effect on image

accuracy (Mezer et al., 2013). This point is of relevance

especially for multicenter studies, which enable more

advanced and comprehensive investigation of disease

pathophysiology by allowing the acquisition of larger

amounts of data. However, full compliance across centers

is difficult and requires the use of standardized

approaches for qMRI data acquisition (Ashton, 2010).

Moreover, it is important to consider how (i) the kind of

focal disseminated damage (either acute inflammatory or

chronic lesions), (ii) their location (either in the GM or

within the WM) and (iii) their size and amount influence

connectivity matrices and the resulting estimated

network efficiency (He et al., 2009). A longitudinal investi-

gation in MS patients with relapses to monitor reorganiza-

tion fingerprints with acute inflammatory activity has been

of major importance to gain insights into network behavior

in phases of clinical remission as well as during relapses

(Droby et al., 2016). In order to track network efficiency

alterations over time (Faivre et al., 2016) and provide pre-

dictors of the disease course at the individual patient level,

there is an inevitable need for more longitudinal studies

with analyses of network reorganization processes, ideally

accompanied by histological examinations (Kilsdonk et al.,

2016). The latter will, for instance, help in identifying

whether imaging methods reliably capture the pathology

taking place in the damaged tissue compartments.

Alterations of functional networks due to the disease

do not reveal fully conclusive results (see section

‘Functional network connectivity in MS’). Thus, the issue

whether structural or functional reorganization mirrors

an adaptive or maladaptive response to damage is still

a matter of debate (Penner and Aktas, 2017; Rocca and

Filippi, 2017; Schoonheim, 2017). Some MS studies have

connected increases in brain connectivity, primarily seen

in the early disease stages, to beneficial reorganization

processes (Audoin et al., 2003), while decreases were

associated with maladaptation as detected in progressive

MS (Rocca et al., 2010b). However, this apparent causal-

ity between connectivity strength and clinical or cognitive

disability is an oversimplification, as some studies in MS

argue the converse, e.g., increased functional connectiv-

ity at rest in cognitively impaired patients (Hawellek et al.,

2011). Hence, future studies need to set network connec-

tivity alterations in relation to the broad MS phenotype

considering clinical characteristics like relapse rate, cog-

nitive performance, disease course, disease duration,

etc. Ultimately, it needs to be addressed whether network

changes also have an impact on the clinical outcome over

years, again supporting the need for longitudinal network

studies.

Beyond that, data need to be processed with an

integrative approach, for example by combining

structural and functional connectivity analyses. So far,

functional and structural connectivity is most

commonly assessed independently of each other.
However, several procedures have been proposed to

investigate the human brain network by jointly

modelling functional and structural connectivity. For

example, information about structural connectivity can

be used as a prior for functional connectivity in a

Bayesian framework (Xue et al., 2015). A further

method, called track-weighted functional connectivity,

was recently proposed which merges both connectivity

data into a four-dimensional image, providing a new

approach to investigate dynamic connectivity (for details

see Calamante, 2017).

In order to delineate lesions and cortical pathology

more precisely, higher resolution 7 Tesla MRI is already

increasingly used (Tallantyre et al., 2010; Obusez et al.,

2016; Kolber et al., 2017), which enables studying the

exact impact on structural and functional network

efficiency.

Studies on mouse models, used to determine

underlying processes of de- and remyelination during

relapse and remission phases of MS (Praet et al., 2014;

Hubner et al., 2017), can also serve as in vivo models

for translational network analyses in functional data.

Graph theoretical analyses of the mouse and rat brain

have already shown to be informative about functional

processing (Mechling et al., 2014; Phomvisith et al.,

2016), and can be used to study how pathophysiological

processes in the animal model contribute to the observed

results of network analyses in MS patients.

Connectivity measurements as derived from

electrophysiological tools such as EEG or MEG with

graph theoretical network analysis have been conducted

as well (Hardmeier et al., 2012; Schoonheim et al.,

2013; Tewarie et al., 2014a; Van Schependom et al.,

2014). These methods provide advantages in terms of

the temporal resolution for the quantification of informa-

tion transfer in specific frequency bands, which is mostly

inaccessible for fMRI.

In addition, it is important to note that network

reconstruction based on graph theory may also be

applied to effective connectivity data that depict the

causal interactions between elements of a neural

system (Friston, 2011). Thus, future effective connectivity

studies in MS patients should also investigate the local

and global organization of effective brain networks.

Thorough functional assessments of patients are

required to ensure a valid depiction of behavioral and

clinical outcomes of the disease activity. To investigate

network-derived characteristics that foster disease

progression in MS, connectivity parameters should also

be set in association with other known surrogate

markers from the blood, cerebrospinal fluid and genetic

variants.

It is crucial to initiate multicenter-based research with

merged patient cohorts, which allows the acquisition and

analysis of large data sets (Keshavan et al., 2016). How-

ever, an emerging difficulty originating from multisite stud-

ies is the variability due to technical and methodological

issues such as differences in scanning equipment and

pre- and post-processing procedures. Interestingly, in a

recent study on this topic graph theory was the only



                                             
method that consistently discriminated patients (with fron-

totemporal dementia) from healthy controls and other

neurological samples across several centers (Sedeno

et al., 2017). Such studies in MS patients are needed to

address the reliability and reproducibility of network met-

rics in a multicenter setting.

The major goal of identifying predictors for the

classification of MS types, as well as the disease course

based on graph theoretical analyses, will be best

achieved by a strong collaboration of several MS

research centers sharing data sets that were obtained

as homogeneously as possible. Once we understand

the network’s behavior during neurodegenerative and

neuroinflammatory processes in more detail using graph

theory, network measures will add reliable and

quantifiable value in monitoring patients’ disease

progression and will have an impact on treatment

decisions.
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